JP7374542B1 - Electrolytic dressing device and electrolytic dressing method suitable for cylindrical grinding of steel rolls - Google Patents

Electrolytic dressing device and electrolytic dressing method suitable for cylindrical grinding of steel rolls Download PDF

Info

Publication number
JP7374542B1
JP7374542B1 JP2023539059A JP2023539059A JP7374542B1 JP 7374542 B1 JP7374542 B1 JP 7374542B1 JP 2023539059 A JP2023539059 A JP 2023539059A JP 2023539059 A JP2023539059 A JP 2023539059A JP 7374542 B1 JP7374542 B1 JP 7374542B1
Authority
JP
Japan
Prior art keywords
grinding
grinding wheel
electrode
electrolytic dressing
steel roll
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023539059A
Other languages
Japanese (ja)
Inventor
雄大 田中
和博 梁井
孝 鈴木
保男 三木
太地 岩田
晶彦 藤原
Original Assignee
株式会社シントク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社シントク filed Critical 株式会社シントク
Application granted granted Critical
Publication of JP7374542B1 publication Critical patent/JP7374542B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法を提供する。圧延用の鋼製ロールの円筒研削加工に用いる研削砥石と、研削砥石と間隙をもって対向する電極と、鋼製ロール及び電極に給電する電源と、を備え、研削砥石と電極との間の間隙に供給される研削液を媒介として研削砥石の表面に通電させて、研削砥石の表面に付着した鋼製ロールの研削粉を電解除去する。An electrolytic dressing device and an electrolytic dressing method suitable for cylindrical grinding of steel rolls are provided. A grinding wheel used for cylindrical grinding of a steel roll for rolling, an electrode facing the grinding wheel with a gap, and a power source for supplying power to the steel roll and the electrode. Electricity is applied to the surface of the grinding wheel using the supplied grinding fluid as a medium to electrolytically remove the grinding powder from the steel roll adhering to the surface of the grinding wheel.

Description

本発明は、圧延用の鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法に関する。 The present invention relates to an electrolytic dressing device and an electrolytic dressing method suitable for cylindrical grinding of steel rolls for rolling.

鋼製圧延ロールには鋳鋼、工具鋼(ダイス鋼、ハイス鋼)などの種類がある。熱い素材を圧延する熱間圧延は素材が加熱され高温のため軟らかい。熱間圧延は高温の間にできるだけ素材を潰して板厚を下げるのを目的とする。熱間圧延には大径の鋳鋼ロールが使用される。熱間圧延後は板やコイルの形状になり、厚板製品となる。熱間圧延後の厚板製品を、薄板や薄帯の製品にするための圧延が冷間圧延である。板やコイルは既に冷却されており室温になっている。素材は高温より室温の方が高強度で圧延に要する力も大きい。冷間圧延に使われるロールは素材の強度に負けない、より高強度の鋼で造られる。そのため、ダイス鋼やハイス鋼といった高合金の工具鋼も使用される。高合金とすることでロールはより高強度と強靭性が付与され、高強度材の圧延を可能とする。特に高強度のステンレス鋼などの磨き帯鋼はバネなどに使用されるもので、代表的な高硬度の材料と言える。これを冷間圧延するためには高合金のハイス鋼ロールが適しているが、繰り返し冷間圧延に使用するには定期的に再研削が必要となる。しかしながら、ハイス鋼は高合金の工具鋼で高強度かつ強靭性なので、再研削は難加工工程となっている。 There are various types of steel rolling rolls, such as cast steel and tool steel (die steel, high speed steel). In hot rolling, which involves rolling hot materials, the material is heated and is at a high temperature, making it soft. The purpose of hot rolling is to reduce the thickness of the material by crushing the material as much as possible during high temperatures. Large diameter cast steel rolls are used for hot rolling. After hot rolling, it is shaped into plates and coils, resulting in thick plate products. Cold rolling is the process of rolling a hot-rolled plate product into a thin plate or ribbon product. The plates and coils have already been cooled and are at room temperature. The strength of the material is higher at room temperature than at high temperature, and the force required for rolling is greater. The rolls used for cold rolling are made of higher-strength steel that can match the strength of the raw material. Therefore, high alloy tool steels such as die steel and high speed steel are also used. By using a high alloy, the roll is given higher strength and toughness, making it possible to roll high-strength materials. In particular, polished band steel such as high-strength stainless steel is used for springs, etc., and can be said to be a typical high-hardness material. High-alloy high-speed steel rolls are suitable for cold rolling, but regular re-grinding is required for repeated cold rolling. However, since high-speed steel is a high-alloy tool steel with high strength and toughness, re-grinding is a difficult process.

鋼製ロールで板や帯の素材を繰り返し圧延すると素材とロールが接触する面には跡が残る。また圧延終了後にロールを開放する際にロールに線状跡が残る。これらの跡をそのままにしておけば引き続き圧延される素材に形状不良や疵が発生し不具合となる。そのためロールは定期的に再研削される。しかしながらダイス鋼やハイス鋼は高強度、強靭性のため研削砥石表面にロール研削粉が付着して砥石の目詰まりを起こしやすく、研削性能が劣化する。これにより、1本のロールを研削するのに長時間を要する課題が存在していた。研削性が悪いと研削効率が下がり、結果として板や帯の生産効率も落ちる。特にダイス鋼よりも添加合金元素数と添加量の多いハイス鋼は、上述のように素材自体が高強度のステンレス鋼の薄板や薄帯を製造する際の圧延に用いられることが多い。ハイス鋼ロールにより圧延すれば、圧延後の板や帯の表面性状が良く、均一で美麗な外観を得ることができる。しかし上述のようにハイス鋼ロールは研削性が悪いため、ダイス鋼と比べて使用される頻度が低く、ハイス鋼ロールが普及する上での課題となっている。圧延ロールの再研削の工程を改善することで、金属の板、帯の製品の品質を向上させる板帯の高級化にもつながる。 When a plate or strip material is rolled repeatedly with steel rolls, marks are left on the surface where the material and the roll come into contact. Furthermore, when the rolls are opened after rolling, linear marks are left on the rolls. If these marks are left as they are, the material that is subsequently rolled will suffer shape defects and flaws, resulting in problems. Therefore, the rolls are periodically reground. However, because die steel and high speed steel have high strength and toughness, roll grinding powder adheres to the surface of the grinding wheel, easily clogging the wheel and degrading the grinding performance. This has caused a problem in that it takes a long time to grind one roll. If the grindability is poor, the grinding efficiency will decrease, and as a result, the production efficiency of plates and strips will also decrease. In particular, high-speed steel, which has a greater number and amount of added alloying elements than die steel, is often used for rolling when manufacturing thin plates and ribbons of high-strength stainless steel, as described above. By rolling with high-speed steel rolls, the surface quality of the plate or strip after rolling is good, and a uniform and beautiful appearance can be obtained. However, as mentioned above, high-speed steel rolls have poor grindability and are therefore used less frequently than die steel, which poses a problem for the widespread use of high-speed steel rolls. Improving the re-grinding process for rolling rolls will also lead to higher quality metal plates and strips, which will improve the quality of the products.

上述の研削性を向上する技術として、研削加工と同時に(インプロセスで)研削砥石の表面を電解ドレッシングする技術が存在する。従来の電解ドレッシング装置の典型的な構成を示したのが図6である。また、例えば、特許文献1に開示される技術も存在する。特許文献1に開示される電解ドレッシング装置は、圧延用の鋼製ロールを研削加工する研削砥石と、研削砥石の研削面と研削液を介在させる間隙を隔てて金属製の薄板で構成される電極面が対向する電解ドレッシング用電極と、研削液を介在して研削砥石と電解ドレッシング用電極とを通電する電源とを備え、研削砥石の表面を電解ドレッシングしつつ鋼製ロールを研削加工するものである。しかしながら、図6や特許文献1に開示されるような従来の技術は、研削砥石へ安定的に給電するための複雑な給電設備を組み付けるなど、円筒研削盤を改造する必要が生じていた。これにより、電解ドレッシング装置の大型化や複雑化、そしてこれらに伴って電解ドレッシング装置の導入コストの増加を招いていた。 As a technique for improving the above-mentioned grindability, there is a technique of electrolytically dressing the surface of the grinding wheel simultaneously with the grinding process (in-process). FIG. 6 shows a typical configuration of a conventional electrolytic dressing device. Furthermore, for example, there is also a technique disclosed in Patent Document 1. The electrolytic dressing device disclosed in Patent Document 1 includes a grinding wheel for grinding a steel roll for rolling, and an electrode made of a thin metal plate with a gap between the grinding surface of the grinding wheel and a grinding liquid. It is equipped with electrodes for electrolytic dressing whose surfaces face each other and a power source that supplies electricity to the grinding wheel and electrode for electrolytic dressing through a grinding fluid, and grinds a steel roll while electrolytically dressing the surface of the grinding wheel. be. However, in the conventional techniques as disclosed in FIG. 6 and Patent Document 1, it is necessary to modify the cylindrical grinding machine, such as by assembling complicated power supply equipment to stably supply power to the grinding wheel. This has led to an increase in the size and complexity of the electrolytic dressing device, and an increase in the cost of introducing the electrolytic dressing device.

また、圧延により製造する薄板や薄帯の広幅化は鋼製ロールの必然的に研削砥石の大型化が求められるところ、導電性の研削砥石は非導電性の研削砥石と比較して、一体型で大型化することは難しく、セグメント型とせざるを得ない。更に、図6や特許文献1に開示されるような従来の技術は、研削砥石に給電する構造であるため、研削砥石が導電性のものでなければならないという制約が生じていた。 In addition, the wider width of thin plates and ribbons produced by rolling necessarily requires larger grinding wheels for steel rolls, and compared to non-conductive grinding wheels, conductive grinding wheels are designed to be integrated. It is difficult to increase the size of the device, so a segment type has no choice but to be used. Furthermore, since the conventional technology disclosed in FIG. 6 and Patent Document 1 has a structure in which power is supplied to the grinding wheel, there is a restriction that the grinding wheel must be conductive.

特許第7157990号公報Patent No. 7157990

そこで、本発明は、広範囲の寸法を有する鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an electrolytic dressing device and an electrolytic dressing method suitable for cylindrical grinding of steel rolls having a wide range of dimensions.

上記の課題を解決するために、本発明に係る電解ドレッシング装置は、圧延用の鋼製ロールの円筒研削加工に用いる研削砥石と、研削砥石と間隙をもって対向する電極と、鋼製ロール及び電極に給電する電源と、を備え、研削砥石と電極との間の間隙に供給される研削液を媒介として研削砥石の表面に通電させて、研削砥石の表面に付着した鋼製ロールの研削粉を電解除去する。 In order to solve the above problems, an electrolytic dressing device according to the present invention includes a grinding wheel used for cylindrical grinding of a steel roll for rolling, an electrode facing the grinding wheel with a gap, and a steel roll and an electrode. A power supply for supplying electricity is provided, and electricity is applied to the surface of the grinding wheel via the grinding liquid supplied to the gap between the grinding wheel and the electrode, and the grinding powder of the steel roll attached to the surface of the grinding wheel is electrolyzed. Remove.

電源が円筒研削加工中に給電を行い、研削砥石の表面に付着した鋼製ロールの研削粉を円筒研削加工と並行して電解除去しても良い。 The power supply may supply power during the cylindrical grinding process to electrolytically remove grinding powder from the steel roll adhering to the surface of the grinding wheel in parallel with the cylindrical grinding process.

研削砥石のボンド材が、非導電性のボンド材であっても良い。 The bond material of the grinding wheel may be a non-conductive bond material.

研削砥石が、冷間圧延用のハイス鋼ロールの円筒研削加工に用いる研削砥石であっても良い。 The grinding wheel may be a grinding wheel used for cylindrical grinding of high-speed steel rolls for cold rolling.

電源が、直流電源、直流パルス電源、交流電源又はバイポーラ増幅器の何れかであっても良い。 The power source may be a DC power source, a DC pulse power source, an AC power source, or a bipolar amplifier.

また、上記の課題を解決するために、本発明に係る電解ドレッシング方法は、圧延用の鋼製ロールの円筒研削加工に用いる研削砥石の表面に付着した鋼製ロールの研削紛を電解除去する電解ドレッシング方法であって、研削砥石と間隙をもって対向するように電極を設置する電極設置工程と、鋼製ロール及び電極に給電する給電工程と、研削砥石と電極との間の間隙に供給される研削液を媒介として研削砥石の表面に通電させて、研削砥石の表面に付着した鋼製ロールの研削粉を電解除去する電解除去工程と、を備える。 In addition, in order to solve the above problems, the electrolytic dressing method according to the present invention is an electrolytic dressing method that electrolytically removes grinding particles of a steel roll that have adhered to the surface of a grinding wheel used for cylindrical grinding of a steel roll for rolling. The dressing method includes an electrode installation step in which the electrode is installed to face the grinding wheel with a gap, a power feeding step in which power is supplied to the steel roll and the electrode, and a grinding step in which the electrode is supplied to the gap between the grinding wheel and the electrode. The present invention includes an electrolytic removal step of electrolytically removing grinding powder from the steel roll attached to the surface of the grinding wheel by applying electricity to the surface of the grinding wheel using a liquid as a medium.

給電工程と、電解除去工程とを、円筒研削加工中に行っても良い。 The power supply step and the electrolytic removal step may be performed during the cylindrical grinding process.

給電工程は、電極へ給電する電極給電工程と、研削砥石への給電を鋼製ロールへの給電に切り替える鋼製ロール給電工程とを含んでも良い。 The power supply process may include an electrode power supply process of supplying power to the electrodes, and a steel roll power supply process of switching power supply to the grinding wheel to power supply to the steel roll.

給電工程は、直流電源、直流パルス電源、交流電源又はバイポーラ増幅器の何れかから電圧を印加する工程を含んでも良い。 The power supply step may include a step of applying voltage from any of a DC power source, a DC pulse power source, an AC power source, or a bipolar amplifier.

電極設置工程は、研削砥石との間隙を条件に応じて適切に調節する間隙調節工程を含んでも良い。 The electrode installation step may include a gap adjustment step of appropriately adjusting the gap between the electrode and the grinding wheel depending on the conditions.

本発明によれば、広範囲の寸法を有する鋼製ロールの円筒研削に適した電解ドレッシング装置及び電解ドレッシング方法を提供できる。 According to the present invention, it is possible to provide an electrolytic dressing device and an electrolytic dressing method suitable for cylindrical grinding of steel rolls having a wide range of dimensions.

本発明の第一実施形態に係る電解ドレッシング装置の構成を示した図である。1 is a diagram showing the configuration of an electrolytic dressing device according to a first embodiment of the present invention. 本発明の第一実施形態に係る電極の構成を示した図である。1 is a diagram showing the configuration of an electrode according to a first embodiment of the present invention. 本発明の第一実施形態に係る電極の構成を示した図である。1 is a diagram showing the configuration of an electrode according to a first embodiment of the present invention. 本発明の第一実施形態に係る電極の構成を示した図である。1 is a diagram showing the configuration of an electrode according to a first embodiment of the present invention. 本発明の第一実施形態に係る電解ドレッシング装置の動作を示した図である。It is a figure showing operation of an electrolytic dressing device concerning a first embodiment of the present invention. 本発明の第二実施形態に係る電解ドレッシング装置の構成を示した図である。It is a figure showing the composition of the electrolytic dressing device concerning a second embodiment of the present invention. 本発明の第二実施形態に係る電解ドレッシング装置の動作を示した図である。It is a figure showing operation of an electrolytic dressing device concerning a second embodiment of the present invention. 従来の電解ドレッシング装置の構成の一例を示した図である。1 is a diagram showing an example of the configuration of a conventional electrolytic dressing device.

以下、本発明に係る電解ドレッシング装置及び電解ドレッシング方法を説明する。なお、各図を通して、同一の参照符号が付されているものは、同一または同等のものである。 Hereinafter, an electrolytic dressing device and an electrolytic dressing method according to the present invention will be explained. Note that throughout the figures, the same reference numerals are used to indicate the same or equivalent parts.

まず、本発明の第一実施形態に係る電解ドレッシング装置100について説明する。 First, an electrolytic dressing device 100 according to a first embodiment of the present invention will be described.

図1は、本発明の第一実施形態に係る電解ドレッシング装置100の構成を示した図である。電解ドレッシング装置100は、研削砥石102と、電極103と、電源104とを備えている。なお、参照符号101は圧延用の鋼製ロールである。また、参照符号105は研削液供給源(タンク)、参照符号106は研削液107を吐出するノズルであり、チューブ(ホース)によって研削液供給源(タンク)に接続されている。 FIG. 1 is a diagram showing the configuration of an electrolytic dressing device 100 according to a first embodiment of the present invention. The electrolytic dressing device 100 includes a grinding wheel 102, an electrode 103, and a power source 104. Note that reference numeral 101 is a steel roll for rolling. Reference numeral 105 is a grinding fluid supply source (tank), and reference numeral 106 is a nozzle for discharging the grinding fluid 107, which is connected to the grinding fluid supply source (tank) by a tube (hose).

鋼製ロール101は、例えば、素材自体が高強度のステンレス鋼の薄板や薄帯を製造する際に用いられる、冷間圧延用のハイス鋼ロールである。 The steel roll 101 is, for example, a high-speed steel roll for cold rolling, which is used when manufacturing a thin plate or ribbon made of high-strength stainless steel.

研削砥石102は、鋼製ロール101の円筒研削加工に用いる円柱状の砥石であり、図示しない円筒研削盤などの装置に支持された回転軸によって回転駆動される。研削砥石102のボンド材については、メタルボンドは硬いために鋼製ロール101と反発し合い、鋼製ロール101の表面にタタキのような欠陥が生じる場合がある。そのような場合には、ボンド材として、レジンボンド材に金属ファイバーを含有させたメタルレジンボンド材が好適である。ただし、研削砥石102のボンド材については特に限定されず、鋼製ロール101の材質などに応じて、非導電性のボンド材を含めて既存の種々のボンド材から選択することができる。研削砥石102の番手については、本願出願人が鋭意実験した結果、♯200から♯4,000の範囲、より限定するならば#400から#2,000の範囲が好適であるとの知見を得た。ただし、研削砥石102の番手については特に限定されず、鋼製ロール101の材質などに応じて既存の種々の番手であって良い。なお、本明細書に記載する番手(粒度)は、JIS R 6001-1:2017(研削といし用研削材の粒度-第1部:粗粒)及びJIS R 6001-2:2017(研削といし用研削材の粒度-第2部:微粉)、並びに、研削砥石を製造及び販売する業界で通常使用されている表記に従う又は準ずる。研削砥石102の砥粒については、本願出願人が鋭意実験した結果、CBNが好適であるとの知見を得た。ただし、研削砥石102の砥粒については特にCBNに限定されず、GC砥石等の既存の種々の砥粒から選択することができる。 The grinding wheel 102 is a cylindrical grinding wheel used for cylindrical grinding of the steel roll 101, and is rotationally driven by a rotating shaft supported by a device such as a cylindrical grinder (not shown). Regarding the bonding material of the grinding wheel 102, since the metal bond is hard, it repels the steel roll 101 and may cause defects such as tataki on the surface of the steel roll 101. In such a case, a metal resin bond material in which a resin bond material contains metal fibers is suitable as the bond material. However, the bonding material for the grinding wheel 102 is not particularly limited, and can be selected from various existing bonding materials, including non-conductive bonding materials, depending on the material of the steel roll 101 and the like. Regarding the number of the grinding wheel 102, as a result of extensive experiments by the applicant, the applicant has found that a range of #200 to #4,000, more specifically a range of #400 to #2,000, is suitable. Ta. However, the number of the grinding wheel 102 is not particularly limited, and may be any of various existing numbers depending on the material of the steel roll 101 and the like. Note that the count (particle size) described in this specification is based on JIS R 6001-1:2017 (particle size of abrasive for grinding wheels - Part 1: Coarse grains) and JIS R 6001-2:2017 (grinding wheels). The particle size of abrasives for use in grinding materials - Part 2: Fine powder) and the notation commonly used in the industry that manufactures and sells grinding wheels shall be followed or conformed to. As for the abrasive grains of the grinding wheel 102, the applicant of the present application has conducted extensive experiments and has found that CBN is suitable. However, the abrasive grains of the grinding wheel 102 are not particularly limited to CBN, and can be selected from various existing abrasive grains such as a GC whetstone.

電極103は、研削砥石102の表面に付着した鋼製ロール101の研削粉を電解除去するための電極である。電極103は、図示されるようにブロック状であって、断面円弧状の電極面を備えている。この電極面は、研削砥石102の外周面と対向する長い矩形で、且つ、研削砥石102の外周面との間に研削液107の介在を許容する間隙、例えば0.5mmから7.0mm程度の間隙が形成されるように円筒内周面状に形成されている。なお、図1では電極103が研削砥石102の横に並ぶようにして設けられた状態を示しているが、電極103を設ける位置はこれに限定されない。また、図1に示される電極103の形状は例示であり、これに限定するものではない。 The electrode 103 is an electrode for electrolytically removing grinding powder from the steel roll 101 adhering to the surface of the grinding wheel 102. The electrode 103 is block-shaped as shown in the figure, and has an electrode surface with an arcuate cross section. This electrode surface has a long rectangular shape facing the outer circumferential surface of the grinding wheel 102, and has a gap between it and the outer circumferential surface of the grinding wheel 102 that allows the interposition of the grinding fluid 107, for example, about 0.5 mm to 7.0 mm. It is formed in the shape of a cylindrical inner peripheral surface so that a gap is formed. Although FIG. 1 shows a state in which the electrodes 103 are arranged side by side with the grinding wheel 102, the position where the electrodes 103 are provided is not limited to this. Further, the shape of the electrode 103 shown in FIG. 1 is an example, and the shape is not limited to this.

ここで、図2A乃至図2Cを参照しながら、電極103について更に説明する。図2Aは電極103の正面図であり、図2Bは電極103の側面図であり、図2Cは電極103のA-A線断面図である。図示されるように、電極103は、研削砥石102に対向する面、即ち断面円弧状の電極面が、金属製の薄板201によって構成されている。また、電極103は、研削砥石102に対向する面以外の部分が、絶縁材料200で構成されている。薄板201の具体的な素材としては、チタン、銅など種々の金属が適用可能である。薄板201の巾(図2Bにおける横方向の幅)は、研削砥石102の巾と同じかそれ以上であることが好ましい。絶縁材料200の具体的な材料としては、例えば塩化ビニル、ポリカーボネートなど種々のプラスチックが適用可能である。電極103を以上に述べた構成とすることで、全体が金属ブロックの加工品で構成されていた従来の電極と比較して大幅に軽量化される他、製作性、可搬性や設置性の向上やコストの削減の効果が得られる。なお、電極面の大きさについては特に限定されないが、本願出願人が鋭意実験した結果、電極面の周方向の長さ、即ち薄板201の円弧長が研削砥石102の円周長(外周長)の15パーセントを超える(即ち、周方向において薄板201が研削砥石102をカバーする比率が15パーセントを超える)場合に良好な効果が得られるとの知見を得た。 Here, the electrode 103 will be further explained with reference to FIGS. 2A to 2C. 2A is a front view of the electrode 103, FIG. 2B is a side view of the electrode 103, and FIG. 2C is a cross-sectional view of the electrode 103 taken along the line AA. As shown in the figure, the surface of the electrode 103 facing the grinding wheel 102, that is, the electrode surface having an arcuate cross section, is constituted by a thin metal plate 201. Further, the electrode 103 is made of an insulating material 200 in a portion other than the surface facing the grinding wheel 102 . As a specific material for the thin plate 201, various metals such as titanium and copper can be used. The width of the thin plate 201 (the width in the lateral direction in FIG. 2B) is preferably the same as or larger than the width of the grinding wheel 102. As specific materials for the insulating material 200, various plastics such as vinyl chloride and polycarbonate can be used. By configuring the electrode 103 as described above, it is significantly lighter in weight compared to conventional electrodes that are entirely constructed of processed metal blocks, and improves manufacturability, portability, and installation. and cost reduction benefits. Although the size of the electrode surface is not particularly limited, as a result of intensive experiments by the applicant, the length of the electrode surface in the circumferential direction, that is, the arc length of the thin plate 201 is the circumferential length (outer circumferential length) of the grinding wheel 102. It has been found that good effects can be obtained when the ratio of the thin plate 201 covering the grinding wheel 102 in the circumferential direction exceeds 15%.

電源104は、鋼製ロール101の材質、研削砥石102の種類、研削粉を電解除去する時間などの条件に応じた適正な電圧、電流を鋼製ロール101及び電極103に供給(給電)する電源である。電源104としては、直流電源、直流パルス電源、交流電源、バイポーラ増幅器など種々の方式の電源が適用可能である。本実施形態では、電極103(薄板201)に対しては給電線(配線)108を介して給電が行われ、鋼製ロール101に対しては給電線(配線)109を介して給電が行われる(給電工程)。なお、鋼製ロール101への給電の構造や工程については特に限定されず、例えば、給電線109の先端に設けたブラシを介して給電を行っても良く、給電線109の先端の導体を露出させた上で鋼製ロール101の端部などに直接接触させて給電を行っても良い。また、例えば、給電線109の給電先を研削砥石102から鋼製ロール101に切り替えるための配線切替器を設けるなどして、研削砥石102に代えて鋼製ロール101に給電を行っても良い(鋼製ロール給電工程)。 The power supply 104 is a power supply that supplies (powers) the steel roll 101 and the electrodes 103 with appropriate voltage and current according to conditions such as the material of the steel roll 101, the type of the grinding wheel 102, and the time for electrolytically removing grinding powder. It is. As the power source 104, various types of power sources can be applied, such as a DC power source, a DC pulse power source, an AC power source, and a bipolar amplifier. In this embodiment, power is supplied to the electrode 103 (thin plate 201) via a power supply line (wiring) 108, and power is supplied to the steel roll 101 via a power supply line (wiring) 109. (Power supply process). Note that the structure and process for feeding power to the steel roll 101 are not particularly limited. For example, power may be fed through a brush provided at the tip of the feed line 109, or the conductor at the tip of the feed line 109 may be exposed. After that, power may be supplied by directly contacting the end of the steel roll 101 or the like. Further, for example, power may be supplied to the steel roll 101 instead of the grinding wheel 102 by providing a wiring switch for switching the power supply destination of the power supply line 109 from the grinding wheel 102 to the steel roll 101 ( steel roll feeding process).

以上のとおり説明した電解ドレッシング装置100の動作について、図3を参照しながら説明する。まず、鋼製ロール101の研削加工に用いる研削砥石102に対して、研削液107の介在を許容する間隙をもって対向するようにして電極103を固定する(電極設置工程)。ここで、鋼製ロール101の材質、研削砥石102の種類、研削粉を電解除去する時間などの条件に応じて、研削液107の介在を許容する間隙を適切に調節することができる(間隙調節工程)。続いて、研削砥石102と電極103との間隙にノズル106から研削液107を供給し、回転駆動する研削砥石102の表面に行き渡らせる(研削液供給工程)。続いて、電源104より鋼製ロール101と電極103とに給電し、研削砥石102の表面に行き渡った研削液を媒介として研削砥石102の表面に通電させる(給電工程)。これにより、研削加工中の研削砥石102の表面に付着した鋼製ロール101の研削粉が連続的に電解除去(電解ドレッシング)され(電解除去工程)、研削砥石102の砥粒が鋼製ロール101と接する状態を保つことができ、研削性が向上する。なお、研削砥石102の表面に付着した鋼製ロール101の研削粉は、研削加工中に給電を行うことでインライン(インプロセス)で連続的に電解除去することが好ましい。しかしながら、研削加工と電解除去とは必ずしも同時に行う必要はなく、鋼製ロール101の材質、研削砥石102の種類、研削粉を電解除去する時間などの条件に応じて、交互に行ったり、タイミングを適宜ずらしたりすることができる。 The operation of the electrolytic dressing device 100 described above will be described with reference to FIG. 3. First, the electrode 103 is fixed so as to face the grinding wheel 102 used for grinding the steel roll 101 with a gap that allows the interposition of the grinding fluid 107 (electrode installation step). Here, depending on conditions such as the material of the steel roll 101, the type of the grinding wheel 102, and the time for electrolytically removing grinding powder, the gap that allows the presence of the grinding fluid 107 can be adjusted appropriately (gap adjustment). process). Subsequently, the grinding liquid 107 is supplied from the nozzle 106 to the gap between the grinding wheel 102 and the electrode 103, and spread over the surface of the rotating grinding wheel 102 (grinding liquid supply step). Subsequently, power is supplied from the power source 104 to the steel roll 101 and the electrode 103, and the surface of the grinding wheel 102 is energized through the grinding liquid that has spread over the surface of the grinding wheel 102 (power supply step). As a result, the grinding powder of the steel roll 101 adhering to the surface of the grinding wheel 102 during the grinding process is continuously electrolytically removed (electrolytic dressing) (electrolytic removal process), and the abrasive grains of the grinding wheel 102 are transferred to the steel roll 101. It is possible to maintain contact with the material, improving grindability. Note that it is preferable that the grinding powder of the steel roll 101 adhering to the surface of the grinding wheel 102 is continuously electrolytically removed in-line (in-process) by supplying power during the grinding process. However, grinding and electrolytic removal do not necessarily have to be performed at the same time, but may be performed alternately or at different timings depending on conditions such as the material of the steel roll 101, the type of grinding wheel 102, and the time for electrolytically removing grinding powder. It can be shifted as appropriate.

次に、本発明の第二実施形態に係る電解ドレッシング装置400について説明する。 Next, an electrolytic dressing device 400 according to a second embodiment of the present invention will be described.

図4は、本発明の第二実施形態に係る電解ドレッシング装置400の構成を示した図である。電解ドレッシング装置400は、研削砥石102と、電極401と、電源104とを備えている。鋼製ロール101,研削砥石102、電源104、研削液供給源(タンク)105,研削液107,給電線(配線)108及び給電線(配線)109は、第一実施形態と同様である。 FIG. 4 is a diagram showing the configuration of an electrolytic dressing device 400 according to a second embodiment of the present invention. The electrolytic dressing device 400 includes a grinding wheel 102, an electrode 401, and a power source 104. The steel roll 101, the grinding wheel 102, the power supply 104, the grinding fluid supply source (tank) 105, the grinding fluid 107, the power supply line (wiring) 108, and the power supply line (wiring) 109 are the same as those in the first embodiment.

電極401は、研削砥石102の表面に付着した鋼製ロール101の研削粉を電解除去するための電極である。電極401は、図示されるようにブロック状であって、断面円弧状の電極面を備えている。この電極面は、研削砥石102の外周面と対向する長い矩形で、且つ、研削砥石102の外周面との間に研削液107の介在を許容する間隙、例えば0.5mmから7.0mm程度の間隙が形成されるように円筒内周面状に形成されている。なお、図4では電極401が研削砥石102の横に並ぶようにして設けられた状態を示しているが、電極401を設ける位置はこれに限定されない。また、図4に示される電極401の形状は例示であり、これに限定するものではない。 The electrode 401 is an electrode for electrolytically removing grinding powder from the steel roll 101 adhering to the surface of the grinding wheel 102. The electrode 401 has a block shape as shown in the figure, and has an electrode surface having an arcuate cross section. This electrode surface has a long rectangular shape facing the outer circumferential surface of the grinding wheel 102, and has a gap between it and the outer circumferential surface of the grinding wheel 102 that allows the interposition of the grinding fluid 107, for example, about 0.5 mm to 7.0 mm. It is formed in the shape of a cylindrical inner peripheral surface so that a gap is formed. Although FIG. 4 shows a state in which the electrode 401 is provided side by side with the grinding wheel 102, the position where the electrode 401 is provided is not limited to this. Moreover, the shape of the electrode 401 shown in FIG. 4 is an example, and the shape is not limited to this.

次に、電極401について更に説明する。電極401は、研削砥石102に対向する面、即ち断面円弧状の電極面が、第一実施形態の電極103と同様に、金属製の薄板201によって構成されている。また、電極401は、研削砥石102に対向する面以外の部分が、第一実施形態の電極103と同様に、絶縁材料200で構成されている。薄板201の具体的な素材としては、チタン、ステンレス鋼など種々の金属が適用可能である。薄板201の巾は、研削砥石102の巾と同じかそれ以上であることが好ましい。絶縁材料200の具体的な材料としては、例えば塩化ビニル、ポリカーボネートなど種々のプラスチックが適用可能である。電極401を以上に述べた構成とすることで、全体が金属で構成されていた従来の電極と比較して大幅に軽量化される他、製作性、可搬性や設置性の向上やコストの削減の効果が得られる。なお、電極面の大きさについては特に限定されないが、本願出願人が鋭意実験した結果、電極面の周方向の長さ、即ち薄板201の円弧長が研削砥石102の円周長(外周長)の15パーセントを超える(即ち、周方向において薄板201が研削砥石102をカバーする比率が15パーセントを超える)場合に良好な効果が得られるとの知見を得た。 Next, the electrode 401 will be further explained. The surface of the electrode 401 facing the grinding wheel 102, that is, the electrode surface having an arcuate cross section, is constituted by a thin metal plate 201, similar to the electrode 103 of the first embodiment. Further, the portion of the electrode 401 other than the surface facing the grinding wheel 102 is made of the insulating material 200, similar to the electrode 103 of the first embodiment. As a specific material for the thin plate 201, various metals such as titanium and stainless steel can be used. The width of the thin plate 201 is preferably the same as or greater than the width of the grinding wheel 102. As specific materials for the insulating material 200, various plastics such as vinyl chloride and polycarbonate can be used. By configuring the electrode 401 as described above, it is significantly lighter in weight than conventional electrodes that are entirely made of metal, and also improves manufacturability, portability and installation, and reduces costs. The effect of this can be obtained. Although the size of the electrode surface is not particularly limited, as a result of intensive experiments by the applicant, the length of the electrode surface in the circumferential direction, that is, the arc length of the thin plate 201 is the circumferential length (outer circumferential length) of the grinding wheel 102. It has been found that good effects can be obtained when the ratio of the thin plate 201 covering the grinding wheel 102 in the circumferential direction exceeds 15%.

ここで、電極401は、その内部が中空に構成されている点、研削液導入口402が絶縁材料200に少なくとも一つ設けられている点及び薄板201に複数の微小な研削液供給孔(図示せず)が設けられている点が、第一実施形態に係る電極103と異なっている。研削液導入口402は、電極401の内部に研削液107を導入するための開口であり、チューブ(ホース)によって研削液供給源(タンク)105に接続されている。なお、電極401においては研削液導入口402が正面(図4において手前側の面)に設けられているが、背面など他の面に設けられても良い。電極401を以上に述べた構成とすることで、電極401の内部及び研削液供給孔を通過して、研削砥石102と電極401との間隙に研削液107が均一に供給され、回転駆動する研削砥石102の表面に行き渡る(研削液供給工程)。これにより、電極面における研削液107の流れの局所的な不均一が解消され、研削砥石102の表面性状を一定に保つことができる。なお、電極401を図4に示すような位置に設けるときは、下方の研削液供給孔ほど孔径を小さく(上方の研削液供給孔ほど孔径を大きく)することができる。下方の研削液供給孔ほど孔径を小さくすることで、下方から上方にかけての研削液の供給の不均一を解消することができる。 Here, the electrode 401 has a hollow interior, at least one grinding fluid inlet 402 is provided in the insulating material 200, and the thin plate 201 has a plurality of minute grinding fluid supply holes (Fig. The electrode 103 differs from the electrode 103 according to the first embodiment in that the electrode 103 (not shown) is provided. The grinding liquid inlet 402 is an opening for introducing the grinding liquid 107 into the electrode 401, and is connected to the grinding liquid supply source (tank) 105 through a tube (hose). Although the grinding fluid inlet 402 is provided on the front surface of the electrode 401 (the surface on the near side in FIG. 4), it may be provided on other surfaces such as the back surface. By configuring the electrode 401 as described above, the grinding liquid 107 is uniformly supplied to the gap between the grinding wheel 102 and the electrode 401 through the inside of the electrode 401 and through the grinding liquid supply hole, and the grinding liquid 107 is uniformly supplied to the gap between the grinding wheel 102 and the electrode 401. The grinding fluid is distributed over the surface of the grinding wheel 102 (grinding fluid supply process). As a result, local non-uniformity in the flow of the grinding fluid 107 on the electrode surface is eliminated, and the surface quality of the grinding wheel 102 can be kept constant. Note that when the electrode 401 is provided at a position as shown in FIG. 4, the hole diameter can be made smaller as the lower grinding fluid supply hole is placed (the hole diameter can be made larger as the upper grinding liquid supply hole is placed). By making the diameter of the grinding fluid supply holes smaller toward the bottom, it is possible to eliminate uneven supply of the grinding fluid from the bottom to the top.

また、電極401は、電極401の内部に、内部を分割する隔壁を少なくとも一つ設けることができる。電極401の内部に隔壁を設けることで、電極401の剛性を高めることができる他、研削液導入口402より導入された研削液107を、電極401の内部においてバランスよく分布させることができる。また、隔壁によって電極401の内部が異なる大きさ(容積)に分割されるときは、隔壁によって大きく分割された内部空間に対応する研削液供給孔と、隔壁によって小さく分割された内部空間に対応する研削液供給孔とで、研削液供給孔の孔径を異なる大きさとすることができる。例えば、隔壁によって大きく分割された内部空間に対応する研削液供給孔を小さな孔径とし、隔壁によって小さく分割された内部に対応する研削液供給孔を大きな孔径とすることができる。この反対も可能である。電極401を設ける位置、向きや角度、研削液の粘度などに応じて、隔壁によって大きく分割された内部空間に対応する研削液供給孔と隔壁によって小さく分割された内部空間に対応する研削液供給孔とで研削液供給孔の孔径を異なる大きさとすることで、研削砥石102と電極401との間隙への研削液107の供給の不均一を解消することができる。 Further, the electrode 401 can be provided with at least one partition wall that divides the inside of the electrode 401. By providing a partition inside the electrode 401, the rigidity of the electrode 401 can be increased, and the grinding fluid 107 introduced from the grinding fluid inlet 402 can be distributed in a well-balanced manner inside the electrode 401. Further, when the inside of the electrode 401 is divided into different sizes (volumes) by the partition, the grinding fluid supply hole corresponds to the internal space divided into large parts by the partition, and the grinding fluid supply hole corresponds to the internal space divided into small parts by the partition. The diameter of the grinding liquid supply hole can be made different from that of the grinding liquid supply hole. For example, the grinding fluid supply hole corresponding to the internal space largely divided by the partition wall can have a small hole diameter, and the grinding fluid supply hole corresponding to the interior space divided into small parts by the partition wall can have a large hole diameter. The opposite is also possible. Depending on the position, orientation and angle of the electrode 401, the viscosity of the grinding fluid, etc., there are grinding fluid supply holes corresponding to internal spaces largely divided by partition walls and grinding fluid supply holes corresponding to internal spaces divided into small spaces by partition walls. By making the hole diameters of the grinding fluid supply holes different in size, it is possible to eliminate uneven supply of the grinding fluid 107 to the gap between the grinding wheel 102 and the electrode 401.

以上のとおり説明した電解ドレッシング装置400の動作について、図5を参照しながら説明する。まず、鋼製ロール101の研削加工に用いる研削砥石102に対して、研削液107の介在を許容する間隙をもって対向するようにして電極401を固定する(電極設置工程)。ここで、鋼製ロール101の材質、研削砥石102の種類、研削粉を電解除去する時間などの条件に応じて、研削液107の介在を許容する間隙を適切に調節することができる(間隙調節工程)。続いて、研削砥石102と電極401との間隙に研削液供給孔から研削液107を供給し、回転駆動する研削砥石102の表面に行き渡らせる(研削液供給工程)。続いて、電源104より鋼製ロール101と電極401とに給電し、研削砥石102の表面に行き渡った研削液を媒介として研削砥石102の表面に通電させる(給電工程)。これにより、研削加工中の研削砥石102の表面に付着した鋼製ロール101の研削粉が連続的に電解除去(電解ドレッシング)され(電解除去工程)、研削砥石102の砥粒が鋼製ロール101と接する状態を保つことができ、研削性が向上する。なお、研削砥石102の表面に付着した鋼製ロール101の研削粉は、研削加工中に給電を行うことでインライン(オンライン)で連続的に電解除去することが好ましい。しかしながら、研削加工と電解除去とは必ずしも同時に行う必要はなく、鋼製ロール101の材質、研削砥石102の種類、研削粉を電解除去する時間などの条件に応じて、交互に行ったり、タイミングを適宜ずらしたりすることができる。 The operation of the electrolytic dressing device 400 described above will be described with reference to FIG. 5. First, the electrode 401 is fixed so as to face the grinding wheel 102 used for grinding the steel roll 101 with a gap that allows the interposition of the grinding fluid 107 (electrode installation step). Here, depending on conditions such as the material of the steel roll 101, the type of the grinding wheel 102, and the time for electrolytically removing grinding powder, the gap that allows the presence of the grinding fluid 107 can be adjusted appropriately (gap adjustment). process). Subsequently, the grinding liquid 107 is supplied from the grinding liquid supply hole to the gap between the grinding wheel 102 and the electrode 401, and spread over the surface of the rotating grinding wheel 102 (grinding liquid supply step). Next, power is supplied from the power source 104 to the steel roll 101 and the electrode 401, and the surface of the grinding wheel 102 is energized through the grinding fluid that has spread over the surface of the grinding wheel 102 (power supply step). As a result, the grinding powder of the steel roll 101 adhering to the surface of the grinding wheel 102 during the grinding process is continuously electrolytically removed (electrolytic dressing) (electrolytic removal process), and the abrasive grains of the grinding wheel 102 are transferred to the steel roll 101. It is possible to maintain contact with the material, improving grindability. Note that it is preferable that the grinding powder from the steel roll 101 adhering to the surface of the grinding wheel 102 is continuously electrolytically removed in-line by supplying power during the grinding process. However, grinding and electrolytic removal do not necessarily have to be performed at the same time, but may be performed alternately or at different timings depending on conditions such as the material of the steel roll 101, the type of grinding wheel 102, and the time for electrolytically removing grinding powder. It can be shifted as appropriate.

以上、本発明の好適な実施形態について説明したが、本発明は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の改変が可能である。 Although the preferred embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention.

例えば、研削液が流れることができる細かい溝を電極面に形成し、研削液供給孔から供給された研削液が溝を伝って電極面の全体に行き届くようにすることができる。これにより、研削砥石と電極との間隙への研削液の供給の均一性がより高まる。 For example, it is possible to form fine grooves on the electrode surface through which the grinding fluid can flow, so that the grinding fluid supplied from the grinding fluid supply hole travels through the grooves and reaches the entire electrode surface. This further increases the uniformity of supply of the grinding liquid to the gap between the grinding wheel and the electrode.

本発明に係る電解ドレッシング装置及び電解ドレッシング方法によれば、まず、従来技術と異なり研削砥石へ給電する必要がなくなるため、導電性の研削砥石はもちろん、レジンボンド砥石やGC砥石など、従来技術では想定されていなかった非導電性の研削砥石を適用することができるようになる。また、本発明に係る電解ドレッシング装置及び電解ドレッシング方法によれば、従来技術と異なり研削砥石へ給電する必要がなくなるため、研削砥石へ安定的に給電するための複雑な給電設備を組み付けるといった円筒研削盤を改造する必要がない。従って、本発明に係る電解ドレッシング装置及び電解ドレッシング方法によれば、ハイス鋼の圧延ロールへの使用頻度が拡大し、高機能表面を有する板および帯の製造の難易度が下がる。また、本発明に係る電解ドレッシング装置及び電解ドレッシング方法は、工具鋼以外の高機能ロール(例えば超硬ロールやセラミックロール)への応用も可能となりえる。また、本発明に係る電解ドレッシング装置及び電解ドレッシング方法によれば、ステンレス鋼などの高硬度、強靭性の材料を冷間圧延する場面において表面品質の向上が可能となる他、ステンレス鋼以外の高硬度、強靭性の材料を冷間圧延する可能性が拡大し、ステンレス鋼以外の高硬度、強靭性の材料の用途が拡大する。また、本発明に係る電解ドレッシング装置及び電解ドレッシング方法によれば、鋼よりも高強度、高靭性の材料(例えば超合金)を熱間圧延ロールの材料として利用する可能性が生じる。 According to the electrolytic dressing device and the electrolytic dressing method according to the present invention, firstly, unlike the conventional technology, there is no need to supply power to the grinding wheel. It becomes possible to apply non-conductive grinding wheels, which was not expected. Further, according to the electrolytic dressing device and the electrolytic dressing method according to the present invention, there is no need to supply power to the grinding wheel unlike the conventional technology, so cylindrical grinding requires assembling complicated power supply equipment to stably supply power to the grinding wheel. There is no need to modify the board. Therefore, according to the electrolytic dressing device and electrolytic dressing method according to the present invention, high-speed steel is used more frequently for rolling rolls, and the difficulty in manufacturing plates and strips having highly functional surfaces is reduced. Furthermore, the electrolytic dressing device and electrolytic dressing method according to the present invention may be applicable to high-performance rolls other than tool steel (for example, carbide rolls and ceramic rolls). Further, according to the electrolytic dressing device and the electrolytic dressing method of the present invention, it is possible to improve the surface quality when cold rolling high hardness and tough materials such as stainless steel, and to improve the surface quality of high hardness and tough materials such as stainless steel. The possibility of cold rolling hard and tough materials will expand, and the applications of high hardness and tough materials other than stainless steel will expand. Further, according to the electrolytic dressing device and the electrolytic dressing method according to the present invention, it is possible to use a material having higher strength and toughness than steel (for example, a superalloy) as a material for a hot rolling roll.

100 電解ドレッシング装置
101 鋼製ロール
102 研削砥石
103 電極
104 電源
105 研削液供給源(タンク)
106 ノズル
107 研削液
108 給電線(配線)
109 給電線(配線)
200 絶縁材料
201 薄板
400 電解ドレッシング装置
401 電極
402 研削液導入口
600 電解ドレッシング装置
601 電極
602 電源
603 給電線(配線)
604 給電線(配線)
100 Electrolytic dressing device 101 Steel roll 102 Grinding wheel 103 Electrode 104 Power supply 105 Grinding fluid supply source (tank)
106 Nozzle 107 Grinding fluid 108 Power supply line (wiring)
109 Power supply line (wiring)
200 Insulating material 201 Thin plate 400 Electrolytic dressing device 401 Electrode 402 Grinding fluid inlet 600 Electrolytic dressing device 601 Electrode 602 Power supply 603 Power supply line (wiring)
604 Power supply line (wiring)

Claims (7)

圧延用の鋼製ロールの円筒研削加工に用いる研削砥石と、
前記研削砥石と間隙をもって対向する電極と、
前記鋼製ロール及び前記電極に給電する電源と、を備え、
前記研削砥石のボンド材が、非導電性のボンド材であり、
前記電源が前記円筒研削加工中に前記給電を行い、
前記研削砥石と前記電極との間の前記間隙に供給される研削液を媒介として前記研削砥石の表面が通電され、前記研削砥石の表面に付着した前記鋼製ロールの導電性を有する研削粉前記円筒研削加工と並行して電解除去する、
電解ドレッシング装置。
A grinding wheel used for cylindrical grinding of steel rolls for rolling,
an electrode facing the grinding wheel with a gap;
A power supply that supplies power to the steel roll and the electrode,
The bond material of the grinding wheel is a non-conductive bond material,
The power source supplies the power during the cylindrical grinding process,
The surface of the grinding wheel is energized through the grinding liquid supplied to the gap between the grinding wheel and the electrode, and the conductive grinding powder of the steel roll attached to the surface of the grinding wheel is removed. electrolytic removal in parallel with the cylindrical grinding process ;
Electrolytic dressing equipment.
請求項に記載の電解ドレッシング装置において、
前記研削砥石が、冷間圧延用のハイス鋼ロールの前記円筒研削加工に用いる研削砥石である、
電解ドレッシング装置。
The electrolytic dressing device according to claim 1 ,
The grinding wheel is a grinding wheel used for the cylindrical grinding of a high-speed steel roll for cold rolling.
Electrolytic dressing equipment.
請求項1又は2に記載の電解ドレッシング装置において、
前記電源が、直流電源、直流パルス電源、交流電源又はバイポーラ増幅器の何れかである、
電解ドレッシング装置。
The electrolytic dressing device according to claim 1 or 2 ,
The power source is a DC power source, a DC pulse power source, an AC power source, or a bipolar amplifier.
Electrolytic dressing equipment.
圧延用の鋼製ロールの円筒研削加工に用いる研削砥石の表面に付着した前記鋼製ロールの導電性を有する研削粉を電解除去する電解ドレッシング方法であって、
前記研削砥石のボンド材が、非導電性のボンド材であり、
前記研削砥石と間隙をもって対向するように電極を設置する電極設置工程と、
前記鋼製ロール及び前記電極に給電する給電工程と、
前記研削砥石と前記電極との間の前記間隙に供給される研削液を媒介として前記研削砥石の表面が通電され、前記研削砥石の表面に付着した前記鋼製ロールの前記導電性を有する研削粉を電解除去する電解除去工程と、
を備え、
前記給電工程と、前記電解除去工程とを、前記円筒研削加工中に行い、前記導電性を有する研削粉を前記円筒研削加工と並行して電解除去する、
電解ドレッシング方法。
An electrolytic dressing method for electrolytically removing conductive grinding powder of the steel roll attached to the surface of a grinding wheel used for cylindrical grinding of a steel roll for rolling, comprising:
The bond material of the grinding wheel is a non-conductive bond material,
an electrode installation step of installing an electrode to face the grinding wheel with a gap;
a power supply step of supplying power to the steel roll and the electrode;
The surface of the grinding wheel is energized through the grinding fluid supplied to the gap between the grinding wheel and the electrode, and the conductive grinding powder of the steel roll adheres to the surface of the grinding wheel. an electrolytic removal step for electrolytically removing the
Equipped with
The power supply step and the electrolytic removal step are performed during the cylindrical grinding process, and the conductive grinding powder is electrolytically removed in parallel with the cylindrical grinding process.
Electrolytic dressing method.
請求項に記載の電解ドレッシング方法において、
前記給電工程は、前記電極へ給電する電極給電工程と、前記研削砥石への給電を前記鋼製ロールへの給電に切り替える鋼製ロール給電工程とを含む、
電解ドレッシング方法。
In the electrolytic dressing method according to claim 4 ,
The power supply step includes an electrode power supply step of supplying power to the electrode, and a steel roll power supply step of switching power supply to the grinding wheel to power supply to the steel roll.
Electrolytic dressing method.
請求項4又は5に記載の電解ドレッシング方法において、
前記給電工程は、直流電源、直流パルス電源、交流電源又はバイポーラ増幅器の何れかから電圧を印加する工程を含む、
電解ドレッシング方法。
In the electrolytic dressing method according to claim 4 or 5 ,
The power supply step includes a step of applying voltage from any one of a DC power source, a DC pulse power source, an AC power source, or a bipolar amplifier.
Electrolytic dressing method.
請求項に記載の電解ドレッシング方法において、
前記電極設置工程は、前記研削砥石との前記間隙を条件に応じて適切に調節する間隙調節工程を含む、
電解ドレッシング方法。
In the electrolytic dressing method according to claim 6 ,
The electrode installation step includes a gap adjustment step of appropriately adjusting the gap with the grinding wheel according to conditions.
Electrolytic dressing method.
JP2023539059A 2023-03-10 2023-03-10 Electrolytic dressing device and electrolytic dressing method suitable for cylindrical grinding of steel rolls Active JP7374542B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023009295 2023-03-10

Publications (1)

Publication Number Publication Date
JP7374542B1 true JP7374542B1 (en) 2023-11-07

Family

ID=88645893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023539059A Active JP7374542B1 (en) 2023-03-10 2023-03-10 Electrolytic dressing device and electrolytic dressing method suitable for cylindrical grinding of steel rolls

Country Status (1)

Country Link
JP (1) JP7374542B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019623A (en) 2001-07-04 2003-01-21 Inst Of Physical & Chemical Res Surface function improving method for workpiece and device thereof
JP2008105124A (en) 2006-10-25 2008-05-08 Institute Of Physical & Chemical Research Method and apparatus for reforming surface of workpiece
JP2019126887A (en) 2018-01-25 2019-08-01 国立研究開発法人理化学研究所 Removal processing method, removal processing program and removal processor
JP7157990B1 (en) 2022-06-27 2022-10-21 株式会社シントク Electrolytic dressing method suitable for cylindrical grinding of steel rolls

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003019623A (en) 2001-07-04 2003-01-21 Inst Of Physical & Chemical Res Surface function improving method for workpiece and device thereof
JP2008105124A (en) 2006-10-25 2008-05-08 Institute Of Physical & Chemical Research Method and apparatus for reforming surface of workpiece
JP2019126887A (en) 2018-01-25 2019-08-01 国立研究開発法人理化学研究所 Removal processing method, removal processing program and removal processor
JP7157990B1 (en) 2022-06-27 2022-10-21 株式会社シントク Electrolytic dressing method suitable for cylindrical grinding of steel rolls

Similar Documents

Publication Publication Date Title
US7189145B2 (en) Method of and apparatus for producing roll
JP5107733B2 (en) Grinding apparatus and grinding method
WO2024003977A1 (en) Electrolytic dressing device and electrolytic dressing method suited for cylindrical grinding of steel roll
JPS5858175B2 (en) Roll Oshiage Surhouhou Oyobi Souchi
JP7374542B1 (en) Electrolytic dressing device and electrolytic dressing method suitable for cylindrical grinding of steel rolls
EP2270263A1 (en) Stainless steel and surface treatment method for stainless steel
Lin et al. Machining performance on hybrid process of abrasive jet machining and electrical discharge machining
Qian et al. Precision internal grinding with a metal-bonded diamond grinding wheel
Qian et al. Cylindrical grinding of bearing steel with electrolytic in-process dressing
TWI837030B (en) Electrolytic dressing device and electrolytic dressing method suitable for cylindrical grinding of steel rollers
KR101900531B1 (en) Method for producing steel
JP2648999B2 (en) Electrolytic compound polishing machine for cylindrical workpiece outer surface
JPH11262860A (en) Extremely precise grinding method and device
CN100503869C (en) Roller for polishing bright sheet and its production method
JP5394962B2 (en) Grinding apparatus and grinding method
KR20130064613A (en) Apparatus and method for treating surface of hot rolled strip
JP2007138283A (en) Method for producing stainless steel sheet
JP3251610B2 (en) Mirror polishing method and apparatus using electrolytic products
JP2846056B2 (en) Grinding device and grinding method
KR100227089B1 (en) Manufacturing method of stone finish materials
JPH07132458A (en) Grinding wheel dressing method
Ohmori et al. Highly efficient and precision fabrication of cylindrical parts from hard materials with the application of ELID (electrolytic in-process dressing)
RU2241582C2 (en) Method for combination trimming of products of metallurgical conversion by means of brush-electrode
Mamalis et al. Two-stage electro-discharge machining fabricating superhard cutting tools
JP2004042261A (en) Grinding method and cold rolling method of rolling-mill roll

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230623

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231018

R150 Certificate of patent or registration of utility model

Ref document number: 7374542

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150