JP7371831B2 - Planting soil improvement material, planting soil, method for producing planting soil, and planting method - Google Patents

Planting soil improvement material, planting soil, method for producing planting soil, and planting method Download PDF

Info

Publication number
JP7371831B2
JP7371831B2 JP2020008024A JP2020008024A JP7371831B2 JP 7371831 B2 JP7371831 B2 JP 7371831B2 JP 2020008024 A JP2020008024 A JP 2020008024A JP 2020008024 A JP2020008024 A JP 2020008024A JP 7371831 B2 JP7371831 B2 JP 7371831B2
Authority
JP
Japan
Prior art keywords
soil
planting
sand
mass
sludge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020008024A
Other languages
Japanese (ja)
Other versions
JP2020122142A (en
Inventor
称三 大川
香織 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinki University
Original Assignee
Kinki University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinki University filed Critical Kinki University
Publication of JP2020122142A publication Critical patent/JP2020122142A/en
Application granted granted Critical
Publication of JP7371831B2 publication Critical patent/JP7371831B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)
  • Treatment Of Sludge (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Description

本発明は、植栽用土壌改良材、及び植栽用土壌、並びに植栽用土壌の製造方法、及び植栽方法に関し、特に、芝生用床土に好適な植栽用土壌改良材、及び植栽用土壌、並びに植栽用土壌の製造方法、及び植栽方法に関する。 The present invention relates to a soil improving material for planting, a soil for planting, a method for producing soil for planting, and a method for planting, and in particular, a soil improving material for planting suitable for lawn bed soil, and a method for producing planting soil. The present invention relates to soil for planting, a method for producing the soil for planting, and a method for planting.

種々の植物を植栽・育成するために、植栽用土壌改良材が広く使用されている。サッカーや野球などのグラウンドやゴルフ場などでは、天然の芝生を植え付けるために、芝床土が使用されている。サッカー場やラグビー場などのスポーツ用の芝として、バミューダグラスやティフトン芝などが普及している。 Soil improvement materials for planting are widely used to plant and grow various plants. Grass bed soil is used to plant natural grass at soccer and baseball fields, golf courses, and the like. Bermuda grass and Tifton grass are popular as grass for sports such as soccer fields and rugby fields.

これらの芝生を育成する場合、高温多雨における芝根の窒息や根腐れを回避するため、芝床土として水はけを重視した単粒砂(青森砂など)が使用されている。この単粒砂は、水はけは良いものの、保水性、保肥性に乏しいため、芝生の育成に必要な水分や肥料分を常時与え続ける必要がある。また、従来の芝床土は、与えた水分や肥料の芝床土への定着率が悪く、多くは芝生に吸収される前に地下部や暗渠設備等に排出されてしまっている。 When growing these types of lawns, single-grain sand (such as Aomori sand) with emphasis on drainage is used as the turf bed soil to avoid suffocation and root rot in high temperatures and heavy rain. Although this single-grain sand has good drainage, it has poor water and fertilizer retention properties, so it is necessary to constantly supply the moisture and fertilizer necessary for lawn growth. In addition, with conventional turf bed soil, the moisture and fertilizer applied to the turf bed soil have a poor fixation rate, with most of the water and fertilizer being discharged underground or into underdrain facilities before being absorbed by the lawn.

さらに、サッカーやラグビーなどのグラウンドに使用される芝は、競技者の運動による負荷に対抗して容易に抜けないものが好ましいとされている。このため、このような環境で使用される芝は、地中深くまで根を張ることが求められるが、従来の芝床土は芝の根の長さに乏しく、負荷によって容易に抜けてしまう。 Furthermore, it is preferable that the grass used for soccer, rugby, etc. grounds be one that does not easily come off against the stress of athletes' exercise. For this reason, grass used in such environments is required to grow roots deep into the ground, but in conventional turf bed soil, the grass roots do not have enough length and easily fall out under load.

このように、従来の芝床土(植栽用土壌改良材)には改良の余地がある一方、廃棄物を有効利用して植栽用土壌として使用するニーズも存在する。例えば、浄水場から発生する汚泥を乾燥させた浄水発生土は、産業廃棄物として処理されるが、環境負荷が年々増加する中で、浄水発生土の有効利用用途の開発は重要な課題となっている。浄水発生土を有効利用できれば、廃棄コストなどの面で利点がある。従来、浄水発生土を芝床土として有効利用した例が知られている。 As described above, while there is room for improvement in conventional turf bed soil (soil improving material for planting), there is also a need to effectively utilize waste materials and use them as soil for planting. For example, soil generated from purified water by drying sludge generated from water treatment plants is treated as industrial waste, but as the environmental burden increases year by year, developing ways to effectively utilize soil generated from purified water has become an important issue. ing. If the soil generated from purified water can be used effectively, there will be advantages in terms of disposal costs and other aspects. In the past, there have been known examples of effectively using soil generated from purified water as turf bed soil.

例えば、特許文献1には、浄水場発生土を主成分とし、目土全体に対し1重量%以上20重量%以下となる量の硫黄を含有する芝の目土が開示されている。この浄水発生土は、工業用水の浄水処理過程から発生する浄水場発生土に硫黄を添加して得られる資材であり、芝の目土として用いた場合、芝生への散布性に優れ、土壌pHの低下を促進し、芝草病害の抑制がされ、芝の生育を促進できるとされている。 For example, Patent Document 1 discloses a lawn top soil that is mainly composed of soil generated at a water purification plant and contains sulfur in an amount of 1% by weight or more and 20% by weight or less based on the entire top layer. This water purification soil is a material obtained by adding sulfur to water purification plant soil generated from the industrial water purification process, and when used as top soil for lawns, it has excellent dispersibility on lawns and improves the soil pH. It is said that it can promote the decline of turf, suppress turfgrass diseases, and promote turf growth.

また、特許文献2には、一般廃棄物又は産業廃棄物から生産される溶融スラグ粒材と、浄水汚泥を脱水し乾燥させた脱水ケーキ粒材とを含む植栽用土壌が開示されている。さらに、本文献には、脱水ケーキは、各自治体の浄水場や下水処理場などから発生する汚泥を固化処理したものであることが記載されている。さらに、実施例において、溶融スラグと脱水ケーキを3:7~8:2の比率で配合した、5種類のリサイクル土壌が開示されており、その最大粒径は最も小さいもの(図3の(E))でも19mmであり、自然含水比は39.6%であることが記載されている。 Further, Patent Document 2 discloses planting soil containing molten slag granules produced from general waste or industrial waste and dehydrated cake granules obtained by dehydrating and drying purified water sludge. Further, this document states that the dehydrated cake is obtained by solidifying sludge generated from water purification plants, sewage treatment plants, etc. of each municipality. Furthermore, in the examples, five types of recycled soils are disclosed in which molten slag and dehydrated cake are mixed at a ratio of 3:7 to 8:2, and the maximum particle size is the smallest ((E )) is also 19 mm, and the natural moisture content is stated to be 39.6%.

特開2001-320955号公報(要約、請求項1等)JP 2001-320955 (abstract, claim 1, etc.) 特許第5021105号公報(請求項1、段落0028、段落0034、図3等)Patent No. 5021105 (Claim 1, Paragraph 0028, Paragraph 0034, Figure 3, etc.)

しかしながら、特許文献1の浄水発生土は、工業用水の浄水処理過程で排出されるものであり、一般浄水発生土に比べると、凝集剤の添加量が少なく、アルミの含有量はかなり低い。このため、本文献の浄水発生土は、保肥性、保水性が悪い。また、本文献では、浄水発生土に硫黄を添加するため、製造コストがかかる。 However, the purified water soil of Patent Document 1 is discharged during the water purification process for industrial water, and compared to general purified water soil, the amount of flocculant added is small and the content of aluminum is quite low. For this reason, the purified water-generated soil of this document has poor fertilization and water retention properties. Furthermore, in this document, sulfur is added to the soil generated from purified water, which increases manufacturing costs.

また、特許文献2の植栽用土壌は、一般廃棄物又は産業廃棄物から生産される溶融スラグ粒材を含むため、種々の薬剤や不純物などが含まれており、環境や人体等に悪影響を及ぼす可能性がある。また、本文献の植栽用土壌は、溶融スラグ粒材を含むため、アルカリ度が高く、植物の育成には不向きである。さらに、本文献の植栽用土壌は、粒径が大きく含水比が小さいため、保水性、保肥性に乏しく、また植物が地中深くまで根を張りにくい。 Furthermore, since the planting soil of Patent Document 2 contains molten slag granules produced from general waste or industrial waste, it contains various chemicals and impurities, which have a negative impact on the environment and the human body. There is a possibility that Furthermore, the planting soil of this document contains molten slag granules, has a high alkalinity, and is unsuitable for growing plants. Furthermore, the planting soil of this document has a large particle size and a low water content ratio, so it has poor water retention and fertilizer retention, and it is difficult for plants to spread roots deep into the ground.

本発明の目的は、保肥性、保水性に優れ、環境や人体等への悪影響が少なく、低コストで製造可能で、かつ植物の育成に適した植栽用土壌改良材、及び植栽用土壌を提供することにある。また、本発明の他の目的は、このような植栽用土壌改良剤を使用した植栽用土壌の製造方法、及び植栽方法を提供することにある。 The purpose of the present invention is to provide a soil improvement material for planting that has excellent fertilizer and water retention properties, has little negative impact on the environment and the human body, can be manufactured at low cost, and is suitable for growing plants. It is about providing soil. Another object of the present invention is to provide a method for producing planting soil and a planting method using such a soil improver for planting.

本発明者らは、上記問題を解決すべく鋭意研究を重ねた。その結果、浄水場の汚泥を乾燥・脱水させた浄水発生土であって、所定の粒径と含水比のものを植栽用土壌改良材とすることで、特に芝に対して優れた効果を示すことを見出し、本発明を完成させた。 The present inventors have conducted extensive research in order to solve the above problems. As a result, by using soil produced from purified water by drying and dewatering sludge from water treatment plants, with a predetermined particle size and water content ratio, as a soil conditioner for planting, it has an excellent effect, especially on grass. The present invention was completed based on the following findings.

本発明は、浄水場の汚泥を脱水及び/又は乾燥した浄水発生土を含み、前記浄水発生土は、複数の粒子が団粒化した平均粒径が10mm以下の団粒土から構成され、かつ含水比が20~150質量%であることを特徴とする植栽用土壌改良材である。 The present invention includes purified water generated soil obtained by dewatering and/or drying sludge from a water treatment plant, and the purified water generated soil is composed of aggregated soil in which a plurality of particles are aggregated and has an average particle diameter of 10 mm or less, and This is a soil improvement material for planting, characterized by having a water content of 20 to 150% by mass.

このように、上水道の浄水場で発生する汚泥を乾燥等したものであるため、環境への悪影響が少なく、低コストで製造可能である。また、浄水発生土は浄水の過程で添加される凝集剤を含むため、複数の粒子が団粒化していて多孔質であり、かつ平均粒径が小さく含水比が高い。このため、本発明の植栽用土壌改良材は、保肥性、保水性に優れ、植栽した植物の根が地中深くまで張ることができる。 In this way, since it is made by drying sludge generated in water treatment plants for waterworks, it has less negative impact on the environment and can be manufactured at low cost. In addition, since the purified water soil contains a flocculant added during the water purification process, it is porous with a plurality of aggregated particles, and has a small average particle size and a high water content. Therefore, the soil improvement material for planting of the present invention has excellent fertilizer retention and water retention properties, and allows the roots of planted plants to spread deep into the ground.

さらに、上記の場合において、前記浄水発生土は、肥料分析法で分析した結果、酸化鉄(III)が1.0~10.0質量%、五酸化リンが0.05~2.0質量%、酸化カルシウムが0.05~2.0質量%、酸化マグネシウムが0.05~2.0質量%、酸化カリウムが0.01~2.0質量%含まれ、土壌養分分析法に準拠する方法で分析した結果、酸化アルミニウムが1.0~10.0質量%含まれることが好適である。 Further, in the above case, as a result of analysis using a fertilizer analysis method, the purified water generated soil contains 1.0 to 10.0 mass% of iron (III) oxide and 0.05 to 2.0 mass% of phosphorus pentoxide. , containing 0.05 to 2.0 mass% of calcium oxide, 0.05 to 2.0 mass% of magnesium oxide, and 0.01 to 2.0 mass% of potassium oxide, and a method based on the soil nutrient analysis method. As a result of analysis, it is preferable that aluminum oxide be contained in an amount of 1.0 to 10.0% by mass.

このように、浄水発生土は、凝集剤由来のアルミニウムが適度な量で含まれており、このため、植栽用土壌に使用した場合に良好な保肥性、保水性を発揮するための多孔質な組成を、土中や水中のような環境下にあっても、長期安定的に保つ役目を果たす。 In this way, purified water-generated soil contains a moderate amount of aluminum derived from flocculants, and therefore has a porous structure that exhibits good fertilizer and water retention properties when used as planting soil. It plays the role of maintaining a stable quality composition over a long period of time, even in environments such as soil or water.

また、上記の場合において、浄水発生土は、天日乾燥床で処理された汚泥であることが好ましい。 Moreover, in the above case, it is preferable that the purified water generated soil is sludge treated in a solar drying bed.

このように、浄水発生土が天日乾燥床で乾燥処理された汚泥であることから、従来は有効利用できなかった天日乾燥床の汚泥を有効活用することができる。また、天日乾燥床で処理された浄水発生土は、機械乾燥された浄水発生土よりも植物の根が地中深くまで伸びるという特性を有している。 In this way, since the purified water generated soil is sludge that has been dried in the solar drying bed, it is possible to effectively utilize the sludge in the solar drying bed, which could not be used effectively in the past. In addition, purified water generated soil treated in a solar drying bed has the characteristic that plant roots extend deeper into the ground than purified water generated soil that has been mechanically dried.

本発明は、上記のいずれかに記載の植栽用土壌改良材と、土及び/又は砂からなる土砂と、を含むことを特徴とする植栽用土壌である。 The present invention is a planting soil characterized by containing the planting soil improving material described above and earth and sand made of soil and/or sand.

このように、上記の植栽用土壌改良材を含む植栽用土壌は、環境への悪影響が少なく、低コストで製造可能であり、保肥性、保水性に優れ、植栽した植物の根が地中深くまで張ることができる。 In this way, the planting soil containing the above-mentioned planting soil improvement material has little negative impact on the environment, can be produced at low cost, has excellent fertilizer and water retention properties, and has excellent fertilization and water retention properties, and is suitable for the roots of planted plants. can extend deep underground.

この場合において、前記植栽用土壌改良材が10~50体積%含まれることが好ましい。 In this case, it is preferable that the soil conditioner for planting is contained in an amount of 10 to 50% by volume.

植栽用土壌改良材が10~50体積%の範囲内であることで、植栽用土壌改良材と土砂とが適度に含まれるため、植物の育成に適した植栽用土壌となる。 By setting the amount of the soil improving material for planting in the range of 10 to 50% by volume, the soil improving material for planting and the earth and sand are appropriately contained, so that the soil for planting is suitable for growing plants.

また、前記植栽用土壌が芝生用床土であることが好適である。 Further, it is preferable that the planting soil is lawn soil.

このように、植栽用土壌は芝床用床土として特に好ましく使用することができる。 In this way, the planting soil can be particularly preferably used as bedding soil for turf beds.

本発明は、上記のいずれかに記載の植栽用土壌改良材と、土及び/又は砂からなる土砂と、を混合することを特徴とする植栽用土壌の製造方法である。 The present invention is a method for producing soil for planting, which comprises mixing any one of the above soil improving materials for planting with earth and sand made of soil and/or sand.

このように、上記の植栽用土壌改良材と土砂とを混合することで簡単に植栽用土壌を製造することができる。 In this way, planting soil can be easily produced by mixing the above-mentioned planting soil improving material and earth and sand.

さらに、本発明は、上記のいずれかに記載の植栽用土壌改良材と、土及び/又は砂からなる土砂と、を混合して植栽用土壌を製造する工程と、該植栽用土壌に植物を植栽する工程と、を備えることを特徴とする植栽方法である。 Furthermore, the present invention provides a step of manufacturing soil for planting by mixing the soil improving material for planting according to any one of the above and earth and sand made of soil and/or sand, and a step of producing soil for planting. This is a planting method characterized by comprising the steps of: planting plants in the first step;

このように、上記の植栽用土壌改良材と土砂とを混合し、植物を植えることで、簡単に植栽することができる。 In this way, by mixing the above-mentioned soil improvement material for planting with earth and sand and planting a plant, it is possible to easily plant the plant.

本発明によれば、保肥性、保水性に優れ、環境や人体等への悪影響が少なく、低コストで製造可能で、かつ植物の育成に適した植栽用土壌改良材、及び植栽用土壌を提供することができる。また、本発明によれば、このような植栽用土壌改良材を使用した植栽用土壌の製造方法、及び植栽方法を提供することができる。 According to the present invention, there is provided a soil improvement material for planting that has excellent fertilizer and water retention properties, has little negative impact on the environment and the human body, can be manufactured at low cost, and is suitable for growing plants; Soil can be provided. Moreover, according to the present invention, it is possible to provide a method for manufacturing soil for planting and a method for planting using such a soil improving material for planting.

ポットの作製方法及び試験土の充填方法を示す説明図である。It is an explanatory diagram showing a method of making a pot and a method of filling it with test soil. 芝草の芽の中の葉の構造を示す説明図である。FIG. 2 is an explanatory diagram showing the structure of leaves in turfgrass buds. ムーンライトの発芽の状態を示す写真である。This is a photograph showing the state of germination of Moonlight. ムーンライトを使用した実施例の発芽率等を示したグラフである。It is a graph showing the germination rate, etc. of an example using Moonlight. ムーンライトを使用した実施例の葉の長さ等を示したグラフである。It is a graph showing the length of leaves, etc. of an example using Moonlight. リビエラを使用した実施例の発芽率等を示したグラフである。It is a graph showing the germination rate, etc. of Examples using Riviera. ムーンライトを使用した実施例の発芽率等を示したグラフである。It is a graph showing the germination rate, etc. of an example using Moonlight. ムーンライトを使用した実施例の葉の長さ等を示したグラフである。It is a graph showing the length of leaves, etc. of an example using Moonlight. ムーンライトを使用した実施例の葉の出現率を示したグラフである。It is a graph showing the appearance rate of leaves in an example using moonlight.

以下、本発明の植栽用土壌改良材、及び植栽用土壌、並びに植栽用土壌の製造方法、及び植栽方法について詳細に説明する。 Hereinafter, the soil improving material for planting, the soil for planting, the manufacturing method of the soil for planting, and the planting method of the present invention will be explained in detail.

1.植栽用土壌改良材
本発明の植栽用土壌改良材は、浄水場の汚泥を脱水及び/又は乾燥した浄水発生土を含んでいる。浄水発生土は、複数の粒子が団粒化した平均粒径が10mm以下の団粒土から構成され、含水比が20~150質量%である。
1. Soil Improvement Material for Planting The soil improvement material for planting of the present invention contains purified water generated soil obtained by dehydrating and/or drying sludge from a water treatment plant. The purified water generated soil is composed of aggregated soil in which a plurality of particles are aggregated and has an average particle size of 10 mm or less, and has a water content of 20 to 150% by mass.

ここで、浄水場とは、河川などの水を浄化して上水道にするための浄水場を意味する。すなわち、本発明の植栽用土壌改良材は、天然の河川などに含まれる汚泥が原料であり、後述するように凝集剤などは含まれるが、人間が飲料できる上水を製造する工程で生じるものなので、有害な薬剤などは含まれない。このため、本発明の植栽用土壌改良材を植栽用土壌に使用しても、環境や人体等に悪影響を及ぼすことがほとんどない。また、このような植栽用土壌を使用することで、芝などの植物の育成効率を向上させ、植栽後の維持管理を総合的に軽減することが可能となる。すなわち、本発明は、浄水発生土の産業廃棄物としての負荷を軽減すると同時に、芝生化、緑化の促進により、住民の生活環境を充実させる二重の環境貢献が実現できる。 Here, the term "water purification plant" refers to a water purification plant that purifies water from rivers and the like to make it into water supply. That is, the soil improvement material for planting of the present invention is made from sludge contained in natural rivers, etc., and although it contains flocculants as described below, it does not contain sludge produced in the process of producing clean water that can be drunk by humans. It does not contain any harmful chemicals. Therefore, even when the planting soil improving material of the present invention is used in planting soil, there is almost no adverse effect on the environment or the human body. Furthermore, by using such planting soil, it is possible to improve the growth efficiency of plants such as grass, and to comprehensively reduce maintenance and management costs after planting. That is, the present invention can realize a double environmental contribution by reducing the load of purified water generated soil as industrial waste and at the same time enriching the living environment of residents by promoting lawning and greening.

次に、浄水場における浄水処理について説明する。浄水場では、河川などから取水し、凝集剤を添加して固液分離を行い、上水を殺菌して上水道として使用する。固液分離された汚泥(ヘドロ)は凝集し、後述する乾燥処理を行って浄水発生土とする。なお、凝集剤としては、ポリ塩化アルミニウム(PAC)などが使用される。浄水場の汚泥とは、浄水場において、河川などの水を浄化して上水道とする際に発生する残渣であり、河川等に含まれる有機物や微生物などが含まれる。浄水場の汚泥は、約80質量%が粘土であり、残り20質量%程度が枯葉や藻などの有機物である。汚泥の主成分はマイナス電荷を帯びた粘土であり、ポリ塩化アルミニウムはアルカリ分と反応してプラス電荷の水酸化アルミニウムとなる。この水酸化アルミニウムのプラス電荷と粘土のマイナス電荷とが中和反応することで、粘土を凝集・沈降させることができる。 Next, water purification treatment at a water purification plant will be explained. At water treatment plants, water is taken from rivers, etc., a flocculant is added to separate the water from solid to liquid, the water is sterilized, and the water is used as a water supply. The solid-liquid separated sludge coagulates and undergoes a drying process as described below to produce purified water generated soil. Note that polyaluminum chloride (PAC) or the like is used as the flocculant. Sludge from a water treatment plant is the residue generated when water from rivers, etc. is purified at a water treatment plant to make it into a tap water supply, and contains organic matter and microorganisms contained in the river, etc. Sludge from water treatment plants is about 80% by mass clay, and the remaining 20% by mass is organic matter such as dead leaves and algae. The main component of sludge is negatively charged clay, and polyaluminum chloride reacts with alkaline components to form positively charged aluminum hydroxide. The neutralization reaction between the positive charge of aluminum hydroxide and the negative charge of the clay allows the clay to coagulate and settle.

汚泥の乾燥方法は、機械乾燥と天日乾燥の2つに大別される。機械乾燥は、アコーデオン状のろ布に汚泥を入れて左右から圧縮することで脱水する方法である。機械乾燥では、後述する天日乾燥と比較して、乾燥汚泥中に雑草の種子など雑物が入りにくい。機械乾燥した汚泥は乾燥ケーキとなり、これは園芸用土などで有効利用されている。 Sludge drying methods can be broadly divided into two types: mechanical drying and solar drying. Mechanical drying is a method of dewatering by placing sludge in an accordion-shaped filter cloth and compressing it from the left and right sides. Compared to solar drying, which will be described later, mechanical drying is less likely to contain weed seeds and other impurities in the dried sludge. Mechanically dried sludge becomes a dried cake, which is effectively used as gardening soil.

一方、天日乾燥は、汚泥をプール(天日乾燥床)に収容して天日で乾燥する方法である。天日乾燥では、水を96質量%程度含む状態から50質量%くらいまで乾燥させるのに、4~6カ月程度かかる。また、天日乾燥では、解放プールで乾燥するため、雑草の種子など夾雑物が汚泥に入りやすい。このように、天日乾燥した汚泥は、夾雑物が含まれるなどの理由から、機械乾燥と比べて十分に有効利用できていない。このため、浄水処理施設のコストや管理運営などの観点から、天日乾燥の汚泥を有効活用したいというニーズがある。 On the other hand, solar drying is a method in which sludge is stored in a pool (sun drying bed) and dried under the sun. In solar drying, it takes about 4 to 6 months to dry from a state containing about 96% water to about 50% by mass. In addition, in solar drying, since the sludge is dried in an open pool, foreign matter such as weed seeds can easily enter the sludge. As described above, sludge dried in the sun cannot be used effectively as much as mechanically dried sludge because it contains impurities. Therefore, there is a need to effectively utilize sun-dried sludge from the viewpoint of cost and management of water treatment facilities.

本発明では、機械乾燥であっても天日乾燥であってもいずれの浄水発生土も植栽用土壌改良材として好適に使用することができる。特に、後述する実施例にも示すように、植物の根が長くなる(根の張りが良い)という点から、機械乾燥よりも天日乾燥した浄水発生土がより好ましい。 In the present invention, any purified water-generated soil, whether mechanically dried or sun-dried, can be suitably used as a soil conditioner for planting. In particular, as will be shown in the examples below, purified water-generated soil that has been dried in the sun is more preferable than mechanically dried soil, since the roots of the plants will be longer (the roots will have better root tension).

本発明の植栽用土壌改良材に含まれる浄水発生土は、複数の土壌粒子が団粒化した状態の土(団粒土)を含んでいる。団粒土を構成する土壌粒子の平均粒子径は、土壌発生土の種類などにもよるが、おおむね0.1~100μmの範囲内である。団粒土の平均粒径は、10mm以下であり、5mm以下が好ましい。団粒土の平均粒径の下限は特に制限はないが、おおむね0.1mm以上である。団粒土の粒径は、湿式解砕機、造粒機、篩選別機などで調整することができる。 The purified water generated soil contained in the soil improvement material for planting of the present invention contains soil in which a plurality of soil particles are aggregated (aggregated soil). The average particle size of the soil particles constituting aggregated soil is generally within the range of 0.1 to 100 μm, although it depends on the type of soil from which the soil is generated. The average particle size of the aggregated soil is 10 mm or less, preferably 5 mm or less. There is no particular restriction on the lower limit of the average particle size of the aggregated soil, but it is generally 0.1 mm or more. The particle size of aggregate soil can be adjusted using a wet crusher, granulator, sieve sorter, etc.

本発明の浄水発生土は、上述したように凝集剤で処理された汚泥由来であるため、凝集剤によって土壌粒子が適度に団粒化した構造となっている。このため、浄水発生土は、これを植栽用土壌とした場合に、肥料や水を保持でき、かつ植物の根が侵入しやすい適度な空間を備えたものとなる。さらに、本発明では、浄水発生土の団粒構造を損なうことなく、団粒土の粒径を10mm以下となるように調整して肥料や水の保持性能の低い大きな塊や、単粒化した塊を除去しているため、保肥性、保水性に優れたものとなっている。 Since the water-purified soil of the present invention is derived from sludge treated with a flocculant as described above, it has a structure in which soil particles are appropriately aggregated by the flocculant. Therefore, when purified water generated soil is used as planting soil, it can hold fertilizer and water and has an appropriate space that allows plant roots to easily penetrate. Furthermore, in the present invention, the particle size of the aggregate soil is adjusted to 10 mm or less without damaging the aggregate structure of the soil that generates water purification, so that large clumps with low fertilizer and water retention performance or single particles can be formed. Since lumps are removed, it has excellent fertilizer and water retention properties.

本発明の植栽用土壌改良材に含まれる浄水発生土は、含水比が20~150質量%であり、30~120質量%の範囲内であることが好ましい。浄水発生土の含水比が20~150質量%の範囲内であると適度に水分が含まれるため、植物の育成に有利となる。 The purified water generated soil included in the soil improvement material for planting of the present invention has a water content ratio of 20 to 150% by mass, preferably within the range of 30 to 120% by mass. If the water content of the purified water generated soil is within the range of 20 to 150% by mass, it will contain an appropriate amount of water, which will be advantageous for growing plants.

浄水発生土に含まれる成分及び組成としては、取水する河川や浄水場の処理設備等によって若干異なるが、一般的には以下の範囲内のものが好ましい(左側のカッコ内は分析法)。
<成分及び組成>
・ケイ酸(SiO):30~70質量%(肥料分析法4.4.1 塩酸法)
・酸化アルミニウム(Al):1.0~10.0質量%(土壌養分分析法8.4.2に準拠)
・酸化鉄(III)(Fe):1.0~10.0質量%(肥料分析法4.13.1)
・五酸化リン(P):0.05~2.0質量%(肥料分析法4.2.1)
・酸化カルシウム(CaO):0.05~2.0質量%(肥料分析法4.5.1)
・酸化マグネシウム(MgO);0.05~2.0質量%(肥料分析法4.6.1)
・酸化カリウム(KO):0.01~2.0質量%(肥料分析法4.3.1)
The components and composition contained in purified water soil differ slightly depending on the river from which water is taken and the treatment equipment of the water purification plant, but in general, it is preferable to have it within the following range (the analysis method is in parentheses on the left).
<Ingredients and composition>
・Silic acid (SiO 2 ): 30 to 70% by mass (Fertilizer analysis method 4.4.1 Hydrochloric acid method)
・Aluminum oxide (Al 2 O 3 ): 1.0 to 10.0% by mass (based on soil nutrient analysis method 8.4.2)
・Iron (III) oxide (Fe 2 O 3 ): 1.0 to 10.0% by mass (Fertilizer analysis method 4.13.1)
・Phosphorus pentoxide (P 2 O 3 ): 0.05 to 2.0% by mass (Fertilizer analysis method 4.2.1)
・Calcium oxide (CaO): 0.05 to 2.0% by mass (Fertilizer analysis method 4.5.1)
・Magnesium oxide (MgO); 0.05 to 2.0% by mass (Fertilizer analysis method 4.6.1)
・Potassium oxide (K 2 O): 0.01 to 2.0% by mass (Fertilizer analysis method 4.3.1)

また、浄水発生土としては、以下の範囲内の特性を持つものが好ましい。
・強熱減量:5~30%・dry(肥料等試験法3.2)
・塩基交換容量(CEC):5~30meq/100g・dry(土壌環境分析法V.6.A)
・密度:1~4g/cm(JIS A1202(2009)に準拠)
・含水比:20~150質量%(JIS A1202(2009)に準拠)
・飽和透水係数:0.5×10-2~5.0×10-3cm/s(土壌環境分析法II.10 定水位法)
・有効水分保持量:20~600L/m(土壌環境分析法II.9 加圧板法及び遠心法)
・最大粒径(団粒土):1~15mm
・平均粒径(団粒土):0.1~10mm
Further, as the purified water generated soil, it is preferable that the soil has characteristics within the following range.
・Ignition loss: 5-30% ・dry (Fertilizer test method 3.2)
・Base exchange capacity (CEC): 5-30meq/100g・dry (Soil environment analysis method V.6.A)
・Density: 1 to 4 g/cm 3 (based on JIS A1202 (2009))
・Water content: 20-150% by mass (based on JIS A1202 (2009))
・Saturated hydraulic conductivity: 0.5×10 -2 to 5.0×10 -3 cm/s (Soil environment analysis method II.10 constant water level method)
・Effective water retention amount: 20 to 600 L/m 3 (Soil environment analysis method II.9 Pressure plate method and centrifugation method)
・Maximum particle size (aggregated soil): 1 to 15 mm
・Average particle size (aggregated soil): 0.1-10mm

2.植栽用土壌
本発明の植栽用土壌は、上記の植栽用土壌改良材と、土及び/又は砂からなる土砂とを含む。植栽用土壌に使用できる土としては、赤玉土、真砂土、鹿沼土、黒ボク土などを挙げることができ、これらの土は、単独で使用しても、2種類以上を混合して使用してもよい。
2. Soil for Planting The soil for planting of the present invention contains the above-mentioned soil improving material for planting and earth and sand made of soil and/or sand. Soils that can be used as planting soil include Akadama soil, Masago soil, Kanuma soil, Kuroboku soil, etc. These soils can be used alone or in combination of two or more types. You may.

植栽用土壌に使用できる砂としては、単粒砂、粗砂、砕石などを挙げることができる。これらの砂は、単独で使用しても、2種類以上を混合して使用してもよい。特に、植物の育成効率の向上の観点から、単粒砂が好ましい。単粒砂の平均粒径としては、0.05~10mmの範囲内が好ましく、0.1~5mmの範囲内がより好ましい。植栽用土壌の土砂としては、土、砂、又は土と砂の混合物を使用することができる。 Examples of sand that can be used for planting soil include single grain sand, coarse sand, and crushed stone. These sands may be used alone or in combination of two or more types. In particular, from the viewpoint of improving plant growth efficiency, single-grain sand is preferred. The average particle diameter of the single grain sand is preferably within the range of 0.05 to 10 mm, more preferably within the range of 0.1 to 5 mm. As the soil for planting soil, earth, sand, or a mixture of earth and sand can be used.

植栽用土壌に含まれる植栽用土壌改良材は、使用目的などに応じて適宜変更することができるが、通常は10~50体積%の範囲内であり、15~45体積%の範囲内が好ましく、20~40体積%の範囲内がより好ましい。植栽用土壌に含まれる植栽用土壌改良材の量が10~50体積%の範囲内であると、植栽用土壌に適度な量の植栽用土壌改良材と土砂が含まれるため、植物の育成にとって好ましい。 The planting soil improvement material contained in the planting soil can be changed as appropriate depending on the purpose of use, etc., but it is usually within the range of 10 to 50 volume%, and within the range of 15 to 45 volume%. is preferable, and more preferably within the range of 20 to 40% by volume. If the amount of the planting soil improver contained in the planting soil is within the range of 10 to 50% by volume, the planting soil will contain an appropriate amount of the planting soil improver and soil. Favorable for plant growth.

本発明の植栽用土壌は、上記の植栽用土壌改良材と土砂とを適当な混合比で混合することで製造することができる。混合比としては、通常は、植栽用土壌に含まれる植栽用土壌改良材が10~50体積%の範囲内となる比率であり、15~45体積%の範囲内が好ましく、20~40体積%の範囲内がより好ましい。 The planting soil of the present invention can be produced by mixing the above-mentioned planting soil improving material and earth and sand at an appropriate mixing ratio. The mixing ratio is usually such that the planting soil improvement material contained in the planting soil is in the range of 10 to 50 volume%, preferably 15 to 45 volume%, and 20 to 40 volume%. The range of volume % is more preferable.

3.植栽方法
本発明の植栽方法は、上記の植栽用土壌改良材と土砂とを混合して植栽用土壌を製造する工程と、この植栽用土壌に植物を植栽する工程と、を備える。
3. Planting method The planting method of the present invention includes a step of mixing the above-mentioned planting soil improver and soil to produce planting soil, and a step of planting plants in this planting soil. Equipped with

本発明の植栽用土壌は、植物の育成に適しており、特に芝生の育成に好ましく使用することができる。本発明の植栽用土壌で植栽した芝生は、根が地中深くまで張る(根が長い)、葉の長さが長い、葉の出現率が高いなど、良好に生育する。芝生の根が長いと、サッカーのグラウンドなど競技者による高負荷の環境下で特に好ましい。また、葉の長さが長いと、葉が横に長く伸びて生育範囲が広がりやすい。さらに、葉の出現率が高いと、葉が多数生えて繁茂しやすい。 The planting soil of the present invention is suitable for growing plants, and can be particularly preferably used for growing lawns. Lawns planted with the planting soil of the present invention grow well, with roots extending deep into the ground (long roots), long leaves, and a high rate of leaf appearance. Long roots of grass are particularly desirable in environments with high loads from players, such as soccer fields. Also, if the leaves are long, the leaves will grow horizontally, making it easier to expand the growing range. Furthermore, if the appearance rate of leaves is high, many leaves will grow and it will be easy to flourish.

本発明の植栽用土壌で植栽できる植物としては、特に制限はないが、芝、野菜、観葉植物、樹木などを植えることができる。これらの植物のうち、特に芝が好ましい。したがって、本発明の植栽用土壌は、芝生用床土として好適に使用することができる。芝としては、暖地型草種、寒冷型草種のいずれでもよい。暖地型草種の例としては、バミューダグラス、センチピードグラス、ノシバ、バヒアグラス、ローズグラスなどを挙げることができる。寒冷型草種の例としては、クリーピングベントグラス、コロニアルベントグラス、レッドトップなどのベントグラス類、ケンタッキーブルーグラスなどのブルーグラス類、トールフェスク、メドウフェスク、クリーピングレッドフェスク、チューイングフェスク、ハードフェスクなどのフェスク類、ペレニアルライグラス、アニュアルライグラスなどのライグラス類、オーチャードグラス、チモシー、リードカナリーグラス、スムーズブローグラスなどを挙げることができる。 Plants that can be planted in the planting soil of the present invention are not particularly limited, but grass, vegetables, ornamental plants, trees, etc. can be planted. Among these plants, grass is particularly preferred. Therefore, the planting soil of the present invention can be suitably used as bedding soil for lawns. The grass may be either warm-season grass species or cold-season grass species. Examples of warm-season grass species include bermuda grass, centipede grass, grass grass, bahia grass, and rose grass. Examples of cool-type grass species include bentgrasses such as creeping bentgrass, colonial bentgrass, and red top; bluegrasses such as Kentucky bluegrass; and fescues such as tall fescue, meadow fescue, creeping red fescue, chewing fescue, and hard fescue. , perennial ryegrass, annual ryegrass, orchard grass, timothy, reed canary grass, smooth blown grass, etc.

以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではなく、また、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be specifically explained based on Examples, but these do not limit the purpose of the present invention, and the present invention is not limited to these Examples.

1.植栽用土壌改良材の製造
植栽用土壌改良材(室内試験用)として、山の田浄水場(佐世保市水道局)天日乾燥床において、含水比200%まで天日乾燥を施した浄水発生土を原料として、粒度5mmアンダー、含水比33.6%にまで調整を施して製造した「芝とも」(実施例1)を用意した。粒度・含水調整は、室内試験用の篩、乾燥機を用い、手作業で行った。また、穴生浄水場(北九州市水道局)において機械脱水を施した浄水発生土を原料として、粒度5mmアンダー、含水比110%までに調整を施して製造した「ソイレックス」(実施例2)を用意した。さらに、土砂として、単粒砂である「青森砂」(株式会社ルナサンド社製)を用意した。
1. Production of soil improvement material for planting As a soil improvement material for planting (for indoor testing), purified water generated soil was sun-dried to a water content of 200% on the sun drying floor of the Yamada Water Purification Plant (Sasebo City Waterworks Bureau). "Shiba Tomo" (Example 1) was prepared by adjusting the particle size to 5 mm or less and the water content to 33.6% using as a raw material. Particle size and moisture content were adjusted manually using a sieve for indoor testing and a dryer. In addition, "Soirex" (Example 2) was manufactured using purified water soil that was mechanically dehydrated at the Anou Water Purification Plant (Kitakyushu City Waterworks Bureau) and adjusted to a particle size of 5 mm or less and a water content of 110%. Prepared. Furthermore, single-grain sand "Aomori Sand" (manufactured by Luna Sand Co., Ltd.) was prepared as soil.

上記で用意した「芝とも」、「ソイレックス」、「青森砂」について、成分分析を行った。その結果を下記表に示す。 Component analysis was performed on the ``Shiba Tomo'', ``Soirex'', and ``Aomori Suna'' prepared above. The results are shown in the table below.

Figure 0007371831000001
Figure 0007371831000001

上記で用意した「芝とも」、「ソイレックス」、「青森砂」について、特性を評価した。その結果を下記表に示す。 The characteristics of "Shiba Tomo", "Soilex", and "Aomori Sand" prepared above were evaluated. The results are shown in the table below.

2.植栽用土壌の製造
上記の芝とも、ソイレックスと、青森砂とを特定の比率で混合し、植栽用土壌を製造し、その特性を評価した。その結果を下記表に示す。
2. Production of Soil for Planting Planting soil was produced by mixing the above-mentioned turf, Soilex, and Aomori sand in a specific ratio, and its properties were evaluated. The results are shown in the table below.

Figure 0007371831000003
Figure 0007371831000003

3.ムーンライトSLT(タキイ種苗株式会社)を用いた栽培試験(1)
(1)実験条件
以下の条件で実験を行った。
・温度:20度~25度変温条件(9時~17時は25度、それ以外の時間帯は20度に設定した。人工気象器はNK System人工気象器(蛍光灯型)LH-241S(日本医化器械)を使用した。
・照度:35000ルクス(NEDO 日射量データベース東京の4月1日データより設定。)
・実験期間:2018年4月26日~5月26日
・反復:3
・使用種子:ムーンライトSLT(タキイ種苗株式会社)を使用した。ケンタッキーブルーグラスの一品種であって、スポーツ競技場、公園や家庭用芝生に向いていること、また特に塩によるストレスを受けやすい地域や低日照条件になりやすい場所に適していることから今回選定した(タキイ種苗http://www.takii.co.jp/green/leaflet/moonlight.html、2018年9月1日確認)。
・1反復あたりの播種数:“10mに対し180g”から使用した塩化ビニール管の面積に換算した。1サンプル分0.1773の種の数は平均し605粒であった。
・栽培に使用した塩化ビニール管の面積:0.00985m(5.6×5.6×3.14cm)
3. Cultivation test using Moonlight SLT (Takii Seed Co., Ltd.) (1)
(1) Experimental conditions The experiment was conducted under the following conditions.
・Temperature: 20 degrees to 25 degrees Variable temperature condition (25 degrees from 9:00 to 17:00 and 20 degrees at other times.The artificial weather device is NK System artificial weather device (fluorescent lamp type) LH-241S (Nippon Medical Instruments) was used.
・Illuminance: 35,000 lux (Set from April 1st data from NEDO solar radiation database Tokyo.)
・Experiment period: April 26th to May 26th, 2018 ・Repetition: 3
- Seed used: Moonlight SLT (Takii Seed Co., Ltd.) was used. It is a variety of Kentucky bluegrass and was selected because it is suitable for sports fields, parks, and home lawns, and is especially suitable for areas prone to salt stress or low sunlight conditions. (Takii Seedling http://www.takii.co.jp/green/leaflet/moonlight.html, confirmed on September 1, 2018).
- Number of seeds per repetition: 180 g per 10 m 2 was converted to the area of the vinyl chloride pipe used. The average number of 0.1773 seeds per sample was 605.
・Area of vinyl chloride pipe used for cultivation: 0.00985 m 2 (5.6 x 5.6 x 3.14 cm)

(2)方法
(a)ポットの作製
図1を参照してポット(植栽試験用鉢)の作製について説明する。図1(a)はポットの組立方法を説明する模式図である。まず、塩化ビニール管を加工して内径107mm、高さ310mmの筒を製造した。次に、直径5mmの穴をあけた鉢底用キャップにキッチンの三角コーナー用ネット(材料が通過しない細さのメッシュ)を底面の大きさに合わせてカットし、敷き込んだものを筒に差し込み、育成試験用鉢を完成させた。これを45組用意した。
(2) Method (a) Preparation of pot The preparation of a pot (planting test pot) will be explained with reference to FIG. FIG. 1(a) is a schematic diagram illustrating the method of assembling the pot. First, a vinyl chloride pipe was processed to produce a tube with an inner diameter of 107 mm and a height of 310 mm. Next, cut a triangular kitchen corner net (thin mesh that does not allow materials to pass through) to match the size of the bottom of the pot bottom cap with a hole of 5 mm in diameter, and insert it into the tube. , completed a pot for growing tests. We prepared 45 sets of these.

次に、ポットへの試験土の充填方法について説明する。図1(b)はポットへの試験土の充填方法を説明する模式図である。試験土表面に十分な照度を確保するため、筒の最上部から10mm下がったところを仕上がり高さとした。筒と鉢底用キャップの間に10mmほどの遊びが発生するため、高さ320mm、内径107mmの植栽試験用鉢に各土材料を底から310mmの高さになるよう、以下の方法で3層に分けて充填締固めを行った。
・工程1:充填する材料を、計量カップで1,000mlの計量を行い、植栽試験用鉢に平らになるように投入した。
・工程2:ランマー試験器を使い、6回の落下転圧を行い材料の締固めを行った。
図にならい、ランマーの落下位置に注意を払い、下段110mm、中段100mm、上段100mmの高さになる様締固めを行った。
・上記工程1と工程2の作業を層ごとに2度繰り返し、310mmの高さになる様材料の充填を行った。なお、締固めの際に試験土によって沈み込みに差が生じた場合には、310mmの高さを保てるよう、試験土の量を調整した上記要領で、必要量の植栽試験用鉢を作成した。
Next, the method of filling the test soil into the pot will be explained. FIG. 1(b) is a schematic diagram illustrating a method of filling test soil into a pot. In order to ensure sufficient illuminance on the surface of the test soil, the finished height was defined as 10 mm below the top of the tube. Since there is a play of about 10 mm between the tube and the pot bottom cap, use the following method to place each soil material into a planting test pot with a height of 320 mm and an inner diameter of 107 mm so that the height is 310 mm from the bottom. Filling and compaction was performed in layers.
- Step 1: 1,000 ml of the material to be filled was measured using a measuring cup, and the material was poured into a planting test pot so as to be flat.
・Process 2: Using a rammer tester, the material was compacted by performing 6 drops and rolling.
Following the diagram, paying attention to the falling position of the rammer, compaction was performed so that the height of the lower stage was 110 mm, the middle stage was 100 mm, and the upper stage was 100 mm.
- The operations of Steps 1 and 2 above were repeated twice for each layer, and the material was filled to a height of 310 mm. In addition, if there is a difference in sinking depending on the test soil during compaction, create the required amount of planting test pots by adjusting the amount of test soil as described above to maintain a height of 310 mm. did.

(b)芝育成試験
上記で作製したポットを使用して芝の育成試験を行った。ポットの底には栽培土が漏れないようにポリプロピレン製三角コーナー用メッシュ袋(ダストマン1211K3、株式会社クレハ)を内径に合わせて円形に切ったものを敷いた。
その後、5種類の栽培土を充てんした。コントロール(比較例1)として青森砂、A(実施例2-2):青森砂70%ソイレックス30%、B(実施例2-1):青森砂80%ソイレックス20%、C(実施例1-2):青森砂70%芝とも30%、D(実施例1-1):青森砂80%芝とも20%である。
(b) Grass growth test A grass growth test was conducted using the pots prepared above. A triangular polypropylene corner mesh bag (Dustman 1211K3, Kureha Co., Ltd.) cut into a circle according to the inner diameter was placed at the bottom of the pot to prevent cultivation soil from leaking.
After that, they were filled with five types of cultivation soil. Aomori sand as a control (comparative example 1), A (Example 2-2): Aomori sand 70% Soilex 30%, B (Example 2-1): Aomori sand 80% Soilex 20%, C (Example 2-2): Aomori sand 80% Soilex 20%, 1-2): 70% Aomori sand, 30% grass, and D (Example 1-1): 80% Aomori sand, 20% grass.

各栽培土をポットの上部から1cmとなるようにランマーで6回の締固めを行った。栽培土の上部に種を播き、上から軽く栽培土をかけて十分に水をきりふきで散布した。栽培期間中、水は2日に一度きりふきで上部が十分に湿るように散布した。インキュベータ内の乾燥が激しかったため、ポットの上部にはビニール袋(280mm×370mm、0.05mm厚)をかぶせて栽培土からの蒸発を軽減した。ビニール袋は発芽後に除去した。ポットの下部はアルミフォイル(マイホイル(株式会社UACJ製箔))で覆い水受けとした。 Each cultivation soil was compacted six times using a rammer so that it was 1 cm from the top of the pot. Seeds were sown on top of the cultivation soil, lightly sprinkled with cultivation soil from above, and thoroughly drained with water and sprinkled. During the cultivation period, water was sprinkled once every two days to keep the top well moist. Since the inside of the incubator was extremely dry, a plastic bag (280 mm x 370 mm, 0.05 mm thick) was placed over the top of the pot to reduce evaporation from the cultivation soil. The plastic bags were removed after germination. The lower part of the pot was covered with aluminum foil (My Foil (manufactured by UACJ Foil Co., Ltd.)) to serve as a water receptacle.

図2は、芝草の芽の中の葉の構造を示す図であり、(a)は老化葉、(b)は成熟した葉、(c)は完全に開いた葉、(d)は出現中の葉、(e)は古い葉に包まれている未成熟の葉を示す。この図を参考に、発芽率、地下部(主根)の長さ、地上部の高さ(地上部の植物体の一番高い場所;芝刈り機で刈られる基準を想定)、(b)、(c)及び(d)の葉の長いものから順に一枚目の葉、二枚目の葉、三枚目の葉の長さを測定した。長さは電子ノギス(シンワ デジタルノギス19975(シンワ測定株式会社))で測定した。結果について処理間の比較には、Kruskal Wallisテストを用い、多重比較にはSteel-Dwassテストを用いた。統計ソフトはエクセル統計2012年(株式会社社会情報サービス)を用いた。また、ムーンライトの発芽の状態を写真で撮影した(図3)。
(図2:A.J.タージョン(2009)上野幸夫訳「ターフグラスマネジメント8thエディション」ゴルフダイジェスト社 ISBN 978-4-7728-4105-4C3045の39ページ図2-8より引用)
Figure 2 shows the structure of leaves in turfgrass buds; (a) is a senescent leaf, (b) is a mature leaf, (c) is a fully opened leaf, and (d) is an emerging leaf. (e) shows an immature leaf surrounded by an older leaf. Referring to this diagram, determine the germination rate, length of the underground part (tap root), height of the above-ground part (the highest point of the above-ground part of the plant; assuming the standard of mowing with a lawn mower), (b), The lengths of the first, second, and third leaves in (c) and (d) were measured in order from the longest leaf. The length was measured with an electronic caliper (Shinwa Digital Caliper 19975 (Shinwa Measurement Co., Ltd.)). Regarding the results, the Kruskal Wallis test was used for comparison between treatments, and the Steel-Dwass test was used for multiple comparisons. The statistical software used was Excel Statistics 2012 (Social Information Service Co., Ltd.). We also took photographs of the germination status of Moonlight (Figure 3).
(Figure 2: Quoted from Figure 2-8 on page 39 of A.J. Turgeon (2009) “Turf Grass Management 8th Edition” translated by Yukio Ueno, Golf Digest, ISBN 978-4-7728-4105-4C3045)

(3)結果
処理ごとの発芽率、地下部(主根)の長さ、地上部の高さ(地上部の植物体の一番高い場所)、一枚目の葉、二枚目の葉、三枚目の葉の長さを以下に示す。結果はすべて3反復の平均値と標準偏差を示す。
(3) Results Germination rate for each treatment, length of the underground part (tap root), height of the above-ground part (the highest point of the above-ground part of the plant), first leaf, second leaf, third leaf, The length of the first leaf is shown below. All results represent the mean and standard deviation of three replicates.

図4(a)に発芽率のグラフを示す。発芽率は処理間で差が認められたが(Kruskal Wallis P<0.05)、多重比較の結果は有意ではなかった。青森砂、A、Bは、発芽率が10%以下のポットが見られた。C、Dについては発芽率が30%を超えた。 FIG. 4(a) shows a graph of the germination rate. Although a difference in germination rate was observed between treatments (Kruskal Wallis P<0.05), the results of multiple comparisons were not significant. For Aomori Sand, A, and B, pots with germination rates of 10% or less were observed. For C and D, the germination rate exceeded 30%.

図4(b)に根の長さ(mm)のグラフを示す。主根の長さには有意な差が認められた(Kruskal Wallis P<0.05)。多重比較の結果、Aは最も主根の長さが短くDが最も長かった(Scheffe P<0.05)。Dはひと月の栽培で10cmを超えた。 FIG. 4(b) shows a graph of root length (mm). A significant difference in taproot length was observed (Kruskal Wallis P<0.05). As a result of multiple comparisons, A had the shortest taproot length and D had the longest length (Scheffe P<0.05). D grew over 10 cm after one month of cultivation.

図4(c)に全長のグラフを示す。全長には統計的な有意差は認められなかった(Kruskal Wallis P=0.13)。全長平均は、青森砂に比べてAからDの処理で1.17倍から1.36倍大きかった。 FIG. 4(c) shows a graph of the total length. No statistically significant difference in total length was observed (Kruskal Wallis P=0.13). The average total length was 1.17 to 1.36 times larger in treatments A to D compared to Aomori sand.

図5(a)に1枚目の葉の長さのグラフを示す。1枚目の葉の長さには統計的な有意差は認められなかった(Kruskal Wallis P=0.14)。1枚目の葉の長さの平均は、青森砂に比べてAからDの処理で1.12倍から1.33倍大きかった。 FIG. 5(a) shows a graph of the length of the first leaf. No statistically significant difference was observed in the length of the first leaf (Kruskal Wallis P=0.14). The average length of the first leaf was 1.12 to 1.33 times larger in treatments A to D than in Aomori sand.

図5(b)に2枚目の葉の長さのグラフを示す。2枚目の葉の長さには統計的な有意差は認められなかった(Kruskal Wallis P=0.09)。2枚目の葉の長さの平均は、青森砂に比べてAからDの処理で1.61倍から1.82倍大きかった。 FIG. 5(b) shows a graph of the length of the second leaf. No statistically significant difference was observed in the length of the second leaf (Kruskal Wallis P=0.09). The average length of the second leaf was 1.61 to 1.82 times larger in treatments A to D compared to Aomori sand.

図5(c)に3枚目の葉の長さのグラフを示す。3枚目の葉の長さには統計的な有意差は認められなかった(Kruskal Wallis P=0.61)。3枚目の葉の長さの平均は、処理によってばらつきが見られ、青森砂に比べてAとBでは3倍未満であったが、Cでは11倍、Dでは8倍を超えた。 FIG. 5(c) shows a graph of the length of the third leaf. No statistically significant difference was observed in the length of the third leaf (Kruskal Wallis P=0.61). The average length of the third leaf varied depending on the treatment, being less than 3 times as long in A and B as compared to Aomori sand, but 11 times as long in C and over 8 times as long in D.

スポーツ用の芝草では、根の長さは重要な要素である。今回は、主根の長さに関してDの処理;青森砂80%芝とも20%の栽培土が最も良好な結果が得られた。ばらつきが大きかったため有意な差は認められなかったが、発芽率に関してはソイレックスを混合させたものより、芝ともを混合させた栽培土のほうが良好な傾向が見られた。また、全体的な発芽後の成長に関しても、芝ともを混合した栽培土のほうが良好な傾向が見られた。 Root length is an important factor in sports turfgrass. This time, regarding the length of the taproot, the best results were obtained with treatment D: cultivation soil with 80% Aomori sand and 20% grass. Although no significant difference was observed due to large variations, there was a tendency for the germination rate to be better in the soil mixed with grass than in the soil mixed with Soylex. In addition, in terms of overall growth after germination, there was a tendency for the cultivation soil mixed with grass to be better.

4.リビエラ(タキイ種苗株式会社)を用いた栽培試験結果
(1)実験条件
以下の条件で実験を行った。
・温度:15度(6月6日~6月22日)、20度(6月23日~9月16日)とした。人工気象器はNK System人工気象器(蛍光灯型)LH-241S(日本医化器械)を使用した。
・照度:35000ルクス(温度照度とも NEDO日射量データベース東京の4月1日データより設定。)
・実験期間:2017年6月6日~9月16日
・反復:4
・使用種子:リビエラ(タキイ種苗)を使用した。リビエラはバミューダグラスの一品種である。ゴルフコースのティーやフェアウェイ、ラフ、スポーツ競技場や校庭、公園、家庭用芝生、河川敷や堤防、道路の法面及び飛砂防止に使用されることから選定した。
・1反復あたりの播種数:“10mに対し100g”から使用した塩化ビニール管の面積に換算した。20サンプル分の0.0985gの種の数は平均して236粒であった。栽培に使用した塩化ビニール管の面積:0.00985m(5.6×5.6×3.14cm)
4. Cultivation test results using Riviera (Takii Seed Co., Ltd.) (1) Experimental conditions The experiment was conducted under the following conditions.
-Temperature: 15 degrees (June 6th to June 22nd) and 20 degrees (June 23rd to September 16th). The artificial weather device used was an NK System artificial weather device (fluorescent lamp type) LH-241S (Nippon Medical Instruments).
・Illuminance: 35,000 lux (both temperature and illumination are set from April 1st data from the NEDO solar radiation database Tokyo)
・Experiment period: June 6th to September 16th, 2017 ・Repetition: 4
・Seeds used: Riviera (Takii Seedlings) was used. Riviera is a type of bermudagrass. It was selected because it is used for golf course tees, fairways, roughs, sports fields and schoolyards, parks, home lawns, riverbeds and embankments, road slopes, and to prevent flying sand.
・Number of seeds sown per repetition: Converted from "100 g per 10 m 2 " to the area of the vinyl chloride pipe used. The average number of seeds of 0.0985 g for 20 samples was 236 seeds. Area of vinyl chloride pipe used for cultivation: 0.00985 m 2 (5.6 x 5.6 x 3.14 cm)

(2)方法
(a)ポットの作製
上記の「3.ムーンライトSLT(タキイ種苗株式会社)を用いた栽培試験(1)」の「(a)ポットの作製」で説明した方法でポットを作製した。
(b)芝育成試験
上記で作製したポットを使用して芝の育成試験を行った。ポットの底には栽培土が漏れないようにポリプロピレン製三角コーナー用メッシュ袋(ダストマン1211K3、株式会社クレハ)を内径に合わせて円形に切ったものを敷いた。
その後、5種類の栽培土を充てんした。コントロール(比較例1)として青森砂、A(実施例2-2):青森砂70%ソイレックス30%、B(実施例2-1):青森砂80%ソイレックス20%、C(実施例1-2):青森砂70%芝とも30%、D(実施例1-1):青森砂80%芝とも20%である。それぞれ反復は4として計20ポット作製した。
(2) Method (a) Preparation of pot A pot was prepared using the method explained in "(a) Preparation of pot" in "3. Cultivation test using Moonlight SLT (Takii Seed Co., Ltd.) (1)" above. did.
(b) Grass growth test A grass growth test was conducted using the pots prepared above. A triangular polypropylene corner mesh bag (Dustman 1211K3, Kureha Co., Ltd.) cut into a circle according to the inner diameter was placed at the bottom of the pot to prevent cultivation soil from leaking.
After that, they were filled with five types of cultivation soil. Aomori sand as a control (comparative example 1), A (Example 2-2): Aomori sand 70% Soilex 30%, B (Example 2-1): Aomori sand 80% Soilex 20%, C (Example 2-2): Aomori sand 80% Soilex 20%, 1-2): 70% Aomori sand, 30% grass, and D (Example 1-1): 80% Aomori sand, 20% grass. A total of 20 pots were prepared, each with 4 repetitions.

各栽培土をポットの上部から1cmとなるようにランマーで6回の締固めを行った。栽培土の上部に種を播き、上から軽く栽培土をかけて十分に水をきりふきで散布した。栽培期間中、水は2日に一度きりふきで上部が十分に湿るように散布した。インキュベータ内の乾燥が激しかったため、ポットの上部にはビニール袋(280mm×370mm、0.05mm厚)をかぶせて栽培土からの蒸発を軽減した(6月23日にビニールをかぶせ、8月25日に除去)。ポットの下部はアルミフォイル(マイホイル(株式会社UACJ製箔))で覆い水受けとした。 Each cultivation soil was compacted six times using a rammer so that it was 1 cm from the top of the pot. Seeds were sown on top of the cultivation soil, lightly sprinkled with cultivation soil from above, and thoroughly drained with water and sprinkled. During the cultivation period, water was sprinkled once every two days to keep the top well moist. Because the inside of the incubator was extremely dry, we covered the top of the pot with a plastic bag (280 mm x 370 mm, 0.05 mm thick) to reduce evaporation from the cultivation soil (we covered it with plastic on June 23rd, and on August 25th (removed). The lower part of the pot was covered with aluminum foil (My Foil (manufactured by UACJ Foil Co., Ltd.)) to serve as a water receptacle.

発芽率、地下部(主根)の長さを測定した後根の部分を切り離し、地上部の湿重量を測定した。主根の長さは電子ノギス(シンワ デジタルノギス19975(シンワ測定株式会社))で測定した。地上部の湿重量は電子天秤にて0.1mg(精密上皿天秤AZ214、ザルトリウス)の精度で測定した。結果について処理間の比較には、Kruskal Wallisテストを用い、多重比較にはSteel-Dwassテストを用いた。統計ソフトはエクセル統計2012年(株式会社社会情報サービス)を用いた。 After measuring the germination rate and the length of the underground part (tap root), the dorsal root part was separated and the wet weight of the above ground part was measured. The length of the taproot was measured with an electronic caliper (Shinwa Digital Caliper 19975 (Shinwa Measurement Co., Ltd.)). The wet weight of the above-ground part was measured using an electronic balance with an accuracy of 0.1 mg (precision balance AZ214, Sartorius). Regarding the results, the Kruskal Wallis test was used for comparison between treatments, and the Steel-Dwass test was used for multiple comparisons. The statistical software used was Excel Statistics 2012 (Social Information Service Co., Ltd.).

(3)結果
処理ごとの発芽率、地下部(主根)の長さ、地上部の湿重量を示す。結果は、発芽率は4反復の平均値と標準偏差を示す。主根の長さについては発芽率が低かったため発芽した全苗の数値を使用した。地上部の湿重量は、ポットごとの合計値として4反復の平均値と標準偏差を示した。
青森砂を栽培土として用いた場合の発芽率は最も低く、まったく発芽しなかったポットもみられた。
(3) Results The germination rate, underground part (tap root) length, and wet weight of the aboveground part are shown for each treatment. The results show the germination percentage as the average value and standard deviation of 4 replicates. As for the length of the taproot, the value of all germinated seedlings was used because the germination rate was low. The wet weight of the aboveground part was shown as the average value and standard deviation of 4 replicates as the total value for each pot.
The germination rate was the lowest when Aomori sand was used as the cultivation soil, and some pots did not germinate at all.

図6(a)に発芽率のグラフを示す。発芽率には統計的な差は認められなかった(Kruskal Wallis P=0.13)(N=4)。リビエラの発芽率は、AからDのすべての処理でばらつきが大きかった。しかし、いずれの処理も発芽率の平均は、青森砂より3.71倍から6.43倍大きかった。 FIG. 6(a) shows a graph of the germination rate. No statistical difference in germination rate was observed (Kruskal Wallis P=0.13) (N=4). Riviera germination rates were highly variable in all treatments A to D. However, the average germination rate in all treatments was 3.71 to 6.43 times greater than Aomori sand.

図6(b)に主根の長さ(mm)を示す。主根の長さには有意な差が認められた(Kruskal Wallis P<0.05、Steel-Dwass P<0.05)。(青森砂;N=6、A;N=26、B;N=56、C;N=40、D;N=51)
地下部(主根)の長さはCとDの芝ともを用いた栽培土で有意に長かった。
Figure 6(b) shows the length (mm) of the taproot. Significant differences in taproot length were observed (Kruskal Wallis P<0.05, Steel-Dwass P<0.05). (Aomori sand; N=6, A; N=26, B; N=56, C; N=40, D; N=51)
The length of the underground part (tap root) was significantly longer in the cultivation soil using C and D grass.

図6(c)に地上部の湿重量(mg)を示す。地上部の重量には有意な差が認められた(Kruskal Wallis P<0.01)が、多重比較の結果は有意ではなかった。地上部の重量は青森砂、及びソイレックスを用いた栽培土よりも芝ともを用いた栽培土のほうが11倍から50倍大きかった。 Figure 6(c) shows the wet weight (mg) of the aboveground part. A significant difference was observed in the weight of aboveground parts (Kruskal Wallis P<0.01), but the results of multiple comparisons were not significant. The weight of the above-ground part was 11 to 50 times greater in the cultivation soil using Shiba Tomo than in the cultivation soil using Aomori sand and Soilex.

今回の栽培試験の結果からは、芝ともを用いた栽培土がリビエラの成長に最も適切であると考えられた。統計的な違いは認められなかったが、芝ともの配合割合は20%よりも30%のほうが主根の長さが平均して18mm長かった。できるだけ長く芝生の根を張ることを目標とした場合には今後芝ともの配合割合を検討することも課題として考えられる。 Based on the results of this cultivation test, cultivation soil using sod was considered to be the most suitable for the growth of Riviera. Although no statistical difference was observed, the length of the taproot was on average 18 mm longer when the mixture ratio was 30% than when it was 20%. If the goal is to spread the roots of grass as long as possible, it may be necessary to consider the ratio of grass and grass mixture in the future.

5.ムーンライトSLT(タキイ種苗株式会社)を用いた栽培試験(2)
(1)実験条件
上記の「3.ムーンライトSLT(タキイ種苗株式会社)を用いた栽培試験(1)」の「(1)実験条件」と同じ条件とした。ただし、以下の点が異なる。
・実験期間:2019年6月25日~7月30日
・1反復あたりの播種数:“10mに対し180g”から使用した塩化ビニール管の面積に換算した。15サンプル分の0.1773gの種の数は平均して530粒であった。
5. Cultivation test using Moonlight SLT (Takii Seed Co., Ltd.) (2)
(1) Experimental conditions The same conditions as "(1) Experimental conditions" in "3. Cultivation test using Moonlight SLT (Takii Seeds Co., Ltd.) (1)" above were used. However, the following points are different.
・Experiment period: June 25, 2019 to July 30, 2019 ・Number of seeds sown per repetition: 180 g per 10 m 2 was converted to the area of the vinyl chloride pipe used. The average number of seeds of 0.1773 g for 15 samples was 530 seeds.

(2)方法
上記の「3.ムーンライトSLT(タキイ種苗株式会社)を用いた栽培試験(1)」の「(2)方法」と同じ方法でポットを作製した。5種類の栽培土は、コントロール(比較例1)として青森砂、A(実施例2-2):青森砂70%ソイレックス30%、B(実施例2-1):青森砂80%ソイレックス20%、C(実施例1-2):青森砂70%芝とも30%、D(実施例1-1):青森砂80%芝とも20%である。
(2) Method A pot was produced using the same method as in "(2) Method" in "3. Cultivation test using Moonlight SLT (Takii Seed Co., Ltd.) (1)" above. The five types of cultivation soil were Aomori sand as a control (Comparative Example 1), A (Example 2-2): Aomori sand 70% Soilex 30%, and B (Example 2-1): Aomori sand 80% Soilex. 20%, C (Example 1-2): Aomori sand 70%, grass and 30%, D (Example 1-1): Aomori sand 80%, grass and 20%.

図2を参考に、発芽率、地下部(主根)の長さ、一枚目の葉((b)に相当)、二枚目の葉((C)に相当)、三枚目の葉の長さ((d)に相当)を測定した。長さは電子ノギス(シンワ デジタルノギス19975、シンワ測定株式会社)で測定した。また、2枚目の葉の出現率と3枚目の葉の出現率を計算した。結果について処理間の比較には分散分析を用い、多重比較にはTukey’S HSDテストを用いた。ただしLeveneの等分散性の検定により等分散性を確保できていない2枚目の葉の出現率についてのみノンパラメトリック検定を行った。統計ソフトはIBM SPSS23 Statistics Baseを用いた。 With reference to Figure 2, germination rate, length of underground part (tap root), first leaf (corresponding to (b)), second leaf (corresponding to (C)), and third leaf. The length (corresponding to (d)) was measured. The length was measured with an electronic caliper (Shinwa Digital Caliper 19975, Shinwa Measurement Co., Ltd.). In addition, the appearance rate of the second leaf and the appearance rate of the third leaf were calculated. Analysis of variance was used to compare the results between treatments, and Tukey's HSD test was used for multiple comparisons. However, a non-parametric test was performed only on the appearance rate of the second leaf for which homoscedasticity could not be ensured by Levene's homoscedasticity test. IBM SPSS23 Statistics Base was used as the statistical software.

(3)結果
処理ごとの発芽率、地下部(主根)の長さ、一枚目の葉の長さ((b)に相当)、二枚目の葉の長さ((C)に相当)、三枚目の葉の長さ((d)に相当)を以下に示す。結果はすべて3反復の平均値と標準偏差を示す。続けて2枚目の葉の出現率と3枚目の葉の出現率を示す。
(3) Results Germination rate for each treatment, length of underground part (tap root), length of first leaf (corresponding to (b)), length of second leaf (corresponding to (C)) , the length of the third leaf (corresponding to (d)) is shown below. All results represent the mean and standard deviation of three replicates. Next, the appearance rate of the second leaf and the appearance rate of the third leaf are shown.

図7(a)に発芽率(%)のグラフを示す。発芽率は処理間で有意な差が認められた(One-Way ANOVA, P<0.05)。青森砂が最も発芽率が低かった。A、B、C、Dはいずれも発芽率が高かった(Tukey’s HSD, P<0.05)。 FIG. 7(a) shows a graph of germination rate (%). A significant difference in germination rate was observed between treatments (One-Way ANOVA, P<0.05). Aomori sand had the lowest germination rate. All of A, B, C, and D had high germination rates (Tukey's HSD, P<0.05).

図7(b)に根の長さ(mm)のグラフを示す。主根の長さは処理内でのばらつきが大きかったため有意な差が認められなかったが(One-Way ANOVA P=0.479)、Cの処理は青森砂の1.3倍の平均値をとった。 FIG. 7(b) shows a graph of root length (mm). Although no significant difference in taproot length was observed due to large variation within treatments (One-Way ANOVA P = 0.479), treatment C had an average value 1.3 times that of Aomori sand. Ta.

図7(c)に1枚目の葉の長さのグラフを示す。一枚目の葉の長さには統計的な有意差が認められた(One-Way ANOVA, P<0.05)。A、B、C、Dいずれの処理ともに青森砂よりも1枚目の葉長が1.6倍から1.7倍長かった(Tukey’s HSD, P<0.05)。 FIG. 7(c) shows a graph of the length of the first leaf. A statistically significant difference was observed in the length of the first leaf (One-Way ANOVA, P<0.05). In all treatments A, B, C, and D, the first leaf length was 1.6 to 1.7 times longer than Aomori sand (Tukey's HSD, P<0.05).

図8(a)に2枚目の葉の長さのグラフを示す。2枚目の葉の長さには統計的な有意差が認められた(One-Way ANOVA, P<0.05)。A、B、C、Dいずれの処理ともに青森砂よりも2枚目の葉長が2.1倍から2.5倍長かった(Tukey’s HSD, P<0.05)。 FIG. 8(a) shows a graph of the length of the second leaf. A statistically significant difference was observed in the length of the second leaf (One-Way ANOVA, P<0.05). In all treatments A, B, C, and D, the second leaf length was 2.1 to 2.5 times longer than Aomori sand (Tukey's HSD, P<0.05).

図8(b)に3枚目の葉の長さのグラフを示す。3枚目の葉の長さには統計的な有意差が認められた(One-Way ANOVA, P<0.05)。青森砂が最も短く、次いでAとBの処理が続き、CとDの処理が最も葉長が長かった(Tukey’s HSD, P<0.05)。その差はAとBの処理で青森砂の約2倍、CとDの処理ではそれぞれ青森砂の2.9倍と2.7倍であった。 FIG. 8(b) shows a graph of the length of the third leaf. A statistically significant difference was observed in the length of the third leaf (One-Way ANOVA, P<0.05). Aomori sand had the shortest leaf length, followed by treatments A and B, and treatments C and D had the longest leaf length (Tukey's HSD, P<0.05). The difference was about twice that of Aomori sand in treatments A and B, and 2.9 times and 2.7 times that of Aomori sand in treatments C and D, respectively.

図8(c)に2枚目の葉の出現率(%)のグラフを示す。2枚目の葉の出現率はいずれの処理でも高く有意な差は認められなかった(Kruskal wallis P=0.05)。 FIG. 8(c) shows a graph of the appearance rate (%) of the second leaf. The appearance rate of the second leaf was high in all treatments, and no significant difference was observed (Kruskal wallis P=0.05).

図9(a)に3枚目の葉の出現率(%)のグラフを示す。3枚目の葉の出現率は処理による有意な差が認められた(One-Way ANOVA, P<0.05)。C
とDの処理は青森砂、A、Bより出現率が高かった(Tukey’s HSD, P<0.05)。
FIG. 9(a) shows a graph of the appearance rate (%) of the third leaf. A significant difference in the appearance rate of the third leaf was observed depending on the treatment (One-Way ANOVA, P<0.05). C
Treatments with and D had a higher appearance rate than Aomori sand, A, and B (Tukey's HSD, P<0.05).

今回の実験では、発芽率と主根の長さには統計的な差は認められなかったが、1枚目の葉の長さと2枚目の葉の長さについては青森砂よりも浄水発生土を用いたAからDの処理のほうが長く、より成育していることが示唆された。また、3枚目の葉の出現率と葉長についてはCとDの処理が統計的に最も高く、AやBと比較して地上部の成長が良いことがわかった。本実験では、青森砂よりも浄水発生土を用いた栽培土のほうが芝草の生育が良好で、地上部の発育については芝ともを混合した栽培土(CとD)のほうが、生育が良好な傾向であった。 In this experiment, no statistical difference was observed in the germination rate and taproot length, but the length of the first leaf and the length of the second leaf were higher in the purified water-generated soil than in the Aomori sand. It was suggested that treatments A to D using A to D were longer and had more growth. Furthermore, regarding the appearance rate and leaf length of the third leaf, treatments C and D were statistically the highest, and it was found that the growth of the aboveground part was better compared to treatments A and B. In this experiment, the growth of turfgrass was better in the cultivation soil using purified water soil than in Aomori sand, and regarding the growth of the above-ground part, the growth was better in the cultivation soil mixed with turf (C and D). It was a trend.

Claims (8)

浄水場の汚泥を乾燥した浄水発生土からなる植栽用土壌改良材であって、
前記汚泥は、マイナス電荷を帯びた粘土と、プラス電荷を有し前記マイナス電荷の前記粘土と中和反応する凝集剤と、を含んでおり、
前記浄水発生土は、複数の粒子が団粒化した平均粒径が10mm以下の団粒土から構成され、含水比が20~150質量%であり、前記汚泥が天日乾燥されたものであり、
前記汚泥のみを原料とし、かつ薬剤を添加しないことを特徴とする植栽用土壌改良材。
A soil improvement material for planting made of purified water generated soil obtained by drying sludge from a water treatment plant,
The sludge contains negatively charged clay and a flocculant that has a positive charge and reacts with the negatively charged clay to neutralize it,
The purified water generated soil is composed of aggregated soil having an average particle size of 10 mm or less in which a plurality of particles are aggregated, has a water content of 20 to 150% by mass, and is obtained by drying the sludge in the sun. ,
A soil improvement material for planting, characterized in that it uses only the sludge as a raw material and does not add any chemicals .
前記浄水発生土は、肥料分析法で分析した結果、酸化鉄(III)が1.0~10.0質量%、五酸化リンが0.05~2.0質量%、酸化カルシウムが0.05~2.0質量%、酸化マグネシウムが0.05~2.0質量%、酸化カリウムが0.01~2.0質量%含まれ、土壌養分分析法に準拠する方法で分析した結果、酸化アルミニウムが1.0~10.0質量%含まれることを特徴とする請求項1に記載の植栽用土壌改良材。 As a result of analyzing the purified water generated soil using a fertilizer analysis method, it was found that iron (III) oxide was 1.0 to 10.0% by mass, phosphorus pentoxide was 0.05 to 2.0% by mass, and calcium oxide was 0.05% by mass. Contains ~2.0% by mass, 0.05% to 2.0% by mass of magnesium oxide, 0.01% to 2.0% by mass of potassium oxide, and as a result of analysis in accordance with the soil nutrient analysis method, aluminum oxide The soil improvement material for planting according to claim 1, characterized in that it contains 1.0 to 10.0% by mass. 請求項1に記載の植栽用土壌改良材の製造方法であって、 A method for producing a soil improvement material for planting according to claim 1, comprising:
浄水場で発生する前記汚泥を天日乾燥して浄水発生土にする工程と、 a step of drying the sludge generated in the water purification plant in the sun to turn it into purified water generation soil;
前記浄水発生土に含まれる団粒土の粒径を調整する工程と、を備えることを特徴とする植栽用土壌改良材の製造方法。 A method for producing a soil improvement material for planting, comprising the step of adjusting the particle size of aggregated soil contained in the purified water generated soil.
請求項1又は2に記載の植栽用土壌改良材と、土及び/又は砂からなる土砂と、を含むことを特徴とする植栽用土壌。 A planting soil comprising the planting soil improving material according to claim 1 or 2 , and soil and/or sand. 前記植栽用土壌改良材が10~50体積%含まれることを特徴とする請求項4に記載の植栽用土壌。 The planting soil according to claim 4, characterized in that the planting soil improving material is contained in an amount of 10 to 50% by volume. 前記植栽用土壌が芝生用床土であることを特徴とする請求項4に記載の植栽用土壌。 The planting soil according to claim 4, wherein the planting soil is lawn bedding soil. 請求項1又は2に記載の植栽用土壌改良材と、土及び/又は砂からなる土砂と、を混合することを特徴とする植栽用土壌の製造方法。 A method for producing soil for planting, comprising mixing the soil improving material for planting according to claim 1 or 2 with earth and sand consisting of soil and/or sand. 請求項1又は2に記載の植栽用土壌改良材と、土及び/又は砂からなる土砂と、を混合して植栽用土壌を製造する工程と、
該植栽用土壌に植物を植栽する工程と、を備えることを特徴とする植栽方法。
A step of manufacturing soil for planting by mixing the soil improvement material for planting according to claim 1 or 2 and earth and sand consisting of soil and/or sand;
A planting method comprising the step of planting plants in the planting soil.
JP2020008024A 2019-01-30 2020-01-22 Planting soil improvement material, planting soil, method for producing planting soil, and planting method Active JP7371831B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019014165 2019-01-30
JP2019014165 2019-01-30

Publications (2)

Publication Number Publication Date
JP2020122142A JP2020122142A (en) 2020-08-13
JP7371831B2 true JP7371831B2 (en) 2023-10-31

Family

ID=71992251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020008024A Active JP7371831B2 (en) 2019-01-30 2020-01-22 Planting soil improvement material, planting soil, method for producing planting soil, and planting method

Country Status (1)

Country Link
JP (1) JP7371831B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114051903A (en) * 2021-08-24 2022-02-18 中国五冶集团有限公司 Planting soil treatment method for greening engineering

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346598A (en) 2001-05-28 2002-12-03 Electric Power Dev Co Ltd Granulated product of silt-like substance and method for manufacturing the same
JP2004329023A (en) 2003-04-30 2004-11-25 Taisei Corp Paddy-rice raising-seedling culture soil
JP2007244970A (en) 2006-03-15 2007-09-27 Seibu Zoen Kk Treatment method of soil coming from water purifying plant or sewage treatment plant
WO2012050076A1 (en) 2010-10-12 2012-04-19 東和スポーツ施設株式会社 Recycled soil, planting soil, lawn top dressing, base course material, and soil for grounds

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5293539A (en) * 1976-01-26 1977-08-06 Kondo Takahiko Growing material for crop
JPS5369127A (en) * 1976-11-09 1978-06-20 Chisso Corp Culture soil by utilizing soil provided from water purifying process as raw material
JP2506572B2 (en) * 1990-11-28 1996-06-12 有限会社 土壌保全研究所 Mixture of zeolite and soil from water purification plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002346598A (en) 2001-05-28 2002-12-03 Electric Power Dev Co Ltd Granulated product of silt-like substance and method for manufacturing the same
JP2004329023A (en) 2003-04-30 2004-11-25 Taisei Corp Paddy-rice raising-seedling culture soil
JP2007244970A (en) 2006-03-15 2007-09-27 Seibu Zoen Kk Treatment method of soil coming from water purifying plant or sewage treatment plant
WO2012050076A1 (en) 2010-10-12 2012-04-19 東和スポーツ施設株式会社 Recycled soil, planting soil, lawn top dressing, base course material, and soil for grounds

Also Published As

Publication number Publication date
JP2020122142A (en) 2020-08-13

Similar Documents

Publication Publication Date Title
CN101715714B (en) Moisture-preserving nutritious soil for growing herbaceous flower seedlings and preparation method thereof
US7992344B2 (en) Artificial soil and method for growing vegetation on sloped surface using the same
Spiers et al. Green waste compost as a component in soilless growing media
Kumar Nursery and plantation practices in forestry
Yadav et al. Effect of media on growth and development of acid lime (Citrus aurantifolia Swingle) seedling with or without Azotobacter
CN110612854A (en) Planting method of zanthoxylum bungeanum
JP2009213446A (en) Culture soil improving agent containing artificial zeolite, and culture soil
JP7371831B2 (en) Planting soil improvement material, planting soil, method for producing planting soil, and planting method
Mando Soil‐dwelling termites and mulches improve nutrient release and crop performance on Sahelian crusted soil
Klock-Moore Comparison of Salvia growth in seaweed compost and biosolids compost
JP5401656B2 (en) Clay heat treatment granular material
CN107047119A (en) A kind of regulation and control method for producing grass volume soil matrix chemical property
Varshney Observations on the Varanasi wall flora
KR100478194B1 (en) Method of producing lightweight sod
CN106171701A (en) A kind of method utilizing mountain rice to carry out roof greening
KR20040084194A (en) Soil for planting
JP3136265B2 (en) Plant cultivation soil
Sharaf El-Din et al. Growth and development of seashore Paspalum grass as affected by different culture media and irrigation levels
JPH11146726A (en) Lightweight instant soil
AbdelKader et al. Effect of inorganic NPK fertilizer and bioorganic compost on growth and quality of numex sahara bermudagrass (Cynodon dactylon (L.) Pers.) grown in a sandy soil
Kaur Evaluation of turf-type bermudagrass cultivars and experimental genotypes for rooting characteristics and drought performance
JPH09154403A (en) Turf carpet, its production and use
JP3389113B2 (en) Artificial ground soil
JPH09310068A (en) Soil conditioner
Galeș et al. The influence of Acuastoc on soil moisture and some morphophysiological properties in maize crop

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200210

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231006

R150 Certificate of patent or registration of utility model

Ref document number: 7371831

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150