JP7367028B2 - 端末、無線通信方法及びシステム - Google Patents

端末、無線通信方法及びシステム Download PDF

Info

Publication number
JP7367028B2
JP7367028B2 JP2021536551A JP2021536551A JP7367028B2 JP 7367028 B2 JP7367028 B2 JP 7367028B2 JP 2021536551 A JP2021536551 A JP 2021536551A JP 2021536551 A JP2021536551 A JP 2021536551A JP 7367028 B2 JP7367028 B2 JP 7367028B2
Authority
JP
Japan
Prior art keywords
pusch
transmission
pucch
segment
uci
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021536551A
Other languages
English (en)
Other versions
JPWO2021019736A1 (ja
JPWO2021019736A5 (ja
Inventor
優元 ▲高▼橋
聡 永田
リフェ ワン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of JPWO2021019736A1 publication Critical patent/JPWO2021019736A1/ja
Publication of JPWO2021019736A5 publication Critical patent/JPWO2021019736A5/ja
Application granted granted Critical
Publication of JP7367028B2 publication Critical patent/JP7367028B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

本開示は、次世代移動通信システムにおける端末無線通信方法及びシステムに関する。
Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。
LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。
既存のLTEシステム(例えば、3GPP Rel.8-14)では、ユーザ端末(UE:User Equipment)は、基地局からの下り制御情報(DCI:Downlink Control Information、DLアサインメント等ともいう)に基づいて、下り共有チャネル(例えば、PDSCH:Physical Downlink Shared Channel)の受信を制御する。また、ユーザ端末は、DCI(ULグラント等ともいう)に基づいて、上り共有チャネル(例えば、PUSCH:Physical Uplink Shared Channel)の送信を制御する。
将来の無線通信システム(例えば、NR)では、所定時間単位(例えば、スロット)より短い繰り返し単位で複数のULチャネルが送信されることが検討されている。あるいは、NRでは、所定の送信機会において、スロット境界(slot boundary)にわたって所定のチャネル及び信号の少なくとも一つ(チャネル/信号とも記す)のスケジューリングがサポートされることが検討されている。例えば、スロット境界にわたって(又は、スロット境界を跨って)スケジュールされる共有チャネルは複数のセグメントに分割されて送信又は受信を制御することが検討されている。
しかし、複数のULチャネルの少なくとも一部と他のULチャネル(又は、UL信号)の送信期間が重複するケースも考えられる。あるいは、複数セグメントに分割されたULチャネルと他のULチャネル(又は、UL信号)の送信期間が重複するケースも考えられる。しかしながら、かかる場合にどのように制御するかについて十分に検討がされていない。
本開示は、将来の無線通信システムにおいてULチャネルの送信を適切に行うことができる端末無線通信方法及びシステムを提供することを目的の1つとする。
本開示の一態様に係る端末は、スロット境界及び下りリンク(DL)送信用シンボルのうち少なくとも一方をクロスする上りリンク共有チャネル(PUSCH)の繰り返し送信を、前記スロット境界及び前記DL送信用シンボルのうち少なくとも一方により複数のセグメントに分割して送信する送信部と、前記PUSCHの繰り返し送信と、上りリンク制御チャネル(PUCCH)送信と、がオーバーラップする場合、前記複数のセグメントのうち時間領域において先頭となるセグメントを用いて、送達確認情報(HARQ-ACK)及びチャネル状態情報(CSI)のうち少なくとも一方を送信するように制御する制御部と、を有することを特徴とする。
本開示の一態様によれば、将来の無線通信システムにおいてULチャネルの送信を適切に行うことができる。
図1A-図1Fは、PUSCHとPUCCHが衝突する場合の送信制御の一例を示す図である。 図2は、シングルPUCCHとマルチPUSCHが衝突する場合の一例を示す図である。 図3は、共有チャネル(例えば、PUSCH)の割当ての一例を示す図である。 図4は、マルチセグメント送信の一例を示す図である。 図5は、セグメントPUSCHとPUCCHが衝突する場合の一例を示す図である。 図6A-図6Cは、PUCCHと複数のPUSCHが衝突する場合の送信制御の一例を示す図である。 図7A-図7Dは、PUCCHとセグメントPUSCHが衝突する場合の送信制御の一例を示す図である。 図8A-図8Cは、PUCCHとセグメントPUSCHを含む複数のPUSCHが衝突する場合の送信制御の一例を示す図である。 図9A-図9Cは、PUCCHと複数のPUSCHが衝突する場合の送信制御の他の例を示す図である。 図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。 図11は、一実施形態に係る基地局の構成の一例を示す図である。 図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。 図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の例を示す図である。
(ULチャネル間の衝突)
既存システム(例えば、3GPP Rel.15)では、ULチャネルの送信期間(又は、送信タイミング、時間リソース)が衝突又は重複する場合、所定ルールに基づいてUL送信が制御される。なお、以下の説明において、複数のチャネルが衝突するとは、少なくとも複数のチャネルの送信期間(又は、送信タイミング、時間リソース)の一部が重複すると読み替えてもよい。
図1は、上り制御チャネル(例えば、PUCCH)と上り共有チャネル(例えば、PUSCH)が衝突する場合の動作の一例を示している。ここでは、1スロットにおいてPUCCHとPUSCHが1回送信される場合(又は、繰り返し回数が1の場合)を示しており、シングルPUCCH送信とシングルPUSCH送信が衝突する場合に相当する。
かかる場合、最初に各スロットにおいてPUCCH同士の衝突がハンドリングされてもよい。例えば、送信期間が重複する複数のPUCCHリソースが1つのPUCCHリソースにまとめられる。ここでは、PUCCH#Q(0)とPUCCH#Q(1)が1つのPUCCH#Q(0)にまとめられる(図1A-C参照)。例えば、開始シンボルが早いPUCCH、(開始シンボルが同じ場合には期間が長いPUCCH)に他のPUCCHを集約してもよい。
同様に、PUCCH#Q(2)とPUCCH#Q(3)とPUCCH#Q(4)が1つのPUCCH#Q(3)にまとめられる(図1D-E参照)。なお、複数のPUCCHが集約された後のPUCCH(ここでは、Q(0)、Q(3))は、周波数及び時間の少なくとも一方にリソースが拡張されてもよい。
互いに衝突するPUCCHを集約した後、集約後のPUCCHとPUSCHの送信期間が衝突する場合、UEは、PUCCHをドロップする。また、UEは、当該PUCCHを利用して送信する上り制御情報(例えば、UCI)をPUSCHに多重又はマッピング(以下、単に多重とも記す)して送信するように制御する(図1F参照)。
ここでは、PUSCH#Q(0)をドロップしてUCIをPUSCHに割り当てる(又は、ピギーバック)する場合を示している。UCIは、送達確認信号(HARQ-ACK)、スケジューリングリクエスト(SR)、及びチャネル状態情報(CSI-RS)の少なくとも一つであってもよい。
このように、UEは、スロット内においてシングルPUSCHとシングルPUCCHの送信期間がオーバーラップする場合、PUCCHを利用して送信予定であったUCIをPUSCHを利用して送信するように制御する。
将来の無線通信システム(例えば、Rel.16以降)では、シンボルより短い繰り返し単位を利用して、複数のPUSCHの送信(例えば、PUSCH繰り返し送信)をサポートすることが想定される。この場合、PUCCH(例えば、シングルPUCCH)と複数のPUSCH送信の少なくとも一部とが衝突するケースも考えられる(図2参照)。
図2では、複数のPUSCH(ここでは、繰り返し回数3のPUSCH)の一部とPUCCHが重複する場合を示している。なお、複数のPUSCH送信は1スロット内に設定されてもよいし、複数スロットにわたって設定されてもよい。
かかる場合、PUCCH(又は、PUCCHで送信予定のUCI)と、PUSCHの送信をどのように制御するかが問題となる。
本発明者等は、所定時間単位(例えば、スロット)より短い繰り返し単位で送信される複数のPUSCHと、PUCCH(例えば、シングルPUCCH)が衝突した場合の送信動作をどのように制御するかについて検討し、本発明の一態様を着想した。
(マルチセグメント送信)
既存システム(例えば、3GPP Rel.15)では、UEは、ある送信機会(transmission occasion)(期間、機会等ともいう)の上り共有チャネル(例えば、PUSCH)又は下り共有チャネル(例えば、PDSCH)に対して、単一のスロット内で時間領域リソース(例えば、所定数のシンボル)を割り当てることが検討されてきた。
UEは、ある送信機会において、スロット内の連続する所定数のシンボルに割り当てられるPUSCHを用いて、一つ又は複数のトランスポートブロック(Transport Block(TB))を送信してもよい。また、UEは、ある送信機会において、スロット内の連続する所定数のシンボルに割り当てられるPDSCHを用いて、一つ又は複数のTBを送信してもよい。
一方、将来の無線通信システム(例えば、Rel.16以降)では、ある送信機会のPUSCH又はPDSCHに対して、スロット境界を跨って(又は、複数のスロットに渡って)時間領域リソースを割り当てることも想定される(図3参照)。図3では、1スロット内の連続する所定数(ここでは、7シンボル)に割当てられるPUSCHに加えて、スロット境界を跨いで(又は、クロスして)PUSCHが割当てられる場合を示している。
具体的には、スロット#nのシンボル#10~#13及びスロット#n+1のシンボル#0~#3に割り当てられるPUSCHは、スロット境界を跨って送信される。また、図3に示すように、複数の送信機会に渡ってPUSCHの繰り返し送信が行われる場合、少なくとも一部の送信機会又は繰り返し送信がスロット境界を跨って送信されることも想定される。
スロット境界を跨いで(複数のスロットに渡って)割り当てられる時間領域リソースを利用したチャネル/信号の送信は、マルチセグメント送信、2セグメント送信、クロススロット境界送信、不連続送信、複数分割送信等とも呼ばれる。同様に、スロット境界を跨いで送信されるチャネル/信号の受信は、マルチセグメント受信、2セグメント受信、クロススロット境界受信、不連続受信、複数分割受信等とも呼ばれる。
図4は、マルチセグメント送信の一例を示す図である。なお、図4では、PUSCHのマルチセグメント送信を例示するが、他の信号/チャネル(例えば、PDSCH等)に置き換えてもよい。以下の説明では、スロット境界に基づいて各セグメントに分割される場合を示すが、各セグメントに分割される基準はスロット境界に限られない。また、以下の説明では、PUSCHのシンボル長が7シンボルである場合を示すが、これに限られず2シンボル長より長いシンボルであれば同様に適用できる。
図4において、UEは、所定数のセグメントに基づいて、一つのスロット内で割当て(又は、スケジュール)されるPUSCH、又は複数のスロットに跨って割当てられるPUSCHの送信を制御してもよい。UEは、ある送信機会において一以上のスロットにわたる時間領域リソースがPUSCHに割り当てられる場合、当該PUSCHを複数のセグメントに分けて(又は、分割、split)して送信処理を制御してもよい。例えば、UEは、スロット境界を基準に分割した各セグメントを、当該各セグメントが対応するスロット内の所定数の割り当てシンボルにマッピングしてもよい。
ここで、「セグメント」は、一つの送信機会に割り当てられる各スロット内の所定数のシンボル又は当該所定数のシンボルで送信されるデータであってもよい。例えば、一つの送信機会で割り当てられるPUSCHの先頭シンボルが第一のスロット、末尾シンボルが第二のスロットにある場合、当該PUSCHについて、第一のスロットに含まれる一以上のシンボルを第一のセグメント、第二のスロットに含まれる一以上のシンボルを第二のセグメント、としてもよい。
なお、「セグメント」は、所定のデータユニットであり、一つ又は複数のTBの少なくとも一部であってもよい。例えば、各セグメントは、一つ又は複数のTB、一つ又は複数のコードブロック(Code Block(CB))、又は、一つ又は複数のコードブロックグループ(Code Block Group(CBG))で構成されてもよい。なお、1CBは、TBの符号化用のユニットであり、TBが一つ又は複数に分割(CB segmentation)されたものであってもよい。また、1CBGは、所定数のCBを含んでもよい。なお、分割されたセグメントは、ショートセグメント(short segment)と呼ばれてもよい。
各セグメントのサイズ(ビット数)は、例えば、PUSCHが割り当てられるスロット数、各スロットにおける割り当てシンボル数、及び、各スロットにおける割り当てシンボル数の割合の少なくとも一つに基づいて決定されてもよい。また、セグメントの数は、PUSCHが割り当てられるスロット数に基づいて決定されてもよい。
例えば、スロット#nのシンボル#5~#11に割り当てられるPUSCHは、単一のスロット内(単一のセグメント)でスロット境界を跨がずに送信される。このように、スロット境界を跨がずにPUSCHの送信(単一のスロット内に割り当てられる所定数のシンボルを用いたPUSCHの送信)は、シングルセグメント(single-segment)送信、1セグメント(one-segment)送信、非セグメント(non-segmented)送信等と呼ばれてもよい。
一方、スロット#nのシンボル#10~#13及びスロット#n+1のシンボル#0~#2に割り当てられるPUSCHは、スロット境界を跨って送信される。このように、スロット境界を跨るPUSCHの送信(複数のスロット内に割り当てられる所定数のシンボルを用いたPUSCHの送信)は、マルチセグメント(multi-segment)送信、2セグメント(two-segment)送信、クロススロット境界送信等と呼ばれてもよい。
また、図4に示すように、複数の送信機会にわたってPUSCHの繰り返し送信が行われる場合、少なくとも一部の送信機会にマルチセグメント送信が適用されてもよい。例えば、図4では、PUSCHが2回繰り返され、1回目のPUSCH送信にはシングルセグメント送信が適用され、2回目のPUSCH送信にはマルチセグメント送信が適用される。
また、繰り返し送信は、一以上の時間ユニットで行われてもよい。各送信機会が各時間ユニットに設けられてもよい。各時間ユニットは、例えば、スロットであってもよいし、スロットよりも短い時間ユニット(例えば、ミニスロット、サブスロット又はハーフスロット等ともいう)であってもよい。例えば、図4では、7シンボルのミニスロットを用いた繰り返し送信が示されるが、繰り返し送信の単位(例えば、シンボル長)は図4に示すものに限られない。
また、繰り返し回数が1であることは、PUSCH又はPDSCHを1回送信する(繰り返し無しである)ことを示してもよい。
また、繰り返し送信は、スロットアグリゲーション(slot-aggregation)送信、マルチスロット送信等と呼ばれてもよい。当該繰り返し回数(アグリゲーション数、アグリゲーションファクター)Nは、上位レイヤパラメータ(例えば、RRC IEの「pusch-AggregationFactor」又は「pdsch-AggregationFactor」)及びDCIの少なくとも一つによってUEに指定されてもよい。また、送信機会、繰り返し、スロット又はミニスロット等は相互に言い換え可能である。
このように、割当て(又は、スケジュール)が指示されるPUSCH(nominal PUSCHとも呼ぶ)がスロット境界をクロスする場合、又は1送信(例えば、7シンボル)の範囲にPUSCH送信に利用できないシンボル(例えば、DL又はフレキシブル)が存在する場合が想定される。かかる場合、UEは、当該PUSCHを複数のセグメント(又は、repetition)に分割して送信を制御することが考えられる。
しかし、複数のセグメントに分割されるPUSCHの少なくとも一部と、PUCCHが衝突する場合にどのように送信を制御するかが問題となる。例えば、繰り返し送信が適用される複数のPUSCHの少なくとも1つのPUSCHが複数のセグメントに分割され、且つ当該複数のPUSCHの少なくとも一部とPUCCHの送信期間が重複するケースも考えられる(図5参照)。
図5では、送信期間が8シンボルのPUCCH(シングルPUSCH)と、繰り返し送信(ここでは、繰り返し回数3)が適用されるPUSCHの送信期間が重複する場合の一例を示している。具体的には、スロット境界を跨いで送信される2回目のPUSCH送信(Rep#1)が複数のセグメント(ここでは、Rep#1-1、Rep#1-2)に分割され、PUCCHが一部のPUSCH(Rep#0、Rep#1-1)と衝突する場合を示している。
かかる場合、PUCCH(又は、PUCCHで送信予定のUCI)と、PUSCHの送信をどのように制御するかが問題となる。
本発明者等は、複数のセグメントに分割されるPUSCHと、PUCCH(例えば、シングルPUCCH)が衝突した場合の送信動作をどのように制御するかについて検討し、本発明の一態様を着想した。
以下、本開示に係る実施形態について、図面を参照して詳細に説明する。なお、以下の各態様はそれぞれ単独で用いられてもよいし、少なくとも2つを組み合わせて適用されてもよい。
以下の説明では、上り制御チャネル(例えば、シングルPUCCH)と複数の上り共有チャネル(例えば、マルチPUSCH)の衝突を例に挙げて説明するが、適用可能な信号/チャネルはこれに限られない。また、シングルPUCCHは、シングルスロットPUCCH、シングルサブスロットPUCCH、又はシングルミニスロットPUCCHに読み替えてもよい。マルチPUSCHは、マルチサブスロットPUSCH、マルチミニスロットPUSCH、又はマルチシンボルPUSCHに読み替えられてもよい。
また、PUCCHと複数のPUSCHは、同じキャリア(又は、セル、コンポーネントキャリア、バンド)で送信されてもよいし、異なるキャリアで送信されてもよい。
また、以下に示す態様は、繰り返し送信(repetition、又はnominal repetitionとも呼ぶ)を適用するPUCCH、又は繰り返し送信を適用しないPUSCHに対して適用してもよい。
(第1の態様)
第1の態様では、第1のULチャネル(例えば、PUCCH)と、第2のULチャネル(例えば、PUSCH)が衝突する場合の送信制御について説明する。以下の説明では、PUCCHとPUSCHが同じニューメロロジー(例えば、サブキャリア間隔)を利用し、スロットより短い繰り返し単位を利用してPUSCHを送信する場合を例に挙げるがこれに限られない。
UEは、PUCCHの送信期間と複数のPUSCH(又は、繰り返しPUSCH)の送信期間の少なくとも一部が重複する場合、当該複数のPUSCHにセグメントPUSCHが含まれるか否かに関わらず以下のオプション1-1~1-3の少なくとも一つに基づいて送信動作を制御してもよい。
なお、以下の説明では、繰り返し単位がスロットより短い3つのPUSCH送信(例えば、繰り返し回数3)を例に挙げて説明するが、PUSCHの送信回数はこれに限られない。PUSCHの繰り返し回数、PUSCHの送信期間、及びPUCCHの送信期間の少なくとも一つに関する情報は、ネットワーク(例えば、基地局)からUEに上位レイヤシグナリング及び下り制御情報(DCI)の少なくとも一つにより通知されてもよい。
PUSCHの送信期間は、PUSCHの割当てリソース、PUSCHの開始シンボル、及びPUSCHの長さ(例えば、シンボル長)の少なくとも一つに基づいて決定されてもよい。PUCCHの送信期間は、PUCCHの割当てリソース、PUCCHの開始シンボル、及びPUCCHの長さ(例えば、シンボル長)の少なくとも一つに基づいて決定されてもよい。
<オプション1-1>
UEは、PUCCHと衝突するPUSCHに上り制御情報(UCI)を多重又はマッピング(以下、単に多重とも記す)し、当該PUCCHをドロップしてもよい。例えば、PUCCHが3つのPUSCH送信(Rep#0-Rep#2)のうち複数のPUSCH(例えば、Rep#0、#1)と重複する場合を想定する(図6A参照)。この場合、UEは、複数のPUSCH(Rep#0とRep#1)を利用してUCIを送信するように制御してもよい。
図6Aにおいて、PUCCHは1スロット内に配置される構成としてもよい。この場合、同一スロット内のPUSCHにUCIを多重することができるため、スロット単位でPUSCHへのUCI多重(UCI on PUSCH)を制御することができる。
図6Aでは、PUCCHがRep#0及びRep#1に相当するPUSCHの送信期間と完全に重複する場合を示しているが、これに限られない。例えば、PUCCHがRep#1に相当するPUSCHの一部の送信期間(例えば、前半シンボルのみ)と重複する場合も同様に送信動作を制御してもよい。
複数のPUSCH(Rep#0とRep#1)にそれぞれ多重されるUCIは、内容が同じUCIであってもよいし、内容が異なるUCIであってもよい。例えば、UEは、同じHARQ-ACKを複数のPUSCHを利用して送信してもよい。あるいは、UEは、1つのPUSCHを利用してHARQ-ACK及びSRの少なくとも一つを送信し、他のPUSCHを利用して他のUCI(例えば、CSI)を送信してもよい。あるいは、UEは、HARQ-ACK(又は、SR)とCSIのうち一方(例えば、HARQ-ACK(又は、SR))を複数のPUSCHにマッピングし、CSI-RSをドロップしてもよい。
UEは、Rep#0及びRep#1の少なくとも一方が複数のセグメントに分割される場合であっても、UCIをRep#1とRep#2を利用して送信するように制御してもよい。
このように、PUCCHと衝突するPUSCHを利用してUCIの送信を行うことによりUE動作をシンプルにすることが可能となる。
<オプション1-2>
UEは、PUCCHと衝突する複数のPUSCHのうち一部(例えば、1つのPUSCH)にUCIを多重し、当該PUCCHをドロップしてもよい。例えば、PUCCHが3つのPUSCH送信(Rep#0-Rep#2)のうち複数のPUSCH(例えば、Rep#0、#1)と重複する場合を想定する。この場合、UEは、複数のPUSCHのうち一方のPUSCH(ここでは、Rep#1)を利用してUCIを送信するように制御してもよい(図6B参照)。
図6Bにおいて、PUCCHは1スロット内に配置される構成としてもよい。この場合、同一スロット内のPUSCHにUCIをマッピングすることができるため、スロット単位でPUSCHへのUCI多重(UCI on PUSCH)を制御することができる。
図6Bでは、PUCCHがRep#0及びRep#1に相当するPUSCHの送信期間と完全に重複する場合を示しているが、これに限られない。例えば、PUCCHがRep#1に相当するPUSCHの一部の送信期間(例えば、前半シンボルのみ)と重複する場合も同様に送信動作を制御してもよい。
PUCCHと衝突する複数のPUSCHのうちUCIを多重するPUSCHは所定条件に基づいて決定されてもよい。UEは、以下の所定条件1~4の少なくとも一つに基づいてUCIを多重する特定のPUSCHを決定してもよい。
[所定条件1]
PUCCHと衝突する複数のPUSCHのうち、時間領域において先頭のPUSCH又は最後のPUSCHを、UCIを多重する特定のPUSCHとしてもよい。図6Bでは、PUCCHと衝突する複数のPUSCHのうち先頭のPUSCH(Rep#0)にUCIを多重する場合を示している。これにより、UCIの送信タイミングを早くすることが可能となる。
[所定条件2]
PUCCHと衝突する複数のPUSCHのうち、送信期間(transmission duration)が最も長いPUSCH又は最も短いPUSCHを、UCIを多重する特定のPUSCHとしてもよい。
例えば、第1の送信期間又はPUSCH長(例えば、2シンボル)のPUSCHと、第1の送信期間より長い第2の送信期間又はPUSCH長(例えば、4シンボル)のPUSCHが、PUCCHと衝突する場合を想定する。送信期間が長いPUSCHの優先度が高く設定される場合、UEは、4シンボルの送信期間を適用するPUSCHにUCIを多重する。送信期間が長いPUSCHにUCIを多重することにより、より低い変調符号化方式(MCS)を選択できるため、復号の安定性(decoding reliability)を向上することができる。
[所定条件3]
PUCCHと衝突する複数のPUSCHのうち、符号化率(coding rate(CR))が最も低いPUSCH又は最も高いPUSCHを、UCIを多重する特定のPUSCHとしてもよい。
例えば、第1の符号化率(例えば、0.12)を適用するPUSCHと、第1の符号化率より高い第2の符号化率(例えば、0.38)を適用するPUSCHが、PUCCHと衝突する場合を想定する。符号化率が低いPUSCHの優先度が高く設定される場合、UEは、第1の符号化率を適用するPUSCHにUCIを多重する。符号化率が低いPUSCHにUCIを多重することにより、復号の安定性(decoding reliability)を向上することができる。
[所定条件4]
PUCCHと重複する複数のPUSCHのうち、当該PUCCHと衝突する期間が最も長いPUSCH又は最も短いPUSCHを、UCIをマッピングする特定のPUSCHとしてもよい。
例えば、第1のPUSCHと第2のPUSCHが同じPUSCH長で構成され、PUCCHが第1のPUSCHの全送信期間と、第2のPUSCHの一部(例えば、前半数シンボル)の送信期間と重複する場合を想定する。PUCCHとの重複期間が長いPUSCHの優先度が高く設定される場合、UEは、第1のPUSCHにUCIを多重してもよい。
なお、UEは、UCIを多重する特定のPUSCH(図6では、Rep#0)が複数のセグメントに分割される場合であっても、UCIをRep#0を利用して送信するように制御してもよい。
このように、PUCCHと複数のPUSCHが衝突する場合に、複数のPUSCHのうち一部のPUSCHを利用してUCIの送信を行うことによりUE動作の負荷を低減することが可能となる。
<オプション1-3>
PUCCHと、繰り返し送信される複数のPUSCHの一部が衝突する場合に、当該PUCCHと重複しないPUSCHを利用してUCIを送信するように制御してもよい。例えば、UEは、PUCCHと衝突するPUSCHに加えて、当該PUCCHと衝突しない他のPUSCHに対してもUCIを多重し、当該PUCCHをドロップしてもよい。
例えば、PUCCHが3つのPUSCH送信(Rep#0-Rep#2)のうち複数のPUSCH(例えば、Rep#0、#1)と衝突する場合を想定する。この場合、UEは、PUCCHと重複するPUSCHに加えてPUCCHと重複しないPUSCH(Rep#2)を利用してUCIを送信するように制御する(図6C参照)。つまり、UEは、PUCCHと、繰り返し送信される複数のPUSCHの少なくとの一部が衝突する場合に、繰り返し送信される全てのPUSCHを利用してUCIの送信を行ってもよい。
図6Cにおいて、PUCCHは1スロット内に配置される構成としてもよい。この場合、同一スロット内のPUSCH(又は、同一スロット内のPUSCHと他のスロットのPUSCH)にUCIを多重することができる。これにより、受信側(例えば、基地局側)でソフトコンバイニングを行うことにより、復号精度を向上することができる。
複数のPUSCH(Rep#1-Rep#3)にそれぞれ多重されるUCIは、内容が同じUCIであってもよいし、内容が異なるUCIであってもよい。例えば、UEは、同じHARQ-ACKを複数のPUSCHを利用して送信してもよい。あるいは、UEは、1つのPUSCHを利用してHARQ-ACK及びSRの少なくとも一つを送信し、他のPUSCHを利用して他のUCI(例えば、CSI)を送信してもよい。あるいは、UEは、HARQ-ACK(又は、SR)とCSIのうち一方(例えば、HARQ-ACK(又は、SR))を複数のPUSCHに多重し、CSI-RSをドロップしてもよい。
UEは、Rep#0-Rep#2の少なくとも一つが複数のセグメントに分割される場合であっても、UCIをRep#0-Rep#2を利用して送信するように制御してもよい。
<セグメントPUSCHへのUCI多重制御>
UEは、UCIを多重するPUSCHが複数のセグメントに分割されるPUSCHである場合、所定条件に基づいて各セグメントへの多重を制御してもよい。例えば、UEは、複数のセグメントに分割されるPUSCHにUCIを多重する場合、以下のオプションA及びB(B-1~B-4)の少なくとも一つを適用してもよい。UEは、オプションA及びBの少なくとも一つと上記オプション1-1~オプション1-3を組み合わせて適用してもよい。
<オプションA>
分割される複数のPUSCHセグメントにUCIがマッピングされてもよい。例えば、PUCCHと、分割される複数のセグメントPUSCHの両方(例えば、Rep#1-1とRep#1-2の両方)とが衝突する場合に、UCIを複数のセグメントPUSCHに多重してもよい(図7A参照)。
あるいは、UEは、PUCCHと、分割される複数のセグメントPUSCHの一方(例えば、Rep#1-1)とが衝突する場合に、UCIを複数のセグメントPUSCH(例えば、Rep#1-1及びRep#1-2)に多重してもよい(図7B参照)。
複数のセグメントPUSCH(Rep#1-1、Rep#1-2)にそれぞれ多重されるUCIは、内容が同じUCIであってもよいし、内容が異なるUCIであってもよい。例えば、UEは、同じHARQ-ACKを複数のセグメントPUSCHを利用して送信してもよい。これにより、セグメントPUSCHを利用して送信を行う場合のカバレッジを改善することが可能となる。
なお、図7A及び図7Bは、上記オプション1-1と組み合わせる場合を示したが、これに限られない。
<オプションB>
分割される複数のPUSCHセグメントのうち一部のPUSCHセグメント(例えば、1つのPUSCHセグメント)にUCIが多重されてもよい。例えば、PUCCHと、分割される複数のセグメントPUSCHの両方(例えば、Rep#1-1及びRep#1-2)とが衝突する場合、UCIを一方のセグメントPUSCHに多重してもよい(図7C参照)。
あるいは、UEは、PUCCHと、分割される複数のセグメントPUSCHの一方(例えば、Rep#1-1)とが衝突する場合、UCIを一方のセグメントPUSCHに多重してもよい(図7D参照)。
なお、PUCCHと複数のセグメントPUSCHの両方とが衝突する場合にオプションAを適用し、PUCCHと複数のセグメントPUSCHの一方とが衝突する場合にオプションBを適用してもよい。
なお、図7C及び図7Dは、上記オプション1-1と組み合わせる場合を示したが、これに限られない。
オプションBを適用する場合、UCIを多重するセグメントPUSCHは所定条件に基づいて決定されてもよい。UEは、以下のオプションB-1~B-4の少なくとも一つに基づいてUCIを多重する特定のセグメントPUSCHを決定してもよい。
[オプションB-1]
複数のセグメントPUSCHのうち、時間領域において先頭(又は、1番目)のセグメントPUSCH(例えば、Rep#1-1)を、UCIを多重する特定のセグメントPUSCHとしてもよい。
あるいは、複数のセグメントPUSCHのうち、時間領域において最後(又は、2番目)のセグメントPUSCH(例えば、Rep#1-2)を、UCIを多重する特定のセグメントPUSCHとしてもよい。
このように、UCIを多重するセグメントPUSCHをあらかじめ定めておくことによりUEの動作を簡略化することができる。
[オプションB-2]
複数のセグメントPUSCHのうち、送信期間(transmission duration)が最も長いセグメントPUSCH又は最も短いセグメントPUSCHを、UCIをマッピングする特定のセグメントPUSCHとしてもよい。
例えば、分割された第1のセグメントPUSCH(例えば、Rep#1-1)が第1の送信期間又はPUSCH長を有し、第2のセグメントPUSCH(例えば、Rep#1-2)が第1の送信期間より長い第2の送信期間又はPUSCH長を有する場合を想定する。送信期間が長いセグメントPUSCHの優先度が高く設定される場合、UEは、第2のセグメントPUSCHにUCIを多重する。送信期間が長いセグメントPUSCHにUCIを多重することにより、より低いMCSを選択できるため、復号の安定性(decoding reliability)を向上することができる。
[オプションB-3]
複数のセグメントPUSCHのうち、符号化率(coding rate(CR))が最も低いセグメントPUSCH又は最も高いセグメントPUSCHを、UCIをマッピングする特定のセグメントPUSCHとしてもよい。
例えば、UCIがマッピングされるPUSCHが、第1の符号化率を適用する第1のセグメントPUSCH(例えば、Rep#1-1)と、第1の符号化率より高い第2の符号化率を適用する第2のセグメントPUSCH(例えば、Rep#1-2)に分割される場合を想定する。符号化率が低いセグメントPUSCHの優先度が高く設定される場合、UEは、第1の符号化率を適用する第1のセグメントPUSCHにUCIを多重する。符号化率が低いセグメントPUSCHにUCIを多重することにより、復号の安定性(decoding reliability)を向上することができる。
[オプションB-4]
ネットワーク(例えば、基地局)から通知される情報に基づいて、UCIが多重されるセグメントPUSCHが決定されてもよい。例えば、UEは、基地局から通知される下り制御情報及び上位レイヤシグナリングの少なくとも一つで通知される情報に基づいてUCIをマッピングするセグメントPUSCHを決定してもよい。
あるいは、UEは、PUSCH又は当該PUSCHをスケジュールするPDCCH(又は、DCI)に適用されるRNTIに基づいてUCIを多重するセグメントPUSCHを決定してもよい。
このように、UCIが多重されるPUSCHが複数のセグメントに分割されるPUSCHである場合、所定条件に基づいてUCIの多重を制御することにより、セグメントPUSCHを利用したUCIの送信を適切に行うことができる。
(第2の態様)
第2の態様では、第1のULチャネル(例えば、PUCCH)と、第2のULチャネル(例えば、PUSCH)が衝突する場合について第1の態様と異なる送信制御について説明する。以下の説明では、PUCCHとPUSCHが同じニューメロロジー(例えば、サブキャリア間隔)を利用し、スロットより短い繰り返し単位を利用してPUSCHを送信する場合を例に挙げるがこれに限られない。
UEは、PUCCHと複数のPUSCH(又は、繰り返しPUSCH)の少なくとも一部が衝突する場合、複数セグメントに分割されるPUSCH以外のPUSCHを利用してUCIの送信を行うように制御してもよい。つまり、UEは、複数のセグメントに分割されるPUSCH(又は、セグメントPUSCH)へのUCIの多重を行わないように制御してもよい。
例えば、UEは、繰り返し送信される複数のPUSCHにセグメントPUSCHが含まれる場合、以下のオプション2-1~2-3の少なくとも一つに基づいて送信動作を制御してもよい。
なお、以下の説明では、繰り返し単位がスロットより短い3つのPUSCH送信(例えば、繰り返し回数3)を例に挙げて説明するが、PUSCHの送信回数はこれに限られない。PUSCHの繰り返し回数、PUSCHの送信期間、及びPUCCHの送信期間の少なくとも一つに関する情報は、ネットワーク(例えば、基地局)からUEに上位レイヤシグナリング及び下り制御情報の少なくとも一つにより通知されてもよい。
<オプション2-1>
UEは、PUCCHと衝突するPUSCHのうち、セグメントPUSCH以外のPUSCHにUCIを多重し、当該PUCCHをドロップしてもよい。例えば、PUCCHが3つのPUSCH送信(Rep#0-Rep#2)のうち複数のPUSCH(例えば、Rep#0、#1)と衝突する場合、当該複数のPUSCHのうちセグメントPUSCHを除いたPUSCHを利用してUCIを送信するように制御する(図8A参照)。
ここでは、Rep#1が複数のセグメントPUSCH(Rep#1-1と#1-2)に分割される。UEは、UCIをRep#0にマッピングし、Rep#1には多重しないように制御してもよい。
このように、セグメントPUSCHにUCIを多重しない(あるいは、セグメントPUSCHを利用してUCIを送信しない)ように制御することにより、送信処理動作を簡略化することができる。例えば、UEは、セグメントPUSCHがUCIを多重できるリソース又はサイズを有するか否かを考慮して送信処理を行う必要がなくなる。また、基地局は、セグメントPUSCHがUCIを多重できるリソース又はサイズを有するか否かを考慮してスケジューリングを行う必要がなくなる。
<オプション2-2>
UEは、PUCCHと衝突する複数のPUSCHの一部(例えば、セグメントPUSCH以外の1つのPUSCH)にUCIを多重し、当該PUCCHをドロップしてもよい。例えば、PUCCHが3つのPUSCH送信(Rep#0-Rep#2)のうち複数のPUSCH(例えば、Rep#0、#1)と重複する場合、当該複数のPUSCHのうち一方のPUSCHを利用してUCIを送信するように制御してもよい(図8B参照)。
図8Bでは、UEが複数のPUSCH(例えば、Rep#0、#1)のうち、Rep#1を選択し、当該Rep#1がセグメントPUSCHに相当する場合を示している。UEは、UCIをセグメントPUSCH(Rep#1)に多重しないように制御する。この場合、UEは、UCIの送信を行わないように制御してもよいし、セグメントPUSCH以外のPUSCH(例えば、Rep#0及びRep#2の少なくとも一つ)を利用してUCIを送信するように制御してもよい。
なお、PUCCHと衝突する複数のPUSCHのうちUCIを多重するPUSCHは所定条件に基づいて決定されてもよい。UEは、少なくとも所定条件0~4の少なくとも一つに基づいてUCIを多重する特定のPUSCHを決定してもよい。各所定条件は組み合わせて適用してもよい。例えば、所定条件0を満たさない場合(例えば、PUCCHが重複するPUSCHにセグメントPUSCHが存在しない場合)に他の所定条件を適用する構成としてもよい。
[所定条件0]
PUCCHと衝突する複数のPUSCHのうち、複数セグメントに分割されないPUSCHを特定のPUSCHとしてもよい。例えば、図8Bにおいて、UEは、PUCCHと重複する複数のPUSCHのうちセグメントに分割されないPUSCH(Rep#0)にUCIを多重するように制御してもよい。
所定条件1~4は、第1の態様で示した所定条件1~4をそれぞれ利用してもよい。
このように、PUCCHと複数のPUSCHが重複する場合に、複数のPUSCHのうち一部のPUSCH(セグメントPUSCH以外のPUSCH)を利用してUCIの送信を行うことによりUE動作の負荷を低減することが可能となる。
<オプション2-3>
UEは、PUCCHと、繰り返し送信される複数のPUSCHの一部が衝突する場合に、PUCCHと重複しないPUSCH(セグメントPUSCH以外のPUSCH)を利用してUCIを送信するように制御してもよい。例えば、UEは、PUCCHと重複するPUSCH(セグメントPUSCH以外のPUSCH)に加えて、PUCCHと多重しない他のPUSCH(セグメントPUSCH以外のPUSCH)に対してもUCIを多重し、当該PUCCHをドロップしてもよい。
例えば、PUCCHが3つのPUSCH送信(Rep#0-Rep#2)のうち複数のPUSCH(例えば、Rep#0、#1)と重複し、Rep#1がセグメントPUSCHに相当する場合を想定する。かかる場合、UEは、PUCCHと重複する非セグメントPUSCH(Rep#0)に加えて、PUCCHと重複しない非セグメントPUSCH(Rep#2)を利用してUCIを送信するように制御する(図8C参照)。
つまり、UEは、PUCCHと、繰り返し送信される複数のPUSCHの一部が衝突する場合に、セグメントPUSCHを除く全てのPUSCHを利用してUCIの送信を行ってもよい。
このように、セグメントPUSCHにUCIを多重しない(あるいは、セグメントPUSCHを利用して上り制御情報を送信しない)ように制御することにより、送信処理動作を簡略化することができる。例えば、UEは、セグメントPUSCHがUCIを多重できるリソース又はサイズを有するか否かを考慮して送信処理を行う必要がなくなる。また、基地局は、セグメントPUSCHがUCIを多重できるリソース又はサイズを有するか否かを考慮してスケジューリングを行う必要がなくなる。
(第3の態様)
第3の態様では、第1のULチャネル(例えば、PUCCH)と、第2のULチャネル(例えば、PUSCH)が衝突する場合、いずれか一方をドロップする場合について説明する。
PUCCH(例えば、シングルPUCCH)の送信期間と、複数のPUSCH(例えば、マルチPUSCH)の送信期間の少なくとも一部が重複する場合、UEは、いずれか一方のチャネルをドロップするように制御してもよい。
例えば、PUCCHが3つのPUSCH送信(Rep#0-Rep#2)のうち複数のPUSCH(例えば、Rep#0、#1)と重複する場合、UEは、複数のPUSCHを送信し、PUCCH(又は、UCI)をドロップするように制御してもよい(図9A参照)。この場合、UEは、上り制御情報を送信しないように制御してもよい。
あるいは、PUCCHが3つのPUSCH送信(Rep#0-Rep#2)のうち複数のPUSCH(例えば、Rep#0、#1)と重複する場合、UEは、PUCCHを送信し、PUSCHをドロップするように制御してもよい。この場合、UEは、PUCCHと衝突するPUSCH(例えば、Rep#0とRep#1)に加えてPUCCHと重複しないPUSCH(例えば、Rep#2)もドロップするように制御してもよい(図9B参照)。
あるいは、UEは、UEは、PUCCHと重複するPUSCH(例えば、Rep#0とRep#1)のみドロップし、PUCCHと重複しないPUSCH(例えば、Rep#2)は送信するように制御してもよい(図9C参照)。これにより、PUCCHと複数のPUSCHが衝突する期間が短い場合にPUCCHとPUSCHの両方を送信することができる。
なお、図9B及び図9Cに示す構成は、複数のPUCCH(マルチPUCCH)送信と複数のPUSCH(マルチPUSCH)送信の衝突に適用してもよい。
(無線通信システム)
以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
図10は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。
また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。
EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。
無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。
無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。
ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。
各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。
また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。
複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。
基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。
ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。
無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。
無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。
無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。
また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。
PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。
PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。
なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。
PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。
1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。
PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。
なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。
無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。
同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。
また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。
(基地局)
図11は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。
送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。
送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。
送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。
送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。
一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。
伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。
なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。
なお、送受信部120は、スロットより短い繰り返し単位を利用する複数の上り共有チャネルの送信を指示又は設定する情報を送信してもよい。例えば、送受信部120は、複数の上り共有チャネルの送信を上位レイヤシグナリング及びDCIの少なくとも一つを利用してUEに通知してもよい。送受信部120は、UCIの送信タイミングに関する情報及びPUCCHリソースに関する情報を下り共有チャネルをスケジュールするDCIに含めて通知してもよい。
制御部110は、複数の上り共有チャネルの少なくとも一つと上り制御情報の送信に利用される上り制御チャネルとの送信期間が衝突する場合、前記上り制御チャネルと衝突する上り共有チャネルの少なくとも一つを利用して上り制御情報が送信されるように制御してもよい。
(ユーザ端末)
図12は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。
制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。
制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。
送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。
送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。
送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。
送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。
送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。
送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。
送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。
なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。
送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。
一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。
送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。
送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。
なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、及び送受信アンテナ230の少なくとも1つによって構成されてもよい。
送受信部220は、スロットより短い繰り返し単位を利用する複数の上り共有チャネルの送信を指示又は設定する情報を受信してもよい。例えば、送受信部220は、複数の上り共有チャネルの送信を上位レイヤシグナリング及びDCIの少なくとも一つを利用して受信してもよい。送受信部220は、UCIの送信タイミングに関する情報及びPUCCHリソースに関する情報を下り共有チャネルをスケジュールするDCIを利用して受信してもよい。
制御部210は、複数の上り共有チャネルの少なくとも一つと上り制御情報の送信に利用される上り制御チャネルとの送信期間が衝突する場合、上り制御チャネルと衝突する上り共有チャネルの少なくとも一つを利用して上り制御情報を送信するように制御してもよい。
制御部210は、上り制御チャネルが複数の上り共有チャネルと衝突する場合、当該複数の上り共有チャネルの一部の上り共有チャネルを利用して上り制御情報を送信するように制御してもよい。
制御部210は、上り共有チャネルの送信タイミング、上り共有チャネルのシンボル長、及び上り共有チャネルに適用される符号化率の少なくとも一つに基づいて上り制御情報の送信に利用する上り共有チャネルを決定してもよい。
制御部210は、上り制御チャネルと衝突しない上り共有チャネルを利用して上り制御情報を送信するように制御してもよい。
制御部210は、複数の上り共有チャネル送信の少なくとも一つを複数のセグメントに分割する場合、上り制御情報をセグメントに分割されない上り共有チャネルを利用して送信するように制御してもよい。
(ハードウェア構成)
なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。
例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図13は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。
基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。
プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。
また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。
メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。
通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。
入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。
また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。
(変形例)
なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。
スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。
スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。
無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。
例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。
ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。
TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。
なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。
1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。
なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。
リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。
また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。
なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。
また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。
帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。
BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。
設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。
なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。
また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。
本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。
本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。
また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。
入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。
情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。
なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。
また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。
判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。
ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。
また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。
本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。
本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。
本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。
基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。
本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。
移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。
基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。
また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。
同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。
本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。
本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。
本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。
本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。
本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。
また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。
本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。
本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。
本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。
本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。
本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。
以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。

Claims (4)

  1. スロット境界及び下りリンク(DL)送信用シンボルのうち少なくとも一方をクロスする上りリンク共有チャネル(PUSCH)の繰り返し送信を、前記スロット境界及び前記DL送信用シンボルのうち少なくとも一方により複数のセグメントに分割して送信する送信部と、
    前記PUSCHの繰り返し送信と、上りリンク制御チャネル(PUCCH)送信と、がオーバーラップする場合、前記複数のセグメントのうち時間領域において先頭となるセグメントを用いて、送達確認情報(HARQ-ACK)及びチャネル状態情報(CSI)のうち少なくとも一方を送信するように制御する制御部と、を有することを特徴とする端末。
  2. 前記制御部は、前記PUSCHの繰り返し送信と、前記PUCCH送信と、がオーバーラップする場合、前記複数のセグメントのうち時間領域において先頭となるセグメントを用いて、前記HARQ-ACK及びCSIの両方を送信するように制御することを特徴とする請求項1に記載の端末。
  3. スロット境界及び下りリンク(DL)送信用シンボルのうち少なくとも一方をクロスする上りリンク共有チャネル(PUSCH)の繰り返し送信を、前記スロット境界及び前記DL送信用シンボルのうち少なくとも一方により複数のセグメントに分割して送信する工程と、
    前記PUSCHの繰り返し送信と、上りリンク制御チャネル(PUCCH)送信と、がオーバーラップする場合、前記複数のセグメントのうち時間領域において先頭となるセグメントを用いて、送達確認情報(HARQ-ACK)及びチャネル状態情報(CSI)のうち少なくとも一方を送信するように制御する工程と、を有することを特徴とする端末の無線通信方法。
  4. 端末と基地局を有するシステムであって、
    前記端末は、
    スロット境界及び下りリンク(DL)送信用シンボルのうち少なくとも一方をクロスする上りリンク共有チャネル(PUSCH)の繰り返し送信を、前記スロット境界及び前記DL送信用シンボルのうち少なくとも一方により複数のセグメントに分割して送信する送信部と、
    前記PUSCHの繰り返し送信と、上りリンク制御チャネル(PUCCH)送信と、がオーバーラップする場合、前記複数のセグメントのうち時間領域において先頭となるセグメントを用いて、送達確認情報(HARQ-ACK)及びチャネル状態情報(CSI)のうち少なくとも一方を送信するように制御する制御部と、を有し、
    前記基地局は、
    前記複数のセグメントに分割された前記PUSCHの繰り返し送信を受信する受信部を有することを特徴とするシステム。
JP2021536551A 2019-07-31 2019-07-31 端末、無線通信方法及びシステム Active JP7367028B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/030054 WO2021019736A1 (ja) 2019-07-31 2019-07-31 端末及び無線通信方法

Publications (3)

Publication Number Publication Date
JPWO2021019736A1 JPWO2021019736A1 (ja) 2021-02-04
JPWO2021019736A5 JPWO2021019736A5 (ja) 2022-06-09
JP7367028B2 true JP7367028B2 (ja) 2023-10-23

Family

ID=74229451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021536551A Active JP7367028B2 (ja) 2019-07-31 2019-07-31 端末、無線通信方法及びシステム

Country Status (5)

Country Link
US (1) US20220368460A1 (ja)
EP (1) EP4007396A4 (ja)
JP (1) JP7367028B2 (ja)
CN (1) CN114503726A (ja)
WO (1) WO2021019736A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115190596A (zh) * 2021-04-02 2022-10-14 大唐移动通信设备有限公司 一种uci在pusch上传输的方法、终端及设备
US11877288B2 (en) * 2021-07-29 2024-01-16 Nokia Technologies Oy Dynamic adaptation of PUCCH resources in the case of DMRS bundling

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9769847B2 (en) * 2015-04-19 2017-09-19 Alcatel Lucent Methods and apparatuses for preventing collision among uplink control messages for LC-MTC devices
JP2019125815A (ja) * 2016-05-12 2019-07-25 シャープ株式会社 端末装置、通信方法、および、集積回路
US10973038B2 (en) * 2018-01-19 2021-04-06 Qualcomm Incorporated UCI transmission for overlapping uplink resource assignments with repetition
US20190349917A1 (en) * 2018-05-11 2019-11-14 Qualcomm Incorporated Uplink control information multiplexing on physical uplink shared channels in new radio
US11019682B2 (en) * 2018-06-18 2021-05-25 Apple Inc. Methods to multiplex control information in accordance with multi-slot transmissions in new radio (NR) systems
US11160061B2 (en) * 2018-07-05 2021-10-26 Apple Inc. Uplink transmission for multi-panel operation
EP4391432A2 (en) * 2019-01-10 2024-06-26 Wilus Institute of Standards and Technology Inc. Method for transmitting uplink shared channel in wireless communication system and device using same
US11381346B2 (en) * 2019-04-02 2022-07-05 Intel Corporation Prioritization of services for control and data transmission for new radio systems

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Huawei, HiSilicon,Review Summary for Al 7.1.3.2 related to long PUCCH[online],3GPP TSG RAN WG1 #94b R1-1811970,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_94b/Docs/R1-1811970.zip>,2018年10月10日
NTT DOCOMO, INC.,PUSCH enhancements for URLLC[online],3GPP TSG RAN WG1 #98 R1-1909195,Internet<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_98/Docs/R1-1909195.zip>,2019年08月17日
NTT DOCOMO, INC.,UCI enhancements for URLLC[online],3GPP TSG RAN WG1 #98 R1-1909194,Internet<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_98/Docs/R1-1909194.zip>,2019年08月17日
WILUS Inc.,On UCI enhancement and intra-UE prioritization/multiplexing for NR URLLC[online],3GPP TSG RAN WG1 #98 R1-1909367,Internet<URL:https://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_98/Docs/R1-1909367.zip>,2019年08月17日

Also Published As

Publication number Publication date
JPWO2021019736A1 (ja) 2021-02-04
CN114503726A (zh) 2022-05-13
US20220368460A1 (en) 2022-11-17
EP4007396A1 (en) 2022-06-01
WO2021019736A1 (ja) 2021-02-04
EP4007396A4 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
JP7168676B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020090059A1 (ja) ユーザ端末及び無線通信方法
JP2023171931A (ja) 端末、無線通信方法、基地局及びシステム
JP7244658B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7273072B2 (ja) 端末、無線通信方法及びシステム
JP7305763B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2020261510A1 (ja) 端末及び無線通信方法
JP7457696B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7439092B2 (ja) 端末、無線通信方法及びシステム
JP7413414B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7308942B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7315668B2 (ja) 端末、無線通信方法及びシステム
JP7273071B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022102605A1 (ja) 端末、無線通信方法及び基地局
WO2022039164A1 (ja) 端末、無線通信方法及び基地局
JP7367028B2 (ja) 端末、無線通信方法及びシステム
JP7355812B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2021166036A1 (ja) 端末、無線通信方法及び基地局
JP7351921B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7335349B2 (ja) 端末、無線通信方法、基地局及びシステム
JP7372723B2 (ja) 端末、無線通信方法及びシステム
JP7321251B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2022153459A1 (ja) 端末、無線通信方法及び基地局
JP7375017B2 (ja) 端末、無線通信方法、基地局及びシステム
WO2021024435A1 (ja) 端末及び無線通信方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231011

R150 Certificate of patent or registration of utility model

Ref document number: 7367028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150