JP7366890B2 - How to control armyworms - Google Patents

How to control armyworms Download PDF

Info

Publication number
JP7366890B2
JP7366890B2 JP2020522240A JP2020522240A JP7366890B2 JP 7366890 B2 JP7366890 B2 JP 7366890B2 JP 2020522240 A JP2020522240 A JP 2020522240A JP 2020522240 A JP2020522240 A JP 2020522240A JP 7366890 B2 JP7366890 B2 JP 7366890B2
Authority
JP
Japan
Prior art keywords
water
nanobubble
nanobubble water
bubbles
plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020522240A
Other languages
Japanese (ja)
Other versions
JPWO2019230779A1 (en
Inventor
祐一 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aquasolution Corp
Original Assignee
Aquasolution Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aquasolution Corp filed Critical Aquasolution Corp
Publication of JPWO2019230779A1 publication Critical patent/JPWO2019230779A1/en
Application granted granted Critical
Publication of JP7366890B2 publication Critical patent/JP7366890B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/14Ethers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Environmental Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Insects & Arthropods (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)

Description

本発明は、ヨトウムシの防除方法に関する。 The present invention relates to a method for controlling armyworm.

ヨトウムシは、ハスモンヨトウ及びシロイチモジヨトウ等の幼虫であり、植物体の生育に加害する食害性害虫として広く知られている。ヨトウムシは、野菜等の作物の葉を食害し、特に夜間に活発に活動して作物を食害する。また、高温で乾燥している環境下では、ヨトウムシの発生及び繁殖が増加する傾向にある。 Armyworms are the larvae of armyworms such as Spodoptera japonica and Armyworm armyworm, and are widely known as feeding-damaging pests that damage the growth of plants. Armyworms damage the leaves of crops such as vegetables, and are especially active at night and damage crops. Furthermore, under high temperature and dry environments, the occurrence and reproduction of armyworms tend to increase.

ヨトウムシに対する防除方法としては、ヨトウムシに対して殺虫効果を発現する農薬(例えば、オルトラン水和剤、サブリナフロアブル及びゼンターリ顆粒水和剤等)の使用が一般的である。また、少量の使用量及び少数の散布回数でも高い防除効果が得られる組成物がこれまでに開発されてきており、その一例としては、特許文献1に記載の殺虫組成物が挙げられる。特許文献1に記載の殺虫組成物は、S-メチル-N-[(メチルカルバモイル)オキシ]チオアセトイミデートとバチルス・チュウリンゲンシスの生芽胞を含有することを特徴とする殺虫組成物である。この殺虫組成物は、ハスモンヨトウ及びヨトウムシ等に対して、活性化合物単独の場合より低濃度で協力的及び相乗的な殺虫効果を示すので、作物に対する薬害を回避でき、従来の殺虫剤の単独使用に対して制限が掛かるような場面でも使用することができる(特許文献1の[請求項1]及び[段落0047、0048]を参照)。 As a method for controlling armyworms, it is common to use agricultural chemicals that have an insecticidal effect on armyworms (for example, Ortolan hydrating agent, Sabrina flowable, Zentari granule hydrating agent, etc.). In addition, compositions that provide a high pest control effect even with a small amount of use and a small number of spraying times have been developed, one example of which is the insecticidal composition described in Patent Document 1. The insecticidal composition described in Patent Document 1 is an insecticidal composition characterized by containing S-methyl-N-[(methylcarbamoyl)oxy]thioacetimidate and live spores of Bacillus thuringiensis. . This insecticidal composition exhibits a cooperative and synergistic insecticidal effect against Spodoptera spp. It can be used even in situations where there are restrictions on the size of the device (see [Claim 1] and [Paragraphs 0047 and 0048] of Patent Document 1).

特開平9-301814号公報Japanese Patent Application Publication No. 9-301814

ところで、ヨトウムシの防除策として農薬等の薬剤を施用する場合には、人体及び周辺環境の生物への影響を考慮しなければならないが、ヨトウムシによる食害の度合い等によっては、相当量の薬剤を施用し得ることも考えられる。また、市販品ではなく入手困難な薬剤については、入手して施用すること自体が難しく、仮に入手できたとしても安全性及び残留性の問題があり、また、毒性が高い薬剤である場合には厳格な管理が要求される。なお、上述した特許文献1に記載の殺虫組成物に含まれているS-メチル-N-[(メチルカルバモイル)オキシ]チオアセトイミデートは、俗にメソミルと呼ばれ、毒性が高いものであり、現時点では、その購入に条件が課されている。 By the way, when applying chemicals such as pesticides as a measure to control armyworms, the impact on the human body and living things in the surrounding environment must be considered, but depending on the degree of feeding damage caused by armyworms, it may be necessary to apply a considerable amount of chemicals. It is possible that this could be done. In addition, it is difficult to obtain and apply drugs that are not commercially available, and even if they can be obtained, there are safety and persistence issues, and if the drug is highly toxic, Strict management is required. Incidentally, S-methyl-N-[(methylcarbamoyl)oxy]thioacetimidate contained in the insecticidal composition described in Patent Document 1 mentioned above is commonly called methomyl and is highly toxic. , at the moment, conditions are imposed on its purchase.

そこで、本発明は、安全且つ簡易的に十分な防除効果が得られるヨトウムシの防除方法を提供することを課題とする。 Therefore, it is an object of the present invention to provide a method for controlling armyworms that is safe and simple and provides a sufficient control effect.

本発明者は、上記課題を達成すべく鋭意検討した結果、植物体にナノバブル水を施用することにより、安全且つ簡易的にヨトウムシに対する防除効果が十分に得られることを見出し、本発明を完成させた。
すなわち、本発明者は、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive studies to achieve the above object, the present inventor discovered that by applying nanobubble water to plants, a sufficient control effect against armyworm can be obtained safely and easily, and the present invention was completed. Ta.
That is, the present inventor discovered that the above-mentioned problem can be achieved by the following configuration.

[1] ナノバブル水を植物体に施用する、ヨトウムシの防除方法。
[2] 上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布のうち、少なくとも一方を実施する、[1]に記載のヨトウムシの防除方法。
[3] 植物体の栽培期間中、雨季に該当する時期において、植物体の培地である土壌が乾燥して前記植物体の葉が枯れた場合に、上記ナノバブル水を用いた散水を実施する、[2]に記載のヨトウムシの防除方法。
[4] 上記ナノバブル水を用いて希釈された農薬を植物体の葉面に付着させる、[2]又は[3]に記載のヨトウムシの防除方法。
[5] 上記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmである、[1]~[4]のいずれかに記載のヨトウムシの防除方法。
[6] 上記ナノバブル水に含まれる気泡が、酸素、窒素、オゾン及び二酸化炭素からなる群から選択される少なくとも1種の気体を含む、[1]~[5]のいずれかに記載のヨトウムシの防除方法。
[7] 上記ナノバブル水が、1×10個/mL~1×1010個/mLの気泡を有する、[1]~[6]のいずれかに記載のヨトウムシの防除方法。
[8] 上記植物体が、根菜類又は葉菜類である、[1]~[7]のいずれかに記載のヨトウムシの防除方法。
[9] 上記植物体が、生姜又はキャベツである、[8]に記載のヨトウムシの防除方法。
[1] A method for controlling armyworm by applying nanobubble water to plants.
[2] The method for controlling armyworm according to [1], wherein at least one of watering with the nanobubble water and spraying of an agricultural chemical diluted with the nanobubble water is performed.
[3] During the cultivation period of the plant, in a period corresponding to the rainy season, when the soil that is the medium for the plant dries and the leaves of the plant wither, watering is carried out using the nanobubble water. The method for controlling armyworm according to [2].
[4] The method for controlling armyworm according to [2] or [3], wherein the agrochemical diluted with the nanobubble water is attached to the leaf surface of the plant.
[5] The method for controlling armyworm according to any one of [1] to [4], wherein the most frequent particle diameter of the bubbles contained in the nanobubble water is 10 to 500 nm.
[6] The armyworm according to any one of [1] to [5], wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone, and carbon dioxide. Control methods.
[7] The method for controlling armyworm according to any one of [1] to [6], wherein the nanobubble water has 1×10 8 bubbles/mL to 1×10 10 bubbles/mL.
[8] The method for controlling armyworm according to any one of [1] to [7], wherein the plant is a root vegetable or a leafy vegetable.
[9] The method for controlling armyworm according to [8], wherein the plant is ginger or cabbage.

本発明によれば、安全且つ簡易的な手順によって十分な防除効果が得られるヨトウムシの防除方法を提供することができる。 According to the present invention, it is possible to provide a method for controlling armyworms that provides a sufficient control effect through safe and simple procedures.

ナノバブル生成装置の一例を示す模式図である。It is a schematic diagram showing an example of a nanobubble generation device. 試験区Iで収穫された生姜の画像である。This is an image of ginger harvested in Test Area I. 試験区IIで収穫された生姜の画像である。This is an image of ginger harvested in Test Area II. 試験区IVで収穫されたキャベツの画像である。This is an image of cabbage harvested in Test Area IV. 試験区IIIで収穫されたキャベツの画像である。This is an image of cabbage harvested in Test Area III.

以下、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本願明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
The present invention will be explained in detail below.
Although the description of the constituent elements described below may be made based on typical embodiments of the present invention, the present invention is not limited to such embodiments.
In the present specification, a numerical range expressed using "~" means a range that includes the numerical values written before and after "~" as lower and upper limits.

<ヨトウムシの防除方法>
本発明のヨトウムシの防除方法は、ナノバブル水を植物体に施用する、ヨトウムシの防除方法である。
ここで、「ヨトウムシ」とは、ヨトウガ、シロイチモジヨトウ、シロシタヨトウ及びハスモンヨトウ等のチョウ目ヤガ科ヨトウ亜科に属する昆虫(蛾)の幼虫である。
<How to control armyworms>
The method for controlling armyworm of the present invention involves applying nanobubble water to plants.
Here, the term "arm armyworm" refers to the larvae of insects (moths) belonging to the subfamily Spodoptera of the family Lepidoptera, such as armyworm, armyworm, armyworm and armyworm.

本発明においては、上述した通り、植物体にナノバブル水を施用することにより、安全且つ簡易的な手順によってヨトウムシに対する防除効果が十分に得られる。このような効果が得られる理由については、詳細には明らかではないが、本発明者は以下のように推測している。
すなわち、本発明によってヨトウムシに対する防除効果が十分に得られた一つの理由は、施用されたナノバブル水を植物体が吸収することで、植物体が活性化され、ヨトウムシに対する耐性が向上したためであると考えられる。
また、本発明によってヨトウムシに対する防除効果が十分に得られた他の理由は、ナノバブル水により希釈された農薬を散布した場合に、農薬がナノバブル水によって植物体に付着したときに比較的長く展着するので、農薬の薬効が長期に亘って持続されたためであると考えられる。
以上のように、本発明のヨトウムシの防除方法によれば、毒性の高い農薬を用いなくとも、より安全で取り扱い易いナノバブル水によって効果的にヨトウムシを防除することが可能となる。
In the present invention, as described above, by applying nanobubble water to plants, a sufficient effect of controlling armyworm can be obtained through a safe and simple procedure. The reason why such an effect is obtained is not clear in detail, but the inventor speculates as follows.
In other words, one of the reasons why the present invention was able to sufficiently control armyworms is that the plants absorb the applied nanobubble water, which activates the plants and improves their resistance to armyworms. Conceivable.
Another reason why the present invention was able to sufficiently control armyworms is that when a pesticide diluted with nanobubble water is applied, the pesticide adheres to the plant body due to the nanobubble water and spreads for a relatively long time. Therefore, it is thought that this is because the medicinal effects of pesticides were sustained over a long period of time.
As described above, according to the method for controlling armyworms of the present invention, it is possible to effectively control armyworms using nanobubble water, which is safer and easier to handle, without using highly toxic agricultural chemicals.

〔ナノバブル水〕
本発明のヨトウムシの防除方法において用いるナノバブル水は、直径が1μm未満の気泡(ナノバブル)を含む水であって、より正確には、ナノバブルを混入させた水である。なお、「ナノバブルを混入させた水」に関して付言すると、ナノバブル水の生成に使用する水(ナノバブル水の原水であり、例えば、不純物を含む井水)であって、その性質等に起因して不可避的にナノバブルを含んでいる水は、上記の「ナノバブルを混入させた水」から除外される。
[Nano bubble water]
The nanobubble water used in the armyworm control method of the present invention is water containing air bubbles (nanobubbles) with a diameter of less than 1 μm, and more precisely, it is water mixed with nanobubbles. In addition, regarding "water mixed with nanobubbles", it is water used to generate nanobubble water (raw water for nanobubble water, for example, well water containing impurities), which is unavoidable due to its properties etc. Water that actually contains nanobubbles is excluded from the above-mentioned "water mixed with nanobubbles."

ナノバブル水に含まれる気泡の直径(粒子径)、並びに、後述する気泡の最頻粒子径及び気泡の個数は、水中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法を用いて測定した値であり、本明細書においては、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した数値を採用する。
なお、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)では、直径(粒子径)は、粒子のブラウン運動の速度を計測し、その速度から算出することができ、最頻粒子径は、存在するナノ粒子の粒子径分布から、モード径として確認することができる。
The diameter (particle size) of the bubbles contained in nanobubble water, the mode particle diameter of the bubbles, and the number of bubbles described below are values measured using the nanoparticle tracking analysis method of the Brownian motion movement speed of the bubbles in the water. In this specification, the values measured by the nanoparticle analysis system NanoSight series (manufactured by NanoSight) are used.
In addition, in the nanoparticle analysis system NanoSight series (manufactured by NanoSight), the diameter (particle size) can be calculated from the speed of the Brownian motion of the particle, and the mode particle size is the diameter of the particle that exists. It can be confirmed as a mode diameter from the particle size distribution of nanoparticles.

本発明においては、ヨトウムシの防除効果がより向上する理由から、上記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmであることが好ましく、30~300nmであることがより好ましく、特に、70~130nmであることが更に好ましい。 In the present invention, the mode particle size of the bubbles contained in the nanobubble water is preferably 10 to 500 nm, more preferably 30 to 300 nm, and particularly, because the effect of controlling armyworms is further improved. More preferably, the wavelength is 70 to 130 nm.

上記ナノバブル水に含まれる気泡を構成する気体特に限定されないが、水中に長時間残存させる観点から、水素以外の気体が好ましく、具体的には、例えば、空気、酸素、窒素、フッ素、二酸化炭素、及びオゾンなどが挙げられる。これらのうち、ヨトウムシの防除効果がより一層向上する理由から、酸素、窒素、オゾン及び二酸化炭素からなる群から選択される少なくとも1種の気体を含むことが好ましく、特に、植物体の生育が良好となり、また、気泡がより長時間残存することができる理由から、酸素を含むことがより好ましい。
ここで、酸素を含むこととは、空気中の酸素濃度よりも高い濃度で含むことをいう。窒素、及び二酸化炭素も同様である。なお、酸素の濃度については、気泡中の30体積%以上であることが好ましく、50体積%超100体積%以下であることが好ましい。
The gas constituting the bubbles contained in the nanobubble water is not particularly limited, but from the viewpoint of remaining in the water for a long time, gases other than hydrogen are preferable. Specifically, gases such as air, oxygen, nitrogen, fluorine, carbon dioxide, and ozone. Among these, it is preferable to contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone, and carbon dioxide because the effect of controlling armyworms is further improved, and in particular, it is preferable to contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone, and carbon dioxide. Also, since the bubbles can remain for a longer period of time, it is more preferable to include oxygen.
Here, containing oxygen means containing oxygen at a higher concentration than the oxygen concentration in the air. The same applies to nitrogen and carbon dioxide. Note that the concentration of oxygen in the bubbles is preferably 30% by volume or more, and preferably more than 50% by volume and not more than 100% by volume.

上記ナノバブル水は、ヨトウムシの防除効果が一段と向上する理由から、1×10個~1×1010個/mLの気泡を有していることが好ましく、特に、気泡の生成時間と気泡の残存性のバランスが良好となる理由から、1×10個/mLより多く、且つ1×1010個/mLより少ない気泡を有していることがより好ましく、5×10個/mL~5×10個/mLの気泡を有していることが更に好ましい。The above-mentioned nanobubble water preferably has 1×10 8 to 1×10 10 bubbles/mL for the reason that the effect of controlling armyworms is further improved. It is more preferable to have more than 1×10 8 bubbles/mL and less than 1×10 10 bubbles/mL, and 5×10 8 bubbles/mL to 5 It is more preferable to have 10 9 bubbles/mL.

上記ナノバブル水の生成方法としては、例えば、スタティックミキサー法、ベンチュリ法、キャビテーション法、蒸気凝集法、超音波法、旋回流法、加圧溶解法、及び微細孔法等が挙げられる。
ここで、本発明のヨトウムシの防除方法は、上記ナノバブル水を施用する前に、上記ナノバブル水を生成させる生成工程を有していてもよい。すなわち、本発明のヨトウムシの防除方法は、例えば、貯水タンク、井戸、若しくは水道等の水源から水(原水)をナノバブル生成装置に取り込んでナノバブル水を生成させる生成工程と、生成したナノバブル水を植物体に対して施用する施用工程とを有する防除方法であってもよい。
なお、水源からの水をナノバブル生成装置に取り込む手法としては、例えば、桶又はポンプ等を用いて水源から汲み上げた水をナノバブル生成装置に供給する手法、並びに水源とナノバブル生成装置との間に敷設された流路をナノバブル生成装置に繋いで流路からナノバブル生成装置へ水を直接送り込む手法等が挙げられる。
Examples of the method for producing nanobubble water include a static mixer method, a venturi method, a cavitation method, a steam aggregation method, an ultrasonic method, a swirling flow method, a pressurized dissolution method, and a micropore method.
Here, the method for controlling armyworm of the present invention may include a generation step of generating the nanobubble water before applying the nanobubble water. That is, the armyworm control method of the present invention includes a generation step in which water (raw water) is taken from a water source such as a water storage tank, a well, or a tap water source into a nanobubble generation device to generate nanobubble water, and the generated nanobubble water is transferred to plants. The pest control method may also include an application step of applying to the body.
In addition, methods for introducing water from a water source into the nanobubble generation device include, for example, a method of pumping water from the water source using a bucket or pump and supplying it to the nanobubble generation device, and a method of introducing water between the water source and the nanobubble generation device. Examples include a method of connecting the flow path created by the nanobubble generation device to the nanobubble generation device and sending water directly from the flow path to the nanobubble generation device.

また、上記ナノバブル水の生成方法としては、意図的にラジカルを発生させることがない装置を用いた生成方法が好ましく、具体的には、例えば、特開2018-15715号公報の[0080]~[0100]段落に記載されたナノバブル生成装置を用いて生成する方法が挙げられる。なお、上記の内容は本明細書に組み込まれる。 In addition, as the method for generating nanobubble water, a method using an apparatus that does not intentionally generate radicals is preferable, and specifically, for example, [0080] to [ of JP 2018-15715 A] [0100] A method of generating nanobubbles using the nanobubble generating device described in paragraph 1 is exemplified. Note that the above content is incorporated into this specification.

意図的にラジカルを発生させることがない他のナノバブル生成装置としては、例えば、水を吐出する液体吐出機と、液体吐出機から吐出された水に気体を加圧して混入させる気体混入機と、気体を混入させた水を内部に通すことにより水中に微細気泡を生成する微細気泡生成器と、を有する微細気泡生成装置であって、上記気体混入機が、上記液体吐出機と上記微細気泡生成器の間において、加圧された状態で上記微細気泡生成器に向かって流れる液体に、気体を加圧して混入させる微細気泡生成装置が挙げられる。具体的には、図1に示すナノバブル生成装置が挙げられる。
図1に示すナノバブル生成装置10は、その内部に液体吐出機30、気体混入機40及びナノバブル生成ノズル50を備える。
液体吐出機30は、ポンプによって構成され、ナノバブル水の原水(例えば、井戸水)を取り込んで吐出する。気体混入機40は、圧縮ガスが封入された容器41と、略筒状の気体混入機本体42とを有し、液体吐出機30から吐出された水を気体混入機本体42内に流しつつ、気体混入機本体42内に容器41内の圧縮ガスを導入する。これにより、気体混入機本体42内で気体混入水が生成されることになる。
ナノバブル生成ノズル50は、その内部に気体混入水が通過することにより、加圧溶解の原理に従って気体混入水中にナノバブルを発生させるものであり、その構造としては、特開2018-15715号公報に記載されたナノバブル生成ノズルと同じ構造が採用できる。ナノバブル生成ノズル50内に生成されたナノバブル水は、ナノバブル生成ノズル50の先端から噴出した後、ナノバブル生成装置10から流出し、不図示の流路内を通じて所定の利用先に向けて送水される。
以上のようにナノバブル生成装置10では、気体混入機40が、液体吐出機30とナノバブル生成ノズル50の間において、加圧された状態でナノバブル生成ノズル50に向かって流れる水(原水)に、圧縮ガスを混入させる。これにより、液体吐出機30の吸込み側(サクション側)で気体を水に混入させるときに生じるキャビテーション等の不具合を回避することができる。また、ガスが加圧(圧縮)された状態で水に混入されるので、ガス混入箇所での水の圧力に抗してガスを混入させることができる。このため、ガス混入箇所において特に負圧を発生させなくとも、ガスを適切に水に混入させることが可能となる。
さらに、液体吐出機30のサクション側に、井戸又は水道等の水源から供給される水の流路が繋ぎ込まれており、その流路において液体吐出機30の上流側から液体吐出機30に流れ込む水の圧力(すなわち、サクション側の水圧)が正圧であるとよい。この場合には、上記の構成がより有意義なものとなる。すなわち、液体吐出機30の上流側の水圧(サクション圧)が正圧となる場合には、液体吐出機30の下流側でガスを水に混入させることになるため、液体吐出機30の下流側でもガスを適切に水に混入させることができるナノバブル生成装置10の構成がより際立つことになる。
Other nanobubble generating devices that do not intentionally generate radicals include, for example, a liquid discharger that discharges water, a gas mixing machine that pressurizes and mixes gas into the water discharged from the liquid discharger, and A micro-bubble generator comprising: a micro-bubble generator that generates micro-bubbles in water by passing water mixed with a gas therein; An example is a micro-bubble generating device that pressurizes and mixes gas into the liquid flowing toward the micro-bubble generator in a pressurized state between the containers. Specifically, the nanobubble generation device shown in FIG. 1 can be mentioned.
The nanobubble generation device 10 shown in FIG. 1 includes a liquid discharger 30, a gas mixer 40, and a nanobubble generation nozzle 50 therein.
The liquid discharger 30 is configured by a pump, and takes in raw water (for example, well water) of nanobubble water and discharges it. The gas mixer 40 has a container 41 filled with compressed gas and a substantially cylindrical gas mixer main body 42, and while flowing water discharged from the liquid discharger 30 into the gas mixer main body 42, The compressed gas in the container 41 is introduced into the gas mixing machine main body 42. As a result, gas-mixed water is generated within the gas-mixer main body 42.
The nanobubble generation nozzle 50 generates nanobubbles in gaseous water according to the principle of pressurized dissolution by passing gaseous water therein, and its structure is described in Japanese Patent Application Laid-Open No. 2018-15715. The same structure as the nanobubble generation nozzle can be adopted. The nanobubble water generated in the nanobubble generation nozzle 50 is ejected from the tip of the nanobubble generation nozzle 50, flows out from the nanobubble generation device 10, and is sent to a predetermined user through a flow path (not shown).
As described above, in the nanobubble generation device 10, the gas mixing machine 40 compresses water (raw water) flowing toward the nanobubble generation nozzle 50 in a pressurized state between the liquid discharger 30 and the nanobubble generation nozzle 50. Mix gas. Thereby, problems such as cavitation that occur when gas is mixed into water on the suction side (suction side) of the liquid discharger 30 can be avoided. Furthermore, since the gas is mixed into the water in a pressurized (compressed) state, the gas can be mixed against the pressure of the water at the gas mixing location. Therefore, it is possible to appropriately mix gas into water without particularly generating negative pressure at the gas mixing location.
Further, a flow path for water supplied from a water source such as a well or tap water is connected to the suction side of the liquid discharger 30, and water flows into the liquid discharger 30 from the upstream side of the liquid discharger 30 in the flow path. It is preferable that the water pressure (that is, the water pressure on the suction side) is positive. In this case, the above configuration becomes more meaningful. That is, when the water pressure (suction pressure) on the upstream side of the liquid discharging machine 30 becomes positive pressure, gas is mixed into water on the downstream side of the liquid discharging machine 30, so that the water pressure on the downstream side of the liquid discharging machine 30 However, the configuration of the nanobubble generation device 10 that can appropriately mix gas into water becomes more prominent.

また、上記ナノバブル水の生成に使用する水(原水)については特に限定されず、例えば、雨水、水道水、井水、農業用水、及び蒸留水等を使用することができる。
このような水は、ナノバブル水の発生に供される前に他の処理を施されたものであってもよい。他の処理としては、例えば、pH調整、沈殿、ろ過、及び滅菌(殺菌)等が挙げられる。具体的には、例えば、農業用水を使用する場合、典型的には、沈殿及びろ過のうちの少なくとも一方の処理が施された後の農業用水を使用してもよい。
Moreover, the water (raw water) used to generate the nanobubble water is not particularly limited, and for example, rainwater, tap water, well water, agricultural water, distilled water, etc. can be used.
Such water may be subjected to other treatments before being used to generate nanobubble water. Other treatments include, for example, pH adjustment, precipitation, filtration, and sterilization (sterilization). Specifically, for example, when using agricultural water, the agricultural water may typically be used after being subjected to at least one of precipitation and filtration.

〔ナノバブルの施用態様〕
本発明において、上記ナノバブル水の植物体への施用態様は、植物体の栽培方法により異なるため特に限定されないが、例えば、土耕栽培において上記ナノバブル水を散水する態様、土耕栽培において上記ナノバブル水によって希釈された農薬を散布する態様、養液栽培(水耕、噴霧耕、若しくは固形培地耕)又は養液土耕栽培(灌水同時施工栽培)において上記ナノバブル水によって希釈された培養液を培地に供給する態様、及び、養液土耕栽培において上記ナノバブル水をそれ単独で散水(灌水)する態様などが挙げられる。なお、これらの施用態様は、あくまでも一例に過ぎず、植物体の生育過程で上記ナノバブル水を好適に施用できる態様であればよい。
また、操作が簡便であり、ヨトウムシを効果的に防除できる理由から、上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布のうち、少なくとも一方を実施するのが好ましく、上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布の双方を実施するのがより好ましい。
また、土耕栽培、特に露地栽培であれば、上記ナノバブル水の施用によるヨトウムシの防除効果が際立って発揮されるようになる。
[Application mode of nanobubbles]
In the present invention, the manner in which the nanobubble water is applied to the plant is not particularly limited as it varies depending on the cultivation method of the plant, but for example, the manner in which the nanobubble water is sprinkled in soil cultivation, the manner in which the nanobubble water is applied in soil cultivation, etc. In a method of spraying a pesticide diluted with nanobubble water, in hydroponic cultivation (hydroponics, spray cultivation, or solid medium cultivation) or hydroponic cultivation (cultivation with simultaneous irrigation), the culture solution diluted with the nanobubble water is used as a medium. Examples include a mode of supplying the nanobubble water, and a mode of watering (irrigating) the nanobubble water alone in nutrient soil cultivation. Note that these application modes are merely examples, and any mode may be used as long as the nanobubble water can be suitably applied during the growth process of the plant.
In addition, since the operation is simple and the armyworm can be effectively controlled, it is preferable to perform at least one of watering using the nanobubble water and spraying an agricultural chemical diluted with the nanobubble water. It is more preferable to perform both watering using the nanobubble water and spraying of an agricultural chemical diluted with the nanobubble water.
In addition, in soil cultivation, especially in open field cultivation, the effect of controlling armyworms by applying the nanobubble water becomes remarkable.

また、上記ナノバブル水を散水する方式については、特に限定されないが、例えば、植物体の一部に掛ける方法、植物体が植えられた土壌に噴霧又は放水する態様、土壌に滴下する態様、及び、土壌中に埋設された点滴チューブから土壌中に灌水する態様等が挙げられる。 In addition, the method of sprinkling the nanobubble water is not particularly limited, but includes, for example, a method of spraying it on a part of the plant, a method of spraying or spraying water on the soil where the plant is planted, a method of dripping it onto the soil, and Examples include a mode in which water is irrigated into the soil from a drip tube buried in the soil.

また、散水の実施時期及び回数については、栽培地域及び天候等に応じて異なるため特に限定されないが、少雨で乾燥した環境でヨトウムシが発生し易くなることから、植物体の栽培過程中、雨季に該当する時期において雨天日以外が続いた場合に、上記ナノバブル水を用いて散水工程を実施すると、より望ましい。ここで、「雨季に該当する時期」とは、例年であれば一定量以上の降水量が見込まれる時期であり、日本であれば6月~8月の時期である。この時期において雨天日以外の日、具体的には、晴天、晴れ及び曇りの日数が所定日数(例えば、2週間程度)以上連続した場合に、上記ナノバブル水を用いて散水工程を実施するのが望ましい。
より一層好ましい散水の態様を述べると、植物体の栽培期間中、雨季に該当する時期において、植物体の培地である土壌が乾燥して植物体の葉が枯れた場合に、上記ナノバブル水を用いた散水を実施するのがよい。ここで、「葉が枯れる」とは、水分不足によって葉(特に、先端部)が褐色化して萎れた状態となることである。
なお、生姜を栽培する場合には、通常、生姜の生育段階において地上に出た葉の枚数が4~6枚以上となる時期が梅雨時期にあたり、その時期中に雨天日以外の日が連続した場合に上記ナノバブル水を用いた散水を実施するとよい。
The timing and frequency of watering is not particularly limited as it varies depending on the cultivation area and weather, but since armyworms are more likely to occur in dry environments with little rainfall, watering should be done during the rainy season during the plant cultivation process. It is more desirable to carry out the watering process using the nanobubble water when there are consecutive days other than rainy days during the relevant period. Here, "the period corresponding to the rainy season" is a period when a certain amount of precipitation or more is expected in a normal year, and in Japan it is a period from June to August. During this period, it is recommended to carry out the watering process using the nanobubble water on days other than rainy days, specifically, when the number of clear, sunny, and cloudy days continues for a predetermined number of days (for example, about two weeks) or more. desirable.
To describe a more preferable form of watering, the above-mentioned nanobubble water can be used during the rainy season during the cultivation period of the plant, when the soil, which is the medium for the plant, dries out and the leaves of the plant wither. It is a good idea to perform regular watering. Here, "withering of the leaves" refers to the state in which the leaves (particularly the tips) turn brown and wither due to lack of moisture.
In addition, when cultivating ginger, the rainy season is usually the period when the number of leaves above the ground during the growth stage of ginger is 4 to 6 or more, and there are consecutive non-rainy days during that period. In some cases, watering using the nanobubble water described above may be carried out.

また、農薬を散布する方式については、特に限定されるものではないが、一例を挙げると、土壌又は植物体に噴霧又は滴下して散布する方式、植物体の上方から飛散させたり滴下したりして散布する方式、あるいは、スプリンクラーのノズルから圧力を掛けて吐出して散布する方式等のいずれの方式を用いてもよい。なお、農薬の薬効を効果的に発現させる理由から、ナノバブル水を用いて希釈された農薬を植物体の葉面に付着させる態様(例えば、噴霧散布、葉面への塗付、及び上空からの飛散等)が望ましい。 There are no particular limitations on the method of spraying pesticides, but examples include spraying or dropping onto the soil or plants, and scattering or dropping from above the plants. Either method may be used, such as a method in which the material is sprayed by the sprayer, or a method in which the material is sprayed by applying pressure from a sprinkler nozzle. In addition, in order to effectively express the medicinal effects of pesticides, methods of attaching pesticides diluted with nanobubble water to the leaf surfaces of plants (e.g., spraying, applying to the leaves, and applying them from above) are recommended. scattering, etc.) is desirable.

また、農薬散布の実施時期については、栽培地域及び天候等に応じて異なるため特に限定されるものではないが、ヨトウムシを効果的に防除する点では、雨季が明ける時期(例えば、梅雨明けの時期)に実施するのが望ましい。特に、ヨトウムシは、前述したように、乾燥すると繁殖し易くなるため、植物の栽培過程中、雨季に該当する時期(例えば、梅雨時期)に雨天日以外の日が所定日数以上連続した場合に、農薬を散布するとよい。 In addition, the timing of spraying pesticides is not particularly limited as it varies depending on the cultivation area and weather, but in terms of effective control of armyworms, it is best to spray at the end of the rainy season (for example, at the end of the rainy season). ) is recommended. In particular, as mentioned above, armyworms breed more easily when dry, so if there are more than a predetermined number of consecutive non-rainy days during the rainy season (for example, during the rainy season) during the plant cultivation process, It is best to spray pesticides.

また、農薬散布の実施回数についても、農薬の種類等に応じて異なるために特に限定されるものではなく、1回以上実施すればよいが、好ましくは、植物体の栽培過程において、上記ナノバブル水を用いて希釈された農薬の散布を複数回(具体的には、2~3回)実施するのがよい。また、上述したように、農薬の薬効を効果的に発現させる理由から、各回の散布では、ナノバブル水を用いて希釈された農薬を植物体の葉面に付着させるのが好ましい。 Furthermore, the number of times pesticide spraying is not particularly limited as it varies depending on the type of pesticide, etc., and may be carried out once or more, but preferably, the nanobubble water It is best to spray the agrochemical diluted using the same method multiple times (specifically, 2 to 3 times). Furthermore, as described above, in order to effectively express the medicinal efficacy of the pesticide, it is preferable that the pesticide diluted with nanobubble water be attached to the leaf surface of the plant during each spraying.

〔農薬〕
本発明のヨトウムシの防除方法で用いる薬剤は特に限定されず、ヨトウムシの殺虫剤として公知の農薬を適宜利用することができる。このような農薬としては、例えば、ゼンターリ粒状水和剤、プレバソンフロアブル、オルトラン水和剤、マラソン乳剤、スミチオン乳剤、ベニカベジフル乳剤、ベニカR乳剤、ベニカS乳剤、エルサン乳剤、エンセダン乳剤、フェニックス顆粒水和剤、プレオフロアブル、マッチ乳剤、サブリナフロアブル等が挙げられ、これらを1種単独で用いてもよく、あるいは2種以上を併用してもよい。
[Pesticides]
The agent used in the method for controlling armyworm of the present invention is not particularly limited, and known agricultural chemicals can be appropriately used as insecticides for armyworm. Such agricultural chemicals include, for example, Zentari granular wettable powder, Prevason Flowable, Ortran wettable powder, Marathon emulsion, Sumithion emulsion, Benicaveziful emulsion, Benica R emulsion, Benica S emulsion, Elsan emulsion, Ensedan emulsion, and Phoenix granules. Examples include hydrating powders, preo flowables, match emulsions, Sabrina flowables, etc., and these may be used alone or in combination of two or more.

本発明においては、農薬の使用量は特に限定されないが、上記ナノバブル水100質量部に対して、0.00001~10質量部であることが好ましく、0.00005~5質量部であることがより好ましい。 In the present invention, the amount of pesticide used is not particularly limited, but it is preferably 0.00001 to 10 parts by mass, more preferably 0.00005 to 5 parts by mass, based on 100 parts by mass of the nanobubble water. preferable.

〔他の成分〕
上記ナノバブル水には、上記農薬以外の他の成分が含まれていてもよい。
上記他の成分としては、例えば、肥料、界面活性剤、凍結防止剤、消泡剤、防腐剤、酸化防止剤、及び増粘剤等が挙げられる。なお、上記他の成分の種類、及び含有量は、特に限定されず、目的に応じて選択可能である。
また、本発明においては、上記他の成分として、上記ナノバブル水中にラジカルを実質的に含まないことが好ましい。「ラジカルを実質的に含まない」ことについて付言すると、上記ナノバブル水の生成に使用する水(例えば、不純物を含む井水)などに起因して不可避的にラジカルが含まれるケースは、「ラジカルを実質的に含まない」ことになる。他方、何らかの人為的操作で生成させたラジカルを混入させるケースは、「ラジカルを実質的に含まない」ことにはならない。
[Other ingredients]
The nanobubble water may contain components other than the pesticide.
Examples of the other components include fertilizers, surfactants, antifreeze agents, antifoaming agents, preservatives, antioxidants, and thickeners. The types and contents of the other components are not particularly limited and can be selected depending on the purpose.
Further, in the present invention, it is preferable that the nanobubble water does not substantially contain radicals as the other components. Regarding "substantially free of radicals", in cases where radicals are unavoidably contained due to the water used to generate the nanobubble water (for example, well water containing impurities), "substantially free of radicals" It means that it does not substantially contain it. On the other hand, the case where radicals generated by some kind of artificial operation are mixed in does not mean that the material is "substantially free of radicals."

〔植物体〕
本発明においては、上記ナノバブル水を施用する植物体は、ヨトウムシの食害を被る可能性がある植物体であればよい。
具体的には、例えば、果樹類(例えば、ブドウ、カンキツ、及びモモなど);
果菜類、より詳しくは、ナス科植物(例えば、ナス、トマト、ピーマン、及びキュウリなど)、ウリ科植物(例えばスイカ、及びメロンなど)、並びにバラ科植物(例えば、イチゴなど);
マメ類(例えば、大豆、インゲン、エンドウ、及びソラマメなど);
根菜類(例えば、馬鈴薯、甘藷、サトイモ、大根、ニンジン、生姜、及びごぼうなど);
茎菜類(例えば、ネギ、及びタマネギなど);
葉菜類(例えば、キャベツ、白菜、大阪しろな、春菊、レタス、ミツバ、及びホウレンソウなど);
観賞用植物(例えば、菊、ケイトウ、カーネーション、パンジー、葉牡丹、及びストックなど);
が挙げられる。
これらのうち、根菜類及び葉菜類がより好ましく、生姜又はキャベツが特に好ましい。
[Plant]
In the present invention, the plants to which the nanobubble water is applied may be any plants that are likely to be damaged by armyworms.
Specifically, for example, fruit trees (e.g., grapes, citrus, peaches, etc.);
Fruit vegetables, more specifically, plants of the family Solanaceae (e.g., eggplants, tomatoes, peppers, cucumbers, etc.), plants of the Cucurbitaceae family (e.g., watermelons, melons, etc.), and plants of the Rosaceae family (e.g., strawberries, etc.);
Legumes (such as soybeans, beans, peas, and broad beans);
Root vegetables (such as potatoes, sweet potatoes, taro, radish, carrots, ginger, and burdock);
Stem vegetables (such as green onions and onions);
Leafy vegetables (e.g. cabbage, Chinese cabbage, Osaka Shirona, Japanese chrysanthemum, lettuce, Japanese cabbage, spinach, etc.);
Ornamental plants (such as chrysanthemums, celosia, carnations, pansies, peonies, and stocks);
can be mentioned.
Among these, root vegetables and leafy vegetables are more preferred, and ginger or cabbage is particularly preferred.

以下に、実施例を挙げて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples. The materials, usage amounts, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the Examples shown below.

(試験1)
<試験の内容>
試験1は、2017年の4月~9月にかけて埼玉県行田市にある生姜(品種:大生姜)の圃場において、以下の区分により実施した。なお、試験区I及びIIは、互いに同一の圃場に設定されている。
試験区I:露地栽培にて生姜を栽培し、生姜への散水、及び、散布する農薬(具体的には、トレボン粉剤)の希釈にナノバブル水を用いた。
試験区II:露地栽培にて生姜を栽培し、生姜への散水、及び、散布する農薬(具体的には、トレボン粉剤)の希釈にナノバブル水を用いず、通常の水(ナノバブルを含まない水)を用いた。
各試験区では、それぞれ、1500株の種生姜の植え付けを行い、常法に従って生姜を栽培した。
また、散水の頻度及び量については、栽培期間中の天候等に応じて適定し、両試験区で概ね同様となるように調整した。なお、試験を実施した2017年の梅雨時期には、晴天又は晴れの日が続いたために降雨量が例年より少なく、雨天日以外の日(詳しくは、晴天日又は晴れの日)が約2週間続いた時期に散水を実施した。
また、施用した農薬の種類、時期、希釈率、及び施用回数については、常法に従って設定し、両試験区で概ね同様となるように調整した。具体的には、上述のトレボン粉剤を所定の濃度になるまで希釈したものを7月下旬に1回散布した。
(Test 1)
<Test details>
Test 1 was conducted from April to September 2017 in a ginger (variety: large ginger) field in Gyoda City, Saitama Prefecture, using the following classifications. Note that Test Areas I and II are set in the same field.
Test plot I: Ginger was cultivated in open field cultivation, and nanobubble water was used for watering the ginger and diluting the pesticide (specifically, Trebon powder) to be sprayed.
Experimental area II: Ginger was cultivated in the open field, and nanobubble water was not used for watering the ginger and diluting the pesticide (specifically, Trebon powder) to be sprayed, but normal water (water that does not contain nanobubbles) was used. ) was used.
In each test plot, 1,500 seed ginger plants were planted and ginger was cultivated according to a conventional method.
In addition, the frequency and amount of watering were determined according to the weather during the cultivation period, and were adjusted so that they were approximately the same in both test plots. In addition, during the rainy season in 2017, when the test was conducted, the amount of rainfall was lower than usual due to a series of sunny or sunny days, and the number of days other than rainy days (specifically, sunny or sunny days) was approximately 2 weeks. Watering was carried out during the following period.
In addition, the type, timing, dilution rate, and number of applications of the applied pesticide were set according to conventional methods, and adjusted so that they were approximately the same in both test plots. Specifically, the above-mentioned Trebon powder was diluted to a predetermined concentration and sprayed once in late July.

<ナノバブル水の生成方法>
ナノバブル水は、ナノバブル生成装置(株式会社カクイチ製作所 アクアソリューション事業部(現:株式会社アクアソリューション)製、100V,10L/minタイプ)を用いて加圧溶解方式にて水中に気泡(ナノバブル)を発生させることで生成した。
なお、ナノバブル水の生成用に使用した水(原水)は、水道水であり、気泡を構成する気体の種類は、酸素(工業用酸素、濃度:99.5体積%)であることとした。
また、上記のナノバブル生成装置を用いてナノバブルを発生させる条件は、以下のとおりとした。
水1mL当たりの気泡の数:5×10個/mL
気泡のサイズ(最頻粒子径):100nm
<Method for generating nanobubble water>
Nanobubble water is produced by generating air bubbles (nanobubbles) in water using a pressurized dissolution method using a nanobubble generator (manufactured by Kakuichi Manufacturing Co., Ltd. Aqua Solution Division (currently Aqua Solution Co., Ltd., 100 V, 10 L/min type)). It was generated by
The water (raw water) used to generate nanobubble water was tap water, and the type of gas constituting the bubbles was oxygen (industrial oxygen, concentration: 99.5% by volume).
Moreover, the conditions for generating nanobubbles using the above-mentioned nanobubble generation device were as follows.
Number of bubbles per mL of water: 5 x 10 8 bubbles/mL
Bubble size (modest particle diameter): 100nm

<ヨトウムシの防除の評価>
2017年9月に各試験区で栽培した生姜を収穫し、それぞれの試験区につき、任意に選択した1株を対象として、ヨトウムシによる食害の有無を確認した。具体的には、評価対象株の茎部のサイズを測定することで、ヨトウムシによる食害の有無を確認した。図2及び図3に示すように、試験区Iでは、試験区IIよりも生姜の茎部が肥大化しており、より多くの収穫量が得られた。つまり、試験区Iでは、試験区IIと比べてヨトウムシによる食害が抑えられたことが確認された。なお、図2は、試験区Iの生姜の画像を、図3は、試験区IIの生姜の画像を、それぞれ示しており、各図には、各試験区で選択した1株分の生姜を横に寝かせて測定した横幅の長さが図示されている。
<Evaluation of armyworm control>
Ginger grown in each test plot was harvested in September 2017, and one arbitrarily selected plant in each test plot was checked for feeding damage caused by armyworms. Specifically, the presence or absence of feeding damage by armyworms was confirmed by measuring the size of the stems of the plants to be evaluated. As shown in FIGS. 2 and 3, in test plot I, the ginger stems were enlarged compared to test plot II, and a larger yield was obtained. In other words, it was confirmed that feeding damage caused by armyworms was suppressed in Test Area I compared to Test Area II. In addition, Figure 2 shows an image of ginger in Test Group I, and Figure 3 shows an image of ginger in Test Group II, and each figure shows one ginger plant selected in each test group. The illustration shows the width measured when the item is laid on its side.

(試験2)
<試験の内容>
試験2は、2018年8月~同年10月にかけて長野県小諸市にあるキャベツの圃場において、以下の3区分により実施した。試験区III、IV及びVは、同一の圃場内に設定されており、互いに隣接している。
試験区III:露地栽培にてキャベツを栽培し、定植時及び乾燥時の散水に、ナノバブル水ではない通常の農業用水を用いた。
試験区IV:露地栽培にてキャベツを栽培し、定植時及び乾燥時の散水に、水1mL当たりの気泡数が2×10個/mLに調整されたナノバブル水を用いた。
試験区V:露地栽培にてキャベツを栽培し、定植時及び乾燥時の散水に、水1mL当たりの気泡数が5×10個/mLに調整されたナノバブル水を用いた。
各試験区では、それぞれ、40株のキャベツの苗を定植し、常法に従ってキャベツを栽培した。また、定植時及び乾燥時における散水の頻度及び量については、3つの試験区で概ね同様となるように調整した。なお、乾燥時とは、1週間雨が降らなかった時期である。また、試験2では、ナノバブル水1mL中の気泡数による優位性を試験するために、通常の栽培法では実施される農薬の散布を意図的に実施しなかった。
(Test 2)
<Test details>
Test 2 was conducted from August 2018 to October 2018 in a cabbage field in Komoro City, Nagano Prefecture, in the following three categories. Test plots III, IV, and V are set in the same field and are adjacent to each other.
Test plot III: Cabbage was cultivated in open field cultivation, and regular agricultural water, not nanobubble water, was used for watering during planting and during drying.
Test area IV: Cabbage was cultivated in the open field, and nanobubble water in which the number of bubbles per mL of water was adjusted to 2 x 10 8 cells/mL was used for watering during planting and drying.
Test section V: Cabbage was cultivated in the open field, and nanobubble water with the number of bubbles adjusted to 5 x 10 8 bubbles/mL per mL of water was used for watering during planting and drying.
In each test plot, 40 cabbage seedlings were planted and cabbage was cultivated according to a conventional method. Furthermore, the frequency and amount of watering during planting and drying were adjusted to be approximately the same in the three test plots. Note that the dry period is a period in which no rain has fallen for one week. In addition, in Test 2, in order to test the superiority of the number of bubbles in 1 mL of nanobubble water, spraying of pesticides, which is carried out in normal cultivation methods, was not intentionally carried out.

<ナノバブル水の生成方法>
ナノバブル水は、試験1と同様のナノバブル生成装置を用い、農業用水中に気泡(ナノバブル)を発生させることで生成した。ナノバブル水1mL当たりの気泡数は、前述したように試験区IVでは2×10個/mLとし、試験区Vでは5×10個/mLとした。ナノバブル水1mL当たりの気泡数は、例えば、上記のナノバブル生成装置の下流側にナノバブル水の貯留槽を設置し、貯留槽内のナノバブル水をナノバブル生成装置に返送してナノバブル水を系内で循環させ、その循環時間を変えることで調整可能である。
それ以外のナノバブル水の生成条件は、試験1と試験2の間で同一である。
<Method for generating nanobubble water>
Nanobubble water was generated by generating air bubbles (nanobubbles) in agricultural water using the same nanobubble generator as in Test 1. As described above, the number of bubbles per mL of nanobubble water was 2 x 10 8 bubbles/mL in test area IV, and 5 x 10 8 bubbles/mL in test area V. The number of bubbles per 1 mL of nanobubble water can be determined by, for example, installing a nanobubble water storage tank downstream of the nanobubble generation device described above, returning the nanobubble water in the storage tank to the nanobubble generation device, and circulating the nanobubble water within the system. This can be adjusted by changing the circulation time.
The other nanobubble water generation conditions were the same between Test 1 and Test 2.

<ヨトウムシの防除の評価>
2018年9月に各試験区で栽培した40株のキャベツを収穫し、それぞれの試験区につき、収穫した40株を対象として、キャベツの葉部分における食害度合い(虫食い度合い)を下記の評価区分に従って評価し、各評価区分に該当する株数を調査した。
[評価区分]
「食害なし」:葉部分に、食害を受けた部分が見られなかったもの
「食害小」 :外側の葉部分に、食害を受けた部分が目立って存在していたものの、商品として出荷可能なもの
「食害大」 :葉部分の全体に亘って、食害を受けた部分が存在しており、商品として出荷が困難なもの
各試験区における評価結果は、下記の表1に示す通りである。また、試験区IVで収穫された食害が比較的小さいキャベツの外観を図4に、試験区IIIで収穫された食害大のキャベツの外観を図5に、それぞれ示す。
<Evaluation of armyworm control>
In September 2018, 40 cabbage plants grown in each test plot were harvested, and the degree of feeding damage (degree of insect damage) on the cabbage leaves was evaluated according to the evaluation classification below for the 40 plants grown in each test plot. We evaluated the number of stocks that fall into each evaluation category.
[Evaluation category]
``No feeding damage'': No feeding damage was observed on the leaves ``Small feeding damage'': There were noticeable feeding damage on the outer leaves, but the product can be shipped. "Severe feeding damage": There are areas of feeding damage throughout the leaf, making it difficult to ship as a product. The evaluation results for each test group are shown in Table 1 below. Further, FIG. 4 shows the appearance of the cabbage with relatively little eating damage harvested in test plot IV, and FIG. 5 shows the appearance of the cabbage with heavy eating damage harvested in test plot III.

上記の評価結果から明らかなように、全試験区において食害が発生したが、ナノバブル水を施用した試験区IV及びVでは、ナノバブル水を施用しなかった試験区IIIよりも食害の規模が抑えられた。また、試験区IV及びVの間で評価結果を比較すると、ナノバブル水1mL中の気泡数が2×10個/mLである試験区IVよりも、5×10個/mLである試験区Vの方が、食害の規模がより小さくなることが明らかとなった。
以上までに説明したように、試験1及び試験2の試験結果から、ナノバブル水によるヨトウムシの防除効果が明らかとなった。
As is clear from the above evaluation results, feeding damage occurred in all test plots, but the scale of the feeding damage was suppressed in test plots IV and V where nanobubble water was applied than in test plot III where nanobubble water was not applied. Ta. In addition, when comparing the evaluation results between Test Groups IV and V, the number of bubbles in 1 mL of nanobubble water is 2 × 10 8 bubbles/mL in Test Group IV, which is 5 × 10 8 bubbles/mL. It became clear that the scale of feeding damage was smaller with V.
As explained above, the test results of Test 1 and Test 2 revealed the effectiveness of nanobubble water in controlling armyworms.

10 ナノバブル生成装置
30 液体吐出機
40 気体混入機
41 容器
42 気体混入機本体
50 ナノバブル生成ノズル
10 Nanobubble generation device 30 Liquid discharge machine 40 Gas mixing machine 41 Container 42 Gas mixing machine main body 50 Nanobubble generation nozzle

Claims (7)

加圧溶解方式にて水中にナノバブルを発生させてナノバブル水を生成し、
前記ナノバブル水を用いた散水を実施して、前記ナノバブル水を植物体に施用し、
前記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmであり、
前記ナノバブル水に含まれる気泡が、酸素を含む、ヨトウムシの防除方法。
ここで、気泡が酸素を含む態様は、空気中の酸素よりも高い濃度で含む態様をいう。
Nanobubbles are generated in water using a pressure dissolution method to generate nanobubble water.
Performing watering using the nanobubble water and applying the nanobubble water to the plant body,
The modem particle diameter of the bubbles contained in the nanobubble water is 10 to 500 nm,
A method for controlling armyworms , wherein the bubbles contained in the nanobubble water contain oxygen .
Here, the embodiment in which the bubbles contain oxygen refers to the embodiment in which the bubbles contain oxygen at a higher concentration than the oxygen in the air.
前記ナノバブル水を用いた散水、及び、前記ナノバブル水を用いて希釈した農薬の散布の方を実施する、請求項1に記載のヨトウムシの防除方法。 The method for controlling armyworm according to claim 1, wherein both watering using the nanobubble water and spraying of an agricultural chemical diluted using the nanobubble water are carried out. 前記植物体の栽培期間中、雨季に該当する時期において、前記植物体の培地である土壌が乾燥して前記植物体の葉が枯れた場合に、前記ナノバブル水を用いた散水を実施する、請求項2に記載のヨトウムシの防除方法。 Watering using the nanobubble water is performed when the soil serving as a medium for the plant dries and leaves of the plant wither during the rainy season during the cultivation period of the plant. The method for controlling armyworm according to item 2. 前記ナノバブル水を用いて希釈された農薬を前記植物体の葉面に付着させる、請求項2又は3に記載のヨトウムシの防除方法。 The method for controlling armyworm according to claim 2 or 3, wherein the agricultural chemical diluted with the nanobubble water is attached to the leaf surface of the plant. 前記ナノバブル水が、1×10個/mL~1×1010個/mLの気泡を有する、請求項1~のいずれかに記載のヨトウムシの防除方法。 The method for controlling armyworm according to any one of claims 1 to 4 , wherein the nanobubble water has 1×10 8 bubbles/mL to 1×10 10 bubbles/mL. 前記植物体が、根菜類又は葉菜類である、請求項1~のいずれかに記載のヨトウムシの防除方法。 The method for controlling armyworm according to any one of claims 1 to 5 , wherein the plant is a root vegetable or a leafy vegetable. 前記植物体が、生姜又はキャベツである、請求項に記載のヨトウムシの防除方法。 The method for controlling armyworm according to claim 6 , wherein the plant is ginger or cabbage.
JP2020522240A 2018-05-30 2019-05-29 How to control armyworms Active JP7366890B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018103095 2018-05-30
JP2018103095 2018-05-30
PCT/JP2019/021248 WO2019230779A1 (en) 2018-05-30 2019-05-29 Cabbage moth eradication method

Publications (2)

Publication Number Publication Date
JPWO2019230779A1 JPWO2019230779A1 (en) 2021-08-05
JP7366890B2 true JP7366890B2 (en) 2023-10-23

Family

ID=68697025

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020522240A Active JP7366890B2 (en) 2018-05-30 2019-05-29 How to control armyworms

Country Status (3)

Country Link
JP (1) JP7366890B2 (en)
TW (1) TW202002790A (en)
WO (1) WO2019230779A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542746A (en) 2006-07-11 2009-12-03 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Combinations of active compounds having insecticidal and acaricidal properties
JP2010094117A (en) 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2011073988A (en) 2009-09-29 2011-04-14 Japan Techno Co Ltd Plant disease controlling functional agent and method of growing plant using the same
JP2016053004A (en) 2014-09-03 2016-04-14 サンスター株式会社 Preparation method of diluted pesticide and diluted pesticide
JP2018075240A (en) 2016-11-10 2018-05-17 国立大学法人 東京大学 Co2 micro nanobubble water generated in water opened to air by applying several atmospheres for conducting sterilization and bacteriostasis of microorganism or pest control

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301814A (en) * 1996-03-11 1997-11-25 Sankyo Co Ltd Insecticidal composition strengthened in potency

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009542746A (en) 2006-07-11 2009-12-03 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Combinations of active compounds having insecticidal and acaricidal properties
JP2010094117A (en) 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2011073988A (en) 2009-09-29 2011-04-14 Japan Techno Co Ltd Plant disease controlling functional agent and method of growing plant using the same
JP2016053004A (en) 2014-09-03 2016-04-14 サンスター株式会社 Preparation method of diluted pesticide and diluted pesticide
JP2018075240A (en) 2016-11-10 2018-05-17 国立大学法人 東京大学 Co2 micro nanobubble water generated in water opened to air by applying several atmospheres for conducting sterilization and bacteriostasis of microorganism or pest control

Also Published As

Publication number Publication date
WO2019230779A1 (en) 2019-12-05
TW202002790A (en) 2020-01-16
JPWO2019230779A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
KR102613598B1 (en) How to improve fertilizer absorption rate
AU2017334547A1 (en) Methods and compositions for modifying plant growth and reducing water consumption by plants
JP7176761B2 (en) Adjuvant composition for plant treatment chemicals
CN113273346B (en) Method for increasing aromatic substance content of fruits and vegetables and gene expression of fruits and vegetables by using hydrogen-rich water
JP7366890B2 (en) How to control armyworms
JP7370972B2 (en) How to control magnesium deficiency
WO2019230776A1 (en) Method of suppressing clubroot
WO2019230753A1 (en) Whitefly eradication method
TW202002785A (en) Bacterial blight disease control method
Gaskin et al. New adjuvant technology for pesticide use on wine grapes
JP7402930B2 (en) How to control spider mites
WO2019230786A1 (en) Ginger cultivation method
JPWO2019230764A1 (en) Fruit antifungal method and fruit antifungal composition
JP2001019958A (en) Soil treating agent for controlling injury by continuous cropping of plant
JPWO2019230755A1 (en) Scale insect control methods and horticultural scale insect killing compositions
LT6216B (en) Biologically active synergistic composition
WO2024081610A1 (en) Compositions, systems, and methods for increased plant quality
CN115315183A (en) Method for reducing fusarium contamination
CN115334880A (en) Method for reducing fusarium contamination by applying fumigant
JPWO2019230777A1 (en) How to extend the harvest season
WO2020172737A1 (en) Hose attachment for mixing co2 and water for foliar spraying
CN115334881A (en) Musa plants, fields containing such plants
JPH03173804A (en) Method for controlling flower-setting of citrus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231011

R150 Certificate of patent or registration of utility model

Ref document number: 7366890

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150