WO2019230779A1 - Cabbage moth eradication method - Google Patents

Cabbage moth eradication method Download PDF

Info

Publication number
WO2019230779A1
WO2019230779A1 PCT/JP2019/021248 JP2019021248W WO2019230779A1 WO 2019230779 A1 WO2019230779 A1 WO 2019230779A1 JP 2019021248 W JP2019021248 W JP 2019021248W WO 2019230779 A1 WO2019230779 A1 WO 2019230779A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
weevil
nanobubble
controlling
nanobubble water
Prior art date
Application number
PCT/JP2019/021248
Other languages
French (fr)
Japanese (ja)
Inventor
祐一 奥山
Original Assignee
株式会社アクアソリューション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アクアソリューション filed Critical 株式会社アクアソリューション
Priority to JP2020522240A priority Critical patent/JP7366890B2/en
Publication of WO2019230779A1 publication Critical patent/WO2019230779A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M1/00Stationary means for catching or killing insects
    • A01M1/20Poisoning, narcotising, or burning insects
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N31/00Biocides, pest repellants or attractants, or plant growth regulators containing organic oxygen or sulfur compounds
    • A01N31/08Oxygen or sulfur directly attached to an aromatic ring system
    • A01N31/14Ethers
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds

Definitions

  • the present invention relates to a method for controlling weevil.
  • the weevil is a larva such as a lotus moth and a white moth, and is widely known as an insect pest that harms the growth of plants.
  • the weevil feeds on the leaves of crops such as vegetables, and is particularly active at night to damage the crops.
  • the occurrence and reproduction of weevil tend to increase in an environment that is dry at high temperatures.
  • the insecticidal composition described in Patent Document 1 is an insecticidal composition characterized by containing S-methyl-N-[(methylcarbamoyl) oxy] thioacetimidate and a live spore of Bacillus thuringiensis. .
  • This insecticidal composition exhibits a cooperative and synergistic insecticidal effect at a lower concentration than that of active compounds alone against carrot moths and weevil, etc., thus avoiding phytotoxicity to crops and making it possible to use conventional insecticides alone. It can also be used in situations where there are restrictions (see [Claim 1] and [paragraphs 0047, 0048] of Patent Document 1).
  • an object of the present invention is to provide a method for controlling a weevil that can provide a sufficient control effect safely and simply.
  • the present inventor has found that by applying nanobubble water to a plant body, a sufficient and safe control effect against weevil can be obtained safely and completed the present invention. It was. That is, the present inventor has found that the above problem can be achieved by the following configuration.
  • a method for controlling weevil wherein nanobubble water is applied to a plant body.
  • [5] The method for controlling weevil according to any one of [1] to [4], wherein the mode particle diameter of the bubbles contained in the nanobubble water is 10 to 500 nm.
  • [6] The weevil according to any one of [1] to [5], wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone, and carbon dioxide. Control method.
  • [7] The method for controlling a weevil according to any one of [1] to [6], wherein the nanobubble water has bubbles of 1 ⁇ 10 8 cells / mL to 1 ⁇ 10 10 cells / mL.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the method for controlling a weevil of the present invention is a method for controlling a weevil by applying nanobubble water to a plant body.
  • the “weet beetle” is a larva of an insect (moth) belonging to the Lepidoptera Noctuidae subfamily, such as Yotoga, Shirochimojiyoto, Shiroshitayoto, and Hassmonyotou.
  • a control effect against weevil can be sufficiently obtained by a safe and simple procedure.
  • the reason why such an effect is obtained is not clear in detail, but the present inventor presumes as follows. That is, one reason that the control effect against weevil was sufficiently obtained by the present invention is that the plant body was activated by absorbing the applied nanobubble water, and the resistance to the weevil was improved. Conceivable. Another reason why the present invention has sufficiently obtained the control effect against weevil is that, when spraying a pesticide diluted with nanobubble water, it spreads relatively long when the pesticide adheres to the plant body with nanobubble water.
  • the nanobubble water used in the method for controlling a weevil of the present invention is water containing bubbles (nanobubbles) having a diameter of less than 1 ⁇ m, and more precisely, water in which nanobubbles are mixed.
  • water mixed with nanobubbles water used to generate nanobubble water (raw water of nanobubble water, for example, well water containing impurities), which is unavoidable due to its properties, etc.
  • water containing nanobubbles is excluded from the above-mentioned “water mixed with nanobubbles”.
  • the bubble diameter (particle diameter) contained in the nanobubble water, and the mode particle diameter and the number of bubbles described later are values obtained by measuring the Brownian movement speed of the bubbles in water using the nanoparticle tracking analysis method.
  • numerical values measured by the nanoparticle analysis system Nanosite Series are adopted.
  • the diameter (particle diameter) can be calculated from the speed of the Brownian motion of the particle, and the mode particle diameter exists.
  • the mode diameter can be confirmed from the particle size distribution of the nanoparticles.
  • the mode particle diameter of the bubbles contained in the nanobubble water is preferably 10 to 500 nm, more preferably 30 to 300 nm, in particular, for the reason that the effect of controlling weevil is further improved. More preferably, it is 70 to 130 nm.
  • the gas constituting the bubbles contained in the nanobubble water is not particularly limited, a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide, And ozone.
  • a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide, And ozone.
  • oxygen is contained because the bubbles can remain for a longer time.
  • including oxygen means containing at a concentration higher than the oxygen concentration in the air.
  • nitrogen and carbon dioxide is preferable that it is 30 volume% or more in a bubble, and it is preferable that it is more than 50 volume% and 100 volume% or less.
  • the nanobubble water preferably has 1 ⁇ 10 8 to 1 ⁇ 10 10 cells / mL of bubbles for the reason that the control effect of weevil is further improved. reasons balance of sex is good, more than 1 ⁇ 10 8 cells / mL, and more preferably that and has fewer bubbles than 1 ⁇ 10 10 cells / mL, 5 ⁇ 10 8 cells / mL ⁇ 5 It is more preferable to have ⁇ 10 9 bubbles / mL.
  • the method for producing nanobubble water examples include a static mixer method, a venturi method, a cavitation method, a vapor agglomeration method, an ultrasonic method, a swirling flow method, a pressure dissolution method, and a micropore method.
  • the method for controlling a weevil of the present invention may have a generation step of generating the nanobubble water before applying the nanobubble water. That is, the method for controlling a weevil of the present invention includes, for example, a generation step of taking water (raw water) from a water source such as a water storage tank, a well, or a water supply into a nanobubble generation device to generate nanobubble water, and the generated nanobubble water is planted.
  • the control method which has an application process applied with respect to a body may be sufficient.
  • a method of taking water from the water source into the nano bubble generating device for example, a method of supplying water pumped up from the water source using a dredge or a pump to the nano bubble generating device, and laying between the water source and the nano bubble generating device
  • a method of directly connecting water to the nanobubble generating device by connecting the flow channel to the nanobubble generating device for example, a method of directly connecting water to the nanobubble generating device by connecting the flow channel to the nanobubble generating device.
  • the method for producing the nanobubble water a production method using an apparatus that does not intentionally generate radicals is preferable. [0100] and a method of generating using the nanobubble generating device described in the paragraph. The above contents are incorporated herein.
  • Nanobubble generation devices that do not intentionally generate radicals include, for example, a liquid discharger that discharges water, a gas mixer that pressurizes and mixes gas into water discharged from the liquid discharger, and A microbubble generator for generating microbubbles in water by passing water mixed with gas inside, wherein the gas mixer includes the liquid ejector and the microbubble generator There is a fine bubble generating device that pressurizes and mixes gas into the liquid flowing toward the fine bubble generator in a pressurized state between the vessels.
  • a nanobubble generating device 10 shown in FIG. 1 includes a liquid discharger 30, a gas mixing device 40, and a nanobubble generating nozzle 50 therein.
  • the liquid discharger 30 is configured by a pump, and takes in and discharges nanobubble water raw water (for example, well water).
  • the gas mixing device 40 includes a container 41 in which compressed gas is sealed and a substantially cylindrical gas mixing device main body 42. While flowing water discharged from the liquid discharge device 30 into the gas mixing device main body 42, The compressed gas in the container 41 is introduced into the gas mixing machine main body 42. As a result, gas-containing water is generated in the gas-mixing machine main body 42.
  • the nanobubble generating nozzle 50 generates nanobubbles in the gas-mixed water according to the principle of pressure dissolution by passing the gas-mixed water through the nozzle, and the structure thereof is described in JP-A-2018-15715.
  • the same structure as the nanobubble generating nozzle made can be adopted.
  • the nanobubble water generated in the nanobubble generating nozzle 50 is ejected from the tip of the nanobubble generating nozzle 50, then flows out from the nanobubble generating device 10, and is sent toward a predetermined usage destination through a flow path (not shown).
  • the gas mixing device 40 is compressed into water (raw water) flowing toward the nanobubble generating nozzle 50 in a pressurized state between the liquid discharger 30 and the nanobubble generating nozzle 50. Mix gas.
  • the gas since the gas is mixed in the water in a pressurized (compressed) state, the gas can be mixed against the pressure of the water at the gas mixing location. For this reason, it becomes possible to mix gas into water appropriately, without generating a negative pressure especially in a gas mixing location.
  • a flow path of water supplied from a water source such as a well or water supply is connected to the suction side of the liquid discharger 30 and flows into the liquid discharger 30 from the upstream side of the liquid discharger 30 in the flow path.
  • the water pressure (that is, the water pressure on the suction side) may be positive. In this case, the above configuration becomes more meaningful.
  • generation of the said nano bubble water For example, rain water, tap water, well water, agricultural water, distilled water, etc. can be used. Such water may have been subjected to other treatments before being used for generation of nanobubble water. Examples of other treatments include pH adjustment, precipitation, filtration, and sterilization (sterilization). Specifically, for example, when agricultural water is used, the agricultural water after at least one of precipitation and filtration may be used.
  • the mode of application of the nanobubble water to the plant body is not particularly limited because it varies depending on the cultivation method of the plant body.
  • the mode of spraying the nanobubble water in soil cultivation, the nanobubble water in soil cultivation In the aspect of spraying the pesticide diluted by the above, the culture solution diluted with the nanobubble water in the hydroponic culture (hydroponic, spray plowing, or solid medium plowing) or the hydroponic soil plowing (simultaneous irrigation cultivation) is used as the medium
  • the aspect which supplies, the aspect which waters (irrigates) the said nano bubble water independently in hydroponics soil cultivation, etc. are mentioned.
  • these application aspects are only an example to the last, and should just be an aspect which can apply the said nano bubble water suitably in the growth process of a plant body.
  • it is preferable to carry out at least one of watering using the nanobubble water and spraying the agricultural chemical diluted with the nanobubble water because the operation is simple and can effectively control the weevil. More preferably, both water spraying using the nanobubble water and spraying of the agricultural chemical diluted with the nanobubble water are carried out.
  • the control effect of the weevil by application of the said nano bubble water comes to be exhibited notably.
  • the method of sprinkling the nanobubble water is not particularly limited, for example, a method of hanging on a part of the plant, a mode of spraying or discharging water on the soil in which the plant is planted, a mode of dropping on the soil, and Examples include irrigation into soil from an infusion tube embedded in the soil.
  • the timing and frequency of watering there are no particular restrictions on the timing and frequency of watering, as it varies depending on the cultivation area and the weather, etc., but weevil is likely to occur in a dry environment with little rain. It is more desirable to carry out the watering process using the nanobubble water when a day other than rainy days continues at the relevant time.
  • the “period corresponding to the rainy season” is a period when a certain amount or more of precipitation is expected in an ordinary year, and in Japan is a period from June to August.
  • the water spraying step is performed using the nanobubble water.
  • the nanobubble water is used when the soil of the plant medium dries and the plant leaves wither during the cultivation period of the plant during the rainy season. It is better to carry out watering.
  • “leaves with leaves” means that the leaves (particularly the tip) are browned and deflated due to lack of moisture.
  • the period when the number of leaves on the ground during the growth stage of the ginger is 4-6 or more is the rainy season, and the days other than the rainy day are consecutive during that season. In such a case, watering using the nanobubble water may be performed.
  • the method for spraying agricultural chemicals is not particularly limited.
  • a method for spraying or dripping on the soil or the plant body a method for spraying or dropping the plant body, or a method for spraying or dropping the plant body. Any method may be used, such as a method of spraying and spraying by applying pressure from a sprinkler nozzle.
  • a method of spraying and spraying by applying pressure from a sprinkler nozzle a method of spraying and spraying by applying pressure from a sprinkler nozzle.
  • an aspect in which the pesticide diluted with nanobubble water is attached to the leaf surface of the plant for example, spray spraying, application to the leaf surface, and from the sky Scattering etc. is desirable.
  • the pesticide application time is not particularly limited because it varies depending on the cultivation area and the weather, etc., but in terms of effective control of weevil, the time when the rainy season ends (for example, the time when the rainy season ends) ) Is desirable.
  • the weevil is easy to reproduce when dried, as described above, so that when a day other than the rainy day continues for a predetermined number of days or more in the rainy season (for example, the rainy season) during the plant cultivation process, It is better to spray pesticides.
  • the number of times of pesticide spraying is not particularly limited because it varies depending on the type of pesticide and the like, and it may be performed one or more times. It is recommended to spray a diluted pesticide a plurality of times (specifically, 2 to 3 times). Further, as described above, for the purpose of effectively expressing the medicinal effect of the agricultural chemical, it is preferable to attach the agricultural chemical diluted with nanobubble water to the leaf surface of the plant body in each spraying.
  • Pesticides The chemical
  • pesticides include, for example, Zentari granular wettable powder, Prevason flowable, Ortran wettable powder, Marathon emulsion, Sumithion emulsion, Benica vedifull emulsion, Benica R emulsion, Benica S emulsion, Elsan emulsion, Ensedan emulsion, Phoenix granule Examples thereof include wettable powder, preo flowable, match emulsion, sabrina flowable, etc., and these may be used alone or in combination of two or more.
  • the amount of the agrochemical used is not particularly limited, but is preferably 0.00001 to 10 parts by mass, more preferably 0.00005 to 5 parts by mass with respect to 100 parts by mass of the nanobubble water. preferable.
  • the nano bubble water may contain components other than the agricultural chemical.
  • the other components include fertilizers, surfactants, antifreezing agents, antifoaming agents, preservatives, antioxidants, and thickeners.
  • the kind of said other component and content are not specifically limited, It can select according to the objective.
  • the said nano bubble water does not contain a radical substantially as said other component.
  • substantially free of radicals the case where radicals are inevitably included due to water (for example, well water containing impurities) used for the generation of the nanobubble water, It is substantially not included.
  • a case where a radical generated by some artificial manipulation is mixed does not mean that the radical is not substantially contained.
  • the plant body which applies the said nano bubble water should just be a plant body which may suffer from the damage of a weevil.
  • fruit trees such as grapes, citrus, and peaches
  • Fruits and vegetables more specifically solanaceous plants (eg, eggplant, tomatoes, peppers, cucumbers, etc.), cucurbits (eg, watermelons, melons, etc.), and roses (eg, strawberries, etc.);
  • Legumes eg, soy beans, green beans, peas, broad beans, etc.
  • Root vegetables eg, potato, sweet potato, taro, radish, carrot, ginger and burdock
  • Stem vegetables eg, leek, onion, etc.
  • Leafy vegetables eg, cabbage, Chinese cabbage, Osaka Shirona, spring chrysanthemum, lettuce, honey bees, and spinach
  • Ornamental plants eg chrysanthemums, celosia, carnations, pansies, leaf peon
  • Test 1 was conducted from April to September 2017 in a field of ginger (variety: daisei ginger) in Gyoda City, Saitama Prefecture according to the following categories.
  • the test sections I and II are set in the same field.
  • Test Zone I Ginger was cultivated in open field cultivation, and nanobubble water was used for watering the ginger and diluting the agricultural chemical to be sprayed (specifically, Trebon powder).
  • Test Zone II Growing ginger in open-air cultivation, sprinkling water into the ginger, and normal water (water that does not contain nanobubbles) without using nanobubble water to dilute the pesticides (specifically, trebon powder) ) was used.
  • Nanobubble water generates bubbles (nanobubbles) in water using a nanobubble generator (Kakuichi Seisakusho Aqua Solution Division (currently Aqua Solution Co., Ltd., 100 V, 10 L / min type) under pressure and dissolution. It was generated by letting.
  • the water (raw water) used for producing the nanobubble water was tap water, and the type of gas constituting the bubbles was oxygen (industrial oxygen, concentration: 99.5% by volume).
  • the conditions for generating nanobubbles using the nanobubble generating apparatus described above were as follows. Number of bubbles per mL of water: 5 ⁇ 10 8 / mL Bubble size (mode particle diameter): 100 nm
  • Ginger cultivated in each test section was harvested in September 2017, and for each test section, the presence or absence of feeding damage was confirmed for one arbitrarily selected strain. Specifically, by measuring the size of the stem part of the evaluation target strain, the presence or absence of food damage due to the weevil was confirmed. As shown in FIG.2 and FIG.3, in the test section I, the stem part of the ginger was enlarged compared with the test section II, and a larger yield was obtained. In other words, it was confirmed that in the test area I, the damage caused by the weevil was suppressed as compared with the test area II. 2 shows an image of the ginger in the test area I, and FIG. 3 shows an image of the ginger in the test area II. In each figure, the ginger for one strain selected in each test area is shown. The length of the width measured by lying down is shown.
  • Test 2 was conducted from August 2018 to October of the same year in a cabbage field in Komoro City, Nagano Prefecture according to the following three categories.
  • Test sections III, IV, and V are set in the same field and are adjacent to each other.
  • Test Zone III Cabbage was cultivated in open field cultivation, and normal agricultural water that was not nanobubble water was used for watering at the time of planting and drying.
  • Test group IV Cabbage was cultivated in open field cultivation, and nanobubble water in which the number of bubbles per mL of water was adjusted to 2 ⁇ 10 8 / mL was used for watering at the time of planting and drying.
  • Test plot V Cabbage was cultivated in open field cultivation, and nanobubble water in which the number of bubbles per mL of water was adjusted to 5 ⁇ 10 8 / mL was used for watering at the time of planting and drying.
  • 40 cabbage seedlings were planted, and cabbage was cultivated according to a conventional method.
  • the frequency and amount of watering at the time of planting and drying were adjusted to be substantially the same in the three test plots.
  • the time of drying is the time when it did not rain for one week.
  • the spraying of the agrochemical implemented with a normal cultivation method was not implemented intentionally.
  • Nanobubble water was generated by generating bubbles (nanobubbles) in agricultural water using the same nanobubble generator as in Test 1.
  • the number of bubbles per mL of nanobubble water was 2 ⁇ 10 8 cells / mL in test group IV and 5 ⁇ 10 8 cells / mL in test group V.
  • the number of bubbles per 1 mL of nanobubble water is set, for example, by installing a nanobubble water storage tank on the downstream side of the nanobubble generation apparatus, returning the nanobubble water in the storage tank to the nanobubble generation apparatus, and circulating the nanobubble water in the system. It can be adjusted by changing the circulation time.
  • the other generation conditions of nanobubble water are the same between Test 1 and Test 2.

Abstract

The present invention addresses the issue of providing a cabbage moth eradication method whereby a sufficient eradication effect can be safely and easily obtained. This cabbage moth eradication method applies nanobubble water to plants.

Description

ヨトウムシの防除方法How to control weevil
 本発明は、ヨトウムシの防除方法に関する。 The present invention relates to a method for controlling weevil.
 ヨトウムシは、ハスモンヨトウ及びシロイチモジヨトウ等の幼虫であり、植物体の生育に加害する食害性害虫として広く知られている。ヨトウムシは、野菜等の作物の葉を食害し、特に夜間に活発に活動して作物を食害する。また、高温で乾燥している環境下では、ヨトウムシの発生及び繁殖が増加する傾向にある。 The weevil is a larva such as a lotus moth and a white moth, and is widely known as an insect pest that harms the growth of plants. The weevil feeds on the leaves of crops such as vegetables, and is particularly active at night to damage the crops. In addition, the occurrence and reproduction of weevil tend to increase in an environment that is dry at high temperatures.
 ヨトウムシに対する防除方法としては、ヨトウムシに対して殺虫効果を発現する農薬(例えば、オルトラン水和剤、サブリナフロアブル及びゼンターリ顆粒水和剤等)の使用が一般的である。また、少量の使用量及び少数の散布回数でも高い防除効果が得られる組成物がこれまでに開発されてきており、その一例としては、特許文献1に記載の殺虫組成物が挙げられる。特許文献1に記載の殺虫組成物は、S-メチル-N-[(メチルカルバモイル)オキシ]チオアセトイミデートとバチルス・チュウリンゲンシスの生芽胞を含有することを特徴とする殺虫組成物である。この殺虫組成物は、ハスモンヨトウ及びヨトウムシ等に対して、活性化合物単独の場合より低濃度で協力的及び相乗的な殺虫効果を示すので、作物に対する薬害を回避でき、従来の殺虫剤の単独使用に対して制限が掛かるような場面でも使用することができる(特許文献1の[請求項1]及び[段落0047、0048]を参照)。 As a method for controlling weevil, it is common to use agricultural chemicals that exhibit an insecticidal effect against weevil (for example, ortholan wettable powder, sabrina flowable, and zentari granule wettable powder). Moreover, the composition from which the high control effect is acquired even if it is a small usage-amount and few application | coating frequency has been developed until now, and the insecticidal composition of patent document 1 is mentioned as the example. The insecticidal composition described in Patent Document 1 is an insecticidal composition characterized by containing S-methyl-N-[(methylcarbamoyl) oxy] thioacetimidate and a live spore of Bacillus thuringiensis. . This insecticidal composition exhibits a cooperative and synergistic insecticidal effect at a lower concentration than that of active compounds alone against carrot moths and weevil, etc., thus avoiding phytotoxicity to crops and making it possible to use conventional insecticides alone. It can also be used in situations where there are restrictions (see [Claim 1] and [paragraphs 0047, 0048] of Patent Document 1).
特開平9-301814号公報JP-A-9-301814
 ところで、ヨトウムシの防除策として農薬等の薬剤を施用する場合には、人体及び周辺環境の生物への影響を考慮しなければならないが、ヨトウムシによる食害の度合い等によっては、相当量の薬剤を施用し得ることも考えられる。また、市販品ではなく入手困難な薬剤については、入手して施用すること自体が難しく、仮に入手できたとしても安全性及び残留性の問題があり、また、毒性が高い薬剤である場合には厳格な管理が要求される。なお、上述した特許文献1に記載の殺虫組成物に含まれているS-メチル-N-[(メチルカルバモイル)オキシ]チオアセトイミデートは、俗にメソミルと呼ばれ、毒性が高いものであり、現時点では、その購入に条件が課されている。 By the way, when applying chemicals such as pesticides as a control measure for weevil, the effect on the human body and surrounding organisms must be taken into account. It can also be considered. In addition, drugs that are not commercially available and difficult to obtain are difficult to obtain and apply, and even if they are available, there are problems of safety and persistence. Strict management is required. Incidentally, S-methyl-N-[(methylcarbamoyl) oxy] thioacetimidate contained in the insecticidal composition described in Patent Document 1 described above is commonly called mesomil and is highly toxic. At present, conditions are imposed on its purchase.
 そこで、本発明は、安全且つ簡易的に十分な防除効果が得られるヨトウムシの防除方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for controlling a weevil that can provide a sufficient control effect safely and simply.
 本発明者は、上記課題を達成すべく鋭意検討した結果、植物体にナノバブル水を施用することにより、安全且つ簡易的にヨトウムシに対する防除効果が十分に得られることを見出し、本発明を完成させた。
 すなわち、本発明者は、以下の構成により上記課題を達成することができることを見出した。
As a result of intensive studies to achieve the above-mentioned problems, the present inventor has found that by applying nanobubble water to a plant body, a sufficient and safe control effect against weevil can be obtained safely and completed the present invention. It was.
That is, the present inventor has found that the above problem can be achieved by the following configuration.
 [1] ナノバブル水を植物体に施用する、ヨトウムシの防除方法。
 [2] 上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布のうち、少なくとも一方を実施する、[1]に記載のヨトウムシの防除方法。
 [3] 植物体の栽培期間中、雨季に該当する時期において、植物体の培地である土壌が乾燥して前記植物体の葉が枯れた場合に、上記ナノバブル水を用いた散水を実施する、[2]に記載のヨトウムシの防除方法。
 [4] 上記ナノバブル水を用いて希釈された農薬を植物体の葉面に付着させる、[2]又は[3]に記載のヨトウムシの防除方法。
 [5] 上記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmである、[1]~[4]のいずれかに記載のヨトウムシの防除方法。
 [6] 上記ナノバブル水に含まれる気泡が、酸素、窒素、オゾン及び二酸化炭素からなる群から選択される少なくとも1種の気体を含む、[1]~[5]のいずれかに記載のヨトウムシの防除方法。
 [7] 上記ナノバブル水が、1×10個/mL~1×1010個/mLの気泡を有する、[1]~[6]のいずれかに記載のヨトウムシの防除方法。
 [8] 上記植物体が、根菜類又は葉菜類である、[1]~[7]のいずれかに記載のヨトウムシの防除方法。
 [9] 上記植物体が、生姜又はキャベツである、[8]に記載のヨトウムシの防除方法。
[1] A method for controlling weevil, wherein nanobubble water is applied to a plant body.
[2] The method for controlling a weevil according to [1], wherein at least one of water spray using the nanobubble water and spraying of the agricultural chemical diluted with the nanobubble water is performed.
[3] During the cultivation period of the plant body, when the soil that is the medium of the plant body is dried and the leaves of the plant body wither in the period corresponding to the rainy season, watering using the nanobubble water is performed. The method for controlling weevil according to [2].
[4] The method for controlling a weevil according to [2] or [3], wherein the pesticide diluted with the nanobubble water is attached to the leaf surface of the plant body.
[5] The method for controlling weevil according to any one of [1] to [4], wherein the mode particle diameter of the bubbles contained in the nanobubble water is 10 to 500 nm.
[6] The weevil according to any one of [1] to [5], wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone, and carbon dioxide. Control method.
[7] The method for controlling a weevil according to any one of [1] to [6], wherein the nanobubble water has bubbles of 1 × 10 8 cells / mL to 1 × 10 10 cells / mL.
[8] The method for controlling a weevil according to any one of [1] to [7], wherein the plant is a root vegetable or a leaf vegetable.
[9] The method for controlling a weevil according to [8], wherein the plant is ginger or cabbage.
 本発明によれば、安全且つ簡易的な手順によって十分な防除効果が得られるヨトウムシの防除方法を提供することができる。 According to the present invention, it is possible to provide a method for controlling weevil that provides a sufficient control effect by a safe and simple procedure.
ナノバブル生成装置の一例を示す模式図である。It is a schematic diagram which shows an example of a nano bubble production | generation apparatus. 試験区Iで収穫された生姜の画像である。It is the image of the ginger harvested in the test area I. 試験区IIで収穫された生姜の画像である。It is the image of the ginger harvested in Test Zone II. 試験区IVで収穫されたキャベツの画像である。It is the image of the cabbage harvested in the test area IV. 試験区IIIで収穫されたキャベツの画像である。It is the image of the cabbage harvested in the test area III.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本願明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be made based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the specification of the present application, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
<ヨトウムシの防除方法>
 本発明のヨトウムシの防除方法は、ナノバブル水を植物体に施用する、ヨトウムシの防除方法である。
 ここで、「ヨトウムシ」とは、ヨトウガ、シロイチモジヨトウ、シロシタヨトウ及びハスモンヨトウ等のチョウ目ヤガ科ヨトウ亜科に属する昆虫(蛾)の幼虫である。
<How to control weevil>
The method for controlling a weevil of the present invention is a method for controlling a weevil by applying nanobubble water to a plant body.
Here, the “weet beetle” is a larva of an insect (moth) belonging to the Lepidoptera Noctuidae subfamily, such as Yotoga, Shirochimojiyoto, Shiroshitayoto, and Hassmonyotou.
 本発明においては、上述した通り、植物体にナノバブル水を施用することにより、安全且つ簡易的な手順によってヨトウムシに対する防除効果が十分に得られる。このような効果が得られる理由については、詳細には明らかではないが、本発明者は以下のように推測している。
 すなわち、本発明によってヨトウムシに対する防除効果が十分に得られた一つの理由は、施用されたナノバブル水を植物体が吸収することで、植物体が活性化され、ヨトウムシに対する耐性が向上したためであると考えられる。
 また、本発明によってヨトウムシに対する防除効果が十分に得られた他の理由は、ナノバブル水により希釈された農薬を散布した場合に、農薬がナノバブル水によって植物体に付着したときに比較的長く展着するので、農薬の薬効が長期に亘って持続されたためであると考えられる。
 以上のように、本発明のヨトウムシの防除方法によれば、毒性の高い農薬を用いなくとも、より安全で取り扱い易いナノバブル水によって効果的にヨトウムシを防除することが可能となる。
In the present invention, as described above, by applying nanobubble water to the plant body, a control effect against weevil can be sufficiently obtained by a safe and simple procedure. The reason why such an effect is obtained is not clear in detail, but the present inventor presumes as follows.
That is, one reason that the control effect against weevil was sufficiently obtained by the present invention is that the plant body was activated by absorbing the applied nanobubble water, and the resistance to the weevil was improved. Conceivable.
Another reason why the present invention has sufficiently obtained the control effect against weevil is that, when spraying a pesticide diluted with nanobubble water, it spreads relatively long when the pesticide adheres to the plant body with nanobubble water. Therefore, it is considered that the medicinal effects of the agricultural chemicals were sustained for a long time.
As described above, according to the method for controlling a weevil of the present invention, it is possible to effectively control a weevil using nanobubble water that is safer and easier to handle without using a highly toxic pesticide.
 〔ナノバブル水〕
 本発明のヨトウムシの防除方法において用いるナノバブル水は、直径が1μm未満の気泡(ナノバブル)を含む水であって、より正確には、ナノバブルを混入させた水である。なお、「ナノバブルを混入させた水」に関して付言すると、ナノバブル水の生成に使用する水(ナノバブル水の原水であり、例えば、不純物を含む井水)であって、その性質等に起因して不可避的にナノバブルを含んでいる水は、上記の「ナノバブルを混入させた水」から除外される。
[Nano bubble water]
The nanobubble water used in the method for controlling a weevil of the present invention is water containing bubbles (nanobubbles) having a diameter of less than 1 μm, and more precisely, water in which nanobubbles are mixed. In addition, with regard to “water mixed with nanobubbles”, water used to generate nanobubble water (raw water of nanobubble water, for example, well water containing impurities), which is unavoidable due to its properties, etc. In particular, water containing nanobubbles is excluded from the above-mentioned “water mixed with nanobubbles”.
 ナノバブル水に含まれる気泡の直径(粒子径)、並びに、後述する気泡の最頻粒子径及び気泡の個数は、水中の気泡のブラウン運動移動速度を、ナノ粒子トラッキング解析法を用いて測定した値であり、本明細書においては、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)により測定した数値を採用する。
 なお、ナノ粒子解析システム ナノサイトシリーズ(NanoSight社製)では、直径(粒子径)は、粒子のブラウン運動の速度を計測し、その速度から算出することができ、最頻粒子径は、存在するナノ粒子の粒子径分布から、モード径として確認することができる。
The bubble diameter (particle diameter) contained in the nanobubble water, and the mode particle diameter and the number of bubbles described later are values obtained by measuring the Brownian movement speed of the bubbles in water using the nanoparticle tracking analysis method. In this specification, numerical values measured by the nanoparticle analysis system Nanosite Series (manufactured by NanoSight) are adopted.
In the nanoparticle analysis system Nanosite Series (manufactured by NanoSight), the diameter (particle diameter) can be calculated from the speed of the Brownian motion of the particle, and the mode particle diameter exists. The mode diameter can be confirmed from the particle size distribution of the nanoparticles.
 本発明においては、ヨトウムシの防除効果がより向上する理由から、上記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmであることが好ましく、30~300nmであることがより好ましく、特に、70~130nmであることが更に好ましい。 In the present invention, the mode particle diameter of the bubbles contained in the nanobubble water is preferably 10 to 500 nm, more preferably 30 to 300 nm, in particular, for the reason that the effect of controlling weevil is further improved. More preferably, it is 70 to 130 nm.
 上記ナノバブル水に含まれる気泡を構成する気体特に限定されないが、水中に長時間残存させる観点から、水素以外の気体が好ましく、具体的には、例えば、空気、酸素、窒素、フッ素、二酸化炭素、及びオゾンなどが挙げられる。これらのうち、ヨトウムシの防除効果がより一層向上する理由から、酸素、窒素、オゾン及び二酸化炭素からなる群から選択される少なくとも1種の気体を含むことが好ましく、特に、植物体の生育が良好となり、また、気泡がより長時間残存することができる理由から、酸素を含むことがより好ましい。
 ここで、酸素を含むこととは、空気中の酸素濃度よりも高い濃度で含むことをいう。窒素、及び二酸化炭素も同様である。なお、酸素の濃度については、気泡中の30体積%以上であることが好ましく、50体積%超100体積%以下であることが好ましい。
Although the gas constituting the bubbles contained in the nanobubble water is not particularly limited, a gas other than hydrogen is preferable from the viewpoint of remaining in water for a long time, specifically, for example, air, oxygen, nitrogen, fluorine, carbon dioxide, And ozone. Among these, it is preferable to contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone, and carbon dioxide for the reason that the control effect of weevil is further improved. In addition, it is more preferable that oxygen is contained because the bubbles can remain for a longer time.
Here, including oxygen means containing at a concentration higher than the oxygen concentration in the air. The same applies to nitrogen and carbon dioxide. In addition, about the density | concentration of oxygen, it is preferable that it is 30 volume% or more in a bubble, and it is preferable that it is more than 50 volume% and 100 volume% or less.
 上記ナノバブル水は、ヨトウムシの防除効果が一段と向上する理由から、1×10個~1×1010個/mLの気泡を有していることが好ましく、特に、気泡の生成時間と気泡の残存性のバランスが良好となる理由から、1×10個/mLより多く、且つ1×1010個/mLより少ない気泡を有していることがより好ましく、5×10個/mL~5×10個/mLの気泡を有していることが更に好ましい。 The nanobubble water preferably has 1 × 10 8 to 1 × 10 10 cells / mL of bubbles for the reason that the control effect of weevil is further improved. reasons balance of sex is good, more than 1 × 10 8 cells / mL, and more preferably that and has fewer bubbles than 1 × 10 10 cells / mL, 5 × 10 8 cells / mL ~ 5 It is more preferable to have × 10 9 bubbles / mL.
 上記ナノバブル水の生成方法としては、例えば、スタティックミキサー法、ベンチュリ法、キャビテーション法、蒸気凝集法、超音波法、旋回流法、加圧溶解法、及び微細孔法等が挙げられる。
 ここで、本発明のヨトウムシの防除方法は、上記ナノバブル水を施用する前に、上記ナノバブル水を生成させる生成工程を有していてもよい。すなわち、本発明のヨトウムシの防除方法は、例えば、貯水タンク、井戸、若しくは水道等の水源から水(原水)をナノバブル生成装置に取り込んでナノバブル水を生成させる生成工程と、生成したナノバブル水を植物体に対して施用する施用工程とを有する防除方法であってもよい。
 なお、水源からの水をナノバブル生成装置に取り込む手法としては、例えば、桶又はポンプ等を用いて水源から汲み上げた水をナノバブル生成装置に供給する手法、並びに水源とナノバブル生成装置との間に敷設された流路をナノバブル生成装置に繋いで流路からナノバブル生成装置へ水を直接送り込む手法等が挙げられる。
Examples of the method for producing nanobubble water include a static mixer method, a venturi method, a cavitation method, a vapor agglomeration method, an ultrasonic method, a swirling flow method, a pressure dissolution method, and a micropore method.
Here, the method for controlling a weevil of the present invention may have a generation step of generating the nanobubble water before applying the nanobubble water. That is, the method for controlling a weevil of the present invention includes, for example, a generation step of taking water (raw water) from a water source such as a water storage tank, a well, or a water supply into a nanobubble generation device to generate nanobubble water, and the generated nanobubble water is planted. The control method which has an application process applied with respect to a body may be sufficient.
In addition, as a method of taking water from the water source into the nano bubble generating device, for example, a method of supplying water pumped up from the water source using a dredge or a pump to the nano bubble generating device, and laying between the water source and the nano bubble generating device For example, a method of directly connecting water to the nanobubble generating device by connecting the flow channel to the nanobubble generating device.
 また、上記ナノバブル水の生成方法としては、意図的にラジカルを発生させることがない装置を用いた生成方法が好ましく、具体的には、例えば、特開2018-15715号公報の[0080]~[0100]段落に記載されたナノバブル生成装置を用いて生成する方法が挙げられる。なお、上記の内容は本明細書に組み込まれる。 Further, as the method for producing the nanobubble water, a production method using an apparatus that does not intentionally generate radicals is preferable. [0100] and a method of generating using the nanobubble generating device described in the paragraph. The above contents are incorporated herein.
 意図的にラジカルを発生させることがない他のナノバブル生成装置としては、例えば、水を吐出する液体吐出機と、液体吐出機から吐出された水に気体を加圧して混入させる気体混入機と、気体を混入させた水を内部に通すことにより水中に微細気泡を生成する微細気泡生成器と、を有する微細気泡生成装置であって、上記気体混入機が、上記液体吐出機と上記微細気泡生成器の間において、加圧された状態で上記微細気泡生成器に向かって流れる液体に、気体を加圧して混入させる微細気泡生成装置が挙げられる。具体的には、図1に示すナノバブル生成装置が挙げられる。
 図1に示すナノバブル生成装置10は、その内部に液体吐出機30、気体混入機40及びナノバブル生成ノズル50を備える。
 液体吐出機30は、ポンプによって構成され、ナノバブル水の原水(例えば、井戸水)を取り込んで吐出する。気体混入機40は、圧縮ガスが封入された容器41と、略筒状の気体混入機本体42とを有し、液体吐出機30から吐出された水を気体混入機本体42内に流しつつ、気体混入機本体42内に容器41内の圧縮ガスを導入する。これにより、気体混入機本体42内で気体混入水が生成されることになる。
 ナノバブル生成ノズル50は、その内部に気体混入水が通過することにより、加圧溶解の原理に従って気体混入水中にナノバブルを発生させるものであり、その構造としては、特開2018-15715号公報に記載されたナノバブル生成ノズルと同じ構造が採用できる。ナノバブル生成ノズル50内に生成されたナノバブル水は、ナノバブル生成ノズル50の先端から噴出した後、ナノバブル生成装置10から流出し、不図示の流路内を通じて所定の利用先に向けて送水される。
 以上のようにナノバブル生成装置10では、気体混入機40が、液体吐出機30とナノバブル生成ノズル50の間において、加圧された状態でナノバブル生成ノズル50に向かって流れる水(原水)に、圧縮ガスを混入させる。これにより、液体吐出機30の吸込み側(サクション側)で気体を水に混入させるときに生じるキャビテーション等の不具合を回避することができる。また、ガスが加圧(圧縮)された状態で水に混入されるので、ガス混入箇所での水の圧力に抗してガスを混入させることができる。このため、ガス混入箇所において特に負圧を発生させなくとも、ガスを適切に水に混入させることが可能となる。
 さらに、液体吐出機30のサクション側に、井戸又は水道等の水源から供給される水の流路が繋ぎ込まれており、その流路において液体吐出機30の上流側から液体吐出機30に流れ込む水の圧力(すなわち、サクション側の水圧)が正圧であるとよい。この場合には、上記の構成がより有意義なものとなる。すなわち、液体吐出機30の上流側の水圧(サクション圧)が正圧となる場合には、液体吐出機30の下流側でガスを水に混入させることになるため、液体吐出機30の下流側でもガスを適切に水に混入させることができるナノバブル生成装置10の構成がより際立つことになる。
Other nanobubble generation devices that do not intentionally generate radicals include, for example, a liquid discharger that discharges water, a gas mixer that pressurizes and mixes gas into water discharged from the liquid discharger, and A microbubble generator for generating microbubbles in water by passing water mixed with gas inside, wherein the gas mixer includes the liquid ejector and the microbubble generator There is a fine bubble generating device that pressurizes and mixes gas into the liquid flowing toward the fine bubble generator in a pressurized state between the vessels. Specifically, the nanobubble generator shown in FIG.
A nanobubble generating device 10 shown in FIG. 1 includes a liquid discharger 30, a gas mixing device 40, and a nanobubble generating nozzle 50 therein.
The liquid discharger 30 is configured by a pump, and takes in and discharges nanobubble water raw water (for example, well water). The gas mixing device 40 includes a container 41 in which compressed gas is sealed and a substantially cylindrical gas mixing device main body 42. While flowing water discharged from the liquid discharge device 30 into the gas mixing device main body 42, The compressed gas in the container 41 is introduced into the gas mixing machine main body 42. As a result, gas-containing water is generated in the gas-mixing machine main body 42.
The nanobubble generating nozzle 50 generates nanobubbles in the gas-mixed water according to the principle of pressure dissolution by passing the gas-mixed water through the nozzle, and the structure thereof is described in JP-A-2018-15715. The same structure as the nanobubble generating nozzle made can be adopted. The nanobubble water generated in the nanobubble generating nozzle 50 is ejected from the tip of the nanobubble generating nozzle 50, then flows out from the nanobubble generating device 10, and is sent toward a predetermined usage destination through a flow path (not shown).
As described above, in the nanobubble generating device 10, the gas mixing device 40 is compressed into water (raw water) flowing toward the nanobubble generating nozzle 50 in a pressurized state between the liquid discharger 30 and the nanobubble generating nozzle 50. Mix gas. Thereby, it is possible to avoid problems such as cavitation that occur when gas is mixed into water on the suction side (suction side) of the liquid discharger 30. Further, since the gas is mixed in the water in a pressurized (compressed) state, the gas can be mixed against the pressure of the water at the gas mixing location. For this reason, it becomes possible to mix gas into water appropriately, without generating a negative pressure especially in a gas mixing location.
Further, a flow path of water supplied from a water source such as a well or water supply is connected to the suction side of the liquid discharger 30 and flows into the liquid discharger 30 from the upstream side of the liquid discharger 30 in the flow path. The water pressure (that is, the water pressure on the suction side) may be positive. In this case, the above configuration becomes more meaningful. That is, when the water pressure (suction pressure) on the upstream side of the liquid discharger 30 is a positive pressure, the gas is mixed into the water on the downstream side of the liquid discharger 30. However, the configuration of the nanobubble generating apparatus 10 that can appropriately mix the gas into water becomes more prominent.
 また、上記ナノバブル水の生成に使用する水(原水)については特に限定されず、例えば、雨水、水道水、井水、農業用水、及び蒸留水等を使用することができる。
 このような水は、ナノバブル水の発生に供される前に他の処理を施されたものであってもよい。他の処理としては、例えば、pH調整、沈殿、ろ過、及び滅菌(殺菌)等が挙げられる。具体的には、例えば、農業用水を使用する場合、典型的には、沈殿及びろ過のうちの少なくとも一方の処理が施された後の農業用水を使用してもよい。
Moreover, it does not specifically limit about the water (raw water) used for the production | generation of the said nano bubble water, For example, rain water, tap water, well water, agricultural water, distilled water, etc. can be used.
Such water may have been subjected to other treatments before being used for generation of nanobubble water. Examples of other treatments include pH adjustment, precipitation, filtration, and sterilization (sterilization). Specifically, for example, when agricultural water is used, the agricultural water after at least one of precipitation and filtration may be used.
 〔ナノバブルの施用態様〕
 本発明において、上記ナノバブル水の植物体への施用態様は、植物体の栽培方法により異なるため特に限定されないが、例えば、土耕栽培において上記ナノバブル水を散水する態様、土耕栽培において上記ナノバブル水によって希釈された農薬を散布する態様、養液栽培(水耕、噴霧耕、若しくは固形培地耕)又は養液土耕栽培(灌水同時施工栽培)において上記ナノバブル水によって希釈された培養液を培地に供給する態様、及び、養液土耕栽培において上記ナノバブル水をそれ単独で散水(灌水)する態様などが挙げられる。なお、これらの施用態様は、あくまでも一例に過ぎず、植物体の生育過程で上記ナノバブル水を好適に施用できる態様であればよい。
 また、操作が簡便であり、ヨトウムシを効果的に防除できる理由から、上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布のうち、少なくとも一方を実施するのが好ましく、上記ナノバブル水を用いた散水、及び、上記ナノバブル水を用いて希釈した農薬の散布の双方を実施するのがより好ましい。
 また、土耕栽培、特に露地栽培であれば、上記ナノバブル水の施用によるヨトウムシの防除効果が際立って発揮されるようになる。
[Nanobubble application mode]
In the present invention, the mode of application of the nanobubble water to the plant body is not particularly limited because it varies depending on the cultivation method of the plant body. For example, the mode of spraying the nanobubble water in soil cultivation, the nanobubble water in soil cultivation In the aspect of spraying the pesticide diluted by the above, the culture solution diluted with the nanobubble water in the hydroponic culture (hydroponic, spray plowing, or solid medium plowing) or the hydroponic soil plowing (simultaneous irrigation cultivation) is used as the medium The aspect which supplies, the aspect which waters (irrigates) the said nano bubble water independently in hydroponics soil cultivation, etc. are mentioned. In addition, these application aspects are only an example to the last, and should just be an aspect which can apply the said nano bubble water suitably in the growth process of a plant body.
In addition, it is preferable to carry out at least one of watering using the nanobubble water and spraying the agricultural chemical diluted with the nanobubble water because the operation is simple and can effectively control the weevil. More preferably, both water spraying using the nanobubble water and spraying of the agricultural chemical diluted with the nanobubble water are carried out.
Moreover, if it is soil cultivation cultivation, especially outdoor cultivation, the control effect of the weevil by application of the said nano bubble water comes to be exhibited notably.
 また、上記ナノバブル水を散水する方式については、特に限定されないが、例えば、植物体の一部に掛ける方法、植物体が植えられた土壌に噴霧又は放水する態様、土壌に滴下する態様、及び、土壌中に埋設された点滴チューブから土壌中に灌水する態様等が挙げられる。 In addition, the method of sprinkling the nanobubble water is not particularly limited, for example, a method of hanging on a part of the plant, a mode of spraying or discharging water on the soil in which the plant is planted, a mode of dropping on the soil, and Examples include irrigation into soil from an infusion tube embedded in the soil.
 また、散水の実施時期及び回数については、栽培地域及び天候等に応じて異なるため特に限定されないが、少雨で乾燥した環境でヨトウムシが発生し易くなることから、植物体の栽培過程中、雨季に該当する時期において雨天日以外が続いた場合に、上記ナノバブル水を用いて散水工程を実施すると、より望ましい。ここで、「雨季に該当する時期」とは、例年であれば一定量以上の降水量が見込まれる時期であり、日本であれば6月~8月の時期である。この時期において雨天日以外の日、具体的には、晴天、晴れ及び曇りの日数が所定日数(例えば、2週間程度)以上連続した場合に、上記ナノバブル水を用いて散水工程を実施するのが望ましい。
 より一層好ましい散水の態様を述べると、植物体の栽培期間中、雨季に該当する時期において、植物体の培地である土壌が乾燥して植物体の葉が枯れた場合に、上記ナノバブル水を用いた散水を実施するのがよい。ここで、「葉が枯れる」とは、水分不足によって葉(特に、先端部)が褐色化して萎れた状態となることである。
 なお、生姜を栽培する場合には、通常、生姜の生育段階において地上に出た葉の枚数が4~6枚以上となる時期が梅雨時期にあたり、その時期中に雨天日以外の日が連続した場合に上記ナノバブル水を用いた散水を実施するとよい。
In addition, there are no particular restrictions on the timing and frequency of watering, as it varies depending on the cultivation area and the weather, etc., but weevil is likely to occur in a dry environment with little rain. It is more desirable to carry out the watering process using the nanobubble water when a day other than rainy days continues at the relevant time. Here, the “period corresponding to the rainy season” is a period when a certain amount or more of precipitation is expected in an ordinary year, and in Japan is a period from June to August. When a day other than a rainy day at this time, specifically, when the number of sunny days, sunny days, and cloudy days continues for a predetermined number of days (for example, about two weeks), the water spraying step is performed using the nanobubble water. desirable.
To describe a more preferable mode of watering, the nanobubble water is used when the soil of the plant medium dries and the plant leaves wither during the cultivation period of the plant during the rainy season. It is better to carry out watering. Here, “leaves with leaves” means that the leaves (particularly the tip) are browned and deflated due to lack of moisture.
When ginger is cultivated, the period when the number of leaves on the ground during the growth stage of the ginger is 4-6 or more is the rainy season, and the days other than the rainy day are consecutive during that season. In such a case, watering using the nanobubble water may be performed.
 また、農薬を散布する方式については、特に限定されるものではないが、一例を挙げると、土壌又は植物体に噴霧又は滴下して散布する方式、植物体の上方から飛散させたり滴下したりして散布する方式、あるいは、スプリンクラーのノズルから圧力を掛けて吐出して散布する方式等のいずれの方式を用いてもよい。なお、農薬の薬効を効果的に発現させる理由から、ナノバブル水を用いて希釈された農薬を植物体の葉面に付着させる態様(例えば、噴霧散布、葉面への塗付、及び上空からの飛散等)が望ましい。 In addition, the method for spraying agricultural chemicals is not particularly limited. For example, a method for spraying or dripping on the soil or the plant body, a method for spraying or dropping the plant body, or a method for spraying or dropping the plant body. Any method may be used, such as a method of spraying and spraying by applying pressure from a sprinkler nozzle. In addition, for the purpose of effectively expressing the medicinal effect of the pesticide, an aspect in which the pesticide diluted with nanobubble water is attached to the leaf surface of the plant (for example, spray spraying, application to the leaf surface, and from the sky Scattering etc. is desirable.
 また、農薬散布の実施時期については、栽培地域及び天候等に応じて異なるため特に限定されるものではないが、ヨトウムシを効果的に防除する点では、雨季が明ける時期(例えば、梅雨明けの時期)に実施するのが望ましい。特に、ヨトウムシは、前述したように、乾燥すると繁殖し易くなるため、植物の栽培過程中、雨季に該当する時期(例えば、梅雨時期)に雨天日以外の日が所定日数以上連続した場合に、農薬を散布するとよい。 The pesticide application time is not particularly limited because it varies depending on the cultivation area and the weather, etc., but in terms of effective control of weevil, the time when the rainy season ends (for example, the time when the rainy season ends) ) Is desirable. In particular, the weevil is easy to reproduce when dried, as described above, so that when a day other than the rainy day continues for a predetermined number of days or more in the rainy season (for example, the rainy season) during the plant cultivation process, It is better to spray pesticides.
 また、農薬散布の実施回数についても、農薬の種類等に応じて異なるために特に限定されるものではなく、1回以上実施すればよいが、好ましくは、植物体の栽培過程において、上記ナノバブル水を用いて希釈された農薬の散布を複数回(具体的には、2~3回)実施するのがよい。また、上述したように、農薬の薬効を効果的に発現させる理由から、各回の散布では、ナノバブル水を用いて希釈された農薬を植物体の葉面に付着させるのが好ましい。 Further, the number of times of pesticide spraying is not particularly limited because it varies depending on the type of pesticide and the like, and it may be performed one or more times. It is recommended to spray a diluted pesticide a plurality of times (specifically, 2 to 3 times). Further, as described above, for the purpose of effectively expressing the medicinal effect of the agricultural chemical, it is preferable to attach the agricultural chemical diluted with nanobubble water to the leaf surface of the plant body in each spraying.
 〔農薬〕
 本発明のヨトウムシの防除方法で用いる薬剤は特に限定されず、ヨトウムシの殺虫剤として公知の農薬を適宜利用することができる。このような農薬としては、例えば、ゼンターリ粒状水和剤、プレバソンフロアブル、オルトラン水和剤、マラソン乳剤、スミチオン乳剤、ベニカベジフル乳剤、ベニカR乳剤、ベニカS乳剤、エルサン乳剤、エンセダン乳剤、フェニックス顆粒水和剤、プレオフロアブル、マッチ乳剤、サブリナフロアブル等が挙げられ、これらを1種単独で用いてもよく、あるいは2種以上を併用してもよい。
[Pesticides]
The chemical | medical agent used with the control method of the weevil of this invention is not specifically limited, A well-known agrochemical can be suitably utilized as an insecticide of a weevil. Such pesticides include, for example, Zentari granular wettable powder, Prevason flowable, Ortran wettable powder, Marathon emulsion, Sumithion emulsion, Benica vedifull emulsion, Benica R emulsion, Benica S emulsion, Elsan emulsion, Ensedan emulsion, Phoenix granule Examples thereof include wettable powder, preo flowable, match emulsion, sabrina flowable, etc., and these may be used alone or in combination of two or more.
 本発明においては、農薬の使用量は特に限定されないが、上記ナノバブル水100質量部に対して、0.00001~10質量部であることが好ましく、0.00005~5質量部であることがより好ましい。 In the present invention, the amount of the agrochemical used is not particularly limited, but is preferably 0.00001 to 10 parts by mass, more preferably 0.00005 to 5 parts by mass with respect to 100 parts by mass of the nanobubble water. preferable.
 〔他の成分〕
 上記ナノバブル水には、上記農薬以外の他の成分が含まれていてもよい。
 上記他の成分としては、例えば、肥料、界面活性剤、凍結防止剤、消泡剤、防腐剤、酸化防止剤、及び増粘剤等が挙げられる。なお、上記他の成分の種類、及び含有量は、特に限定されず、目的に応じて選択可能である。
 また、本発明においては、上記他の成分として、上記ナノバブル水中にラジカルを実質的に含まないことが好ましい。「ラジカルを実質的に含まない」ことについて付言すると、上記ナノバブル水の生成に使用する水(例えば、不純物を含む井水)などに起因して不可避的にラジカルが含まれるケースは、「ラジカルを実質的に含まない」ことになる。他方、何らかの人為的操作で生成させたラジカルを混入させるケースは、「ラジカルを実質的に含まない」ことにはならない。
[Other ingredients]
The nano bubble water may contain components other than the agricultural chemical.
Examples of the other components include fertilizers, surfactants, antifreezing agents, antifoaming agents, preservatives, antioxidants, and thickeners. In addition, the kind of said other component and content are not specifically limited, It can select according to the objective.
Moreover, in this invention, it is preferable that the said nano bubble water does not contain a radical substantially as said other component. When it is added that “substantially free of radicals”, the case where radicals are inevitably included due to water (for example, well water containing impurities) used for the generation of the nanobubble water, It is substantially not included. " On the other hand, a case where a radical generated by some artificial manipulation is mixed does not mean that the radical is not substantially contained.
 〔植物体〕
 本発明においては、上記ナノバブル水を施用する植物体は、ヨトウムシの食害を被る可能性がある植物体であればよい。
 具体的には、例えば、果樹類(例えば、ブドウ、カンキツ、及びモモなど);
 果菜類、より詳しくは、ナス科植物(例えば、ナス、トマト、ピーマン、及びキュウリなど)、ウリ科植物(例えばスイカ、及びメロンなど)、並びにバラ科植物(例えば、イチゴなど);
 マメ類(例えば、大豆、インゲン、エンドウ、及びソラマメなど);
 根菜類(例えば、馬鈴薯、甘藷、サトイモ、大根、ニンジン、生姜、及びごぼうなど);
 茎菜類(例えば、ネギ、及びタマネギなど);
 葉菜類(例えば、キャベツ、白菜、大阪しろな、春菊、レタス、ミツバ、及びホウレンソウなど);
 観賞用植物(例えば、菊、ケイトウ、カーネーション、パンジー、葉牡丹、及びストックなど);
 が挙げられる。
 これらのうち、根菜類及び葉菜類がより好ましく、生姜又はキャベツが特に好ましい。
[Plant]
In this invention, the plant body which applies the said nano bubble water should just be a plant body which may suffer from the damage of a weevil.
Specifically, for example, fruit trees (such as grapes, citrus, and peaches);
Fruits and vegetables, more specifically solanaceous plants (eg, eggplant, tomatoes, peppers, cucumbers, etc.), cucurbits (eg, watermelons, melons, etc.), and roses (eg, strawberries, etc.);
Legumes (eg, soy beans, green beans, peas, broad beans, etc.);
Root vegetables (eg, potato, sweet potato, taro, radish, carrot, ginger and burdock);
Stem vegetables (eg, leek, onion, etc.);
Leafy vegetables (eg, cabbage, Chinese cabbage, Osaka Shirona, spring chrysanthemum, lettuce, honey bees, and spinach);
Ornamental plants (eg chrysanthemums, celosia, carnations, pansies, leaf peony, and stock);
Is mentioned.
Of these, root vegetables and leaf vegetables are more preferable, and ginger or cabbage is particularly preferable.
 以下に、実施例を挙げて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The materials, amounts used, ratios, processing contents, processing procedures, and the like shown in the following examples can be appropriately changed without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the following examples.
(試験1)
 <試験の内容>
 試験1は、2017年の4月~9月にかけて埼玉県行田市にある生姜(品種:大生姜)の圃場において、以下の区分により実施した。なお、試験区I及びIIは、互いに同一の圃場に設定されている。
 試験区I:露地栽培にて生姜を栽培し、生姜への散水、及び、散布する農薬(具体的には、トレボン粉剤)の希釈にナノバブル水を用いた。
 試験区II:露地栽培にて生姜を栽培し、生姜への散水、及び、散布する農薬(具体的には、トレボン粉剤)の希釈にナノバブル水を用いず、通常の水(ナノバブルを含まない水)を用いた。
 各試験区では、それぞれ、1500株の種生姜の植え付けを行い、常法に従って生姜を栽培した。
 また、散水の頻度及び量については、栽培期間中の天候等に応じて適定し、両試験区で概ね同様となるように調整した。なお、試験を実施した2017年の梅雨時期には、晴天又は晴れの日が続いたために降雨量が例年より少なく、雨天日以外の日(詳しくは、晴天日又は晴れの日)が約2週間続いた時期に散水を実施した。
 また、施用した農薬の種類、時期、希釈率、及び施用回数については、常法に従って設定し、両試験区で概ね同様となるように調整した。具体的には、上述のトレボン粉剤を所定の濃度になるまで希釈したものを7月下旬に1回散布した。
(Test 1)
<Content of the test>
Test 1 was conducted from April to September 2017 in a field of ginger (variety: daisei ginger) in Gyoda City, Saitama Prefecture according to the following categories. The test sections I and II are set in the same field.
Test Zone I: Ginger was cultivated in open field cultivation, and nanobubble water was used for watering the ginger and diluting the agricultural chemical to be sprayed (specifically, Trebon powder).
Test Zone II: Growing ginger in open-air cultivation, sprinkling water into the ginger, and normal water (water that does not contain nanobubbles) without using nanobubble water to dilute the pesticides (specifically, trebon powder) ) Was used.
In each test plot, 1500 seedlings were planted and cultivated according to a conventional method.
Moreover, about the frequency and quantity of watering, it settled according to the weather etc. during a cultivation period, and it adjusted so that it might become substantially the same in both test sections. In addition, during the rainy season in 2017, when the test was conducted, the amount of rainfall was less than usual because of a sunny or sunny day, and the days other than the rainy day (specifically, sunny or sunny days) were about 2 weeks. Watering was carried out during the following period.
In addition, the type, timing, dilution rate, and number of applications of the applied pesticide were set in accordance with a conventional method and adjusted so as to be substantially the same in both test sections. Specifically, the above trebon powder was diluted to a predetermined concentration and sprayed once in late July.
 <ナノバブル水の生成方法>
 ナノバブル水は、ナノバブル生成装置(株式会社カクイチ製作所 アクアソリューション事業部(現:株式会社アクアソリューション)製、100V,10L/minタイプ)を用いて加圧溶解方式にて水中に気泡(ナノバブル)を発生させることで生成した。
 なお、ナノバブル水の生成用に使用した水(原水)は、水道水であり、気泡を構成する気体の種類は、酸素(工業用酸素、濃度:99.5体積%)であることとした。
 また、上記のナノバブル生成装置を用いてナノバブルを発生させる条件は、以下のとおりとした。
   水1mL当たりの気泡の数:5×10個/mL
   気泡のサイズ(最頻粒子径):100nm
<Nano bubble water generation method>
Nanobubble water generates bubbles (nanobubbles) in water using a nanobubble generator (Kakuichi Seisakusho Aqua Solution Division (currently Aqua Solution Co., Ltd., 100 V, 10 L / min type) under pressure and dissolution. It was generated by letting.
The water (raw water) used for producing the nanobubble water was tap water, and the type of gas constituting the bubbles was oxygen (industrial oxygen, concentration: 99.5% by volume).
Moreover, the conditions for generating nanobubbles using the nanobubble generating apparatus described above were as follows.
Number of bubbles per mL of water: 5 × 10 8 / mL
Bubble size (mode particle diameter): 100 nm
 <ヨトウムシの防除の評価>
 2017年9月に各試験区で栽培した生姜を収穫し、それぞれの試験区につき、任意に選択した1株を対象として、ヨトウムシによる食害の有無を確認した。具体的には、評価対象株の茎部のサイズを測定することで、ヨトウムシによる食害の有無を確認した。図2及び図3に示すように、試験区Iでは、試験区IIよりも生姜の茎部が肥大化しており、より多くの収穫量が得られた。つまり、試験区Iでは、試験区IIと比べてヨトウムシによる食害が抑えられたことが確認された。なお、図2は、試験区Iの生姜の画像を、図3は、試験区IIの生姜の画像を、それぞれ示しており、各図には、各試験区で選択した1株分の生姜を横に寝かせて測定した横幅の長さが図示されている。
<Evaluation of control of weevil>
Ginger cultivated in each test section was harvested in September 2017, and for each test section, the presence or absence of feeding damage was confirmed for one arbitrarily selected strain. Specifically, by measuring the size of the stem part of the evaluation target strain, the presence or absence of food damage due to the weevil was confirmed. As shown in FIG.2 and FIG.3, in the test section I, the stem part of the ginger was enlarged compared with the test section II, and a larger yield was obtained. In other words, it was confirmed that in the test area I, the damage caused by the weevil was suppressed as compared with the test area II. 2 shows an image of the ginger in the test area I, and FIG. 3 shows an image of the ginger in the test area II. In each figure, the ginger for one strain selected in each test area is shown. The length of the width measured by lying down is shown.
(試験2)
 <試験の内容>
 試験2は、2018年8月~同年10月にかけて長野県小諸市にあるキャベツの圃場において、以下の3区分により実施した。試験区III、IV及びVは、同一の圃場内に設定されており、互いに隣接している。
 試験区III:露地栽培にてキャベツを栽培し、定植時及び乾燥時の散水に、ナノバブル水ではない通常の農業用水を用いた。
 試験区IV:露地栽培にてキャベツを栽培し、定植時及び乾燥時の散水に、水1mL当たりの気泡数が2×10個/mLに調整されたナノバブル水を用いた。
 試験区V:露地栽培にてキャベツを栽培し、定植時及び乾燥時の散水に、水1mL当たりの気泡数が5×10個/mLに調整されたナノバブル水を用いた。
 各試験区では、それぞれ、40株のキャベツの苗を定植し、常法に従ってキャベツを栽培した。また、定植時及び乾燥時における散水の頻度及び量については、3つの試験区で概ね同様となるように調整した。なお、乾燥時とは、1週間雨が降らなかった時期である。また、試験2では、ナノバブル水1mL中の気泡数による優位性を試験するために、通常の栽培法では実施される農薬の散布を意図的に実施しなかった。
(Test 2)
<Content of the test>
Test 2 was conducted from August 2018 to October of the same year in a cabbage field in Komoro City, Nagano Prefecture according to the following three categories. Test sections III, IV, and V are set in the same field and are adjacent to each other.
Test Zone III: Cabbage was cultivated in open field cultivation, and normal agricultural water that was not nanobubble water was used for watering at the time of planting and drying.
Test group IV: Cabbage was cultivated in open field cultivation, and nanobubble water in which the number of bubbles per mL of water was adjusted to 2 × 10 8 / mL was used for watering at the time of planting and drying.
Test plot V: Cabbage was cultivated in open field cultivation, and nanobubble water in which the number of bubbles per mL of water was adjusted to 5 × 10 8 / mL was used for watering at the time of planting and drying.
In each test area, 40 cabbage seedlings were planted, and cabbage was cultivated according to a conventional method. In addition, the frequency and amount of watering at the time of planting and drying were adjusted to be substantially the same in the three test plots. In addition, the time of drying is the time when it did not rain for one week. Moreover, in the test 2, in order to test the predominance by the bubble number in 1 mL of nano bubble water, the spraying of the agrochemical implemented with a normal cultivation method was not implemented intentionally.
 <ナノバブル水の生成方法>
 ナノバブル水は、試験1と同様のナノバブル生成装置を用い、農業用水中に気泡(ナノバブル)を発生させることで生成した。ナノバブル水1mL当たりの気泡数は、前述したように試験区IVでは2×10個/mLとし、試験区Vでは5×10個/mLとした。ナノバブル水1mL当たりの気泡数は、例えば、上記のナノバブル生成装置の下流側にナノバブル水の貯留槽を設置し、貯留槽内のナノバブル水をナノバブル生成装置に返送してナノバブル水を系内で循環させ、その循環時間を変えることで調整可能である。
 それ以外のナノバブル水の生成条件は、試験1と試験2の間で同一である。
<Nano bubble water generation method>
Nanobubble water was generated by generating bubbles (nanobubbles) in agricultural water using the same nanobubble generator as in Test 1. As described above, the number of bubbles per mL of nanobubble water was 2 × 10 8 cells / mL in test group IV and 5 × 10 8 cells / mL in test group V. The number of bubbles per 1 mL of nanobubble water is set, for example, by installing a nanobubble water storage tank on the downstream side of the nanobubble generation apparatus, returning the nanobubble water in the storage tank to the nanobubble generation apparatus, and circulating the nanobubble water in the system. It can be adjusted by changing the circulation time.
The other generation conditions of nanobubble water are the same between Test 1 and Test 2.
 <ヨトウムシの防除の評価>
 2018年9月に各試験区で栽培した40株のキャベツを収穫し、それぞれの試験区につき、収穫した40株を対象として、キャベツの葉部分における食害度合い(虫食い度合い)を下記の評価区分に従って評価し、各評価区分に該当する株数を調査した。
 [評価区分]
  「食害なし」:葉部分に、食害を受けた部分が見られなかったもの
  「食害小」 :外側の葉部分に、食害を受けた部分が目立って存在していたものの、商品として出荷可能なもの
  「食害大」 :葉部分の全体に亘って、食害を受けた部分が存在しており、商品として出荷が困難なもの
 各試験区における評価結果は、下記の表1に示す通りである。また、試験区IVで収穫された食害が比較的小さいキャベツの外観を図4に、試験区IIIで収穫された食害大のキャベツの外観を図5に、それぞれ示す。
<Evaluation of control of weevil>
40 strains of cabbage cultivated in each test area were harvested in September 2018, and for each test area, the degree of feeding damage (degree of insect worms) in the cabbage leaf part was evaluated according to the following evaluation categories. We evaluated and investigated the number of stocks corresponding to each evaluation category.
[Evaluation category]
“No food damage”: No damage was found in the leaf part “Small food damage”: Although there was a noticeable damage in the outer leaf part, it could be shipped as a product Items “Large damage”: Parts that have been damaged by damage over the entire leaf part and are difficult to ship as products The evaluation results in each test section are as shown in Table 1 below. FIG. 4 shows the appearance of cabbage harvested in the test area IV with a relatively small food damage, and FIG. 5 shows the appearance of cabbage with a large food damage harvested in the test area III.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の評価結果から明らかなように、全試験区において食害が発生したが、ナノバブル水を施用した試験区IV及びVでは、ナノバブル水を施用しなかった試験区IIIよりも食害の規模が抑えられた。また、試験区IV及びVの間で評価結果を比較すると、ナノバブル水1mL中の気泡数が2×10個/mLである試験区IVよりも、5×10個/mLである試験区Vの方が、食害の規模がより小さくなることが明らかとなった。
 以上までに説明したように、試験1及び試験2の試験結果から、ナノバブル水によるヨトウムシの防除効果が明らかとなった。
As is clear from the above evaluation results, although the damage occurred in all the test sections, the scale of the damage was suppressed in the test sections IV and V where the nanobubble water was applied, compared to the test section III where the nanobubble water was not applied. It was. Moreover, when the evaluation results are compared between the test sections IV and V, the test section in which the number of bubbles in 1 mL of nanobubble water is 2 × 10 8 / mL is 5 × 10 8 pieces / mL rather than the test section IV. It became clear that the scale of damage was smaller in V.
As explained above, the test results of Test 1 and Test 2 revealed the effect of controlling weevil by nanobubble water.
10 ナノバブル生成装置
30 液体吐出機
40 気体混入機
41 容器
42 気体混入機本体
50 ナノバブル生成ノズル
DESCRIPTION OF SYMBOLS 10 Nano bubble production | generation apparatus 30 Liquid discharge machine 40 Gas mixing machine 41 Container 42 Gas mixing machine main body 50 Nano bubble production | generation nozzle

Claims (9)

  1.  ナノバブル水を植物体に施用する、ヨトウムシの防除方法。 ヨ A method for controlling weevil by applying nanobubble water to plants.
  2.  前記ナノバブル水を用いた散水、及び、前記ナノバブル水を用いて希釈した農薬の散布のうち、少なくとも一方を実施する、請求項1に記載のヨトウムシの防除方法。 The method for controlling a weevil according to claim 1, wherein at least one of water spraying using the nanobubble water and spraying of the agricultural chemical diluted with the nanobubble water is performed.
  3.  前記植物体の栽培期間中、雨季に該当する時期において、前記植物体の培地である土壌が乾燥して前記植物体の葉が枯れた場合に、前記ナノバブル水を用いた散水を実施する、請求項2に記載のヨトウムシの防除方法。 During the cultivation period of the plant body, when the soil that is the medium of the plant body dries and leaves of the plant body wither in the period corresponding to the rainy season, watering using the nanobubble water is performed. Item 3. A method for controlling a weevil according to item 2.
  4.  前記ナノバブル水を用いて希釈された農薬を前記植物体の葉面に付着させる、請求項2又は3に記載のヨトウムシの防除方法。 The method for controlling a weevil according to claim 2 or 3, wherein the pesticide diluted with the nanobubble water is attached to the leaf surface of the plant body.
  5.  前記ナノバブル水に含まれる気泡の最頻粒子径が10~500nmである、請求項1~4のいずれかに記載のヨトウムシの防除方法。 The method for controlling a weevil according to any one of claims 1 to 4, wherein the mode diameter of the bubbles contained in the nanobubble water is 10 to 500 nm.
  6.  前記ナノバブル水に含まれる気泡が、酸素、窒素、オゾン及び二酸化炭素からなる群から選択される少なくとも1種の気体を含む、請求項1~5のいずれかに記載のヨトウムシの防除方法。 The method for controlling a weevil according to any one of claims 1 to 5, wherein the bubbles contained in the nanobubble water contain at least one gas selected from the group consisting of oxygen, nitrogen, ozone and carbon dioxide.
  7.  前記ナノバブル水が、1×10個/mL~1×1010個/mLの気泡を有する、請求項1~6のいずれかに記載のヨトウムシの防除方法。 The method for controlling weevil according to any one of claims 1 to 6, wherein the nanobubble water has bubbles of 1 × 10 8 cells / mL to 1 × 10 10 cells / mL.
  8.  前記植物体が、根菜類又は葉菜類である、請求項1~7のいずれかに記載のヨトウムシの防除方法。 The method for controlling weevil according to any one of claims 1 to 7, wherein the plant is a root vegetable or a leaf vegetable.
  9.  前記植物体が、生姜又はキャベツである、請求項8に記載のヨトウムシの防除方法。 The method for controlling weevil according to claim 8, wherein the plant is ginger or cabbage.
PCT/JP2019/021248 2018-05-30 2019-05-29 Cabbage moth eradication method WO2019230779A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020522240A JP7366890B2 (en) 2018-05-30 2019-05-29 How to control armyworms

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018103095 2018-05-30
JP2018-103095 2018-05-30

Publications (1)

Publication Number Publication Date
WO2019230779A1 true WO2019230779A1 (en) 2019-12-05

Family

ID=68697025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/021248 WO2019230779A1 (en) 2018-05-30 2019-05-29 Cabbage moth eradication method

Country Status (3)

Country Link
JP (1) JP7366890B2 (en)
TW (1) TW202002790A (en)
WO (1) WO2019230779A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301814A (en) * 1996-03-11 1997-11-25 Sankyo Co Ltd Insecticidal composition strengthened in potency
JP2009542746A (en) * 2006-07-11 2009-12-03 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Combinations of active compounds having insecticidal and acaricidal properties
JP2010094117A (en) * 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2011073988A (en) * 2009-09-29 2011-04-14 Japan Techno Co Ltd Plant disease controlling functional agent and method of growing plant using the same
JP2016053004A (en) * 2014-09-03 2016-04-14 サンスター株式会社 Preparation method of diluted pesticide and diluted pesticide
JP2018075240A (en) * 2016-11-10 2018-05-17 国立大学法人 東京大学 Co2 micro nanobubble water generated in water opened to air by applying several atmospheres for conducting sterilization and bacteriostasis of microorganism or pest control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09301814A (en) * 1996-03-11 1997-11-25 Sankyo Co Ltd Insecticidal composition strengthened in potency
JP2009542746A (en) * 2006-07-11 2009-12-03 バイエル・クロツプサイエンス・アクチエンゲゼルシヤフト Combinations of active compounds having insecticidal and acaricidal properties
JP2010094117A (en) * 2008-10-16 2010-04-30 Gunjiro Higashitani Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
JP2011073988A (en) * 2009-09-29 2011-04-14 Japan Techno Co Ltd Plant disease controlling functional agent and method of growing plant using the same
JP2016053004A (en) * 2014-09-03 2016-04-14 サンスター株式会社 Preparation method of diluted pesticide and diluted pesticide
JP2018075240A (en) * 2016-11-10 2018-05-17 国立大学法人 東京大学 Co2 micro nanobubble water generated in water opened to air by applying several atmospheres for conducting sterilization and bacteriostasis of microorganism or pest control

Also Published As

Publication number Publication date
JP7366890B2 (en) 2023-10-23
TW202002790A (en) 2020-01-16
JPWO2019230779A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP2010094117A (en) Method of cultivating crop without using agricultural chemical, and soil improvement agent for use therefor
WO2019230778A1 (en) Soil amelioration method
JP2022040202A (en) Fertilizer absorption improvement method
WO2019230779A1 (en) Cabbage moth eradication method
CN113273346B (en) Method for increasing aromatic substance content of fruits and vegetables and gene expression of fruits and vegetables by using hydrogen-rich water
JP7370972B2 (en) How to control magnesium deficiency
WO2019230776A1 (en) Method of suppressing clubroot
WO2019230753A1 (en) Whitefly eradication method
JP7324747B2 (en) Method for controlling bacterial spot
JP7327922B2 (en) Agent for preventing or improving soil damage
JP7402930B2 (en) How to control spider mites
WO2019230786A1 (en) Ginger cultivation method
WO2019230755A1 (en) Scale insect eradication method and scale insecticide composition for agricultural and horticultural use
WO2019230764A1 (en) Antifungal method for fruit and antifungal composition for fruit
WO2022064262A1 (en) Nano-silver for the preservation and treatment of diseases in agriculture
WO2019230777A1 (en) Method for extending harvesting period
CN115334880A (en) Method for reducing fusarium contamination by applying fumigant
JPH03173804A (en) Method for controlling flower-setting of citrus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19812629

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020522240

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19812629

Country of ref document: EP

Kind code of ref document: A1