JP7361052B2 - 衛星ベースの通信に対するタイミングアドバンス - Google Patents

衛星ベースの通信に対するタイミングアドバンス Download PDF

Info

Publication number
JP7361052B2
JP7361052B2 JP2020563670A JP2020563670A JP7361052B2 JP 7361052 B2 JP7361052 B2 JP 7361052B2 JP 2020563670 A JP2020563670 A JP 2020563670A JP 2020563670 A JP2020563670 A JP 2020563670A JP 7361052 B2 JP7361052 B2 JP 7361052B2
Authority
JP
Japan
Prior art keywords
satellite
estimated
communications
user equipment
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020563670A
Other languages
English (en)
Other versions
JP2021524192A (ja
Inventor
マハディ アラスティ
シッダールタ チェヌモル
アミラリ エマミ
マリアム ソロンド
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dish Wireless LLC
Original Assignee
Dish Wireless LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dish Wireless LLC filed Critical Dish Wireless LLC
Publication of JP2021524192A publication Critical patent/JP2021524192A/ja
Application granted granted Critical
Publication of JP7361052B2 publication Critical patent/JP7361052B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/204Multiple access
    • H04B7/212Time-division multiple access [TDMA]
    • H04B7/2125Synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Description

[相互参照]
この出願は、2018年5月11日に出願の“TIMING ADVANCE FOR SATELLITE-BASED COMMUNICATIONS”という名称の米国仮特許出願番号62/670,349への優先権を主張する“TIMING ADVANCE FOR SATELLITE-BASED COMMUNICATIONS”という名称の2018年7月27日に出願の非仮特許出願番号16/047,355への優先権を主張し、それらの全体は、全ての目的のために参照によりこれによって組み込まれる。
ユーザ装置(UE)と基地局(例えば、eNodeB、gNodeB)との間の通信は、(例えば、UEにより)信号が送信されて(例えば、基地局により)受信される時の間に、ある量の経過時間をもたらす。遅延のこの量は、電磁放射の伝搬速度に起因する。典型的には、UEは基地局の比較的短距離内にある傾向があるので、遅延のこの量は比較的小さい。実例として、UEと基地局との間は、1キロメートル~10キロメートル未満の範囲であることが一般的であり得る。しかしながら、この距離が著しくより大きいことがある状況は存在する。
ユーザ装置の通信に対する推定タイミングアドバンスを使用することに関する様々な実施形態が説明される。幾つかの実施形態では、ユーザ装置の通信に対する推定タイミングアドバンスを使用するための方法が説明される。該方法は、全球測位衛星システムを使用してユーザ装置の位置をユーザ装置によって判定することを含み得る。方法は、ユーザ装置の判定された位置と推定衛星位置とを使用して、ユーザ装置と通信衛星との間の第1の推定距離をユーザ装置によって計算することを含み得る。推定衛星位置は、通信衛星の推定軌道位置を指し示し得る。方法は、通信衛星と通信ネットワークゲートウェイとの間の第2の推定距離をユーザ装置によって判定することを含み得る。ユーザ装置と通信ネットワークとの間の通信は、通信ネットワークゲートウェイと通信衛星とを通じてルーティングされ得る。方法は、計算された第1の推定距離と判定された第2の推定距離とを使用して、推定タイミングオフセットをユーザ装置によって計算することを含み得る。方法は、アップリンクのデータフレームの送信のタイミングが、計算された推定タイミングオフセットに基づき得るように、アップリンクのデータフレームをユーザ装置によって通信衛星へ送信することを含み得る。
こうした方法の実施形態は、以下の機構の内の1つ以上を含み得、通信衛星へ送信されるアップリンクのデータフレームは、物理ランダムアクセスチャネル(PRACH)プリアンブルを含み得る。方法は、第1の推定距離と第2の推定距離とが推定されることに起因するタイミングエラーの量を通信ネットワークゲートウェイによって判定することを含み得る。方法は、タイミングエラーの量に基づいてタイミングアドバンス(TA)値を通信ネットワークゲートウェイによって判定することを含み得る。方法は、TA値を含むタイミングアドバンスコマンドを通信ネットワークゲートウェイによって通信衛星を介してユーザ装置へ送信することを含み得る。方法は、TA値を含むTAコマンドをユーザ装置によって通信衛星を介してユーザ装置が受信することを含み得る。方法は、補正TA値を創出するために、推定タイミングアドバンスと受信されたTA値とをユーザ装置によって使用することを含み得る。方法は、データの送信のタイミングが補正TA値に基づき得るように、データをユーザ装置によって通信衛星へ送信することを含み得る。該TA値は、長さが12ビットであり得る。TA値は、3846の既定の最大値を有し得る。TA値は、2.5ms未満のタイミング補正を可能にし得る。通信衛星は、地球の対地同期軌道にあり得る。総距離のエラーの最大量は100kmであり得る。総距離は、判定された第2の推定距離と合計された、計算された第1の推定距離であり得る。通信衛星と通信ネットワークゲートウェイとの間の第2の推定距離を判定することは、ローカルデータストレージ設備から第2の推定距離にアクセスすることを含み得る。通信衛星と通信ネットワークゲートウェイとの間の第2の推定距離を判定することは、第2の推定距離を指し示すシステム情報同報メッセージを受信することを含み得る。方法は、通信衛星のローカルに蓄積された軌道情報にアクセスすることを更に含み得る。通信衛星は、地球低軌道(LEO)又は地球中軌道(MEO)にあり得る。方法は、ローカルに蓄積された軌道情報に基づいて推定衛星位置を計算することを含み得る。通信ネットワークゲートウェイはgNodeBを含み得る。
幾つかの実施形態では、衛星ベースの通信に対する推定タイミングアドバンスを使用するためのデバイスが説明される。該デバイスは、通信を衛星ゲートウェイシステムへ中継する通信衛星と直接通信するための衛星アンテナを含み得る。デバイスは、全球測位衛星システム(GNSS)コンポーネントを含み得る。デバイスは、衛星アンテナ及びGNSSコンポーネントと通信する1つ以上のプロセッサを含み得る。1つ以上のプロセッサは、GNSSコンポーネントを使用してデバイスの位置を判定するように構成され得る。1つ以上のプロセッサは、デバイスの判定された位置と推定衛星位置とを使用して、デバイスと通信衛星との間の第1の推定距離を計算するように構成され得る。推定衛星位置は、通信衛星の推定軌道位置を指し示し得る。1つ以上のプロセッサは、通信衛星と通信ネットワークゲートウェイとの間の第2の推定距離を判定し得る。デバイスと通信ネットワークとの間の通信は、通信ネットワークゲートウェイと通信衛星とを通じてルーティングされ得る。1つ以上のプロセッサは、計算された第1の推定距離と判定された第2の推定距離とを使用して推定タイミングオフセットを計算し得る。1つ以上のプロセッサは、アップリンクのデータフレームの送信のタイミングが、計算された推定タイミングオフセットに基づき得るように、アップリンクのデータフレームを衛星アンテナを介して通信衛星へ送信し得る。
こうした方法の実施形態は、以下の機構の内の1つ以上を含み得、通信衛星へ送信されるアップリンクのデータフレームは、物理ランダムアクセスチャネル(PRACH)プリアンブルを含み得る。1つ以上のプロセッサは、通信衛星を介してデバイスへ送信されたTA値を含むタイミングアドバンス(TA)コマンドを受信するように更に構成され得る。1つ以上のプロセッサは、補正TA値を創出するために推定タイミングアドバンスと受信されたTA値とを使用するように更に構成され得る。1つ以上のプロセッサは、データの送信のタイミングが補正TA値に基づき得るように、データを衛星アンテナを介して通信衛星へ送信するように更に構成され得る。
幾つかの実施形態では、衛星ベースの通信に対する推定タイミングアドバンスを使用するためのシステム。該システムは通信衛星を含み得る。システムは、通信衛星と通信する通信ネットワークゲートウェイシステムを含み得る。システムは、通信を衛星ゲートウェイシステムへ中継し得る通信衛星と通信するための衛星アンテナを含むユーザ装置を含み得る。ユーザ装置は、全球測位衛星システム(GNSS)コンポーネントを含み得る。ユーザ装置は、衛星アンテナ及びGNSSコンポーネントと通信する1つ以上のプロセッサを含み得る。1つ以上のプロセッサは、GNSSコンポーネントを使用してユーザ装置の位置を判定するように構成され得る。1つ以上のプロセッサは、ユーザ装置の判定された位置と推定衛星位置とを使用して、ユーザ装置と通信衛星との間の第1の推定距離を計算するように構成され得る。推定衛星位置は、通信衛星の推定軌道位置を指し示し得る。1つ以上のプロセッサは、通信衛星と通信ネットワークゲートウェイシステムとの間の第2の推定距離を判定するように構成され得る。ユーザ装置と通信ネットワークとの間の通信は、通信ネットワークゲートウェイシステムと通信衛星とを通じてルーティングされ得る。1つ以上のプロセッサは、計算された第1の推定距離と判定された第2の推定距離とを使用して推定タイミングオフセットを計算するように構成され得る。1つ以上のプロセッサは、アップリンクのデータフレームの送信のタイミングが、計算された推定タイミングオフセットに基づき得るように、アップリンクのデータフレームを衛星アンテナを介して通信衛星へ送信するように構成され得る。
こうした方法の実施形態は、以下の機構の内の1つ以上を含み得、通信ネットワークゲートウェイシステムは、第1の推定距離と第2の推定距離とが推定されることに起因するタイミングエラーの量を判定するように構成され得る。システムは、タイミングエラーの量に基づいてタイミングアドバンス(TA)値を判定するように構成され得る。システムは、TA値を含むタイミングアドバンスコマンドを通信衛星を介してユーザ装置へ送信するように構成され得る。ユーザ装置は、TA値を含むTAコマンドを通信衛星を介してユーザ装置が受信するように更に構成され得る。システムは、補正TA値を創出するために、推定タイミングアドバンスと受信されたTA値とを使用するように構成され得る。システムは、データの送信のタイミングが補正TA値に基づき得るようにデータを通信衛星へ送信するように構成され得る。通信衛星は、地球の対地同期軌道にあり得、総距離のエラーの最大量は100kmであり得る。総距離は、判定された第2の推定距離と合計された、計算された第1の推定距離であり得る。
受信されるダウンリンクのフレームと送信されるアップリンクのフレームとのタイミング関係を表す図を説明する。 衛星ベースの通信ネットワークの実施形態を説明する。 ユーザ装置(UE)の実施形態のブロック図を説明する。 通信ネットワークゲートウェイの実施形態のブロック図を説明する。 ユーザ装置の通信に対する推定タイミングオフセットを判定及び使用するための方法の実施形態を説明する。 タイミングアドバンス(TA)コマンドを創出及び使用するための方法の実施形態を説明する。
ある一定の状況では、UEと基地局(例えば、gNodeB、eNodeB)との間の距離は、1~100キロメートル未満の前述の例よりも著しく大きいことがある。UEが例えば、通信衛星を介してgNodeBと通信する場合、UEと基地局との間の距離は、著しくより大きい可能性がある。通信衛星が対地同期軌道に配置された場合、通信衛星は、約35,786キロメートルの高度で地球の軌道にある。UEと通信衛星、通信衛星と衛星ゲートウェイ、及び衛星ゲートウェイと基地局(例えば、eNodeB)等の通信ネットワークゲートウェイとの間の信号伝搬に起因して、通信ネットワークゲートウェイへ送信されているUEからの信号は、71,572キロメートルに渡って進み得る。この距離は、UEと通信ネットワークゲートウェイとの間を進むために信号は少なくとも540ミリ秒かかることをもたらし得る。
タイミングアドバンス(TA)は、UEにより受信されるダウンリンクのデータ(例えば、ダウンリンクのサブフレーム)に関連してアップリンクのデータ(例えば、アップリンクのサブフレーム)が何時UEにより送信されるべきであるかを判定するためにUEにより使用される負のタイミングオフセットであり得る。ダウンリンクのデータが受信される前にTAを使用し、アップリンクのデータの送信をオフセットすることによって、eNodeB又はgNodeB等の通信ネットワークゲートウェイにおいてアップリンクのデータ(例えば、アップリンクのサブフレーム)がダウンリンクのデータと同期されることをTAは可能にし得る。式1は、ダウンリンクのフレームに関連してアップリンクのフレームが何時送信されるべきかを判定するためにTAがどのように使用されるかを定義する。
TA=NTA 式1
式1において、Tは、サブキャリア間隔(SCS)に依存し得るサンプリング時間を表す。TTAはタイミングアドバンスを表す。NTAは、TTAを判定するためにUEにより使用される、タイミングアドバンスコマンドの形式で通信ゲートウェイによりUEへ送信されるコマンドである。図1は、受信されるダウンリンクのフレーム101と送信されるアップリンクのフレーム102とのUEにおけるタイミング関係を表す図100を説明する。アップリンクのフレームは、通信ネットワークゲートウェイにおいてダウンリンクのフレームとアップリンクのフレームとが時間的に同期するように、ダウンリンクのフレームが受信されるよりも前に、時間間隔105により表されるNTAで送信される。
タイミングアドバンスコマンドフィールド(NTA)のサイズは既定の長さを有し得る。実例として、第5世代無線システム(5G)案の下では、タイミングアドバンスコマンドフィールドは12ビットに限定され得る。12ビットは、4095の十進法の値を可能にするが、タイミングアドバンスコマンドフィールドに対する最大値は、3846に限定され得る。更に、大きなタイミングアドバンスが使用される場合、ランダムアクセスチャネル(RACH)プリアンブルの一部として使用されるガードタイム(GT)は、通信遅延を解決するための継続期間の長さである必要がある。
それ故、UEと通信ネットワークゲートウェイとの間の距離が大きくなる程、通信ネットワークゲートウェイにおいてアップリンクのサブフレームとダウンリンクのサブフレームとが同期するように、タイミングアドバンスの値はより大きい必要があり得る。しかしながら、修正することなく、対地同期通信衛星又は地球低軌道(LEO)若しくは地球中軌道(MEO)の衛星の何れかを通じてフレームが送信されるシナリオでは、タイミングアドバンスコマンドフィールドに対する12ビット値は、アップリンクのフレームとダウンリンクのフレームとが通信ネットワークゲートウェイにより同期されるように十分な大きさのタイミングアドバンスがUEにより使用されるのには不十分であり得る。
本明細書で詳述される実施形態は、通信ネットワークゲートウェイにおいてダウンリンク及びアップリンクのフレームが凡そ同期されように十分なタイミングオフセットをUEが適用することを可能にし、タイミングアドバンス値を使用して更により小さな調整を通信ネットワークゲートウェイが実施することを可能にする。更に、本明細書で詳述される実施形態は、UE、通信衛星、衛星ゲートウェイ、及び通信ネットワークゲートウェイの間の大きな距離にも関わらず、GTが低く維持されることを可能にする。本明細書で詳述される実施形態では、UE、通信衛星、衛星ゲートウェイ、及び通信ネットワークゲートウェイの間の距離の推定は、衛星が大まかに同じ位置で維持される(又は、LEO及びMEO衛星に対する予測可能な軌道に従って進む)ときから判定され得る。この推定は、最初の推定タイミングオフセットを判定するために使用され得、それは、実際に観察されたデータ送信時間に基づいて通信ネットワークゲートウェイによってその後調整され得る。
こうした推定タイミングオフセットを使用することによって、通信システムの性能は十分に改善され得る。実例として、TA値は12ビット未満に維持され得るので追加のデータが送信される必要はなく、UEと通信ネットワークゲートウェイとの間の遅延時間を解決するために、長いガードタイムが導入される必要はなく、ネットワークリソースがより効率的に使用されることを可能にする。
図2は、衛星ベースの通信システム200の実施形態を説明する。衛星ベースの通信システム200は、UE210、通信衛星220、衛星ゲートウェイシステム230、及び通信ネットワークゲートウェイ240を含み得る。UE210は、衛星電話、衛星スマートフォン、衛星モデム、又はGEO、LEO、若しくはMEO衛星と直接通信することが可能な通信デバイスの幾つかのその他の形式等の、通信目的で使用され得る様々なコンピュータ化されたデバイスを表し得る。
通信衛星220は、UE210とゲートウェイシステム230との間の中継器としての機能を果たし得る。通信衛星220は、信号を衛星ゲートウェイシステム230から受信し得、ダウンリンク送信と称される、異なる周波数上でUE210へ送信し得る。通信衛星220は、信号をUE210から受信し得、アップリンク送信と称される、異なる周波数上で衛星ゲートウェイシステム230へ送信し得る。衛星ゲートウェイ230は、メッセージを通信衛星220と送信及び受信するのに役立ち得る。衛星ゲートウェイシステム230は、通信ネットワークゲートウェイ240からUE210への送信用のメッセージを受信し得、こうしたメッセージを通信衛星220を介してUE210へ送信し得る。衛星ゲートウェイシステム230は、UE210からのものであるメッセージを通信衛星220から受信し得、こうしたメッセージを変換し、通信ネットワークゲートウェイ240へ送信し得る。
通信ネットワークゲートウェイ240は、衛星ゲートウェイシステム230と、インターネット、4G若しくは5G無線通信ネットワーク、又は通信ネットワークの幾つかのその他の形式等の1つ以上のその他のネットワークとの間のリンクとして役立ち得る。幾つかの実施形態では、衛星ゲートウェイシステム230及び通信ネットワークゲートウェイ240は、単一のゲートウェイシステム(すなわち、衛星通信と所望の通信ネットワークとの間を直接転換するゲートウェイシステム)に共同設置され、及び/又は結合される。他の実施形態では、通信ネットワークゲートウェイ240は、衛星ゲートウェイシステム230から離れて配置され、無線又は有線の(例えば、光ファイバーベースの)何れかの通信が衛星ゲートウェイシステム230と通信ネットワークゲートウェイ240との間で使用される。幾つかの実施形態では、通信ネットワークゲートウェイ240は、eNodeB(Evolved Node B若しくはeNB)又はgNodeB(Next generation Node B又はgNB)を含む。通信ネットワークゲートウェイ240は、4G、5G、又は無線通信ネットワークのその他の世代の一部であり得る。
UE210から通信ネットワークゲートウェイ240への送信のために、アップリンクのデータは、無線通信経路250と、無線通信経路260と、通信ネットワークゲートウェイ240が衛星ゲートウェイシステム230から離れて設置された場合には通信経路270とを介して送信され得る。それ故、UE210により送信されたアップリンクのデータは、距離251と、距離261と、(通信ネットワークゲートウェイ240が衛星ゲートウェイシステム230から離れて設置された場合には)距離271とを辿る3つの距離を有する。
3つの距離が大きいにも関わらず、UEがある一定のデータ片を備える場合には、該距離は、UE210によって比較的高い精度で推定され得る。通信衛星220が対地同期軌道にある実例として、通信衛星220は、地球の赤道上の固定位置の凡そ上方の軌道スロット又はウィンドウ内に留まる。地球の上方の衛星位置と比較して、ウィンドウは比較的小さく、対地同期衛星は、地球の表面の上方の約35,786kmであり得る。ウィンドウは、衛星の規定の軌道位置から各方向に約50キロメートルであり得る。また、UE210は、全球測位衛星システム(GNSS)を使用する等して、地球上のその自身の位置を判定することが可能であり得る。実例として、高い精度でその自身の位置をUEが判定することを可能にする全地球測位システム(GPS)モジュールがUE210に搭載され得る。UE210は、その自身の位置を判定し得、(その軌道位置の周囲のウィンドウ内の通信衛星220の変動を計算に入れなくてもよい)通信衛星220の軌道位置を指し示すデータを蓄積し得るので、距離251は推定され得る。
衛星ゲートウェイシステム230は固定位置に配置され、通信衛星220は対地同期軌道にあるので、距離261は、一旦判定され得、UE210に提供され得る。UE210、衛星ゲートウェイシステム230、又は通信ネットワークゲートウェイ240は、距離261の計算を実施し得、必要であれば、距離の指標をUE210に提供し得る。衛星ゲートウェイシステム230が通信ネットワークゲートウェイ240と共同設置されない場合、距離271は、衛星ゲートウェイシステム230と通信ネットワークゲートウェイ240との間の電磁伝搬により生じる遅延を推定する必要もあり得る。無線通信が使用される場合、距離271は、衛星ゲートウェイシステム230と通信ネットワークゲートウェイ240との間の直線であり得る。有線通信設備が使用される場合、該距離は、有線の距離であり得、それは、衛星ゲートウェイシステム230と通信ネットワークゲートウェイ240との間の直線であり得る。有線又は無線に関わらず、距離271は、固定であり得、高い精度で判定され得る。この距離の指標は、UE210に提供され得、又は単一の距離測定がUE210に提供されるように距離261に加算され得る。
UE210はその位置を正確に判定することが可能であり得るので、可能性のある未知の変動は、その軌道ウィンドウ内の通信衛星220の移動である。この変動は、しかしながら、全体的な距離251、261、及び271と比較して小さく、TA値を使用して解決され得る。
UE210は、簡潔にするために図3から省かれた様々なその他のコンピュータ化されたコンポーネントを含み得る。1つ以上のプロセッサ、1つ以上のプロセッサ可読ストレージ設備、1つ以上のデータバス、1つ以上の有線及び/若しくは無線インタフェース、並びに/又は1つ以上のユーザインタフェースがUE210の様々な実施形態では存在し得る。
図3は、UE210の実施形態のブロック図を説明する。UE210は、GNSSモジュール310、タイミングコントローラ320、衛星送受信器330、タイミング計算エンジン340、距離データストア350、タイミングデータストア352、及び衛星位置データストア354を含み得る。GNSSモジュール310は、UE210の位置を判定するための様々な利用可能な全球測位衛星システム(例えば、GPS、GLONASS、Galileo、Beidou)の内の1つ以上を使用し得る。GNSSモジュール310は、UE210の位置の指標をタイミング計算エンジン340に定期的に提供し得る。
タイミングコントローラ320は、アップリンクのデータフレームが衛星送受信器330により何時送信されるかを制御し得る。タイミングコントローラ320は、アップリンクのフレームに適用される推定タイミングオフセットの指標をタイミング計算エンジン340から受信し得る。タイミングコントローラ320は、ソフトウェア、ファームウェア、又はハードウェアで実装され得る。実例として、タイミングコントローラ320は、タイミング計算エンジン340と可能であれば組み合わせて、1つ以上の専用又は汎用プロセッサを使用して実装され得る。
衛星送受信器330は、データを通信衛星220と送信及び受信し得る。衛星送受信器330によりアップリンクのデータが何時送信されるかは、タイミングコントローラ320により提供されるタイミング情報に基づき得る。
タイミング計算エンジン340は、衛星送受信器330によってダウンリンクのデータに関連してアップリンクのデータが何時送信されるかを判定するために、距離データストア350、タイミングデータストア352、及び/又は衛星位置データストア354から、蓄積されたデータにアクセスし得る。タイミング計算エンジンは、推定タイミングアドバンスの量を判定するために、図5の方法に関連して詳述されるようなブロックを実施し得る。タイミング計算エンジン340は、ソフトウェア、ファームウェア、又はハードウェアで実装され得る。タイミング計算エンジン340は、1つ以上の専用又は汎用プロセッサを使用して実装され得る。
距離データストア350は、距離261、及び存在する場合には距離271の指標を蓄積するために使用され得る。幾つかの実施形態では、距離261及び距離271は、単一の距離値に結合される。距離261及び271(又はその結合距離)は、衛星ゲートウェイシステム230による同報送信の一部としてUE210に提供され得る。幾つかの実施形態では、距離261及び271(又はその結合距離)は、UE210が現在又は以前に接続している別の無線又は有線ネットワークを介する等、別の通信経路を介してUE210に提供され得る。距離261及び271は、大して又は頻繁には変化しないので、UE210は、距離261及び271(又はその結合距離)を蓄積し得、これらの距離は、長期間、有効のままであり得る。それ故、ソフトウェアのアップデートの一部として、又は製造の時に距離261及び271(又はその結合距離)をUE210が受信することは可能であり得る。UE210は、複数の衛星ゲートウェイシステム230に対する距離の指標を蓄積し得、UE210がどの衛星ゲートウェイシステムと通信しているかを位置又は受信データに基づく等して判定可能であり得る。同様に、距離データストア350は、衛星ゲートウェイシステムと通信ネットワークゲートウェイとの複数の組み合わせに対する距離を蓄積し得る。実例として、特定の通信ネットワークゲートウェイがオフラインになる場合、別の通信ネットワークゲートウェイが使用され得、それは、異なる距離271をもたらすであろう。幾つかの実施形態では、距離251は、距離データストア350内に蓄積され得る。或いは、距離251は、GNSSモジュール310からの位置データに基づいてタイミング計算エンジン340により計算されるので、距離251は、必要な場合に計算されてもよく、距離データストア350に蓄積されなくてもよい。
幾つかの実施形態では、距離データストア350内に距離を蓄積することに加えて又は代えて、タイミングデータストア352内にタイミング値が蓄積され得る。すなわち、距離251、261、及び271の指標を蓄積することよりもむしろ(又は、に加えて)、推定量のタイミングオフセットを指し示す値が蓄積され得る。
衛星位置データストア354は、対地同期衛星である場合には通信衛星220の推定軌道位置を蓄積し得る。通信衛星220の正確な位置は、軌道位置から何れかの方向に約50キロメートル変化し得、したがって、通信衛星220の蓄積された位置は、単なる推定であり得る。通信衛星220がLEO又はMEO軌道にある場合、衛星位置データストア354が既定の位置を蓄積するよりもむしろ、タイミング計算エンジン340が通信衛星220の現在の位置を計算し得るように、衛星位置データストア354は、通信衛星220の軌道を表すデータを蓄積し得る。
通信ネットワークゲートウェイ240は、簡潔にするために図4から省かれた様々なその他のコンピュータ化されたコンポーネントを含み得る。1つ以上のプロセッサ、1つ以上のプロセッサ可読ストレージ設備、1つ以上のデータバス、1つ以上の有線及び/若しくは無線インタフェース、並びに/又は1つ以上のユーザインタフェースが通信ネットワークゲートウェイ240の様々な実施形態では存在し得る。
図4は、通信ネットワークゲートウェイ240の実施形態のブロック図を説明する。推定タイミングオフセットが最初にUEによって判定及び使用され得る一方で、通信ネットワークゲートウェイは、RACHプロセスの間等に、UEへ送信されているダウンリンクのフレームと、UEから受信されたアップリンクのフレームとの間の検出されたタイミングの差を補正するためのタイミングアドバンス値を判定し得る。それ故、通信ネットワークゲートウェイ240により判定されたTA値は、UE210により使用されている推定タイミングオフセットを調整するために使用され得る。
gNodeBであり得、又はgNodeBを含み得る通信ネットワークゲートウェイ240は、ゲートウェイインタフェース410を含み得る。ゲートウェイインタフェース410は、通信ネットワークゲートウェイ240が衛星ゲートウェイシステム230と通信することを可能にし得る。ゲートウェイインタフェース410は、双方向であり得、データが衛星ゲートウェイシステム230へ送信され又は衛星ゲートウェイシステム230から受信されることを可能にし得る。
距離同報エンジン420は、位置、距離、及び/又はタイミングのデータを複数のUEへ送信するために時折又は定期的に使用され得る。実例として、距離同報エンジン420は、(GEO衛星に対して)通信衛星220の位置、(MEO若しくはLEO衛星に対して)通信衛星220の位置を計算するための情報、(1つ以上の衛星ゲートウェイシステムに対して)距離261に関連する距離若しくはタイミング情報、(衛星ゲートウェイシステムと通信ネットワークゲートウェイとの1つ以上の組み合わせに対して)距離271に関連する距離若しくはタイミング情報を同報し得る。
タイミングアドバンス計算エンジン430は、UE210から受信したアップリンクのデータフレームに基づいてタイミングアドバンス(TA)値を計算し得る。このアップリンクのデータフレームは、UEにより計算された推定タイミングオフセットに基づいて予め既に送信されている。しかしながら、推定タイミングオフセットは、通信衛星220の正確な位置を考慮していない。それ故、タイミングアドバンスの少なくとも幾らかの量の調整が必要であり得る。必要とされるTAの大多数は、UEにより判定された推定タイミングオフセット内に捕捉されるので、TA計算エンジン430により計算されるTA値は、比較的小さくてもよい(また、12ビット内に捕捉されてもよい)。TA計算エンジン430により計算される値は、式1のNTAを指し得る。UEは、該値を受信した場合に、推定タイミングオフセットを更に調整するためにNTAが使用されるように、タイミングアドバンスを更に調整し得る。タイミングアドバンス計算エンジン430は、ソフトウェア、ファームウェア、又はハードウェアで実装され得る。実例として、タイミングアドバンス計算エンジン430は、1つ以上の専用又は汎用プロセッサを使用して実装され得る。
距離データストア440は、通信衛星220、1つ以上の衛星ゲートウェイシステム、及び通信ネットワークゲートウェイの間の距離の指標を蓄積するために使用され得る。これらの距離は、比較的稀にアップデートされ得、推定タイミングオフセット値の計算に使用するためにUEのインスタンスに距離データを時折又は定期的に提供するために、距離同報エンジン420によって使用され得る。幾つかの実施形態では、距離データストア440内に距離を蓄積することに加えて又は代えて、タイミングデータストア442内にタイミング値が蓄積され得る。すなわち、距離261及び271の指標を蓄積することよりもむしろ(又は、に加えて)、対応する推定量のタイミングオフセットを指し示す値が蓄積され得る。幾つかの実施形態では、距離同報エンジン420は、こうしたタイミングデータを距離データに加えて又は代えて送信し得る。
衛星位置データストア444は、対地同期衛星の軌道位置の指標を蓄積し得、又はLEO若しくはMEO衛星の軌道を計算するための情報を蓄積し得る。こうしたデータは、距離同報エンジン420によってUEのインスタンスへ定期的に又は時折送信され得る。
図1~図4に関連して詳述されたシステム及びデバイスを使用して様々な方法が実施され得る。図5は、ユーザ装置の通信に対する推定タイミングオフセットを判定及び使用するための方法500の実施形態を説明する。方法500の各ステップは、UE210等のユーザ装置を使用して実施され得る。ブロック510において、UEの位置が判定され得る。UEは、その位置を判定するために搭載GNSS(例えば、GPS)コンポーネントを使用し得る。位置判定のその他の形式も可能であり得る。実例として、UEは、ユーザ入力、1つ以上の特定の無線ネットワーク(例えば、Wi-Fiネットワーク)のセンシング、デッドレコニング等に基づいて、その位置を判定することが可能であり得る。
ブロック520において、UEと通信衛星との間の第1の推定距離が計算され得る。ブロック520は、衛星の推定位置を指し示すデータにUEがアクセスすることを含み得る。幾つかの実施形態では、衛星がLEO又はMEOにある等の場合には、現在の日付にアクセスすることによって、通信衛星の凡その位置をUEが判定し得るように、UEは、通信衛星の軌道の指標を蓄積し得る。
ブロック530において、通信衛星と通信ネットワークゲートウェイとの間の第2の推定距離が判定され得る。この第2の推定距離は、衛星ゲートウェイシステムと通信衛星との間の距離、及び衛星ゲートウェイシステムと通信ネットワークゲートウェイとの間の距離を含むことを指し示す単一の値を含み得る。他の実施形態では、これらの2つの距離は、別個に蓄積され得、合計され得る。幾つかの実施形態では、蓄積された距離にアクセスすることよりもむしろ、距離は、UEにより蓄積され、さもなければUEによりアクセス可能である衛星、衛星ゲートウェイシステム、及び通信ネットワークゲートウェイの位置情報に基づいてUEによって計算され得る。通信衛星が対地同期軌道にある場合、該衛星は、軌道スロットの中央位置から約50キロメートルだけ変化する軌道スロット内に留まると予想される。そのようなものだとして、第1の推定距離と第2の推定距離との組み合わせに対する最大推定距離エラーは約100キロメートルである。
ブロック540において、ブロック520からの第1の推定距離と、ブロック530からの第2の推定距離とを使用してタイミングオフセットが計算され得る。タイミングオフセットは、総距離が電磁放射の速度(光の速度)で除算されることに基づいて計算され得る。最大推定距離エラーに基づいて、オフセットの最大タイミングエラーは、高々0.67ミリ秒であると予想される。
ブロック550において、推定タイミングオフセットがUEによって蓄積され得る。ブロック560において、通信ネットワークゲートウェイがUEへ送信するダウンリンクのフレームと凡そ同期してアップリンクのデータを受信するように、データのアップリンクのフレームが通信衛星へ送信されるべきダウンリンクよりも前の時間の量を判定するために、推定タイミングオフセットは使用され得る。RACHプロセスの一部等、TA値が通信ネットワークゲートから受信されるまで、アップリンクのデータの送信をオフセットするために推定タイミングオフセットは使用され得る。TA値を使用して補正されるであろうエラーの最大予想量は、0.67ミリ秒である。ブロック560において、送信されるアップリンクのデータは、物理ランダムアクセスチャネルプリアンブル(PRACH)を含み得る。
図6は、方法500の一部として使用される推定タイミングオフセット内に存在する任意のタイミングエラーを補正するためのタイミングアドバンス(TA)コマンドを創出及び使用するための方法600の実施形態を説明する。方法600は、方法500に続いて実施され得る。方法600は、RACHプロセスの一部として実施され得る。方法600の各ステップは、通信ネットワークゲートウェイ240等の通信ネットワークゲートウェイを使用して実施され得る。幾つかの実施形態では、方法600のブロックは、通信ネットワークゲートウェイが衛星ゲートウェイシステムの一部として組み込まれる等の場合には、衛星ゲートウェイシステムを使用して実施され得る。
ブロック610において、アップリンクのフレームの形式等のアップリンクのデータが通信衛星及び衛星ゲートウェイシステムを介してUEから通信ネットワークゲートウェイによって受信され得る。ブロック620において、アップリンクのフレームと、通信ネットワークゲートウェイが対応するダウンリンクのフレームを送信する時間との間のタイミングオフセットの量が判定され得る。ブロック620において、アップリンクのデータのフレームが早く送信されるように、ユーザ装置はタイミングオフセットを既に適用しているので、ダウンリンクのフレームにおけるアップリンクのフレームとの間のタイミングオフセットの量は、ユーザ装置、通信衛星、衛星ゲートウェイシステム、及び通信ネットワークゲートウェイの間の距離に起因する伝搬遅延よりも継続期間が著しく小さいであろう。
ブロック630において、ブロック620のタイミングオフセットの測定された量に基づいて、タイミングアドバンス値が判定され得る。ブロック620において測定されたオフセットに基づいて、TA値が判定され得る。このTA値は、12ビット未満であり得、3846の最大値を有し得る。ブロック630において判定されるTA値は式1に基づき得る。それ故、ブロック630において判定されたタイミングアドバンス値は、TAとして使用するための時間の量と比較するためにUEによって使用され得る。ブロック640において、タイミングアドバンス値はUEへ送信され得、タイミングアドバンス値は、ブロック650においてUEにより受信され得る。ブロック640において送信されるTA値は、ランダムアクセスレスポンス(RAR)の一部であり得る。タイミングアドバンス値は、12等の規定数のビットを有するタイミングアドバンスコマンドフィールドの一部として送信され得る。
ブロック660において、方法500の一部として計算された推定タイミングオフセット値を調整するために、受信したTA値が使用されるように、衛星を介して衛星ゲートウェイシステムへUEにより送信される更なるアップリンクのデータは、修正されたそのタイミングを有し得る。それ故、推定タイミングオフセット値は、UEによるデータの送信に依然として使用されるが、受信したTA値に基づいて更に調整される。UEは、調整されたTA値を経時的に受信し続け得、それは、方法500の一部として計算された推定タイミングオフセット値を調整するために繰り返し使用され得る。
上で論じた方法、システム、及びデバイスは例示である。様々な構成は、様々な手順又はコンポーネントを必要に応じて省略、代替、又は追加し得る。実例として、代替的な構成では、方法は、説明されたものとは異なる順序で実施され得、様々な段階が追加、省略、及び/又は結合され得る。また、幾つかの構成に関して説明した機構は、様々な他の実施形態では結合され得る。構成の異なる態様及び要素は、同様の方法で結合され得る。また、技術は発展し、したがって、要素の多くは、例示であり、開示又は請求項の範囲を限定しない。
(実装を含む)例示的構成の理解を通じて提供するための具体的詳細が説明において与えられている。しかしながら、構成は、これらの具体的詳細なしに実践され得る。例えば、構成を不明確することを避けるために、周知の回路、プロセス、アルゴリズム、構造体、及び技術は、不必要に詳細にすることなく示されている。この説明は、例示的構成のみを提供し、請求項の範囲、利用可能性、又は構成を限定しない。むしろ、構成の先の説明は、説明される技術を実装するための有効な説明を当業者に与えるであろう。開示の精神又は範囲を逸脱することなく、要素の機構及び配置に様々な変更がなされ得る。
また、構成は、フロー図又はブロック図として描写されるプロセスとして説明され得る。各々は、逐次プロセスとしての動作を説明し得るが、動作の多くは、並列して又は同時に実施され得る。また、動作の順序は並び替えられ得る。プロセスは、図には含まれない追加のステップを有し得る。更に、方法の例は、ハードウェア、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語、又はそれらの任意の組み合わせにより実装され得る。ソフトウェア、ファームウェア、ミドルウェア、又はマイクロコードで実装される場合、必要なタスクを実施するためのプログラムコード又はコードセグメントは、ストレージ媒体等の非一時的コンピュータ可読媒体内に蓄積され得る。プロセッサは、説明されたタスクを実施し得る。
説明される幾つかの例示的構成を有し、開示の精神から逸脱することなく様々な修正、代替的構築物、及び均等物が使用され得る。例えば、上の要素は、より大きなシステムのコンポーネントであり得、他の規則が発明の適用に優り得、さもなければ発明の適用を修正し得る。また、上の要素が考慮される前、間、又は後に、幾つかのステップは保証され得る。

Claims (17)

  1. ユーザ装置の通信に対する推定タイミングアドバンスを使用するための方法であって、
    全球測位衛星システムを使用して前記ユーザ装置の位置を前記ユーザ装置によって判定することと、
    前記ユーザ装置の判定された前記位置と推定衛星位置とを使用して、前記ユーザ装置と通信衛星との間の第1の推定距離を前記ユーザ装置によって計算することであって、前記推定衛星位置は、前記通信衛星の推定軌道位置を指し示すことと、
    前記通信衛星と通信ネットワークゲートウェイとの間の第2の推定距離を前記ユーザ装置によって判定することであって、前記ユーザ装置と通信ネットワークとの間の通信は、前記通信ネットワークゲートウェイと前記通信衛星とを通じてルーティングされることと、
    計算された前記第1の推定距離と判定された前記第2の推定距離とを使用して推定タイミングオフセットを前記ユーザ装置によって計算することと、
    アップリンクのデータフレームの送信のタイミングが、計算された前記推定タイミングオフセットに基づくように、前記アップリンクのデータフレームを前記ユーザ装置によって前記通信衛星へ送信することと
    を含み、
    前記通信衛星を介して前記ユーザ装置へ送信される、タイミングアドバンス(TA)値を含むタイミングアドバンス(TA)コマンドを、前記ユーザ装置によって受信することと、
    前記推定タイミングアドバンスと受信した前記TA値とを前記ユーザ装置によって使用して、補正TA値を創出することと、
    データの送信のタイミングが前記補正TA値に基づくように、前記データを前記ユーザ装置によって前記通信衛星へ送信することと、
    を更に含む、方法。
  2. 前記通信衛星へ送信される前記アップリンクのデータフレームは、物理ランダムアクセスチャネル(PRACH)プリアンブルを含む、請求項1に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  3. 前記第1の推定距離と前記第2の推定距離とが推定されることに起因するタイミングエラーの量を前記通信ネットワークゲートウェイによって判定することと、
    タイミングエラーの前記量に基づいて前記TA値を前記通信ネットワークゲートウェイによって判定することと、
    前記TA値を含む前記TAコマンドを前記通信ネットワークゲートウェイによって前記通信衛星を介して前記ユーザ装置へ送信することと
    を更に含む、請求項2に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  4. 前記TA値は長さが12ビットである、請求項3に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  5. 前記TA値は、3846の既定の最大値を有する、請求項に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  6. 前記TA値は、2.5ms未満のタイミング補正を可能にする、請求項3に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  7. 前記通信衛星は、地球の対地同期軌道にある、請求項1に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  8. 総距離のエラーの最大量は100kmであり、前記総距離は、判定された前記第2の推定距離と、計算された前記第1の推定距離との合計である、請求項に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  9. 前記通信衛星と前記通信ネットワークゲートウェイとの間の前記第2の推定距離を判定することは、前記ユーザ装置に備わったデータストレージ設備に蓄積された前記第2の推定距離を取得することを含む、請求項1に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  10. 前記通信衛星と前記通信ネットワークゲートウェイとの間の前記第2の推定距離を判定することは、前記第2の推定距離を指し示すシステム情報同報メッセージを受信することを含む、請求項に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  11. 前記ユーザ装置に備わったデータストレージ設備に蓄積された前記通信衛星の軌道情報を取得することであって、前記通信衛星は、地球低軌道(LEO)又は地球中軌道(MEO)にあることと、
    記軌道情報に基づいて前記推定衛星位置を計算することと
    を更に含む、請求項1に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  12. 前記通信ネットワークゲートウェイはgNodeBを含む、請求項1に記載の前記ユーザ装置の通信に対する前記推定タイミングアドバンスを使用するための方法。
  13. 衛星ベースの通信に対する推定タイミングアドバンスを使用するためのデバイスであって、
    通信を衛星ゲートウェイシステムへ中継する通信衛星と直接通信するための衛星アンテナと、
    全球測位衛星システム(GNSS)コンポーネントと、
    前記衛星アンテナ及び前記GNSSコンポーネントと通信する1つ以上のプロセッサであって、
    前記GNSSコンポーネントを使用して前記デバイスの位置を判定することと、
    前記デバイスの判定された前記位置と推定衛星位置とを使用して、前記デバイスと通信衛星との間の第1の推定距離を計算することであって、前記推定衛星位置は、前記通信衛星の推定軌道位置を指し示すことと、
    前記通信衛星と通信ネットワークゲートウェイとの間の第2の推定距離を判定することであって、前記デバイスと通信ネットワークとの間の通信は、前記通信ネットワークゲートウェイと通信衛星とを通じてルーティングされることと、
    計算された前記第1の推定距離と判定された前記第2の推定距離とを使用して推定タイミングオフセットを計算することと、
    アップリンクのデータフレームの送信のタイミングが計算された前記推定タイミングオフセットに基づくように、前記アップリンクのデータフレームを前記衛星アンテナを介して前記通信衛星へ送信することと
    をするように構成された前記1つ以上のプロセッサと
    を含み、
    前記1つ以上のプロセッサは、
    前記通信衛星を介して前記デバイスへ送信される、タイミングアドバンス(TA)値を含むタイミングアドバンス(TA)コマンドを受信することと、
    前記推定タイミングアドバンスと受信した前記TA値とを使用して、補正TA値を創出することと、
    データの送信のタイミングが前記補正TA値に基づくように、前記データを前記衛星アンテナを介して前記通信衛星へ送信することと、
    をするように更に構成される、デバイス。
  14. 前記通信衛星へ送信される前記アップリンクのデータフレームは物理ランダムアクセスチャネル(PRACH)プリアンブルを含む、請求項13に記載の前記衛星ベースの通信に対する前記推定タイミングアドバンスを使用するためのデバイス。
  15. 衛星ベースの通信に対する推定タイミングアドバンスを使用するためのシステムであって、
    通信衛星と、
    前記通信衛星と通信する通信ネットワークゲートウェイシステムと、
    ユーザ装置と、
    を含み、
    前記ユーザ装置は、
    通信を衛星ゲートウェイシステムへ中継する前記通信衛星と通信するための衛星アンテナと、
    全球測位衛星システム(GNSS)コンポーネントと、
    前記衛星アンテナ及び前記GNSSコンポーネントと通信する1つ以上のプロセッサと、
    を含み、
    前記1つ以上のプロセッサは、
    前記GNSSコンポーネントを使用して前記ユーザ装置の位置を判定することと、
    前記ユーザ装置の判定された前記位置と推定衛星位置とを使用して、前記ユーザ装置と通信衛星との間の第1の推定距離を計算することであって、前記推定衛星位置は、前記通信衛星の推定軌道位置を指し示すことと、
    前記通信衛星と前記通信ネットワークゲートウェイシステムとの間の第2の推定距離を判定することであって、前記ユーザ装置と通信ネットワークとの間の通信は、前記通信ネットワークゲートウェイシステムと通信衛星とを通じてルーティングされることと、
    計算された前記第1の推定距離と判定された前記第2の推定距離とを使用して推定タイミングオフセットを計算することと、
    アップリンクのデータフレームの送信のタイミングが計算された前記推定タイミングオフセットに基づくように、前記アップリンクのデータフレームを前記衛星アンテナを介して前記通信衛星へ送信することと
    をするように構成され
    前記ユーザ装置は、
    前記通信衛星を介して前記ユーザ装置へ送信される、タイミングアドバンス(TA)値を含むタイミングアドバンス(TA)コマンドを、受信することと、
    前記推定タイミングアドバンスと受信された前記TA値とを使用して、補正TA値を創出することと、
    データの送信のタイミングが前記補正TA値に基づくように、前記データを前記通信衛星へ送信することと、
    をするように更に構成される、システム。
  16. 前記通信ネットワークゲートウェイシステムは、
    前記第1の推定距離と前記第2の推定距離とが推定されることに起因するタイミングエラーの量を判定することと、
    タイミングエラーの前記量に基づいて前記TA値を判定することと、
    前記TA値を含む前記TAコマンドを前記通信衛星を介して前記ユーザ装置へ送信することと
    をするように構成される、請求項15に記載のシステム。
  17. 前記通信衛星は地球の対地同期軌道にあり、総距離のエラーの最大量は100kmであり、前記総距離は、判定された前記第2の推定距離と、計算された第1の推定距離との合計である、請求項16に記載のシステム。
JP2020563670A 2018-05-11 2019-04-11 衛星ベースの通信に対するタイミングアドバンス Active JP7361052B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201862670349P 2018-05-11 2018-05-11
US62/670,349 2018-05-11
US16/047,355 2018-07-27
US16/047,355 US10624052B2 (en) 2018-05-11 2018-07-27 Timing advance for satellite-based communications
PCT/US2019/026937 WO2019217026A1 (en) 2018-05-11 2019-04-11 Timing advance for satellite-based communications

Publications (2)

Publication Number Publication Date
JP2021524192A JP2021524192A (ja) 2021-09-09
JP7361052B2 true JP7361052B2 (ja) 2023-10-13

Family

ID=68464439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020563670A Active JP7361052B2 (ja) 2018-05-11 2019-04-11 衛星ベースの通信に対するタイミングアドバンス

Country Status (6)

Country Link
US (2) US10624052B2 (ja)
EP (1) EP3791492A1 (ja)
JP (1) JP7361052B2 (ja)
KR (1) KR102646163B1 (ja)
CN (1) CN112189314A (ja)
WO (1) WO2019217026A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10624052B2 (en) 2018-05-11 2020-04-14 Dish Network L.L.C. Timing advance for satellite-based communications
US10931365B2 (en) 2018-05-11 2021-02-23 Dish Network L.L.C. Timing advance for satellite-based communications using a satellite with enhanced processing capabilities
US11082973B2 (en) * 2018-06-20 2021-08-03 Qualcomm Incorporated Upstream timing control mechanisms for non-terrestrial networks
WO2020067756A1 (en) * 2018-09-28 2020-04-02 Lg Electronics Inc. A cell reselection by adjusting cell reselection parameter
CN111356238A (zh) * 2018-12-24 2020-06-30 夏普株式会社 由用户设备执行的方法以及用户设备
CN114845375A (zh) * 2019-04-23 2022-08-02 华为技术有限公司 一种通信方法、终端、网络设备及存储介质
US11128570B2 (en) * 2019-12-31 2021-09-21 Hughes Network Systems, Llc Estimating terminal location in a satellite communication system
US11563484B2 (en) * 2020-02-28 2023-01-24 Qualcomm Incorporated Uplink frequency and timing compensation in a non-terrestrial network
US11156705B2 (en) 2020-03-10 2021-10-26 Raytheon Company System and method for mitigating platform motion in a communications system
US11196497B2 (en) * 2020-03-11 2021-12-07 Raytheon Company System and method for mitigating platform motion in a communications system
US11937193B2 (en) * 2020-04-01 2024-03-19 Qualcomm Incorporated Timing improvements for wireless communications systems
US11678284B2 (en) * 2020-04-17 2023-06-13 Electronics And Telecommunications Research Institute Radio communication method for time-sensitive network, and apparatus therefor
US11751157B2 (en) * 2020-05-08 2023-09-05 Samsung Electronics Co., Ltd. Methods for timing advance indication and timing relationships indication for non-terrestrial networks
CN113939005B (zh) * 2020-06-29 2024-05-07 北京小米移动软件有限公司 下行同步方法、用户设备、电子设备及计算机存储介质
US11665748B2 (en) 2020-07-24 2023-05-30 Samsung Electronics Co., Ltd. RACH procedures for non-terrestrial networks
WO2022021353A1 (zh) * 2020-07-31 2022-02-03 北京小米移动软件有限公司 定时提前量发送方法和装置
US11496208B1 (en) * 2020-08-03 2022-11-08 Amazon Technologies, Inc. Efficient synchronization of communication involving half-duplex systems
US11997630B2 (en) * 2020-08-07 2024-05-28 Qualcomm Incorporated Updating an uplink-downlink timing interaction offset
KR20220018824A (ko) * 2020-08-07 2022-02-15 삼성전자주식회사 통신 시스템에서 스케줄링 타이밍 결정 방법 및 장치
MX2023002127A (es) * 2020-08-21 2023-03-15 Lenovo Beijing Ltd Metodo y aparato para la indicacion de retrasos.
CN114173410A (zh) * 2020-09-11 2022-03-11 华为技术有限公司 定时偏移参数更新方法、设备及系统
EP4111763A4 (en) * 2020-10-21 2023-08-09 Samsung Electronics Co., Ltd. USER EQUIPMENT AND BASE STATION IN A WIRELESS COMMUNICATION SYSTEM AND METHODS PERFORMED THEREOF
JPWO2022123902A1 (ja) * 2020-12-09 2022-06-16
US11751253B2 (en) * 2021-02-25 2023-09-05 Lockheed Martin Corporation Random access for broadband 4G and 5G over satellite
EP4289085A1 (en) * 2021-03-22 2023-12-13 Nokia Technologies Oy Signal compensation
EP4316045A1 (en) * 2021-04-01 2024-02-07 Intel Corporation Ue uplink timing for non-terrestrial networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050095982A1 (en) 2003-11-05 2005-05-05 Blanchard Scott D. MSS user equipment and methods for synchronizing MSS user equipment
JP2015032879A (ja) 2013-07-31 2015-02-16 株式会社Nttドコモ 移動局
WO2017072745A1 (en) 2015-10-30 2017-05-04 Paris Michaels Mobile satellite communication system

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1062405A (en) 1913-05-20 Ernst Wilhelm Koester Compressor.
US6107959A (en) * 1996-09-30 2000-08-22 Qualcomm Incorporated Positioning determination using one low-Earth orbit satellite
FR2843269B1 (fr) * 2002-08-01 2004-10-15 Cit Alcatel Dispositif de prise de controle de ressources dans un reseau de communications, pour l'insertion de trafic
US7574224B2 (en) * 2005-06-13 2009-08-11 Qualcomm Incorporated Methods and apparatus for performing timing synchronization with base stations
US8233840B2 (en) * 2008-10-06 2012-07-31 Viasat, Inc. Ephemeris-based synchronization for mesh satellite communications
US8538327B2 (en) 2010-04-15 2013-09-17 Alcatel Lucent User equipment adjustment of uplink satellite communications
MX357494B (es) * 2014-03-19 2018-07-11 Hughes Network Systems Llc Aparato y metodo para sincronizacion a nivel de red en multiples sistemas de comunicaciones satelitales de orbita baja terrestre (leo).
US9900856B2 (en) * 2015-03-20 2018-02-20 Qualcomm Incorporated Method and apparatus for time or frequency synchronization in non-geosynchronous satellite communication systems
US11374650B2 (en) * 2016-05-27 2022-06-28 Viasat, Inc. Position-based access to satellite networks for satellite terminals
WO2018017468A1 (en) * 2016-07-18 2018-01-25 Phluido, Inc. Synchronization of radio units in radio access networks
CN114158109A (zh) * 2016-08-10 2022-03-08 苹果公司 用于同步信号传输的方法、设备以及机器可读介质
US9882632B1 (en) 2016-12-22 2018-01-30 Space Systems/Loral, Llc Satellite constellation switching
US11240774B2 (en) * 2017-06-02 2022-02-01 Qualcomm Incorporated Timing advance group for new radio
US10624052B2 (en) 2018-05-11 2020-04-14 Dish Network L.L.C. Timing advance for satellite-based communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050095982A1 (en) 2003-11-05 2005-05-05 Blanchard Scott D. MSS user equipment and methods for synchronizing MSS user equipment
JP2015032879A (ja) 2013-07-31 2015-02-16 株式会社Nttドコモ 移動局
WO2017072745A1 (en) 2015-10-30 2017-05-04 Paris Michaels Mobile satellite communication system

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Fraunhofer IIS,NTN NR impacts Timing Advance[online],3GPP TSG RAN WG1 Meeting #91 R1-1720375,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_91/Docs/R1-1720375.zip>,2017年11月17日
InterDigital Inc., Thales,Considerations on Timing Advance for NTN[online],3GPP TSG RAN WG1 Meeting #92bis R1-1804858,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1804858.zip>,2018年04月07日
Thales, CTTC, CNES, Telekom R & D Sdn. Bhd., STMicroelectronics, HNS, Avanti, ESA, Dish Network, Fraunhofer IIS,Non-Terrestrial Network overview[online],3GPP TSG RAN Meeting #76 RP-170929,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/TSG_RAN/TSGR_76/Docs/RP-170929.zip>,2017年05月27日
Thales,NR-NTN: Impact on Initial TA during random access procedure[online],3GPP TSG RAN WG1 Meeting #92bis R1-1805095,Internet<URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_92b/Docs/R1-1805095.zip>,2018年04月06日

Also Published As

Publication number Publication date
JP2021524192A (ja) 2021-09-09
US20200205108A1 (en) 2020-06-25
US10999809B2 (en) 2021-05-04
US20190349877A1 (en) 2019-11-14
KR20210009340A (ko) 2021-01-26
CN112189314A (zh) 2021-01-05
WO2019217026A1 (en) 2019-11-14
EP3791492A1 (en) 2021-03-17
US10624052B2 (en) 2020-04-14
KR102646163B1 (ko) 2024-03-11

Similar Documents

Publication Publication Date Title
JP7361052B2 (ja) 衛星ベースの通信に対するタイミングアドバンス
US10931365B2 (en) Timing advance for satellite-based communications using a satellite with enhanced processing capabilities
CN111565472B (zh) 一种确定定时提前量的方法及设备
US11792758B2 (en) Method and device for determining timing advance
JP2004519887A (ja) 衛星測位システムを用いた移動受信機と基地局の時間同期化方法
KR101193833B1 (ko) 위성 추적 시스템 및 그 제어 방법
JPWO2017200043A1 (ja) 無線通信システム、無線端末及び時刻同期方法
US20220167289A1 (en) Timing advance compensation
CN113940015A (zh) 用于非陆地网络的多普勒补偿
JP2024512622A (ja) ユーザ機器、ネットワークノード、およびそれらにおける方法
US20240163815A1 (en) Reporting accuracy of timing and frequency synchronization associated with communications between a non-terrestrial node and a terrestrial node
CN115276775A (zh) 卫星通信系统中的数据传输方法及装置
KR20190129578A (ko) 고정형 앵커 기반 멀티 홉 시각 동기 장치 및 이를 이용한 owr 측위 시스템
US11799624B2 (en) Time-synchronization system, relay apparatus, time-synchronization method, and non-transitory computer readable medium
WO2023051891A1 (en) Uplink synchronization
KR102146527B1 (ko) 다중 홉 시각 동기 장치를 이용한 owr 측위 방법
CN118234003A (zh) 一种上行数据发送方法、装置、用户设备及存储介质
KR20240067883A (ko) 유효성 타이머의 구성
WO2022236554A1 (en) Timing advance for transmitting information in wireless communication networks
US20240048415A1 (en) Feeder Link Synchronization
WO2024030770A1 (en) Feeder link synchronization
Ma et al. Uplink Time Synchronization for Non-Terrestrial Networks
WO2024069206A1 (en) Positioning of wireless device
EP4292376A1 (en) Random access type selection based on accuracy of satellite positioning information

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220406

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231002

R150 Certificate of patent or registration of utility model

Ref document number: 7361052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150