JP7359720B2 - Measuring jig and measuring method - Google Patents

Measuring jig and measuring method Download PDF

Info

Publication number
JP7359720B2
JP7359720B2 JP2020032945A JP2020032945A JP7359720B2 JP 7359720 B2 JP7359720 B2 JP 7359720B2 JP 2020032945 A JP2020032945 A JP 2020032945A JP 2020032945 A JP2020032945 A JP 2020032945A JP 7359720 B2 JP7359720 B2 JP 7359720B2
Authority
JP
Japan
Prior art keywords
crucible
quartz crucible
gap
measuring
bottomed cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020032945A
Other languages
Japanese (ja)
Other versions
JP2021134126A (en
Inventor
和樹 友国
康生 大濱
二郎 沢▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP2020032945A priority Critical patent/JP7359720B2/en
Priority to CN202110193455.XA priority patent/CN113324461A/en
Priority to KR1020210026577A priority patent/KR20210110227A/en
Publication of JP2021134126A publication Critical patent/JP2021134126A/en
Application granted granted Critical
Publication of JP7359720B2 publication Critical patent/JP7359720B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/14Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/02Rulers with scales or marks for direct reading
    • G01B3/04Rulers with scales or marks for direct reading rigid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B3/00Measuring instruments characterised by the use of mechanical techniques
    • G01B3/30Bars, blocks, or strips in which the distance between a pair of faces is fixed, although it may be preadjustable, e.g. end measure, feeler strip

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、有底筒状の石英坩堝の外面と有底筒状の黒鉛坩堝の内面との隙間の間隔を測定するための測定冶具及び測定方法に関する。 The present invention relates to a measuring jig and a measuring method for measuring the gap between the outer surface of a cylindrical quartz crucible with a bottom and the inner surface of a cylindrical graphite crucible with a bottom.

単結晶の製造方法として、チョクラルスキー法(以下、「CZ法」という。)が知られている。特に、半導体電子部品の材料となるシリコン単結晶の多くは、CZ法が広く工業的に採用されている。CZ法は、石英坩堝内に充填した多結晶シリコン等をヒータで溶解した後、このシリコン融液の表面に種結晶を浸し、シリコン融液に浸した種結晶と石英坩堝を回転させつつ種結晶を上方に引き上げることによって種結晶と同一の結晶方位をもつ単結晶を育成する方法である。 The Czochralski method (hereinafter referred to as "CZ method") is known as a method for producing single crystals. In particular, the CZ method is widely used industrially for many silicon single crystals that are used as materials for semiconductor electronic components. In the CZ method, after melting polycrystalline silicon etc. filled in a quartz crucible with a heater, a seed crystal is immersed on the surface of this silicon melt, and the seed crystal is immersed in the silicon melt while rotating the quartz crucible. This is a method of growing a single crystal with the same crystal orientation as the seed crystal by pulling the crystal upward.

図4は、上述のCZ法により単結晶を引き上げる際に用いられる引上げ装置を模式的に示した概念図である。図4に示すように、単結晶引上げ装置10は、引上げ室12と、引上げ室12中に設けられた坩堝13と、坩堝13の周囲に配置されたヒータ14と、坩堝13を回転・昇降させる坩堝保持軸15及びその回転・昇降機構(図示せず)と、シリコンの種結晶16を保持するシードチャック17と、シードチャック17を引き上げるワイヤ18と、ワイヤ18を回転又は巻き取る巻取り機構(図示せず)を備えて構成されている。また、ヒータ14の外側周囲には断熱材19が配置されている。シリコン単結晶20は、原料のシリコン融液11からワイヤ18によって引き上げられる。 FIG. 4 is a conceptual diagram schematically showing a pulling device used when pulling a single crystal by the above-mentioned CZ method. As shown in FIG. 4, the single crystal pulling apparatus 10 includes a pulling chamber 12, a crucible 13 provided in the pulling chamber 12, a heater 14 disposed around the crucible 13, and rotates and raises and lowers the crucible 13. A crucible holding shaft 15 and its rotation/elevating mechanism (not shown), a seed chuck 17 that holds a silicon seed crystal 16, a wire 18 that pulls up the seed chuck 17, and a winding mechanism that rotates or winds up the wire 18. (not shown). Further, a heat insulating material 19 is arranged around the outside of the heater 14 . Silicon single crystal 20 is pulled up from silicon melt 11 as a raw material by wire 18 .

図5に、単結晶引上げ装置10内に配置される坩堝13を示す。図5に示すように、坩堝13は、原料融液を収容する有底筒状の石英坩堝13Aと、石英坩堝13Aを内部に収容する有底筒状の黒鉛坩堝13B(「カーボンサセプター」と呼ばれることもある)から構成される(例えば、特許文献1,2等)。 FIG. 5 shows a crucible 13 placed within the single crystal pulling apparatus 10. As shown in FIG. 5, the crucible 13 includes a bottomed cylindrical quartz crucible 13A that accommodates a raw material melt, and a bottomed cylindrical graphite crucible 13B (referred to as a "carbon susceptor") that accommodates the quartz crucible 13A inside. (for example, Patent Documents 1 and 2).

特開2010-42968号公報Japanese Patent Application Publication No. 2010-42968 特開2014-73925号公報Japanese Patent Application Publication No. 2014-73925

石英坩堝13Aは、黒鉛坩堝13Bの内部に収容可能な寸法で作製されるが、それぞれの作製誤差等により、石英坩堝13Aの外面と黒鉛坩堝13Bの内面とが完全に接触するように作製することは困難である。本発明者が鋭意調査を行ったところ、石英坩堝13Aの外面と黒鉛坩堝13Bの内面とが接触する場所によっては、石英坩堝13Aを黒鉛坩堝13Bの内部に設置したときに形成された隙間30により、石英坩堝13Aが不安定となり、石英坩堝13Aが黒鉛坩堝13B内で揺れると、石英坩堝13Aを黒鉛坩堝13Bの内部に設置するときに破損する恐れがあることがわかった。また、シリコンメルトが揺れ、シリコン単結晶の引上げが困難となる湯面振動を引き起こすだけでなく、シリコン単結晶の引上げ時に石英坩堝13Aが偏心状態となり、シリコンインゴットへの均一な熱供給が不可能となるため、シリコンインゴットの品質劣化にも繋がることがわかった。 The quartz crucible 13A is manufactured to a size that can be accommodated inside the graphite crucible 13B, but due to manufacturing errors, the quartz crucible 13A must be manufactured so that the outer surface of the quartz crucible 13A and the inner surface of the graphite crucible 13B are in complete contact with each other. It is difficult. As a result of extensive investigation by the present inventor, it has been found that depending on the location where the outer surface of the quartz crucible 13A and the inner surface of the graphite crucible 13B come into contact, the gap 30 formed when the quartz crucible 13A is installed inside the graphite crucible 13B It has been found that if the quartz crucible 13A becomes unstable and shakes within the graphite crucible 13B, there is a risk of damage when the quartz crucible 13A is installed inside the graphite crucible 13B. In addition, not only does the silicon melt shake and cause surface vibration that makes it difficult to pull the silicon single crystal, but the quartz crucible 13A becomes eccentric when pulling the silicon single crystal, making it impossible to uniformly supply heat to the silicon ingot. It was found that this also leads to quality deterioration of silicon ingots.

上記のような問題に対し、石英坩堝13Aと黒鉛坩堝13Bの相性の良いものを選択して組み合わせることで、安定性の良い坩堝13とすることが考えられる。しかしながら、従来は、相性の良い石英坩堝13Aと黒鉛坩堝13Bの組み合わせを試行錯誤的に探すほかないため、非常に効率が悪いばかりでなく、必ずしも好ましい組み合わせが得られるわけではなかった。 To solve the above problems, it is possible to create a crucible 13 with good stability by selecting and combining quartz crucibles 13A and graphite crucibles 13B that are compatible with each other. However, in the past, the only way to find a compatible combination of the quartz crucible 13A and graphite crucible 13B was through trial and error, which was not only extremely inefficient, but also did not necessarily result in a favorable combination.

また、黒鉛坩堝13Bの内面の形状に合わせて石英坩堝13Aの外面の形状を修正加工することや、隙間30を無くすように各坩堝を作製することとは逆に、石英坩堝13Aの外面と黒鉛坩堝13Bの内面との間に、意図的に隙間30を設けることも考えられる。 In addition, contrary to modifying the shape of the outer surface of the quartz crucible 13A to match the shape of the inner surface of the graphite crucible 13B or producing each crucible so as to eliminate the gap 30, it is possible to It is also conceivable to intentionally provide a gap 30 between the crucible 13B and the inner surface of the crucible 13B.

しかしながら、上記いずれの場合も隙間30の間隔を取得する必要があるところ、石英坩堝13Aを黒鉛坩堝13Bの内部に設置した状態では、外部から隙間30を観察することは不可能であり、石英坩堝13Aの外面と黒鉛坩堝13Bの内面との間の隙間30の間隔を、実測することができないという問題があった However, in any of the above cases, it is necessary to obtain the distance between the gaps 30, but when the quartz crucible 13A is installed inside the graphite crucible 13B, it is impossible to observe the gaps 30 from the outside. There was a problem in that it was not possible to actually measure the distance of the gap 30 between the outer surface of graphite crucible 13A and the inner surface of graphite crucible 13B.

本発明は、上記問題を解決するためになされたものであり、CZ法によりシリコン単結晶インゴットを育成するための有底筒状の石英坩堝が有底筒状の黒鉛坩堝の内部に配置されたときの、石英坩堝の外面と黒鉛坩堝の内面との隙間の間隔を容易に測定することが可能な測定冶具を提供することを目的とする。 The present invention was made to solve the above problem, and a cylindrical quartz crucible with a bottom for growing a silicon single crystal ingot by the CZ method is placed inside a cylindrical graphite crucible with a bottom. An object of the present invention is to provide a measuring jig that can easily measure the gap between the outer surface of a quartz crucible and the inner surface of a graphite crucible.

本発明は、上記目的を達成するためになされたものであり、CZ法によりシリコン単結晶インゴットを育成するために有底筒状の石英坩堝が有底筒状の黒鉛坩堝の内部に配置されたときの、前記有底筒状の石英坩堝の外面と前記有底筒状の黒鉛坩堝の内面との隙間の間隔を測定するための測定冶具であって、前記黒鉛坩堝の中心軸を含む縦断面のうち、少なくとも底部を含む領域の前記黒鉛坩堝の内面の断面形状が形成された断面形状部を有するギャップ板を備える測定冶具を提供する。 The present invention has been made to achieve the above object, and in order to grow a silicon single crystal ingot by the CZ method, a cylindrical quartz crucible with a bottom is placed inside a cylindrical graphite crucible with a bottom. A measuring jig for measuring the gap interval between the outer surface of the bottomed cylindrical quartz crucible and the bottomed cylindrical inner surface of the graphite crucible, the longitudinal section including the central axis of the graphite crucible. The present invention provides a measurement jig including a gap plate having a cross-sectional shape in which a cross-sectional shape of the inner surface of the graphite crucible is formed in a region including at least the bottom.

このような測定冶具によれば、石英坩堝の外面と黒鉛坩堝の内面との隙間の間隔を容易に測定することが可能なものとなる。 According to such a measuring jig, it becomes possible to easily measure the gap between the outer surface of the quartz crucible and the inner surface of the graphite crucible.

このとき、前記ギャップ板を複数備え、それぞれの前記ギャップ板における前記黒鉛坩堝の中心軸に対応する位置で交差状に連結されたものである測定冶具とすることができる。 At this time, the measurement jig may include a plurality of gap plates, each of which is connected in a cross-like manner at a position corresponding to the central axis of the graphite crucible.

これにより、隙間の間隔を、より簡便に安定して精度よく測定することが可能なものとなる。 This makes it possible to more easily, stably, and accurately measure the interval between gaps.

このとき、前記ギャップ板は、前記石英坩堝の径を示すスケールが形成されたものである測定冶具とすることができる。 At this time, the gap plate may be a measurement jig on which a scale indicating the diameter of the quartz crucible is formed.

これにより、高い位置精度で隙間の間隔を容易に測定することが可能なものとなる。 This makes it possible to easily measure the gap interval with high positional accuracy.

このとき、CZ法によりシリコン単結晶インゴットを育成するために有底筒状の石英坩堝が有底筒状の黒鉛坩堝の内部に配置されたときの、前記有底筒状の石英坩堝の外面と前記有底筒状の黒鉛坩堝の内面との隙間の間隔を測定するための測定方法であって、上述の測定冶具を用い、前記ギャップ板における前記断面形状部を前記石英坩堝の底部の外面にあてがい、前記ギャップ板における前記断面形状部と前記石英坩堝の外面との間の隙間に円錐テーパーゲージを挿入し、前記円錐テーパーゲージの円錐面を、前記ギャップ板における前記断面形状部と前記石英坩堝の外面に接触させて、前記円錐テーパーゲージの円錐面と前記ギャップ板における前記断面形状部及び前記石英坩堝の外面との接触位置から、前記隙間の間隔を測定する測定方法を提供することができる。 At this time, when a bottomed cylindrical quartz crucible is placed inside a bottomed cylindrical graphite crucible in order to grow a silicon single crystal ingot by the CZ method, the outer surface of the bottomed cylindrical quartz crucible and A measuring method for measuring the gap between the bottomed cylindrical graphite crucible and the inner surface thereof, using the above-mentioned measuring jig, the cross-sectional shape part of the gap plate is placed on the outer surface of the bottom of the quartz crucible. A conical taper gauge is inserted into the gap between the cross-sectional portion of the gap plate and the outer surface of the quartz crucible, and the conical surface of the conical taper gauge is connected to the cross-sectional portion of the gap plate and the quartz crucible. It is possible to provide a measuring method for measuring the interval of the gap from the contact position between the conical surface of the conical taper gauge, the cross-sectional portion of the gap plate, and the outer surface of the quartz crucible. .

これにより、石英坩堝の外面と黒鉛坩堝の内面との隙間の間隔を容易に精度よく測定することができる。 Thereby, the gap between the outer surface of the quartz crucible and the inner surface of the graphite crucible can be easily and accurately measured.

このとき、前記有底筒状の石英坩堝の開口部を下にして、前記石英坩堝の底部の外面が上方を向く状態として前記隙間の間隔を測定する測定方法とすることができる。 At this time, the measurement method may be such that the opening of the cylindrical quartz crucible with a bottom is placed downward, and the interval between the gaps is measured with the outer surface of the bottom of the quartz crucible facing upward.

これにより、より簡便に安定して、また、安全に、隙間の間隔を容易に測定することができる。 Thereby, the distance between the gaps can be easily measured more simply, stably, and safely.

以上のように、本発明の測定冶具によれば、石英坩堝の外面と黒鉛坩堝の内面との隙間の間隔を容易に測定することが可能なものとなる。また、本発明の測定方法では、本発明の測定冶具を使用して測定を行うことで、石英坩堝の外面と黒鉛坩堝の内面との隙間の間隔を容易に測定することが可能になる。 As described above, according to the measuring jig of the present invention, it becomes possible to easily measure the gap between the outer surface of a quartz crucible and the inner surface of a graphite crucible. Further, in the measuring method of the present invention, by performing measurement using the measuring jig of the present invention, it becomes possible to easily measure the gap between the outer surface of the quartz crucible and the inner surface of the graphite crucible.

本発明に係る測定冶具の側面図及び上面図を示す。1 shows a side view and a top view of a measurement jig according to the present invention. 本発明に係る測定冶具の具体例を示す。A specific example of the measurement jig according to the present invention will be shown. テーパーゲージの例を示す。An example of a taper gauge is shown. 引上げ装置を模式的に示した概念図を示す。A conceptual diagram schematically showing a pulling device is shown. 石英坩堝を黒鉛坩堝内に設置したときの状態を示す。The state when a quartz crucible is installed in a graphite crucible is shown.

以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be explained in detail, but the present invention is not limited thereto.

上述のように、CZ法によりシリコン単結晶インゴットを育成するために有底筒状の石英坩堝が有底筒状の黒鉛坩堝の内部に配置されたときの、石英坩堝の外面と黒鉛坩堝の内面との隙間の間隔を容易に測定することが可能な測定冶具及び測定方法が求められていた。 As mentioned above, when a bottomed cylindrical quartz crucible is placed inside a bottomed cylindrical graphite crucible in order to grow a silicon single crystal ingot by the CZ method, the outer surface of the quartz crucible and the inner surface of the graphite crucible There is a need for a measuring jig and measuring method that can easily measure the gap between the two.

本発明者らは、上記課題について鋭意検討を重ねた結果、CZ法によりシリコン単結晶インゴットを育成するために有底筒状の石英坩堝が有底筒状の黒鉛坩堝の内部に配置されたときの、前記有底筒状の石英坩堝の外面と前記有底筒状の黒鉛坩堝の内面との隙間の間隔を測定するための測定冶具であって、前記黒鉛坩堝の中心軸を含む縦断面のうち、少なくとも底部を含む領域の前記黒鉛坩堝の内面の断面形状が形成された断面形状部を有するギャップ板を備える測定冶具により、石英坩堝の外面と黒鉛坩堝の内面との隙間の間隔を容易に測定することが可能なものとなることを見出し、本発明を完成した。 As a result of intensive studies on the above-mentioned problems, the present inventors found that when a bottomed cylindrical quartz crucible is placed inside a bottomed cylindrical graphite crucible in order to grow a silicon single crystal ingot by the CZ method. A measuring jig for measuring the gap between the outer surface of the bottomed cylindrical quartz crucible and the bottomed cylindrical inner surface of the graphite crucible, the measuring jig being a measuring jig for measuring a gap interval between the outer surface of the bottomed cylindrical quartz crucible and the inner surface of the bottomed cylindrical graphite crucible, Among them, the distance between the gap between the outer surface of the quartz crucible and the inner surface of the graphite crucible can be easily determined by a measuring jig including a gap plate having a cross-sectional shape formed with a cross-sectional shape of the inner surface of the graphite crucible in a region including at least the bottom. The present invention was completed based on the discovery that the method can be measured.

以下、図面を参照して説明する。 This will be explained below with reference to the drawings.

(測定冶具)
図1の(A)に本発明に係る測定冶具1の側面図を、図1の(B)に上面図を示す。本発明に係る測定冶具1は、黒鉛坩堝の中心軸を含む縦断面のうち、少なくとも底部を含む領域の黒鉛坩堝の内面の断面形状が形成された断面形状部2を有するギャップ板3を備えるものである。ギャップ板3には、石英坩堝13Aの径を示すスケール4を形成することも、有効である。このようなギャップ板3であれば、高い位置精度で隙間の間隔を容易に測定することが可能なものとなる。
(Measurement jig)
FIG. 1A shows a side view of a measuring jig 1 according to the present invention, and FIG. 1B shows a top view. A measuring jig 1 according to the present invention includes a gap plate 3 having a cross-sectional shape portion 2 in which a cross-sectional shape of the inner surface of the graphite crucible is formed in a region including at least the bottom of a longitudinal section including the central axis of the graphite crucible. It is. It is also effective to form a scale 4 on the gap plate 3 to indicate the diameter of the quartz crucible 13A. With such a gap plate 3, it becomes possible to easily measure the gap interval with high positional accuracy.

ギャップ板3の材料は特に限定されない。剛性の高い金属材料を用いれば、ギャップ板3の厚さを薄くすることができる。樹脂材料を用いれば、坩堝の金属汚染の恐れが少ないものとなる点で好ましい。また、樹脂材料であれば、軽量のギャップ板3とできるため、測定の作業性も容易になる。また、コストの点でも樹脂材料が有利である。例えば、テフロン(登録商標)などのフッ素樹脂、ジュラコン(登録商標)などのポリアセタール系樹脂等の材料を使用することも好ましい。 The material of the gap plate 3 is not particularly limited. If a highly rigid metal material is used, the thickness of the gap plate 3 can be reduced. It is preferable to use a resin material because there is less risk of metal contamination of the crucible. Moreover, since the gap plate 3 can be made from a lightweight resin material, the workability of the measurement becomes easier. Furthermore, resin materials are advantageous in terms of cost. For example, it is also preferable to use materials such as fluororesins such as Teflon (registered trademark) and polyacetal resins such as Duracon (registered trademark).

ギャップ板3は、例えば、黒鉛坩堝13Bの内面の断面形状に合わせて材料を削り出して作製しても良いし、いわゆる3Dプリンタ(積層造形)により作製しても良い。ギャップ板を作製する場合には、予め黒鉛坩堝13Bの内面の断面形状を取得する必要がある。このとき、三次元形状測定機を使用して黒鉛坩堝13Bの内面の形状データを取得すれば、断面形状データも容易に取得できるため好ましい。そして、取得した断面形状データに基づいて、積層造形によりギャップ板3を容易に作製できる。また、黒鉛坩堝13Bの内面の型をとり、その型に合わせてギャップ板3の断面形状部2を形成する方法などによっても、ギャップ板3を作製できる。 The gap plate 3 may be manufactured, for example, by cutting out a material in accordance with the cross-sectional shape of the inner surface of the graphite crucible 13B, or may be manufactured using a so-called 3D printer (layered manufacturing). When producing a gap plate, it is necessary to obtain the cross-sectional shape of the inner surface of the graphite crucible 13B in advance. At this time, it is preferable to obtain the shape data of the inner surface of the graphite crucible 13B using a three-dimensional shape measuring machine because the cross-sectional shape data can also be easily obtained. Then, based on the acquired cross-sectional shape data, the gap plate 3 can be easily manufactured by additive manufacturing. Alternatively, the gap plate 3 can be manufactured by a method of taking a mold of the inner surface of the graphite crucible 13B and forming the cross-sectional shape portion 2 of the gap plate 3 to match the mold.

図2に、本発明に係る測定冶具1の具体例を示す。図2の測定冶具は、厚さ3mmのテフロン(登録商標)板を切り出して作製した、直径32インチ(約800mm)の石英坩堝に対して使用する測定冶具である。図2に示すように、ギャップ板3を複数作製し、それぞれのギャップ板における黒鉛坩堝の中心軸に対応する位置で、直交するように交差状に連結したものとすることが好ましい。図2の例では、2枚のギャップ板を直交するように連結している。このようにすれば、石英坩堝13Aの底部の外面に安定して置くことができ、大型の石英坩堝を測定の対象とする場合でも、一人で正確に測定を行うことができるものとなる。なお、図2は2枚のギャップ板を用いた例であるが、3枚以上のギャップ板を連結して用いることも、もちろん可能である。ギャップ板の数が多いほど、坩堝全体にわたって精度高く、容易に、隙間の評価を行うことができる。 FIG. 2 shows a specific example of the measuring jig 1 according to the present invention. The measurement jig shown in FIG. 2 is a measurement jig used for a quartz crucible with a diameter of 32 inches (approximately 800 mm), which is made by cutting out a Teflon (registered trademark) plate with a thickness of 3 mm. As shown in FIG. 2, it is preferable that a plurality of gap plates 3 are produced and connected in a cross-like manner so as to be orthogonal to each other at a position corresponding to the central axis of the graphite crucible in each gap plate. In the example of FIG. 2, two gap plates are connected orthogonally. In this way, it can be stably placed on the outer surface of the bottom of the quartz crucible 13A, and even when a large quartz crucible is to be measured, one person can accurately measure it. Although FIG. 2 shows an example using two gap plates, it is of course possible to use three or more gap plates connected. The larger the number of gap plates, the more accurately and easily the gap can be evaluated over the entire crucible.

(測定方法)
上述のような測定冶具1を用いて、有底筒状の石英坩堝の外面と有底筒状の黒鉛坩堝の内面との隙間の間隔を測定する方法を以下に説明する。
(Measuring method)
A method of measuring the gap between the outer surface of a cylindrical quartz crucible with a bottom and the inner surface of a cylindrical graphite crucible with a bottom using the measurement jig 1 as described above will be described below.

測定冶具1のギャップ板3の断面形状部2は、黒鉛坩堝13Bの内面の断面形状を反映した形状であるため、石英坩堝13Aの外面と黒鉛坩堝13Bの内面の形状が一致しない場合は、ギャップ板3の断面形状部2を石英坩堝13Aの底部の外面にあてがうことで、測定冶具1の断面形状部2と石英坩堝13Aの底部との間に隙間が生じる。この隙間の間隔を測定すれば、隙間の間隔の計測が可能である。このとき、図3に示すような円錐テーパーゲージを隙間に挿入し、円錐テーパーゲージの円錐面を、ギャップ板3における断面形状部2と石英坩堝13Aの外面に接触させて、円錐テーパーゲージの円錐面とギャップ板3における断面形状部2及び石英坩堝13Aの外面との接触位置から、隙間の間隔を測定することできる。このような測定方法とすれば、熟練を要することなく、極めて簡便かつ正確に、有底筒状の石英坩堝13Aの外面と有底筒状の黒鉛坩堝13Bの内面との隙間の間隔を測定することができる。 The cross-sectional shape portion 2 of the gap plate 3 of the measurement jig 1 has a shape that reflects the cross-sectional shape of the inner surface of the graphite crucible 13B, so if the outer surface of the quartz crucible 13A and the inner surface of the graphite crucible 13B do not match, the gap By applying the cross-sectional portion 2 of the plate 3 to the outer surface of the bottom of the quartz crucible 13A, a gap is created between the cross-sectional portion 2 of the measurement jig 1 and the bottom of the quartz crucible 13A. By measuring the interval between these gaps, it is possible to measure the interval between the gaps. At this time, insert a conical taper gauge as shown in FIG. The gap interval can be measured from the contact position between the surface and the cross-sectional shape portion 2 of the gap plate 3 and the outer surface of the quartz crucible 13A. With such a measurement method, the gap between the outer surface of the bottomed cylindrical quartz crucible 13A and the inner surface of the bottomed cylindrical graphite crucible 13B can be measured extremely easily and accurately without requiring any skill. be able to.

また、上記のようにして隙間の測定を行うときには、有底筒状の石英坩堝の開口部を下にして、石英坩堝の底部の外面が上方を向く状態として隙間の間隔を測定することが好ましい。このようにすれば、特に坩堝が大きな場合であっても、より簡便に安定して、また、安全に測定を行うことができる。 Furthermore, when measuring the gap as described above, it is preferable to measure the gap interval with the opening of the bottomed cylindrical quartz crucible facing down and the outer surface of the bottom of the quartz crucible facing upward. . In this way, even if the crucible is particularly large, measurements can be performed more simply, stably, and safely.

本発明に係る測定冶具及びこれを用いた測定方法によれば、これまで測定することができなかった、CZ法により単結晶を引き上げる際に用いられる引上げ装置における石英坩堝の外面と黒鉛坩堝の内面との隙間の間隔を、極めて容易かつ正確に測定することが可能となった。特に、石英坩堝の外面と黒鉛坩堝の内面との間に、意図的に隙間を形成する場合には、本発明に係る測定冶具を用いて測定を行うことで、容易に精度高く、所望の隙間を有する石英坩堝と黒鉛坩堝の組み合わせを得ることができる。 According to the measuring jig and the measuring method using the same according to the present invention, it is possible to measure the outer surface of a quartz crucible and the inner surface of a graphite crucible in a pulling device used for pulling a single crystal by the CZ method, which has not been able to be measured so far. It has become possible to measure the gap between the two very easily and accurately. In particular, when a gap is intentionally formed between the outer surface of a quartz crucible and the inner surface of a graphite crucible, the measurement jig according to the present invention can be used to easily and accurately measure the desired gap. A combination of a quartz crucible and a graphite crucible can be obtained.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment that has substantially the same configuration as the technical idea stated in the claims of the present invention and has similar effects is the present invention. covered within the technical scope of.

1…測定冶具、 2…断面形状部、 3…ギャップ板、 4…スケール、
10…単結晶引上げ装置、 11…シリコン融液、 12…引上げ室、
13…坩堝、13A…石英坩堝、13B…黒鉛坩堝、 14…ヒータ、
15…坩堝保持軸、 16…種結晶、 17…シードチャック、
18…ワイヤ、 19…断熱材、 20…シリコン単結晶、 30…隙間。
1...Measuring jig, 2...Cross-sectional shape part, 3...Gap plate, 4...Scale,
10... Single crystal pulling device, 11... Silicon melt, 12... Pulling chamber,
13... Crucible, 13A... Quartz crucible, 13B... Graphite crucible, 14... Heater,
15... Crucible holding shaft, 16... Seed crystal, 17... Seed chuck,
18...Wire, 19...Insulating material, 20...Silicon single crystal, 30...Gap.

Claims (5)

CZ法によりシリコン単結晶インゴットを育成するために有底筒状の石英坩堝が有底筒状の黒鉛坩堝の内部に配置されたときの、前記有底筒状の石英坩堝の外面と前記有底筒状の黒鉛坩堝の内面との隙間の間隔を測定するための測定冶具であって、
前記黒鉛坩堝の中心軸を含む縦断面のうち、少なくとも底部を含む領域の前記黒鉛坩堝の内面の断面形状が形成された断面形状部を有するギャップ板を備えることを特徴とする測定冶具。
The outer surface of the bottomed cylindrical quartz crucible and the bottomed cylindrical quartz crucible when the bottomed cylindrical quartz crucible is placed inside a bottomed cylindrical graphite crucible for growing a silicon single crystal ingot by the CZ method. A measuring jig for measuring the gap between the inner surface and the inner surface of a cylindrical graphite crucible,
A measurement jig comprising: a gap plate having a cross-sectional shape formed in a cross-sectional shape of an inner surface of the graphite crucible in a region including at least a bottom portion of a vertical cross-section including a central axis of the graphite crucible.
前記ギャップ板を複数備え、それぞれの前記ギャップ板における前記黒鉛坩堝の中心軸に対応する位置で交差状に連結されたものであることを特徴とする請求項1に記載の測定冶具。 2. The measurement jig according to claim 1, comprising a plurality of gap plates, each of which is connected in a crosswise manner at a position corresponding to a central axis of the graphite crucible. 前記ギャップ板は、前記石英坩堝の径を示すスケールが形成されたものであることを特徴とする請求項1又は2に記載の測定冶具。 3. The measurement jig according to claim 1, wherein the gap plate has a scale formed thereon to indicate a diameter of the quartz crucible. CZ法によりシリコン単結晶インゴットを育成するために有底筒状の石英坩堝が有底筒状の黒鉛坩堝の内部に配置されたときの、前記有底筒状の石英坩堝の外面と前記有底筒状の黒鉛坩堝の内面との隙間の間隔を測定するための測定方法であって、
請求項1から3のいずれか一項に記載の測定冶具を用い、
前記ギャップ板における前記断面形状部を前記石英坩堝の底部の外面にあてがい、前記ギャップ板における前記断面形状部と前記石英坩堝の外面との間の隙間に円錐テーパーゲージを挿入し、前記円錐テーパーゲージの円錐面を、前記ギャップ板における前記断面形状部と前記石英坩堝の外面に接触させて、前記円錐テーパーゲージの円錐面と前記ギャップ板における前記断面形状部及び前記石英坩堝の外面との接触位置から、前記隙間の間隔を測定することを特徴とする測定方法。
The outer surface of the bottomed cylindrical quartz crucible and the bottomed cylindrical quartz crucible when the bottomed cylindrical quartz crucible is placed inside a bottomed cylindrical graphite crucible for growing a silicon single crystal ingot by the CZ method. A measurement method for measuring the gap between the inner surface and the inner surface of a cylindrical graphite crucible,
Using the measurement jig according to any one of claims 1 to 3,
The cross-sectional portion of the gap plate is applied to the outer surface of the bottom of the quartz crucible, and a conical taper gauge is inserted into the gap between the cross-sectional portion of the gap plate and the outer surface of the quartz crucible. contact position of the conical surface of the conical taper gauge with the cross-sectional portion of the gap plate and the outer surface of the quartz crucible, A measuring method characterized by measuring the interval between the gaps.
前記有底筒状の石英坩堝の開口部を下にして、前記石英坩堝の底部の外面が上方を向く状態として前記隙間の間隔を測定することを特徴とする請求項4に記載の測定方法。 5. The measuring method according to claim 4, wherein the distance between the gaps is measured with the opening of the cylindrical quartz crucible facing downward and the outer surface of the bottom of the quartz crucible facing upward.
JP2020032945A 2020-02-28 2020-02-28 Measuring jig and measuring method Active JP7359720B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020032945A JP7359720B2 (en) 2020-02-28 2020-02-28 Measuring jig and measuring method
CN202110193455.XA CN113324461A (en) 2020-02-28 2021-02-20 Measuring jig and measuring method
KR1020210026577A KR20210110227A (en) 2020-02-28 2021-02-26 Measurement jig and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020032945A JP7359720B2 (en) 2020-02-28 2020-02-28 Measuring jig and measuring method

Publications (2)

Publication Number Publication Date
JP2021134126A JP2021134126A (en) 2021-09-13
JP7359720B2 true JP7359720B2 (en) 2023-10-11

Family

ID=77414425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020032945A Active JP7359720B2 (en) 2020-02-28 2020-02-28 Measuring jig and measuring method

Country Status (3)

Country Link
JP (1) JP7359720B2 (en)
KR (1) KR20210110227A (en)
CN (1) CN113324461A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157230A (en) 2010-02-01 2011-08-18 Covalent Materials Corp Carbon fiber-reinforced carbon composite crucible and method for producing the crucible
WO2014207942A1 (en) 2013-06-29 2014-12-31 株式会社Sumco Silicon single crystal pulling method
JP2019048750A (en) 2017-09-12 2019-03-28 クアーズテック株式会社 Method of correcting quartz glass crucible
JP2019167263A (en) 2018-03-23 2019-10-03 クアーズテック株式会社 Quartz glass crucible and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136278B2 (en) 2008-08-18 2013-02-06 株式会社Sumco Method for producing silicon single crystal
JP5904079B2 (en) 2012-10-03 2016-04-13 信越半導体株式会社 Silicon single crystal growing apparatus and silicon single crystal growing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157230A (en) 2010-02-01 2011-08-18 Covalent Materials Corp Carbon fiber-reinforced carbon composite crucible and method for producing the crucible
WO2014207942A1 (en) 2013-06-29 2014-12-31 株式会社Sumco Silicon single crystal pulling method
JP2019048750A (en) 2017-09-12 2019-03-28 クアーズテック株式会社 Method of correcting quartz glass crucible
JP2019167263A (en) 2018-03-23 2019-10-03 クアーズテック株式会社 Quartz glass crucible and method for manufacturing the same

Also Published As

Publication number Publication date
CN113324461A (en) 2021-08-31
JP2021134126A (en) 2021-09-13
KR20210110227A (en) 2021-09-07

Similar Documents

Publication Publication Date Title
KR101579780B1 (en) Method of determining diameter of single crystal, process for producing single crystal using same, and device for producing single crystal
JP2008195545A (en) Method for measuring distance between lower end surface of heat shielding member and surface of material melt, and method for controlling the distance
TW463224B (en) Method for producing silicon single crystal and apparatus for producing the same, and single crystal and wafer produced with the method
JP5143292B2 (en) Silica glass crucible
JP4930487B2 (en) Method for measuring distance between melt surface and lower end of in-furnace structure, method for controlling position of melt surface using the same, method for producing single crystal and single crystal production apparatus
JP7359720B2 (en) Measuring jig and measuring method
TW201002876A (en) Method for growing silicon single crystal
JP6256284B2 (en) Method for measuring distance between bottom surface of heat shield member and raw material melt surface and method for producing silicon single crystal
JP5304206B2 (en) Single crystal manufacturing method and single crystal manufacturing apparatus
JP4930488B2 (en) Single crystal diameter detection method, single crystal manufacturing method using the same, and single crystal manufacturing apparatus
KR101186751B1 (en) Melt Gap Controlling Apparatus and Single Crystal Grower including the same
KR20230044206A (en) Crucible for CZ
JP2006266813A (en) Melt collection tool, and ingot manufacturing device using melt collection tool
JP6547677B2 (en) Method of determining the solid-liquid interface height between single crystal and raw material melt and method of manufacturing single crystal
KR101758983B1 (en) Ingot growing apparatus and growing method by it
JP2013256424A (en) Apparatus for growing sapphire single crystal
KR20230044205A (en) Quartz Glass Crucible
JP2009234889A (en) Production method of seed crystal and seed crystal
JP6507813B2 (en) Method of holding seed crystal, and seed crystal holder
JP2024018606A (en) silicon single crystal
JP2000264785A (en) Process and device for producing silicon single crystal
JP2009286647A (en) Apparatus and method for manufacturing silicon single crystal
CN110273178A (en) The method of pulling up of monocrystalline silicon
CN109477243A (en) The preparation method of monocrystalline containing PbTiO3
KR20130080901A (en) Apparatus of ingot growing and method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230928

R150 Certificate of patent or registration of utility model

Ref document number: 7359720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150