JP2011157230A - Carbon fiber-reinforced carbon composite crucible and method for producing the crucible - Google Patents

Carbon fiber-reinforced carbon composite crucible and method for producing the crucible Download PDF

Info

Publication number
JP2011157230A
JP2011157230A JP2010019911A JP2010019911A JP2011157230A JP 2011157230 A JP2011157230 A JP 2011157230A JP 2010019911 A JP2010019911 A JP 2010019911A JP 2010019911 A JP2010019911 A JP 2010019911A JP 2011157230 A JP2011157230 A JP 2011157230A
Authority
JP
Japan
Prior art keywords
carbon fiber
crucible
fiber woven
carbon
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010019911A
Other languages
Japanese (ja)
Other versions
JP5490554B2 (en
Inventor
Daishi Yoshimitsu
大志 吉光
Eiichi Sotodani
栄一 外谷
Masayuki Okawa
雅行 大川
Takakazu Mori
隆員 森
Eiki Tsushima
栄樹 津島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2010019911A priority Critical patent/JP5490554B2/en
Priority to CN201110037106.5A priority patent/CN102140676B/en
Publication of JP2011157230A publication Critical patent/JP2011157230A/en
Application granted granted Critical
Publication of JP5490554B2 publication Critical patent/JP5490554B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Ceramic Products (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon fiber-reinforced carbon composite crucible which is used for supporting and holding a crucible containing a melt material in an apparatus for producing a single crystal or a polycrystal of a semiconductor material, a solar cell material or the like, wherein in a bottom curved portion, a stepped part of a wrinkle or an overlap is eliminated to improve durability. <P>SOLUTION: The carbon fiber-reinforced carbon composite crucible 1 includes a bottom portion 3 having a curved portion in a circumference portion and a straight body portion 2 extended upward from the curved portion of the bottom portion. The bottom portion 3 and the straight body portion 2 are formed by laminating a plurality of sheets of carbon fiber cloths 11, 12, 13 (10) having alternately woven warps and woofs of carbon fibers. The axial lines of the warps and wefts of the carbon fiber cloths at the curved portion of the bottom portion are formed in a direction oblique to the circumference direction of the crucible. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、炭素繊維強化炭素複合材ルツボ及びこのルツボの製造方法に関し、例えば、半導体材料等の単結晶を引上げる装置または太陽電池材料等の多結晶を製造する装置において溶融材料を収容するルツボを支持、保持するために用いられる炭素繊維強化炭素複合材ルツボ及びこのルツボの製造方法に関する。   The present invention relates to a carbon fiber reinforced carbon composite crucible and a method for producing the crucible, and, for example, a crucible for containing a molten material in a device for pulling up a single crystal such as a semiconductor material or a device for producing a polycrystal such as a solar cell material. The present invention relates to a carbon fiber reinforced carbon composite material crucible used for supporting and holding a crucible and a method for producing the crucible.

例えば、半導体材料等の単結晶を製造する場合、CZ法(チョクラルスキー法)が広く用いられている。
このCZ方法は、図12に示すように石英ルツボ50内に収容されたシリコンの溶融液Mの表面に種結晶Pを接触させ、石英ルツボ50を回転させるとともに、この種結晶Pを反対方向に回転させながら上方へ引上げることによって、種結晶Pの下端に単結晶Cを形成していくものである。
For example, when producing a single crystal such as a semiconductor material, the CZ method (Czochralski method) is widely used.
In this CZ method, as shown in FIG. 12, the seed crystal P is brought into contact with the surface of the silicon melt M accommodated in the quartz crucible 50, the quartz crucible 50 is rotated, and the seed crystal P is moved in the opposite direction. By pulling upward while rotating, the single crystal C is formed at the lower end of the seed crystal P.

この石英ルツボ50はシリコン単結晶Cの育成にともない、周りを取り囲むヒータ52の熱、シリコン溶融液Mの熱によって軟化する。このため、石英ルツボ50は黒鉛ルツボ51内に収容され、支持されている。
そして、シリコン単結晶引上げが終了すると、石英ルツボ50及び黒鉛ルツボ51は冷却される。このとき、前記黒鉛ルツボ51の熱膨張係数が石英ルツボ50よりも大きいため、両者が密着した状態で冷却されると、黒鉛ルツボ51に亀裂が生じ、最終的には亀裂、割れが生じるという課題があった。
As the silicon single crystal C is grown, the quartz crucible 50 is softened by the heat of the heater 52 and the heat of the silicon melt M. For this reason, the quartz crucible 50 is accommodated and supported in the graphite crucible 51.
When the pulling of the silicon single crystal is completed, the quartz crucible 50 and the graphite crucible 51 are cooled. At this time, since the coefficient of thermal expansion of the graphite crucible 51 is larger than that of the quartz crucible 50, the graphite crucible 51 is cracked and finally cracked and cracked when cooled in a state where they are in close contact with each other. was there.

そのような課題に対し、例えば特許文献1には、従来の黒鉛ルツボ51に代えて、炭素繊維強化炭素複合材(C/C材とも呼ぶ)からなるルツボ(以下、便宜的に炭素ルツボと呼ぶ)を用いることが開示されている。このC/C材の熱膨張係数は石英ガラスルツボの熱膨張係数に近く、また、機械的強度が黒鉛材よりも高いため、冷却時の割れ発生の確率を大幅に低減することができる。
そして、この特許文献1に開示された炭素ルツボを製造する場合には、図13(a)に示すように、上部に複数枚の葉っぱ状体60aが連なる形状に切欠かれたC/C材からなるシート状の炭素繊維織布60を用意する。この用意したシート状の炭素繊維織布60を図13(b)に示すように、あたかも地球儀を製作する要領でルツボ成形型61の表面に順次貼り付け、所定の厚さとなるまでこの作業を繰り返して製作する。
For such a problem, for example, in Patent Document 1, instead of the conventional graphite crucible 51, a crucible made of a carbon fiber reinforced carbon composite material (also referred to as C / C material) (hereinafter referred to as a carbon crucible for convenience). ) Is disclosed. The coefficient of thermal expansion of the C / C material is close to that of the quartz glass crucible, and the mechanical strength is higher than that of the graphite material, so that the probability of occurrence of cracks during cooling can be greatly reduced.
And when manufacturing the carbon crucible disclosed by this patent document 1, as shown to Fig.13 (a), from the C / C material notched in the shape where several leaf-like bodies 60a continue in the upper part. A sheet-like carbon fiber woven fabric 60 is prepared. As shown in FIG. 13B, the prepared sheet-like carbon fiber woven fabric 60 is sequentially attached to the surface of the crucible forming die 61 in the manner of manufacturing a globe, and this operation is repeated until a predetermined thickness is obtained. To make.

特開平11−60373号公報Japanese Patent Laid-Open No. 11-60373

図13に示すような方法により製作された炭素ルツボの場合、図12に示すルツボ底部の小湾曲部R1、大湾曲部R2において、葉っぱ状体60a同士が重ね合わされ、重ね合わされた葉っぱ状体60aの段差が放射状に形成される。
このように、ルツボ底部の湾曲部R1、R2において、葉っぱ状体60a同士が重ね合わされるため、炉内において溶融液Mから発生したSiOガスが、炭素ルツボ51の外側の湾曲部R1、R2の重ね合わせ部分の段差部分に滞留し、化学反応(酸化)によって、その部分が局所的に損耗、消耗し、脆弱化するという課題があった。
また、石英ガラスルツボの外壁面と炭素ルツボの内周面とは、完全に密着せず一部に隙間が存在するため、この隙間から前記SiOガスが侵入し、炭素ルツボ51の内側の湾曲部R1、R2の重ね合わせ部分の段差部分に滞留する。この場合においても化学反応(酸化)によって、その部分が局所的に損耗、消耗し、脆弱化するという課題があった。
このように、従来の炭素ルツボにあっては、炭素ルツボ51の湾曲部R1、R2部分において重ね合わせ部分が存在するために、局所的に損耗、消耗し、炭素ルツボが脆弱化するという課題があった。
In the case of the carbon crucible manufactured by the method as shown in FIG. 13, the leaf-like bodies 60a are overlapped in the small curved portion R1 and the large curved portion R2 at the bottom of the crucible shown in FIG. The steps are formed radially.
In this way, since the leaf-like bodies 60a are superimposed on each other at the curved portions R1 and R2 at the bottom of the crucible, the SiO gas generated from the melt M in the furnace is caused by the curved portions R1 and R2 outside the carbon crucible 51. There was a problem that the layer stays in the stepped portion of the overlapped portion, and the portion is locally worn out, consumed and weakened by a chemical reaction (oxidation).
Further, since the outer wall surface of the quartz glass crucible and the inner peripheral surface of the carbon crucible are not completely in close contact with each other and there is a gap in part, the SiO gas enters through this gap, and the curved portion inside the carbon crucible 51 It stays at the stepped portion of the overlapping portion of R1 and R2. Even in this case, there is a problem that the portion is locally worn out, consumed and weakened by a chemical reaction (oxidation).
Thus, in the conventional carbon crucible, since the overlapping portions exist in the curved portions R1 and R2 of the carbon crucible 51, there is a problem that the carbon crucible is locally worn out and consumed, and the carbon crucible becomes weak. there were.

本発明は、前記したような事情の下になされたものであり、半導体材料等の単結晶あるいは太陽電池材料等の多結晶を製造する装置において溶融材料を収容するルツボを支持、保持するために用いられる炭素繊維強化炭素複合材ルツボであって、底部湾曲部において、皺あるいは重ね合わせの段差部分をなくし、耐久性を向上させた炭素繊維強化炭素複合材ルツボを提供することを目的とする。   The present invention has been made under the circumstances as described above, in order to support and hold a crucible containing a molten material in an apparatus for producing a single crystal such as a semiconductor material or a polycrystal such as a solar cell material. An object of the present invention is to provide a carbon fiber reinforced carbon composite crucible that has improved durability by eliminating a wrinkle or overlapping stepped portion at the bottom curved portion.

前記した課題を解決するためになされた、本発明に係る炭素繊維強化炭素複合材ルツボは、周縁部に湾曲部を有する底部と、前記底部湾曲部から上方に延びる直胴部とを有する炭素繊維強化炭素複合材ルツボであって、前記底部と直胴部が、炭素繊維の縦糸と横糸とを交互に織り上げた炭素繊維織布を複数枚、貼り合わせることにより形成されると共に、少なくとも前記底部湾曲部に位置する炭素繊維織布の縦糸と横糸の軸線が、ルツボ周方向に対し斜め方向に形成されていることを特徴としている。   The carbon fiber reinforced carbon composite crucible according to the present invention made to solve the above-described problems is a carbon fiber having a bottom portion having a curved portion at a peripheral portion and a straight body portion extending upward from the bottom curved portion. A reinforced carbon composite crucible, wherein the bottom part and the straight body part are formed by bonding a plurality of carbon fiber woven fabrics in which carbon fiber warp and weft are alternately woven, and at least the bottom curve The axis of the warp and weft yarns of the carbon fiber woven fabric located in the section is formed in an oblique direction with respect to the crucible circumferential direction.

このように底部湾曲部において、炭素繊維織布の縦糸、横糸がルツボ周方向に対し斜めになる部分において、ルツボ周方向に対し斜め方向に伸長するため、重ね目や皺などの大きな凹凸が形成されず、繊維の切れ目のない状態で成型することができる。
したがって、この炭素繊維強化炭素複合材ルツボを使用した際、ルツボの底部湾曲部の内側、外側にSiOガスが滞留することがなく、化学反応(酸化)による脆弱化を抑制することができる。
In this way, in the bottom curved part, the warp and weft of the carbon fiber woven fabric are inclined with respect to the circumferential direction of the crucible, so that large irregularities such as double stitches and wrinkles are formed. It can be molded without any fiber breaks.
Therefore, when this carbon fiber reinforced carbon composite material crucible is used, SiO gas does not stay inside and outside the bottom curved portion of the crucible, and weakening due to chemical reaction (oxidation) can be suppressed.

ここで、前記底部および前記底部湾曲部には、切れ目の無い一体型の第1の炭素繊維織布が用いられ、前記底部湾曲部及び前記直胴部には、炭素繊維の縦糸と横糸がルツボ周方向に対し斜めになるように形成された第2の炭素繊維織布が用いられているのが好ましい。   Here, the bottom and the curved portion of the bottom are made of an integral first carbon fiber woven fabric, and a warp and a weft of carbon fiber are crucible in the curved portion of the bottom and the straight body. It is preferable to use a second carbon fiber woven fabric formed so as to be inclined with respect to the circumferential direction.

更に、前記直胴部には、炭素繊維の横糸と縦糸がルツボ周方向に対し平行方向と直交方向になるように形成された第3の炭素繊維織布が用いられ、前記直胴部において、前記第2の炭素繊維織布と、前記第3の炭素繊維織布とが交互の積層されているのが好ましい。
このように、第3の炭素繊維織布の炭素繊維の横糸と縦糸をルツボ周方向に対し平行方向と直交方向になるように形成した場合、積層する第2の炭素繊維織布と炭素繊維の方向が異なるため、強度を向上させることができる。即ち、縦糸と横糸の軸線方向が異なる炭素繊維織布を交互に積層することにより、相互の接着力が強化され、ルツボの剛性を向上することができる。
Furthermore, a third carbon fiber woven fabric formed so that the weft yarns and warps of the carbon fibers are in a direction perpendicular to and parallel to the circumferential direction of the crucible is used for the straight body portion. It is preferable that the second carbon fiber woven fabric and the third carbon fiber woven fabric are alternately laminated.
Thus, when the weft and warp of the carbon fiber of the third carbon fiber woven fabric are formed so as to be in the direction parallel to and perpendicular to the circumferential direction of the crucible, the second carbon fiber woven fabric and the carbon fiber to be laminated are laminated. Since the directions are different, the strength can be improved. That is, by alternately laminating carbon fiber woven fabrics having different axial directions of warp and weft, mutual adhesive strength can be enhanced and the crucible rigidity can be improved.

尚、第3の炭素繊維織布は、炭素繊維の縦糸と横糸がルツボ周方向に対し斜めになるように形成しても良い。第3の炭素繊維織布の炭素繊維の縦糸と横糸をルツボ周方向に対し斜めになるように形成した場合、積層する第2の炭素繊維織布と炭素繊維の方向が同じになりルツボ周方向への引っ張り応力に対する強度をより向上することができる。   The third carbon fiber woven fabric may be formed such that the carbon fiber warp and weft are oblique to the circumferential direction of the crucible. When the warp and weft of carbon fiber of the third carbon fiber woven fabric are formed so as to be inclined with respect to the circumferential direction of the crucible, the direction of the second carbon fiber woven fabric to be laminated is the same as the carbon fiber, and the circumferential direction of the crucible The strength against tensile stress can be further improved.

また、前記直胴部に積層された各炭素繊維織布のルツボ周方向における不連続部が、積層方向において重ならないように、前記各炭素繊維織布が積層されているのが好ましい。
このように、重なり合う炭素繊維織布同士の間で、炭素繊維織布のルツボ周方向における不連続部同士が、積層方向において重ならないことによって、積層方向(厚さ方向)の隙間が少なくなり、直胴部における積層方向の炭素繊維量をより均一とすることができる。
The carbon fiber woven fabrics are preferably laminated so that discontinuities in the crucible circumferential direction of the carbon fiber woven fabrics laminated on the straight body portion do not overlap in the lamination direction.
In this way, between the overlapping carbon fiber woven fabrics, the discontinuous portions in the circumferential direction of the carbon fiber woven fabric do not overlap in the stacking direction, thereby reducing the gap in the stacking direction (thickness direction), The amount of carbon fibers in the stacking direction in the straight body portion can be made more uniform.

尚、前記第2の炭素繊維織布または前記第3の炭素繊維織布は、それぞれ切れ目のない一体型のもので前記直胴部を1周以上巻くことが望ましい。また、前記第2の炭素繊維織布または第3の炭素繊維織布の大きさが前記直胴部の外周長さに満たない場合であっても、前記第2の炭素繊維織布の継ぎ目(炭素繊維織布のルツボ周方向における不連続部)と前記第3の炭素繊維織布の継ぎ目(炭素繊維織布のルツボ周方向における不連続部)とが異なる位置で重なるようにすることが好ましい。   The second carbon fiber woven fabric or the third carbon fiber woven fabric is preferably an integral type without any breaks, and it is desirable to wind the straight body part one or more times. Further, even when the size of the second carbon fiber woven fabric or the third carbon fiber woven fabric is less than the outer peripheral length of the straight body portion, the seam of the second carbon fiber woven fabric ( It is preferable that a discontinuous portion of the carbon fiber woven fabric in the crucible circumferential direction) and a seam of the third carbon fiber woven fabric (a discontinuous portion of the carbon fiber woven fabric in the crucible circumferential direction) overlap at different positions. .

また、前記直胴部と前記底部の少なくともいずれかにおいて、前記直胴部に積層された各炭素繊維織布の縦糸と横糸との交差部分が、積層方向において重ならないように、前記各炭素繊維織布が積層されているのが好ましい。
このように、重なり合う炭素繊維織布同士の間で、縦糸と横糸との交差部分が、積層方向において重ならないことによって、縦糸と横糸とが交差する部分の凹凸が噛み合い、重なり合う炭素繊維織布同士の接着力を強化することができる。
Further, at least one of the straight body portion and the bottom portion, the carbon fiber woven fabrics are arranged so that the intersecting portions of the warp yarns and weft yarns of the carbon fiber woven fabrics laminated on the straight body portion do not overlap in the lamination direction. It is preferable that the woven fabric is laminated.
In this way, between the overlapping carbon fiber woven fabrics, the intersections of the warp and weft yarns do not overlap in the laminating direction, so that the unevenness of the portion where the warp yarns and the weft yarns intersect each other, and the overlapping carbon fiber woven fabrics The adhesive strength of can be strengthened.

前記した課題を解決するためになされた、本発明に係る炭素繊維強化炭素複合材ルツボの製造方法は、前記炭素繊維織布が熱硬化性樹脂と炭素粉との混合接着剤を用いて貼り合わされ、その後、熱硬化処理、炭素化処理、黒鉛化処理および高純度化処理を施して形成されることを特徴としている。   The carbon fiber reinforced carbon composite crucible manufacturing method according to the present invention, which has been made to solve the above-described problems, is characterized in that the carbon fiber woven fabric is bonded using a mixed adhesive of a thermosetting resin and carbon powder. Then, it is formed by performing a thermosetting treatment, a carbonization treatment, a graphitization treatment and a high-purification treatment.

本発明によれば、底部湾曲部における皺あるいは重ね合わせの段差部分をなくし、耐久性に優れた炭素繊維強化炭素複合材ルツボを得ることができる。また本発明によれば、炭素繊維強化炭素複合材ルツボを好適に製造することができる製造方法を得ることができる。   According to the present invention, it is possible to obtain a carbon fiber-reinforced carbon composite crucible having excellent durability by eliminating the wrinkles or overlapping stepped portions in the bottom curved portion. Moreover, according to this invention, the manufacturing method which can manufacture a carbon fiber reinforced carbon composite material crucible suitably can be obtained.

図1は、本発明に係る炭素繊維強化炭素複合材ルツボに用いられる炭素繊維布の平面図である。FIG. 1 is a plan view of a carbon fiber cloth used in a carbon fiber reinforced carbon composite crucible according to the present invention. 図2は、本発明に係る炭素繊維強化炭素複合材ルツボの一実施形態を示す斜視図である。FIG. 2 is a perspective view showing an embodiment of the carbon fiber-reinforced carbon composite crucible according to the present invention. 図3は、炭素繊維が縦横に格子状に編まれた横長の方形状の炭素繊維織布の概念図である。FIG. 3 is a conceptual diagram of a horizontally-long rectangular carbon fiber woven fabric in which carbon fibers are knitted in a lattice shape vertically and horizontally. 図4は、炭素繊維が斜め45度の斜め格子状に編まれた正円形状の炭素繊維織布の概念図である。FIG. 4 is a conceptual diagram of a carbon fiber woven fabric having a circular shape in which carbon fibers are knitted in an oblique lattice shape with an inclination of 45 degrees. 図5は、炭素繊維が斜め45度の斜め格子状に編まれた横長の方形状の炭素繊維織布である。FIG. 5 shows a horizontally-long rectangular carbon fiber woven fabric in which carbon fibers are knitted in an oblique lattice shape of 45 degrees. 図6は、図1に示した炭素繊維強化炭素複合材ルツボの製造工程を示すフロー図である。FIG. 6 is a flow chart showing a manufacturing process of the carbon fiber reinforced carbon composite crucible shown in FIG. 図7は、図1に示した炭素繊維強化炭素複合材ルツボの製造工程を説明するための図である。FIG. 7 is a diagram for explaining a manufacturing process of the carbon fiber reinforced carbon composite material crucible shown in FIG. 1. 図8は、図1に示した炭素繊維強化炭素複合材ルツボの製造工程を説明するための図である。FIG. 8 is a diagram for explaining a manufacturing process of the carbon fiber reinforced carbon composite material crucible shown in FIG. 1. 図9は、図1に示した炭素繊維強化炭素複合材ルツボの製造工程を説明するための図である。FIG. 9 is a diagram for explaining a manufacturing process of the carbon fiber-reinforced carbon composite material crucible shown in FIG. 1. 図10は、図1に示した炭素繊維強化炭素複合材ルツボの製造工程を説明するための図である。FIG. 10 is a diagram for explaining a manufacturing process of the carbon fiber reinforced carbon composite material crucible shown in FIG. 1. 図11は、本発明に係る炭素繊維強化炭素複合材ルツボの他の実施形態において、炭素繊維織布の好ましい積層方法を説明するための炭素繊維織布の概念図である。FIG. 11 is a conceptual diagram of a carbon fiber woven fabric for explaining a preferred method of laminating the carbon fiber woven fabric in another embodiment of the carbon fiber reinforced carbon composite crucible according to the present invention. 図12は、シリコン単結晶引上装置において用いるルツボの説明をするための図である。FIG. 12 is a view for explaining a crucible used in a silicon single crystal pulling apparatus. 図13は、従来の炭素繊維強化複合材ルツボの製造方法を説明するための図である。FIG. 13 is a view for explaining a conventional method for producing a carbon fiber reinforced composite crucible.

以下、本発明に係る炭素繊維強化炭素複合材ルツボの実施の形態について図面に基づき説明する。
まず、図1に基づいて、この炭素繊維強化炭素複合材ルツボに用いられる炭素繊維布について説明する。
この炭素繊維織布10は、直径3μm〜15μmの炭素繊維1000本〜36000本を縦糸10aとし、直径3μm〜15μmの炭素繊維1000本〜36000本を横糸10bとして、交互に織り上げた炭素繊維織布であって、その目付け量は80g/m2〜1000g/m、厚さは0.1mm〜0.8mmに形成されている。
この炭素繊維織布10は、上記したように縦糸10aと横糸10bとを交互に織り上げているために、図1に示すP方向(縦糸10a、横糸10bの軸線に対して45度方向)に伸長する性質を備えている。尚、縦糸10a、横糸10bの方向に対しては、炭素繊維自体の伸びが許容されるに過ぎない。
Hereinafter, embodiments of a carbon fiber reinforced carbon composite crucible according to the present invention will be described with reference to the drawings.
First, based on FIG. 1, the carbon fiber cloth used for this carbon fiber reinforced carbon composite material crucible will be described.
The carbon fiber woven fabric 10 is a carbon fiber woven fabric that is woven alternately with 1000 to 36000 carbon fibers having a diameter of 3 μm to 15 μm as warp yarns 10a and 1000 to 36000 carbon fibers with a diameter of 3 μm to 15 μm as weft yarns 10b. The weight per unit area is 80 g / m 2 to 1000 g / m 2 and the thickness is 0.1 mm to 0.8 mm.
Since the carbon fiber woven fabric 10 weaves the warp yarns 10a and the weft yarns 10b alternately as described above, the carbon fiber woven fabric 10 extends in the P direction (45 ° direction with respect to the axes of the warp yarn 10a and the weft yarn 10b) shown in FIG. It has the property to do. In addition, with respect to the directions of the warp yarn 10a and the weft yarn 10b, the elongation of the carbon fiber itself is only allowed.

次に、図2に基づいて、本発明に係る炭素繊維強化炭素複合材ルツボ1(以下、炭素ルツボ1と呼ぶ)の一実施形態について説明する。尚、図2における炭素繊維強化炭素複合材は概念的に表わされている。
この炭素ルツボ1は、例えば、半導体材料等の単結晶を引上げる単結晶引上装置(図示せず)において、シリコン溶融液を収容する石英ルツボを支持、保持するために使用されるルツボである。
Next, an embodiment of the carbon fiber reinforced carbon composite crucible 1 (hereinafter referred to as carbon crucible 1) according to the present invention will be described with reference to FIG. The carbon fiber reinforced carbon composite material in FIG. 2 is conceptually represented.
The carbon crucible 1 is a crucible used for supporting and holding a quartz crucible containing a silicon melt, for example, in a single crystal pulling apparatus (not shown) for pulling a single crystal such as a semiconductor material. .

この炭素ルツボ1は、直胴部2と底部3とを有し、底部3は湾曲して形成され、その周縁部に所定の曲率で湾曲する小湾曲部R1(底部湾曲部)と、底部中央に形成された大湾曲部R2とを有している。また、前記直胴部2は、前記底部3の小湾曲部R1から上方に筒状に延設されている。
この炭素ルツボ1は、前記した炭素繊維布10を複数枚、熱硬化性樹脂と炭素粉(例えば黒鉛粉)との混合接着剤(図示せず)を担持して貼り合わせ、その後、熱硬化、炭素化、黒鉛化および高純度化処理を施すことによって形成される。即ち、この炭素ルツボ1は、炭素繊維強化炭素複合材(以下、C/C材と呼ぶ)により形成されている。
具体的には、図3乃至図5に示すシート状の炭素繊維織布、11,12,13が複数層に貼り合わせられ、熱硬化、炭素化、黒鉛化および高純度化処理を施されて形成される。
The carbon crucible 1 has a straight body portion 2 and a bottom portion 3, the bottom portion 3 is formed to be curved, and a small curved portion R 1 (bottom portion curved portion) that is curved at a predetermined curvature at a peripheral portion thereof, and a center of the bottom portion. And a large curved portion R <b> 2. The straight body portion 2 extends upward from the small curved portion R1 of the bottom portion 3 in a cylindrical shape.
The carbon crucible 1 carries a plurality of the above-described carbon fiber cloths 10 and carries and adheres a mixed adhesive (not shown) of a thermosetting resin and carbon powder (for example, graphite powder), and then thermosetting, It is formed by performing carbonization, graphitization, and high-purification treatment. That is, the carbon crucible 1 is formed of a carbon fiber reinforced carbon composite material (hereinafter referred to as C / C material).
Specifically, the sheet-like carbon fiber woven fabrics 11, 12, and 13 shown in FIGS. 3 to 5 are bonded to a plurality of layers and subjected to thermosetting, carbonization, graphitization, and high-purification treatment. It is formed.

ここで、図3に示された炭素繊維織布11は、炭素繊維布10を炭素繊維の軸線が縦横方向(垂直、水平方向)に、かつ横長の方形状の炭素繊維織布になるように裁断したもの(第3の炭素繊維織布)である。この炭素繊維織布11の幅寸法w1は、少なくとも炭素ルツボ1の直胴部2の外周を覆うことが可能な長さに形成され、高さ寸法h1は、直胴部2の高さ寸法と同じ寸法となるよう形成されている。
また、この炭素繊維織布11は、図3に示すP方向(縦糸10a、横糸10bの軸線に対して45度方向)に伸長可能である。
Here, the carbon fiber woven fabric 11 shown in FIG. 3 is formed so that the carbon fiber fabric 10 becomes a carbon fiber woven fabric having a carbon fiber axis in the vertical and horizontal directions (vertical and horizontal directions) and a horizontally long rectangular shape. This is a cut piece (third carbon fiber woven fabric). The width dimension w1 of the carbon fiber woven fabric 11 is formed to a length that can cover at least the outer periphery of the straight body portion 2 of the carbon crucible 1, and the height dimension h1 is the height dimension of the straight body portion 2. It is formed to have the same dimensions.
Further, the carbon fiber woven fabric 11 can be extended in the P direction shown in FIG. 3 (direction of 45 degrees with respect to the axes of the warp yarn 10a and the weft yarn 10b).

また、図4に示された炭素繊維織布12は、炭素繊維織布10を正円形状の炭素繊維織布になるように裁断したもの(第1の炭素繊維織布)である。この炭素繊維織布12の直径寸法dは、炭素ルツボ1の底部3を覆うことが可能な大きさに形成されている。
また、この炭素繊維織布12は、図4に示すP方向(縦糸10a、横糸10bの軸線に対して45度方向)に伸長可能である。
Also, the carbon fiber woven fabric 12 shown in FIG. 4 is obtained by cutting the carbon fiber woven fabric 10 so as to be a perfect circular carbon fiber woven fabric (first carbon fiber woven fabric). The diameter d of the carbon fiber woven fabric 12 is formed so as to cover the bottom 3 of the carbon crucible 1.
Further, the carbon fiber woven fabric 12 can be extended in the P direction (direction of 45 degrees with respect to the axes of the warp yarn 10a and the weft yarn 10b) shown in FIG.

更に、図5に示された炭素繊維織布13は、炭素繊維織布10を炭素繊維の軸線(縦糸、横糸の軸線)が斜め45度方向に、かつ横長の方形状の炭素繊維織布になるように裁断したもの(第2の炭素繊維織布)である。この炭素繊維織布13の幅寸法w2は、前記炭素繊維織布11と同じく炭素ルツボ1の直胴部2の外周を覆うことが可能な長さに形成され、高さ寸法h2は、直胴部の高さ寸法よりも長く、具体的には直胴部2に加え、底部3の小湾曲部R1を覆うことが可能な長さに形成されている。
また、この炭素繊維織布13は、図5に示すP方向(縦糸10a、横糸10bの軸線に対して45度方向)に伸長可能である。
Further, the carbon fiber woven fabric 13 shown in FIG. 5 is obtained by changing the carbon fiber woven fabric 10 into a carbon fiber woven fabric having a carbon fiber axis (warp and weft axes) obliquely at 45 degrees and a horizontally long square shape. (Second carbon fiber woven fabric). The width dimension w2 of the carbon fiber woven fabric 13 is formed to a length that can cover the outer periphery of the straight body portion 2 of the carbon crucible 1 like the carbon fiber woven cloth 11, and the height dimension h2 is defined as the straight body. It is longer than the height dimension of the part, specifically, it is formed to a length that can cover the small curved part R1 of the bottom part 3 in addition to the straight body part 2.
Further, the carbon fiber woven fabric 13 can be extended in the P direction (direction of 45 degrees with respect to the axes of the warp yarn 10a and the weft yarn 10b) shown in FIG.

続いて、図6に基づき、図7乃至図10を用いて、炭素ルツボ1の製造工程について説明する。
先ず、図7に示すようにルツボ成型用金型5を用意し、その直胴部6に熱硬化性樹脂と炭素粉(例えば黒鉛粉)との混合接着剤(図示せず)を担持し、炭素繊維織布11を巻き付ける(図6のステップS1)。
ここで、炭素繊維織布11の炭素繊維の軸線方向(縦糸、横糸の軸線方向)は、ルツボ周方向Tに対して平行方向と直交方向(ルツボの軸線方向)となされている。
このとき、炭素繊維織布11は、図7に矢印で示すルツボ周方向Tと平行方向に伸長せず、またルツボ周方向Tと直交方向(ルツボの軸線方向)にも伸長しないが、この直胴部6の径が変化しないため、直胴部6に炭素繊維織布11を皺なく貼り付けることができる。
尚、図10に示すように、炭素繊維織布11の下端部11aは、ルツボ成型型5の下方に突出した状態で貼り付けられる。
Next, the manufacturing process of the carbon crucible 1 will be described with reference to FIG.
First, as shown in FIG. 7, a crucible molding die 5 is prepared, and a mixed adhesive (not shown) of a thermosetting resin and carbon powder (for example, graphite powder) is supported on the straight body portion 6 thereof, The carbon fiber woven fabric 11 is wound (step S1 in FIG. 6).
Here, the axial direction of carbon fibers of the carbon fiber woven fabric 11 (axial direction of warp and weft) is parallel to and perpendicular to the crucible circumferential direction T (axial direction of the crucible).
At this time, the carbon fiber woven fabric 11 does not extend in a direction parallel to the crucible circumferential direction T indicated by an arrow in FIG. 7 and does not extend in a direction orthogonal to the crucible circumferential direction T (the crucible axial direction). Since the diameter of the trunk portion 6 does not change, the carbon fiber woven fabric 11 can be adhered to the straight trunk portion 6 without any defects.
As shown in FIG. 10, the lower end portion 11 a of the carbon fiber woven fabric 11 is attached in a state of protruding downward from the crucible mold 5.

次いで、図7、8に示すようにルツボ成型型5の底部7に前記混合接着剤を担持し、円形の炭素繊維織布12を貼り付けて覆い、底部3を形成する(図5のステップS2)。
ここで、この炭素繊維織布12は、従来の葉っぱ状に切れ目が入った炭素繊維織布(図13参照)ではなく、切れ目の無い一体型の炭素繊維織布である。また、炭素ルツボ1の直胴部2を形成する炭素繊維織布11と、底部3を形成する炭素繊維織布12との境界部分は、重ねられることなく、また隙間が生じないよう貼り付けが行われる。
Next, as shown in FIGS. 7 and 8, the mixed adhesive is supported on the bottom 7 of the crucible mold 5 and a circular carbon fiber woven fabric 12 is attached and covered to form the bottom 3 (step S2 in FIG. 5). ).
Here, the carbon fiber woven fabric 12 is not a conventional carbon fiber woven fabric having a cut shape like a leaf (see FIG. 13), but an integral carbon fiber woven fabric having no cut. Further, the boundary portion between the carbon fiber woven fabric 11 that forms the straight body portion 2 of the carbon crucible 1 and the carbon fiber woven fabric 12 that forms the bottom portion 3 is not overlapped and is pasted so as not to cause a gap. Done.

この円形の炭素繊維織布12の貼り付けにあっては、炭素繊維織布12の周縁部により小湾曲部R1を覆うこととなるが、炭素繊維織布12は、炭素繊維の軸線(縦糸、横糸の軸線)に対して斜め45度方向に伸ばしながら貼り付けが行われる。
より具体的には、最初に炭素繊維織布12の中央部をルツボ成形型5の底部7中央に貼り付け、炭素繊維織布12の周縁部を引っ張りながら小湾曲部R1を覆うように貼り付けが行われる。
このとき、ルツボ成形型5は底部中央から徐々に半径が大きくなるが、炭素繊維織布12は炭素繊維の軸線(縦糸、横糸の軸線)に対して略斜め45度方向に伸長するので、炭素繊維織布12を引き伸ばしながら、貼り付けることができる。これにより、小湾曲部R1において炭素繊維織布12は皺なく、貼り付けられる。
When the circular carbon fiber woven fabric 12 is attached, the small curved portion R1 is covered with the peripheral portion of the carbon fiber woven fabric 12, but the carbon fiber woven fabric 12 has a carbon fiber axis (warp, Affixing is performed while extending obliquely 45 degrees with respect to the axis of the weft.
More specifically, the center portion of the carbon fiber woven fabric 12 is first attached to the center of the bottom portion 7 of the crucible molding die 5 and is attached so as to cover the small curved portion R1 while pulling the peripheral portion of the carbon fiber woven fabric 12. Is done.
At this time, the radius of the crucible mold 5 gradually increases from the center of the bottom, but the carbon fiber woven fabric 12 extends in a substantially oblique 45 degree direction with respect to the carbon fiber axis (warp, weft axis). The fiber woven fabric 12 can be pasted while being stretched. Thereby, the carbon fiber woven fabric 12 is stuck without any wrinkles in the small curved portion R1.

そして、貼り付けられた炭素繊維織布11、12の上から、前記混合接着剤を担持し、図9に示すように炭素繊維織布11により形成された直胴部2(成形型5の直胴部6)と、炭素繊維織布12により形成された小湾曲部R1とを覆うように炭素繊維織布13を貼り付ける(図6のステップS3)。
この炭素繊維織布13の貼り付けにあっては、小湾曲部R1においてルツボ成形型5の外周部に向かって徐々に半径が大きくなるが、図示するようにルツボ周方向Tに対し炭素繊維の軸線(縦糸、横糸の軸線)が斜め45度方向に形成されているため、炭素繊維織布13を引き伸ばしながら貼り付けることにより、皺なく貼り付けることができる。
また、直胴部2においては、混合接着剤が担持された下地の炭素繊維織布11とは炭素繊維の軸線方向が異なるため、接着力が強化し、剛性が向上する。
Then, the above-mentioned mixed adhesive is carried on the bonded carbon fiber woven fabrics 11 and 12, and as shown in FIG. A carbon fiber woven fabric 13 is attached so as to cover the trunk portion 6) and the small curved portion R1 formed by the carbon fiber woven fabric 12 (step S3 in FIG. 6).
In attaching the carbon fiber woven fabric 13, the radius gradually increases toward the outer peripheral portion of the crucible forming die 5 in the small curved portion R1, but the carbon fiber woven fabric 13 with respect to the circumferential direction T of the crucible as shown in the figure. Since the axes (warp and weft axes) are formed in an oblique 45 degree direction, the carbon fiber woven fabric 13 can be applied without wrinkles by being applied while being stretched.
Moreover, in the straight body part 2, since the axial direction of the carbon fiber is different from that of the underlying carbon fiber woven fabric 11 on which the mixed adhesive is carried, the adhesive force is strengthened and the rigidity is improved.

また、このように炭素繊維織布11の上に炭素繊維織布13を積層する際、ルツボ周方向における炭素繊維織布11,13の不連続部(周方向の端部)同士が積層方向(径方向)において重ならないよう、ルツボ周方向における位置をずらすことが好ましい。
また、その場合、縦糸10aと横糸10bとの交差部分が積層方向において重ならないように貼り付けることが好ましい。
そのように積層することによって、積層方向(厚さ方向)の隙間が少なくなり、直胴部2における積層方向の炭素繊維量をより均一とすることができる。
また、縦糸10aと横糸10bとの交差部分が積層方向において重ならないことによって、縦糸10aと横糸10bとが交差する部分の凹凸が噛み合い、重なり合う炭素繊維織布11,13同士の接着力を強化することができる。
Further, when the carbon fiber woven fabric 13 is laminated on the carbon fiber woven fabric 11 in this manner, the discontinuous portions (end portions in the circumferential direction) of the carbon fiber woven fabrics 11 and 13 in the circumferential direction of the crucible are stacked in the stacking direction ( It is preferable to shift the position in the crucible circumferential direction so as not to overlap in the radial direction.
Moreover, in that case, it is preferable to affix so that the intersection part of the warp yarn 10a and the weft yarn 10b may not overlap in the lamination direction.
By laminating in this way, gaps in the laminating direction (thickness direction) are reduced, and the amount of carbon fibers in the laminating direction in the straight body portion 2 can be made more uniform.
Further, since the intersecting portion of the warp yarn 10a and the weft yarn 10b does not overlap in the laminating direction, the unevenness of the portion where the warp yarn 10a and the weft yarn 10b intersect is engaged, and the adhesive strength between the overlapping carbon fiber woven fabrics 11 and 13 is strengthened. be able to.

このような炭素繊維織布11,12,13の貼り付け工程は、図10の断面図に示すように複数回繰り返して行われ(図10では3回)、所定の厚さに積層されていく(図6のステップS4)。
炭素繊維織布11,12,13の貼り付け(積層)が全て終了すると、最内層の炭素繊維織布11の下端部11a(ルツボ使用時において上端部)を、図10に示す矢印方向に折曲げ、ルツボ端部を覆うように貼り付けし、端部成形処理を行う(図6のステップS5)。
Such a carbon fiber woven fabric 11, 12, and 13 affixing step is repeated a plurality of times as shown in the cross-sectional view of FIG. 10 (three times in FIG. 10), and laminated to a predetermined thickness. (Step S4 in FIG. 6).
When all the carbon fiber woven fabrics 11, 12, and 13 are attached (laminated), the lower end portion 11a (the upper end portion when the crucible is used) of the innermost carbon fiber woven fabric 11 is folded in the direction of the arrow shown in FIG. Bending and pasting so as to cover the end of the crucible, an end forming process is performed (step S5 in FIG. 6).

このようにして、ルツボ型のプリフォームが得られると、ルツボ成形型5の周りに貼り付けられた状態で真空炉内に配置し、100℃〜300℃の温度で熱硬化を行う(図6のステップS6)。
次いで、ルツボ成形型5を取り外し(図6のステップS7)、得られる成型体をN2ガス等の不活性ガス中で約1000℃の温度で炭素化処理を行う(図6のステップS8)。
炭素化処理の後、例えばフェノール樹脂、タールピッチ等を含浸させ、1500℃以上の温度で加熱し、黒鉛化処理を行う(図6のステップS9)。
そして、黒鉛化により得られたルツボを、通常1500℃から2500℃の温度に加熱して、高純度化処理を施し、C/C材からなる炭素ルツボ1を得る(図6のステップS10)。
Thus, when a crucible-type preform is obtained, it is placed in a vacuum furnace in a state where it is attached around the crucible mold 5 and heat-cured at a temperature of 100 ° C. to 300 ° C. (FIG. 6). Step S6).
Next, the crucible mold 5 is removed (step S7 in FIG. 6), and the resulting molded body is carbonized in an inert gas such as N 2 gas at a temperature of about 1000 ° C. (step S8 in FIG. 6).
After the carbonization treatment, for example, a phenol resin, tar pitch or the like is impregnated and heated at a temperature of 1500 ° C. or higher to perform graphitization treatment (step S9 in FIG. 6).
Then, the crucible obtained by graphitization is usually heated to a temperature of 1500 ° C. to 2500 ° C. and subjected to a high-purification treatment to obtain a carbon crucible 1 made of a C / C material (step S10 in FIG. 6).

以上のようにして得られた炭素ルツボ1は、底部の湾曲部において、重ね合わせ部分における段差や皺などの凹凸が形成されず、さらに図10に示すように直胴部2から小湾曲部R1まで連続して多層形成されている。
したがって、この炭素ルツボ1における底部湾曲部の内側及び外側に、凹凸が形成されないため、炉内で生じるSiOガスが滞留することがなく、化学反応(酸化)による損耗、消耗を抑制でき、耐久性を向上させることができる。また、炭素繊維織布を複数枚貼り合わせることにより、所定の厚さを有する炭素ルツボを製作することができ、耐久性を向上させることができる。
In the carbon crucible 1 obtained as described above, unevenness such as a step or a wrinkle is not formed in the overlapping portion in the curved portion at the bottom, and the small curved portion R1 from the straight body portion 2 as shown in FIG. Multi-layered continuously.
Therefore, since unevenness is not formed on the inside and outside of the bottom curved portion in the carbon crucible 1, the SiO gas generated in the furnace does not stay, and wear and consumption due to chemical reaction (oxidation) can be suppressed, and durability is improved. Can be improved. Further, by bonding a plurality of carbon fiber woven fabrics, a carbon crucible having a predetermined thickness can be manufactured, and durability can be improved.

尚、前記実施の形態にあっては、直胴部2の形成において、炭素繊維の軸線がルツボ周方向に対し縦横方向(直胴部軸線方向、直胴部軸線に垂直な接線方向)の炭素繊維織布11と、炭素繊維の軸線がルツボ周方向に対し斜め45度方向(直胴部軸線に対し45度の角度で交差する接線方向)の炭素繊維織布13とを交互に重ねるものとした。
しかしながら、本発明にあっては、その形態に限定されるものではなく、炭素繊維の軸線がルツボ周方向に対し斜め45度方向の炭素繊維織布13のみを複数枚、積層することによって直胴部2を形成するようにしてもよい。あるいはまた炭素繊維の軸線がルツボ周方向に対し縦横方向(直胴部軸線方向、直胴部軸線に垂直な接線方向)の炭素繊維織布11を複数枚、積層することによって直胴部2を形成するようにしてもよい。
そのように直胴部2を構成することにより、ルツボ周方向への引っ張り応力に対する強度をより向上させることができる。
In addition, in the said embodiment, in formation of the straight body part 2, the carbon fiber axis line is a longitudinal and transverse direction (straight body part axial direction, tangential direction perpendicular to the straight body part axis) with respect to the crucible circumferential direction. The fiber woven fabric 11 and the carbon fiber woven fabric 13 in which the axis of the carbon fiber is obliquely overlapped with the circumferential direction of the crucible at 45 degrees (the tangential direction intersecting at an angle of 45 degrees with respect to the straight body axis) are alternately stacked. did.
However, in the present invention, it is not limited to the form, and the straight body is formed by laminating only a plurality of carbon fiber woven fabrics 13 in which the axis of the carbon fiber is obliquely 45 degrees with respect to the circumferential direction of the crucible. The part 2 may be formed. Alternatively, the straight body portion 2 is formed by laminating a plurality of carbon fiber woven fabrics 11 in which the axis of the carbon fiber is longitudinal and transverse (straight body portion axial direction, tangential direction perpendicular to the straight body portion axis) with respect to the crucible circumferential direction. You may make it form.
By configuring the straight body portion 2 in this way, the strength against tensile stress in the crucible circumferential direction can be further improved.

尚、石英ルツボの昇温時にあっては、ルツボ軟化により炭素ルツボ内径に沿って変形が生じる。そのため、冷却時にあっては、石英ルツボと炭素繊維織布との熱膨張係数の違いによりルツボ周方向の引っ張り応力が発生する。そのようなルツボ周方向の引っ張り応力を考慮すると、前記炭素繊維織布13のみを複数枚、積層することにより直胴部2を形成するのが好ましい。   When the quartz crucible is heated, deformation occurs along the inner diameter of the carbon crucible due to softening of the crucible. Therefore, during cooling, a tensile stress in the circumferential direction of the crucible is generated due to the difference in thermal expansion coefficient between the quartz crucible and the carbon fiber woven fabric. Considering such tensile stress in the circumferential direction of the crucible, it is preferable to form the straight body portion 2 by laminating only a plurality of the carbon fiber woven fabrics 13.

また、その場合、重なり合う炭素繊維織布13の間において、縦糸10aと横糸10bとの交差部分が、積層方向において重ならないように積層するのが好ましい。具体的には、図11(a)に模式的に示すように下層に位置する炭素繊維織布13A(破線)の上に炭素繊維織布13B(実線)を貼り付ける場合、図11(b)に示すように積層される。
即ち、図11(b)に示すように破線で示す炭素繊維織布13Aの縦糸10aと横糸10bとの交差部分10cに、実線で示す炭素繊維織布13Bの縦糸10aと横糸10bとの交差部分10dが積層方向において重ならないようになされる。
Moreover, in that case, it is preferable to laminate the overlapping portions of the warp yarn 10a and the weft yarn 10b so that they do not overlap in the stacking direction between the overlapping carbon fiber woven fabrics 13. Specifically, when the carbon fiber woven fabric 13B (solid line) is pasted on the carbon fiber woven fabric 13A (broken line) positioned in the lower layer as schematically shown in FIG. 11 (a), FIG. 11 (b) As shown in FIG.
That is, as shown in FIG. 11 (b), the intersecting portion 10c between the warp yarn 10a and the weft yarn 10b of the carbon fiber woven fabric 13A indicated by a broken line, and the intersecting portion between the warp yarn 10a and the weft yarn 10b of the carbon fiber woven fabric 13B indicated by a solid line. 10d is made not to overlap in the stacking direction.

より好ましくは、図11(b)に示すように、下層に位置する炭素繊維織布13Aにおいてルツボ周方向に隣接する交差部分10c間を結ぶ線分d1の中央に、上層の炭素繊維織布13Bにおける交差部分10dが位置するように積層される。或いは、ルツボ周方向に対し直交方向に隣接する交差部分10c間を結ぶ線分d2の中央に、上層の炭素繊維織布13Bにおける交差部分10dが位置するように積層される。
これにより積層方向(厚さ方向)の隙間が少なくなり、直胴部2における積層方向の炭素繊維量をより均一とすることができる。また、縦糸と横糸とが交差する部分の凹凸が噛み合うため、重なり合う炭素繊維織布13同士の接着力を強化することができる。
More preferably, as shown in FIG. 11B, in the carbon fiber woven fabric 13A located in the lower layer, the upper carbon fiber woven fabric 13B is formed at the center of the line segment d1 connecting the intersecting portions 10c adjacent in the crucible circumferential direction. Are stacked so that the intersecting portion 10d is located. Or it laminates | stacks so that the crossing part 10d in the upper layer carbon fiber woven fabric 13B may be located in the center of the line segment d2 which connects between the crossing parts 10c adjacent to the orthogonal direction with respect to the crucible circumferential direction.
Thereby, gaps in the stacking direction (thickness direction) are reduced, and the amount of carbon fibers in the stacking direction in the straight body portion 2 can be made more uniform. Moreover, since the unevenness | corrugation of the part which a warp and a weft cross | intersect meshes | engages, the adhesive force of the carbon fiber woven fabric 13 which overlaps can be strengthened.

1 炭素繊維強化炭素複合材ルツボ
2 直胴部
3 底部
5 ルツボ成形型
6 直胴部
7 底部
10 炭素繊維織布
10a 縦糸
10b 横糸
11 第3の炭素繊維織布
12 第1の炭素繊維織布
13 第2の炭素繊維織布
R1 小湾曲部(底部湾曲部)
R2 大湾曲部
DESCRIPTION OF SYMBOLS 1 Carbon fiber reinforced carbon composite material crucible 2 Straight body part 3 Bottom part 5 Crucible mold 6 Straight body part 7 Bottom part 10 Carbon fiber woven fabric 10a Warp yarn 10b Weft yarn 11 3rd carbon fiber woven fabric 12 1st carbon fiber woven fabric 13 Second carbon fiber woven fabric R1 Small curved portion (bottom curved portion)
R2 large bend

Claims (6)

周縁部に湾曲部を有する底部と、前記底部湾曲部から上方に延びる直胴部とを有する炭素繊維強化炭素複合材ルツボであって、
前記底部と直胴部が、炭素繊維の縦糸と横糸とを交互に織り上げた炭素繊維織布を複数枚、貼り合わせることにより形成されると共に、
少なくとも前記底部湾曲部に位置する炭素繊維織布の縦糸と横糸の軸線が、ルツボ周方向に対し斜め方向に形成されていることを特徴とする炭素繊維強化炭素複合材ルツボ。
A carbon fiber reinforced carbon composite crucible having a bottom part having a curved part at a peripheral part and a straight body part extending upward from the bottom curved part,
The bottom portion and the straight body portion are formed by bonding a plurality of carbon fiber woven fabrics obtained by alternately weaving carbon fiber warp yarns and weft yarns,
A carbon fiber reinforced carbon composite crucible, characterized in that at least the axes of warp and weft yarns of the carbon fiber woven fabric located at the bottom curved portion are formed obliquely with respect to the crucible circumferential direction.
前記底部および前記底部湾曲部には、切れ目の無い一体型の第1の炭素繊維織布が用いられ、
前記底部湾曲部及び前記直胴部には、炭素繊維の縦糸と横糸がルツボ周方向に対し斜めになるように形成された第2の炭素繊維織布が用いられていることを特徴とする請求項1に記載された炭素繊維強化炭素複合材ルツボ。
For the bottom and the bottom curved portion, an unbroken integral first carbon fiber woven fabric is used,
A second carbon fiber woven fabric formed so that warp yarns and weft yarns of carbon fibers are inclined with respect to the circumferential direction of the crucible is used for the bottom curved portion and the straight body portion. Item 2. A carbon fiber reinforced carbon composite crucible described in Item 1.
更に、前記直胴部には、炭素繊維の横糸と縦糸がルツボ周方向に対し平行方向と直交方向になるように形成された第3の炭素繊維織布が用いられ、
前記直胴部において、前記第2の炭素繊維織布と、前記第3の炭素繊維織布とが交互の積層されていることを特徴とする請求項2に記載された炭素繊維強化炭素複合材ルツボ。
Furthermore, a third carbon fiber woven fabric formed so that the weft yarn and warp yarn of the carbon fiber are in a direction perpendicular to the parallel direction to the circumferential direction of the crucible is used for the straight body portion,
The carbon fiber reinforced carbon composite material according to claim 2, wherein the second carbon fiber woven fabric and the third carbon fiber woven fabric are alternately laminated in the straight body portion. Crucible.
前記直胴部に積層された各炭素繊維織布のルツボ周方向における不連続部が、積層方向において重ならないように、前記各炭素繊維織布が積層されていることを特徴とする請求項1及至請求項3のいずれかに記載された炭素繊維強化複合材ルツボ。   The carbon fiber woven fabrics are laminated so that discontinuities in the crucible circumferential direction of the carbon fiber woven fabrics laminated on the straight body portion do not overlap in the lamination direction. A carbon fiber-reinforced composite crucible according to any one of claims 3 to 4. 前記直胴部と前記底部の少なくともいずれかにおいて、
前記直胴部に積層された各炭素繊維織布の縦糸と横糸との交差部分が、積層方向において重ならないように、前記各炭素繊維織布が積層されていることを特徴とする請求項1及至請求項4のいずれかに記載された炭素繊維強化複合材ルツボ。
In at least one of the straight body part and the bottom part,
The carbon fiber woven fabrics are laminated so that the intersecting portions of the warp and weft yarns of the carbon fiber woven fabrics laminated on the straight body portion do not overlap in the lamination direction. A carbon fiber-reinforced composite crucible according to any one of claims 4 to 4.
前記請求項1乃至請求項5のいずれかに記載された炭素繊維強化炭素複合材ルツボの製造方法であって、
前記炭素繊維織布が熱硬化性樹脂と炭素粉との混合接着剤を用いて貼り合わされ、その後、熱硬化処理、炭素化処理、黒鉛化処理および高純度化処理を施して形成されることを特徴とする炭素繊維強化炭素複合材ルツボの製造方法。
A method for producing a carbon fiber reinforced carbon composite crucible according to any one of claims 1 to 5,
The carbon fiber woven fabric is bonded using a mixed adhesive of a thermosetting resin and carbon powder, and then formed by performing a thermosetting treatment, a carbonization treatment, a graphitization treatment and a high purification treatment. A method for producing a carbon fiber reinforced carbon composite crucible.
JP2010019911A 2010-02-01 2010-02-01 Carbon fiber reinforced carbon composite crucible and method for producing the crucible Active JP5490554B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010019911A JP5490554B2 (en) 2010-02-01 2010-02-01 Carbon fiber reinforced carbon composite crucible and method for producing the crucible
CN201110037106.5A CN102140676B (en) 2010-02-01 2011-01-31 Carbon fiber reinforced carbon composite crucible and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010019911A JP5490554B2 (en) 2010-02-01 2010-02-01 Carbon fiber reinforced carbon composite crucible and method for producing the crucible

Publications (2)

Publication Number Publication Date
JP2011157230A true JP2011157230A (en) 2011-08-18
JP5490554B2 JP5490554B2 (en) 2014-05-14

Family

ID=44589535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010019911A Active JP5490554B2 (en) 2010-02-01 2010-02-01 Carbon fiber reinforced carbon composite crucible and method for producing the crucible

Country Status (1)

Country Link
JP (1) JP5490554B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014022725A3 (en) * 2012-08-01 2014-07-10 Allied Mineral Products, Inc. Reinforced refractory containers
CN112195508A (en) * 2020-10-21 2021-01-08 上海骐杰碳素材料有限公司 Integrally woven crucible preform with bottom hole and coated crucible made of same
CN114411255A (en) * 2021-12-30 2022-04-29 湖南金博碳基材料研究院有限公司 Carbon/carbon composite material crucible, preparation method thereof and crystal growth furnace
JP7359720B2 (en) 2020-02-28 2023-10-11 信越石英株式会社 Measuring jig and measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293051A (en) * 1987-05-26 1988-11-30 Sumitomo Electric Ind Ltd Carbon fiber reinforced carbon composite metarial
JPH03277538A (en) * 1990-03-27 1991-12-09 Osaka Gas Co Ltd Heat insulating material
JP2000302589A (en) * 1999-04-23 2000-10-31 Fudow Co Ltd Production of carbon crucible for single crystal pulling- up

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63293051A (en) * 1987-05-26 1988-11-30 Sumitomo Electric Ind Ltd Carbon fiber reinforced carbon composite metarial
JPH03277538A (en) * 1990-03-27 1991-12-09 Osaka Gas Co Ltd Heat insulating material
JP2000302589A (en) * 1999-04-23 2000-10-31 Fudow Co Ltd Production of carbon crucible for single crystal pulling- up

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014022725A3 (en) * 2012-08-01 2014-07-10 Allied Mineral Products, Inc. Reinforced refractory containers
US10378823B2 (en) 2012-08-01 2019-08-13 Allied Mineral Products, Inc. Reinforced refractory containers
JP7359720B2 (en) 2020-02-28 2023-10-11 信越石英株式会社 Measuring jig and measuring method
CN112195508A (en) * 2020-10-21 2021-01-08 上海骐杰碳素材料有限公司 Integrally woven crucible preform with bottom hole and coated crucible made of same
CN114411255A (en) * 2021-12-30 2022-04-29 湖南金博碳基材料研究院有限公司 Carbon/carbon composite material crucible, preparation method thereof and crystal growth furnace
CN114411255B (en) * 2021-12-30 2023-01-03 湖南金博碳基材料研究院有限公司 Carbon/carbon composite material crucible, preparation method thereof and crystal growth furnace

Also Published As

Publication number Publication date
JP5490554B2 (en) 2014-05-14

Similar Documents

Publication Publication Date Title
CN102140676B (en) Carbon fiber reinforced carbon composite crucible and manufacturing method of the same
JP5490554B2 (en) Carbon fiber reinforced carbon composite crucible and method for producing the crucible
JP6487856B2 (en) Pre-formed body of crucible reinforced with continuous carbon fiber and method for producing the same
CN101519795B (en) Crucible holding member and method for producing the same
CN102666050B (en) Woven preform, composite and manufacture method thereof
KR101114650B1 (en) Crucible holding member and method for producing the same
JP2013511625A (en) Closed tubular fiber structure and manufacturing method
CN101618970A (en) Crucible holding member and method for producing the same
CN202830218U (en) Carbon fiber reinforced carbon composite crucible and composite cylinder component
CN101519793B (en) Container holding member and method for producing the same
CN101571351A (en) Crucible holding member and method for producing the same
JP5398604B2 (en) Vacuum insulation material and manufacturing method thereof
JP5552655B2 (en) Preform of fiber reinforced composite material and method for producing the same
CN111002435A (en) Weaving process of carbon-carbon crucible preform for monocrystalline silicon furnace
JP2012211062A (en) Carbon fiber reinforced carbon composite crucible
WO2017195710A1 (en) Reinforcement fiber structure and method for producing same
JP4686509B2 (en) Single crystal pulling crucible
JPH11255587A (en) Carbon-fiber reinforced carbonaceous material crucible for pulling single crystal and its production
JP2004216276A (en) Method for producing pseudo sheet-like material of hollow fiber membrane bundle, pseudo sheet-like material of hollow fiber membrane bundle, and hollow fiber membrane module
JP2016164320A (en) Heat-resistant multiaxial stitch base material
JP2012076956A (en) Carbon crucible and method for producing silicon single crystal by using carbon crucible
CN117265641B (en) Braided crucible preform and manufacturing method
JP4018503B2 (en) Single crystal pulling crucible
CN109878172A (en) A kind of inclined wire lattice hot melt felt
CN113121254B (en) Preparation method of large-size R-angle crucible preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140226

R150 Certificate of patent or registration of utility model

Ref document number: 5490554

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250