JP7353225B2 - 半導体装置および環境発電システム - Google Patents

半導体装置および環境発電システム Download PDF

Info

Publication number
JP7353225B2
JP7353225B2 JP2020048972A JP2020048972A JP7353225B2 JP 7353225 B2 JP7353225 B2 JP 7353225B2 JP 2020048972 A JP2020048972 A JP 2020048972A JP 2020048972 A JP2020048972 A JP 2020048972A JP 7353225 B2 JP7353225 B2 JP 7353225B2
Authority
JP
Japan
Prior art keywords
diagnosis
diagnostic
semiconductor device
unit
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020048972A
Other languages
English (en)
Other versions
JP2021149530A (ja
Inventor
明夫 上村井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020048972A priority Critical patent/JP7353225B2/ja
Publication of JP2021149530A publication Critical patent/JP2021149530A/ja
Application granted granted Critical
Publication of JP7353225B2 publication Critical patent/JP7353225B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Arrangements For Transmission Of Measured Signals (AREA)

Description

本開示は、半導体装置および環境発電システムに関する。
近年、周囲の環境からエネルギーを得て、そのエネルギーを電力に変換してシステムの電源電力として利用する環境発電システムが開発されている。環境発電は、エナジーハーベスト、エナジーハーベスティングなどとも呼ばれる。
環境発電システムは、バッテリレスのシステムを構築することが可能である。例えば、環境発電システムは、ヘルスモニタリングへの活用が期待されている。多数のバッテリレスのセンシング端末を道路、橋、トンネルのような建造物に設置し、その建造物の歪み、傾き、温度等を測定することによって、建造物が破損に至る前に劣化または老朽化を検知することができる。
このような、センシング端末を用いたセンサネットワークシステムの例が特許第6514494号(特許文献1)に開示されている。
特許第6514494号
センシング端末は、光、熱、振動、電波のエネルギーを電気エネルギーに変換する発電素子、歪み、傾き、温度等を検知するセンサ素子、センサ素子の信号を処理または送信する半導体装置、コンデンサまたは抵抗などの受動部品から構成される。ここで、発電素子、センサ素子、半導体装置は一体となっていてもよい。例えば、半導体製造プロセスで製造可能なセンサ素子であれば、センサ素子は半導体装置の一部として構成されてもよい。
一般的に、橋またはトンネルなどの建造物の寿命と比較すると、センシング端末を構成する電子部品の寿命は短い。そのため、センシング端末の故障により測定データに異常が発生し、センシング対象を正確に測定できないという課題があった。また、測定データに異常があった場合に、センシング端末の故障により異常が発生しているのか、センシング対象に異常が発生しているのかを判別することが困難という課題があった。
特許第6514494号(特許文献1)では、複数のセンサ素子のセンサ情報を蓄積したデータサーバにおいて、各測定値のバラツキが関係範囲内か否かを判定することで、センサ素子の故障を診断する手法を提案しているが、診断内容が限られてしまい、早期に故障を発見するには改善の余地がある。
一方で、半導体装置および半導体装置に接続されたセンサ素子などの部品の故障または劣化を診断する手法がある。例えば、半導体装置の内部回路を半導体装置自身が検査する自己診断機能(BIST:Build In Self Test)と呼ばれる手法が知られている。また、半導体装置に接続される電子部品の診断では、例えば、センサ素子から出力される電圧の中心値を測定し、測定電圧値と期待値とを比較することで、センサ素子の劣化または故障を診断することが可能である。
しかしながら、環境発電システムに用いられる上記のような半導体装置が診断機能を実行すると、半導体装置の消費電力が増加するという課題があった。
本開示の半導体装置および環境発電システムは、上記の課題を解決するものであって、消費電力を抑えつつ自己診断を実行可能とすることを目的とする。
本開示は、発電素子からの発電電圧を電源として動作する半導体装置に関する。半導体装置は、半導体装置に内蔵された回路と、半導体装置に接続された部品との少なくともいずれかを診断する少なくとも1つの診断部を備える。
本開示によれば、センシング端末の故障を早期に確実に検知可能な環境発電システム実現する半導体装置を提供することが可能となる。
実施の形態1の環境発電システム200の構成を示す図である。 センシング端末を含む環境発電システムの全体構成を示す図である。 実施の形態2の環境発電システム200Aの構成を示す図である。 実施の形態2における診断部の動作を示すフローチャートである。 診断実行判定部104の構成例を示す図である。 実施の形態2におけるセンサ信号処理のタイムチャートである。 実施の形態2におけるサーバ21側でのセンシング端末の故障の有無を判定する処理を示すフローチャートである。 実施の形態3の環境発電システム200Bの構成を示す図である。 実施の形態3における診断部による診断処理を示すフローチャートである。 実施の形態3におけるデータ送信部による送信処理を示すフローチャートである。 実施の形態4の環境発電システム200Cの構成を示す図である。 実施の形態4におけるセンサ信号処理のタイムチャートの第1例である。 実施の形態4におけるセンサ信号処理のタイムチャートの第2例である。 実施の形態4の変形例の環境発電システム200Dの構成を示す図である。
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。
実施の形態1.
道路、トンネル、橋、ビルディング等の建造物のヘルスモニタリングを行なう環境発電システムにおいて、センシング対象である建造物の寿命と比較して、電子機器であるセンシング端末の寿命は短い。そのため、センシング対象よりも先にセンシング端末が故障してしまう可能性が高い。
センシング端末の故障を検知できない場合、センシング端末から送信されてきた測定データが正しいのか、誤っているのかを判断できない場合がある。この場合、センシング対象に異常が発生したため測定データが異常な値となっているのか、センシング端末が故障したため測定データが異常な値となっているのかを区別することができない。そのため、環境発電システムの信頼性が低下してしまうという課題があった。
実施の形態1では、センシング端末に診断機能を付加してシステムの信頼性を向上させる。
図1は、実施の形態1の環境発電システム200の構成を示す図である。図1に示すように、環境発電システム200は、センシング端末1と、サーバ21とを備える。
半導体装置100は、センサ信号処理部101と、データ送信部102と、診断部103を備える。また、センサ素子11と、発電素子12と、受動部品13(抵抗素子またはキャパシタ素子など)が半導体装置100に接続されている。半導体装置100の出力データは、データ処理を行なうサーバ21に送信される。
センサ素子11は、赤外線センサ、磁気センサ、電流センサ、超音波センサ、光学センサ等である。さらに、センサ素子11は、レーザレーダ、ミリ波レーダ、LiDAR(Light Detection and Ranging)といったセンサでもよい。また、センサ素子11からの信号に代えて、単眼カメラまたはステレオカメラといったカメラから得られる画像情報が半導体装置100に入力されてもよい。
診断部103は、半導体装置100の内部回路であるセンサ信号処理部101を診断する診断部と、外部に接続される発電素子12、センサ素子11、受動部品13の信号を受けてこれらの診断を行なう診断部103の少なくとも1つから構成される。
一般的に、半導体装置の内部回路の診断部は、自己診断部と呼ばれる。内部回路はデジタル回路とアナログ回路に大別される。デジタル回路の自己診断部は、デジタル回路内部で診断用の入力パターンと、その入力に対する出力パターンの期待値を保持し、比較する。一般的に、デジタル回路の自己診断部はソフトウェアにより自動で半導体装置に実装することが可能である。アナログ回路の自己診断部は、実装されるアナログ回路に応じて様々な回路構成が考えられる。一般的には、自己診断部は、アナログ・デジタル変換器にてアナログ信号をデジタル値に変換し、デジタル回路内部で保持されている期待値と比較する。
半導体装置に接続されるセンサ素子、発電素子、受動部品を診断する自己診断部は、接続される素子によって様々な構成が考えられる。一例としては、センサ素子に供給する電流量が期待値の範囲内であることを確認する構成が挙げられる。他の例としては、センサ素子の出力電圧の平均値が期待値の範囲内であることを確認する構成が挙げられる。受動部品の1つであるキャパシタの診断部としては、キャパシタへの電圧の充電時間が期待値の範囲内であることを確認する構成が挙げられる。受動部品の1つである抵抗の診断部としては、ある一定の電圧を印加し、流れる電流が期待値の範囲内であることを確認する構成が挙げられる。
図2は、センシング端末を含む環境発電システムの全体構成を示す図である。図2に示すように、1個以上のセンシング端末1~nが建造物などに取付けられ、ネットワーク31を介してサーバ21に接続される。ネットワーク31は、インターネット、移動体端末通信網、赤外線通信、Bluetooth(登録商標)、無線LAN(Local area network)等の各種ネットワークを含む。ネットワーク31には、有線通信方式を採用してもよいし、無線通信方式を採用してもよい。サーバ21は、センシング端末1~nから得られた情報の処理を行なう。サーバ21は複数台であってもよい。
センシング端末1~nの各々が診断機能を備えることで、各センシング端末の劣化または故障検知が容易となり、メンテナンス性の向上または異常データ処理の精度向上を実現することが可能となる。そのため、環境発電システムの信頼性を向上させることが可能となる。
なお、センシングする対象は、例えば、道路、トンネル、橋、ビルディング等の建造物である。多数のセンシング端末を設置し、監視することで、建造物のヘルスモニタリングが可能となる。さらに、センシングする対象は建造物に限定されるものではなく、センサを用いて観測できる対象であればよい。センシング端末が適用されるシステムは、例えば赤外線センサを用いた人または動物の監視システム、レーダを用いた自動車の監視システム、磁気センサを用いたモータの回転監視システムでもよい。なお、センシング端末は複数設置されることは必須ではない。
実施の形態2.
環境発電システムは、例えば振動などの物理量の微弱な変化からエネルギーを得て、発電素子によってエネルギーを電力に変換するため、得られる電力量は小さいことが一般的である。そのため、環境発電システムに用いられる半導体装置には低消費電力動作が求められる。半導体装置の消費電力が増加すると、発電素子が供給しなければいけない電力量が増加するため、発電素子の歩留り低下および発電量増加のためのコストアップが必要となるといった課題があった。
図1では、センシング端末の主要な機能部は、センサ信号処理部101とデータ送信部102である。これらとは別に、診断部のような追加回路を実行することは、半導体装置の消費電力増加に直結するため、環境発電システムに使われる半導体装置への実装にあたっては低消費電力化が課題となっていた。
また、半導体装置の内部回路の診断部は、故障検出率を向上させるために、通常のセンサ信号処理動作時よりも多くの回路が動作する。つまり、診断時には通常時よりも消費電力が大きくなることが一般的である。このように、診断部の実装は消費電力の観点からも困難であった。
ところで、発電素子の発電電力は、周囲環境から得られるエネルギーのばらつきにより変化する。例えば振動をエネルギーとする場合は、対象とするシステムでの振動量のばらつきにより発電素子の発電電力は変化する。また、発電素子の製造ばらつきによっても発電素子の発電電力は変化する。発電素子の発電電力を電源として動作する半導体装置は、対象とする環境発電システムで得られる最小の発電電力で動作するように設計される。そのため、発電電力が大きい場合には、主機能とは別の機能を実行する電力的な余裕がある。
図3は、実施の形態2の環境発電システム200Aの構成を示す図である。図3に示すように、環境発電システム200Aは、センシング端末1Aと、サーバ21とを備える。
センシング端末1Aは、図1の半導体装置100に代えて半導体装置100Aを搭載する。半導体装置100Aは、図1に示した半導体装置100の構成に加えて、診断実行判定部104をさらに備える。
図4は、実施の形態2における診断部の動作を示すフローチャートである。診断部103は、センサ信号処理部101の処理実行後に、診断実行判定部104により、発電電圧が所定の値以上であるかを判定し、所定の値以上であれば診断部103が診断を実行する。データ送信部102は、診断部103が診断を実行していれば、センサ信号処理部101の出力データと診断部103の診断結果とをサーバ21に送信する。診断部103による診断が実行されていなければ、データ送信部102は、センサ信号処理部101の出力データのみをサーバ21に送信する。
前述のように、半導体装置100Aは、半導体装置100と同様に、発電素子12の発電電力が最小となる状態でも動作するよう設計される。したがって、通常は診断部103が診断の実行に必要な発電電力が発電素子12から得られるため、図4に示すフローチャートの処理で劣化または故障を実用上問題なく検知することが可能である。また、図2に示すフローチャートの処理を用いることによって、発電素子12に要求される最小発電電力量の増加を防ぐことが可能である。発電素子が保証する必要のある最小の発電電力量は、センサ信号処理部およびデータ送信部が動作するための電力であり、診断部の有無に関わらず同じであるため、発電素子の歩留り低下および発電量増加のためのコストアップを防ぐことが可能となる。
図5は、診断実行判定部104の構成例を示す図である。図5に示すように、コンパレータ114により、発電素子から生成された発電電圧VDDと、半導体装置内部回路にて生成した基準電圧Vref1とを比較することができる。コンパレータ114の電源も発電電圧VDDである場合は、発電電圧VDD付近はコンパレータの入力レンジ外である場合がある。この場合は、抵抗115,116で発電電圧VDDを分圧し、抵抗117,118で基準電圧Vref1を分圧し、分圧電圧同士を比較すればよい。
発電電圧VDDが基準電圧Vref1以上であれば、コンパレータ出力信号COUTがHighレベルとなる。コンパレータ出力信号COUTがHighレベルであれば後段の診断部103が診断を実行する。
図6は、実施の形態2におけるセンサ信号処理のタイムチャートである。図6において、発電素子12の発電量が小さい場合と大きい場合の各々について示す。発電量が小さい場合、時刻t1~t2においてセンサ信号処理部101におけるセンサ信号処理が実行される。時刻t2のセンサ信号処理完了時点での発電電圧VDDが判定しきい値である基準電圧Vref1未満であれば、診断部103は診断処理を実行しない。発電量が大きい場合、時刻t11~t12においてセンサ信号処理部101におけるセンサ信号処理が実行される。時刻t12のセンサ信号処理完了時点での発電電圧VDDが基準電圧Vref1以上であれば、診断部103は診断処理を実行する。
図7は、実施の形態2におけるサーバ21側でのセンシング端末の故障の有無を判定する処理を示すフローチャートである。図7のステップS11に示すように、図2に示すような複数のセンシング端末のいずれかのデータを受信したサーバ21は、データに診断結果が含まれているかを確認する。データに診断結果が含まれている場合は(S11でYES)、ステップS12において、サーバ21は、診断結果からデータを送信したセンシング端末の故障の有無を判定する。
データを送信したセンシング端末が故障していれば(S12でYES)、サーバ21は、ステップS15においてこのセンシング端末が対象とする環境発電システムにおいて求められる故障に対応した処理を実施する。
故障に対応した処理として、例えば、センシング端末の交換が可能な環境発電システムであれば、センシング端末の交換というメンテナス処理の表示が挙げられる。この表示を見て、管理者がセンシング端末を交換する。
また、センシング端末の交換が困難な環境発電システムであれば、故障に対応した処理として、故障したセンシング端末のデータをサーバ側で無視するといった処理が挙げられる。
受信したデータに診断結果が含まれていない場合は(ステップS11でNO)、ステップS13において、ある一定期間内に一定の回数以上の診断結果が得られているかを確認する。得られていない場合は(S13でNO)、センシング端末側で診断部103が診断処理を実行できない発電量しか得られない状況になっているということであり、センシング端末の故障が強く疑われる。そのため、ステップS14において、サーバ21は、センシング端末が故障していると判定する。こうすることで、診断結果が得られない場合でも故障の有無を判定することが可能となる。そして、ステップS15においてセンシング端末の故障に対応した処理が実行される。
実施の形態3.
図8は、実施の形態3の環境発電システム200Bの構成を示す図である。図8に示す環境発電システム200Bは、センシング端末1Bと、サーバ21とを備える。センシング端末1Bは、図1の半導体装置100に代えて半導体装置100Bを備える。
半導体装置100Bは、データ送信部102に代えてデータ送信部102Bを備える。半導体装置100Bは、発電素子12による発電された電力で動作するモードとは別に、安定した外部電源VDD2で動作するモードを有する。半導体装置100Bは、不揮発性メモリ105を内蔵しており、発電素子12による発電される電力で動作するモードでは、センサ信号処理部101の処理結果を不揮発性メモリ105に記憶する。外部電源VDD2で動作するモードでは、データ送信部102Bが起動して、不揮発性メモリ105に保存されたデータを読出し、サーバ21に送信する。
図9は、実施の形態3における診断部による診断処理を示すフローチャートである。ステップS21において、センサ信号処理部101の処理が実行され、その後に、ステップS22において、診断実行判定部104により、発電電圧VDDが基準電圧Vref1以上であるかが判定される。
発電電圧VDDが基準電圧Vref1以上であれば(S22でYES)、ステップS23において診断部103が診断処理を実行する。そしてステップS24において、診断部103の出力データが、不揮発性メモリ105に保存される。その後、ステップS25において、センサ信号処理部101の出力データが、不揮発性メモリ105に保存される。
発電電圧VDDが基準電圧Vref1未満であれば(S22でNO)、ステップS23,S24の処理は実行されず、ステップS25において、センサ信号処理部101の出力データが、不揮発性メモリ105に保存される。
図10は、実施の形態3におけるデータ送信部による送信処理を示すフローチャートである。ステップS31では、データ送信部102Bは、外部電源VDD2が印加されているか否かを判断する。
外部電源が印加されていない場合は(S31でNO)、データ送信部102Bはデータ送信処理を行なわない。
外部電源が印加された場合は(S31でYES)、診断結果があればデータ送信部102Bは、不揮発性メモリ105からセンサ信号処理データと診断結果を読み出す。また診断結果が無い場合には、データ送信部102Bは、不揮発性メモリ105からセンサ信号処理データのみを読み出す。
そして、ステップS33において、データ送信部102Bは、不揮発性メモリ105から読み出したデータをサーバ21に送信する。
不揮発性メモリ105のデータを取得したサーバ21は、診断部103の結果からセンシング端末が故障していると判定されたら、センシング端末故障に対応した処理を行なう。
このように、実施の形態3では、不揮発性メモリ105に診断部103の結果を保持することで、発電素子12の発電電力で動作している間に故障が発生したか否かを外部電源VDD2の印加時にサーバ21側で判定することが可能となる。
実施の形態4.
図11は、実施の形態4の環境発電システム200Cの構成を示す図である。図11に示す環境発電システム200Cは、センシング端末1Cと、サーバ21とを備える。センシング端末1Cは、図1の半導体装置100に代えて半導体装置100Cを搭載する。半導体装置100Cは、診断部103および診断実行判定部104に加えて、複数の診断部103-2~103-nと、診断部103-2~103-nに対応した診断実行判定部104-2~104-nとをさらに備える。
ここで、診断部103-2~103-nは、診断対象がセンサ信号処理部101とは異なる診断部である。例えば、診断部103-2にはデジタル回路101-2の診断機能が割り当てられ、診断部103-nにはアナログ回路101-nの診断機能が割り当てられる。診断実行判定部104,104-2~104-nは、それぞれ異なる判定電圧が設定されており、優先度の高い診断機能に対して、低い判定電圧が割り当てられる。
たとえば、診断実行判定部104,104-2~104-nまたは診断部103,103-2~103-nは、相互に通信しており、優先度が低い順に診断処理を実行するように構成されている。たとえば、n=3の場合に、優先度1~3がそれぞれ診断部103,103-2,103-3が実行する診断処理1~3に対応付けられているとする。診断実行判定部104,104-2,104-3がすべての診断を実行すると判断した場合、優先度3、優先度2、優先度1の順に診断処理が実行される。診断実行判定部104,104-2,104-3が診断処理1,2を実行するが診断処理3は実行しないと判断した場合、優先度2、優先度1の順に診断処理が実行される。
本実施の形態によれば、発電電圧VDDが全ての自己診断機能を実行するのに必要な発電電圧に達していない場合でも、優先度の高い自己診断機能のみ実行することが可能となるため、センシング端末の故障検知が容易となる。
図12は、実施の形態4におけるセンサ信号処理のタイムチャートの第1例である。図13は、実施の形態4におけるセンサ信号処理のタイムチャートの第2例である。n=3の場合について、図12において発電素子12の発電量が大きい場合を示し、図13において発電量が小さい場合を示す。
図12では、センサ信号処理完了時点の時刻t22において、診断実行判定部104,104-2,104-3に設定されている基準電圧Vref1~Vref3より発電電圧VDDが高いため、診断部103,103-2,103-3によってそれぞれ診断処理1~3が実行される。
すなわち、図12では、時刻t21~t22においてセンサ信号処理が実行される。その後、時刻t22~t23において診断部103-3によって診断処理3が実行され、時刻t23~t24において診断部103-2によって診断処理2が実行され、時刻t24~t25において診断部103によって診断処理1が実行される。そして、時刻t25~t26においてデータ送信部102によって送信処理が実行される。
一方、図13では、センサ信号処理完了時点の時刻t32において、発電電圧VDDの値は、Vref1<VDD<Vref2となっている。このため、優先度の高い診断部103によって診断処理1は実行されるが、診断部103-2,103-3による診断処理2,3は実行されない。
すなわち、図13では、時刻t31~t32においてセンサ信号処理が実行される。その後、時刻t32~t33において診断部103によって診断処理1が実行される。そして、時刻t33~t34においてデータ送信部102によって送信処理が実行される。図13の場合は、サーバ21は、少なくともセンサ信号処理部101の故障の有無がわかるため、センサ信号処理結果が信頼できるか否かを判断することができる。
図14は、実施の形態4の変形例の環境発電システム200Dの構成を示す図である。図14に示す環境発電システム200Dは、センシング端末1Dと、サーバ21とを備える。センシング端末1Dは、図11の半導体装置100Cに代えて半導体装置100Dを備える。
半導体装置100Dは、半導体装置100Cの構成において診断実行判定部104、104-2~104-nに代えて診断実行判定部104Dを備える。診断実行判定部104Dは、アナログ-デジタル変換器111と判定回路112とを含む。
この場合、発電電圧VDDはアナログ-デジタル変換器111によってデジタル値に変換され、判定回路112がそのデジタル値に応じてどの自己診断機能を実行するかとその実行順序とを決定する。このようにアナログ-デジタル変換器を用いることによって、診断部の数‘n’が大きい場合に、コンパレータを多数備える必要がなく、柔軟な診断機能の実行が可能となる。
(まとめ)
本開示は、発電素子からの発電電圧を電源として動作する半導体装置100,100A~100Dに関する。半導体装置100,100A~100Dは、半導体装置100,100A~100Dに内蔵されたセンサ信号処理部101などの回路と、半導体装置100,100A~100Dに接続された受動部品13などの部品との少なくともいずれかを診断する少なくとも1つの診断部103を備える。
半導体装置100Aは、診断実行判定部104をさらに備える。診断実行判定部104は、発電電圧VDDが基準電圧Vref1より高い場合に診断部103に診断を実行させる一方で、発電電圧VDDが基準電圧Vref1より低い場合には診断部103に診断を実行させないように構成される。
図5に示すように、診断実行判定部104は、発電電圧VDDと基準電圧Vref1とを比較するコンパレータ114を含む。
図8に示すように、半導体装置100Bは、半導体装置100Bに接続されたセンサ素子11の信号を処理するセンサ信号処理部101と、センサ信号処理部101の出力データと、診断部103の出力データとを保持する不揮発性メモリ105と、センサ信号処理部101の出力データを送信するデータ送信部102とをさらに備える。データ送信部102は、不揮発性メモリ105に診断部103の出力データが保持されている場合には、センサ信号処理部101の出力データを送信する際に、不揮発性メモリ105から診断部103の出力データを読み出して、診断部103の出力データも送信する。
図11に示すように、診断部103は、診断対象が異なる複数の診断部103,103-2~103-nのうちの1つである。診断実行判定部104は、対応する診断部が異なる複数の診断実行判定部104,104-2~104-nのうちの1つである。複数の診断実行判定部104,104-2~104-nには、互いに異なる複数の基準電圧Vref1~Vrefnがそれぞれ設定される。複数の診断実行判定部104,104-2~104-nの各々は、発電電圧VDDが対応する基準電圧より高い場合に対応する診断部に診断を実行させる一方で、発電電圧が対応する基準電圧より低い場合には対応する診断部に診断を実行させないように構成される。
複数の診断実行判定部104,104-2~104-nには、対応する診断部が実行する診断の優先度が高いほど低い基準電圧が設定される。
図14に示すように、半導体装置100Dは、診断対象が異なる複数の診断部103,103-2~103-nと、発電電圧VDDをデジタル値に変換するアナログ-デジタル変換器111と、判定回路112とをさらに備える。
アナログ-デジタル変換器111と、判定回路112とは診断実行判定部104Dを構成する。
判定回路112は、アナログ-デジタル変換器111から出力されたデジタル値に基づいて複数の診断部103,103-2~103-nの各々について診断処理の実行可否を決定する。
本開示は、他の局面では、発電素子と、上記のいずれかの半導体装置とを含むセンシング端末によって構成される、環境発電システムに関する。
好ましくは、環境発電システムは、センシング端末1~nからデータを受信し、受診したデータを処理するサーバ21をさらに備える。サーバ21は、一定の期間内に一定の回数以上の診断結果が得られない場合には、センシング端末1~nは故障していると判定する。
以上のような構成によって、半導体装置に内蔵された回路と半導体装置に接続された部品の少なくとも1つの故障または劣化を診断する診断部を備えた半導体装置を提供することができる。
また、診断部による必要消費電力の増加を抑制するために、センサ信号処理部の動作完了後、診断部を実行する電力が確保されている場合のみ診断部を動作させることによって、で必要消費電力の増加を抑えた半導体装置を提供できる。
またこのような半導体装置を用いることによってセンシング端末の故障または劣化を検知可能な環境発電システムを提供することができる。
今回開示された各実施の形態は、矛盾しない範囲で適宜組み合わせて実施することも予定されている。今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1~n,1A,1B,1C,1D センシング端末、11 センサ素子、12 発電素子、13 受動部品、21 サーバ、31 ネットワーク、100,100A,100B,100C,100D 半導体装置、101 センサ信号処理部、101-2 デジタル回路、101-n アナログ回路、102,102B データ送信部、103 診断部、104,104D 診断実行判定部、105 不揮発性メモリ、111 アナログ-デジタル変換器、112 判定回路、114 コンパレータ、115,116,117,118 抵抗、200,200A,200B,200C,200D 環境発電システム。

Claims (7)

  1. 発電素子からの発電電圧を電源として動作する半導体装置であって、
    前記半導体装置は、
    前記半導体装置に内蔵された回路と、前記半導体装置に接続された部品との少なくともいずれかを診断する少なくとも1つの診断部と、
    診断実行判定部と、
    前記半導体装置に接続されたセンサの信号を処理するセンサ信号処理部と、
    前記センサ信号処理部の出力データと、前記診断部の出力データとを保持する不揮発性メモリと、
    前記センサ信号処理部の出力データを送信する送信部とを備え、
    前記診断実行判定部は、前記発電電圧が基準電圧より高い場合に前記診断部に診断を実行させる一方で、前記発電電圧が前記基準電圧より低い場合には前記診断部に診断を実行させないように構成され、
    前記送信部は、前記不揮発性メモリに前記診断部の出力データが保持されている場合には、前記センサ信号処理部の出力データを送信する際に、前記不揮発性メモリから前記診断部の出力データを読み出して、前記診断部の出力データを送信する、半導体装置。
  2. 前記診断実行判定部は、前記発電電圧と前記基準電圧とを比較するコンパレータを含む、請求項に記載の半導体装置。
  3. 発電素子からの発電電圧を電源として動作する半導体装置であって、
    前記半導体装置は、
    前記半導体装置に内蔵された回路と、前記半導体装置に接続された部品との少なくともいずれかを診断する少なくとも1つの診断部と、
    診断実行判定部とを備え、
    前記診断実行判定部は、前記発電電圧が基準電圧より高い場合に前記診断部に診断を実行させる一方で、前記発電電圧が前記基準電圧より低い場合には前記診断部に診断を実行させないように構成され、
    前記診断部は、診断対象が異なる複数の診断部のうちの1つであり、
    前記診断実行判定部は、対応する診断部が異なる複数の診断実行判定部のうちの1つであり、
    前記複数の診断実行判定部には、互いに異なる複数の基準電圧がそれぞれ設定され、
    前記複数の診断実行判定部の各々は、前記発電電圧が対応する基準電圧より高い場合に対応する診断部に診断を実行させる一方で、前記発電電圧が対応する基準電圧より低い場合には対応する診断部に診断を実行させないように構成され、
    前記複数の診断実行判定部には、対応する診断部が実行する診断の優先度が高いほど低い基準電圧が設定される、半導体装置。
  4. 前記半導体装置は、
    診断対象が異なる複数の診断部と、
    前記発電電圧をデジタル値に変換するアナログ-デジタル変換器と、
    判定回路とをさらに備え、
    前記診断部は、前記複数の診断部のうちの1つであり、
    前記判定回路は、前記デジタル値に基づいて前記複数の診断部の各々について診断処理の実行可否を決定する、請求項1または2に記載の半導体装置。
  5. 前記半導体装置は、
    前記発電電圧をデジタル値に変換するアナログ-デジタル変換器と、
    判定回路とをさらに備え、
    前記判定回路は、前記デジタル値に基づいて前記複数の診断部の各々について診断処理の実行可否を決定する、請求項3に記載の半導体装置。
  6. 前記発電素子と、
    請求項1から5のいずれか1項に記載の半導体装置とを含むセンシング端末によって構成される、環境発電システム。
  7. 前記センシング端末からデータを受信し、受診したデータを処理するサーバをさらに備え、
    前記サーバは、一定の期間内に一定の回数以上の診断結果が得られない場合には、前記センシング端末は故障していると判定する、請求項に記載の環境発電システム。
JP2020048972A 2020-03-19 2020-03-19 半導体装置および環境発電システム Active JP7353225B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020048972A JP7353225B2 (ja) 2020-03-19 2020-03-19 半導体装置および環境発電システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020048972A JP7353225B2 (ja) 2020-03-19 2020-03-19 半導体装置および環境発電システム

Publications (2)

Publication Number Publication Date
JP2021149530A JP2021149530A (ja) 2021-09-27
JP7353225B2 true JP7353225B2 (ja) 2023-09-29

Family

ID=77849022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020048972A Active JP7353225B2 (ja) 2020-03-19 2020-03-19 半導体装置および環境発電システム

Country Status (1)

Country Link
JP (1) JP7353225B2 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525912A (ja) 2003-05-14 2006-11-16 シーメンス アクチエンゲゼルシヤフト 車両における乗員保護システムの中央制御機器と少なくとも1つのローカルセンサユニットの間のデータ伝送のための方法及び装置
JP2015231280A (ja) 2014-06-04 2015-12-21 パナソニックIpマネジメント株式会社 太陽電池の監視装置、および太陽電池の監視システム
JP2017156943A (ja) 2016-03-01 2017-09-07 ローム株式会社 センサノード、センサネットワークシステム、およびその故障復帰方法
WO2018168077A1 (ja) 2017-03-15 2018-09-20 オムロン株式会社 配電網モニタリングシステムおよび配電網モニタリング装置
JP2019105975A (ja) 2017-12-12 2019-06-27 ローム株式会社 無線通信プロトコル
JP7146345B2 (ja) 2018-09-06 2022-10-04 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物を含む樹脂原料用組成物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07146345A (ja) * 1993-11-25 1995-06-06 Canon Inc 二次電池用充電量表示装置
US9346441B2 (en) * 2010-09-24 2016-05-24 Infineon Technologies Ag Sensor self-diagnostics using multiple signal paths
JP6650137B2 (ja) * 2015-11-20 2020-02-19 国立研究開発法人産業技術総合研究所 無線センサ端末

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006525912A (ja) 2003-05-14 2006-11-16 シーメンス アクチエンゲゼルシヤフト 車両における乗員保護システムの中央制御機器と少なくとも1つのローカルセンサユニットの間のデータ伝送のための方法及び装置
JP2015231280A (ja) 2014-06-04 2015-12-21 パナソニックIpマネジメント株式会社 太陽電池の監視装置、および太陽電池の監視システム
JP2017156943A (ja) 2016-03-01 2017-09-07 ローム株式会社 センサノード、センサネットワークシステム、およびその故障復帰方法
WO2018168077A1 (ja) 2017-03-15 2018-09-20 オムロン株式会社 配電網モニタリングシステムおよび配電網モニタリング装置
JP2019105975A (ja) 2017-12-12 2019-06-27 ローム株式会社 無線通信プロトコル
JP7146345B2 (ja) 2018-09-06 2022-10-04 田岡化学工業株式会社 フルオレン骨格を有するアルコール化合物を含む樹脂原料用組成物

Also Published As

Publication number Publication date
JP2021149530A (ja) 2021-09-27

Similar Documents

Publication Publication Date Title
JP5575986B2 (ja) プロセス流体温度計測器
JP6772491B2 (ja) 故障診断装置、故障診断システム、故障診断方法、及び、プログラム
JP2008250594A (ja) 装置診断方法および装置診断用モジュールならびに装置診断用モジュールを実装した装置
US9773358B2 (en) Device and method for detecting faults in electronic systems
KR20140147621A (ko) 수질 센서 장애 제어 장치 및 방법
JP6911006B2 (ja) 温度検出回路
JP2008002890A (ja) 計測装置管理システム
JP2020527228A (ja) コンタクタコイル電流を用いたコンタクタ寿命診断システムおよび方法
KR102236057B1 (ko) 커넥터 연결을 이용한 배터리관리시스템(bms)의 배터리 진단 조건 변경 방법 및 시스템
JP7353225B2 (ja) 半導体装置および環境発電システム
WO2017006593A1 (ja) センサ監視装置、センサ監視方法、及び、プログラム
JP2003098226A (ja) プリント基板故障判定方法
JP5881588B2 (ja) 電圧監視装置
CN116186976A (zh) 装备平台传感器采集数据准确度验证方法及验证系统
JP2022015096A (ja) 半導体装置および環境発電システム
WO2006129999A1 (en) Network bus diagnosis system
JP6265767B2 (ja) 通信診断装置、通信診断システム、通信診断方法、及びプログラム
JP6858019B2 (ja) 機器状態監視システム
KR20070107454A (ko) 가정용 서비스 로봇의 관리 방법 및 시스템
CN1980096B (zh) 用于激光驱动电路的故障传感系统
KR102500129B1 (ko) Ict 모니터링과 기록장치
JP2021025926A (ja) 振動センサの自己診断方法及び自己診断機能付き振動センサシステム
KR100760404B1 (ko) 전자기기용 사전 진단시스템과 이를 이용한 사전 진단방법
US11676477B2 (en) Fire alarm system
CN116047484B (zh) 一种激光雷达管理方法、装置、存储介质及激光雷达

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230919

R150 Certificate of patent or registration of utility model

Ref document number: 7353225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150