JP7344725B2 - アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置 - Google Patents

アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置 Download PDF

Info

Publication number
JP7344725B2
JP7344725B2 JP2019166779A JP2019166779A JP7344725B2 JP 7344725 B2 JP7344725 B2 JP 7344725B2 JP 2019166779 A JP2019166779 A JP 2019166779A JP 2019166779 A JP2019166779 A JP 2019166779A JP 7344725 B2 JP7344725 B2 JP 7344725B2
Authority
JP
Japan
Prior art keywords
alignment mark
image
electron beam
substrate
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019166779A
Other languages
English (en)
Other versions
JP2021044461A (ja
Inventor
利之 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuflare Technology Inc
Original Assignee
Nuflare Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuflare Technology Inc filed Critical Nuflare Technology Inc
Priority to JP2019166779A priority Critical patent/JP7344725B2/ja
Publication of JP2021044461A publication Critical patent/JP2021044461A/ja
Application granted granted Critical
Publication of JP7344725B2 publication Critical patent/JP7344725B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Description

本発明は、アライメントマーク位置の検出方法に関する。例えば、マルチ電子ビームを用いた基板のアライメントマーク位置の検出方法に関する。
近年、大規模集積回路(LSI)の高集積化及び大容量化に伴い、半導体素子に要求される回路線幅はますます狭くなってきている。そして、多大な製造コストのかかるLSIの製造にとって、歩留まりの向上は欠かせない。しかし、1ギガビット級のDRAM(ランダムアクセスメモリ)に代表されるように、LSIを構成するパターンは、サブミクロンからナノメータのオーダーになっている。近年、半導体ウェハ上に形成されるLSIパターン寸法の微細化に伴って、パターン欠陥として検出しなければならない寸法も極めて小さいものとなっている。よって、半導体ウェハ上に転写された超微細パターンの欠陥を検査するパターン検査装置の高精度化が必要とされている。
検査手法としては、半導体ウェハやリソグラフィマスク等の基板上に形成されているパターンを撮像した測定画像と、設計データ、あるいは基板上の同一パターンを撮像した測定画像と比較することにより検査を行う方法が知られている。例えば、パターン検査方法として、同一基板上の異なる場所の同一パターンを撮像した測定画像データ同士を比較する「die to die(ダイ-ダイ)検査」や、パターン設計された設計データをベースに設計画像データ(参照画像)を生成して、それとパターンを撮像した測定データとなる測定画像とを比較する「die to database(ダイ-データベース)検査」がある。撮像された画像は測定データとして比較回路へ送られる。比較回路では、画像同士の位置合わせの後、測定データと参照データとを適切なアルゴリズムに従って比較し、一致しない場合には、パターン欠陥有りと判定する。
半導体ウェハやフォトマスクの欠陥検査では、より小さいサイズの欠陥を検出することが求められている。そのため、近年の検査装置では、上述したパターン検査装置には、レーザ光を検査対象基板に照射して、その透過像或いは反射像を撮像する装置の他、画像の画素分解能を上げるために、レーザ光よりも波長の短い電子ビームで検査対象基板上を走査(スキャン)して、電子ビームの照射に伴い検査対象基板から放出される2次電子を検出して、パターン像を取得する検査装置の開発も進んでいる。電子ビームを用いた検査装置では、さらに、マルチビームを用いた装置の開発も進んでいる。
被検査基板上に形成されたパターンの検査を行うにあたって、まずは基準となるアライメントマーク位置を特定する必要がある。被検査基板は搬送系により検査室のステージに搬送される。かかる搬送における位置再現性における誤差は、数100μm程度生じる。そのため、光学式のカメラで被検査基板上のアライメントマークを撮像するも、光学式のカメラの分割能が数μm程度であるために、検査精度で要求されるnmオーダーでの位置合わせは困難である。一方、電子ビームでのスキャン画像の分解能はnmオーダーであるが、マルチ電子ビームを用いる場合、電子ビーム間での誤差が生じてしまうため、アライメントマークを同じ特定のビームで撮像することが望ましい。しかしながら、マルチ電子ビームの各ビームの視野は、光学式のカメラの分割能よりも小さいため、特定のビームの視野内に位置合わせすることが困難であった。その結果、測定されるアライメントマーク位置は、電子ビーム間での誤差を持った値になってしまう。
ここで、光学式カメラとシングル電子ビームによるアライメントマークの位置を測定する手法が開示されている(例えば、特許文献1参照)。
特開2011-243957号公報
そこで、本発明の一態様は、マルチ電子ビームを用いて高精度にアライメントマークの位置を検出可能な方法及びその装置を提供する。
本発明の一態様のアライメントマーク位置の検出方法は、
アライメントマークを有するパターンが形成された基板に対して、光学式カメラにより当該アライメントマークを撮像する工程と、
撮像された光学画像を用いて当該アライメントマークの第1の位置を検出する工程と、
検出された第1の位置を基準にマルチ電子ビームを用いて当該アライメントマークの第1の2次電子画像を取得する工程と、
取得された第1の2次電子画像を用いて当該アライメントマークの第2の位置を検出する工程と、
検出された第2の位置をマルチ電子ビームのうち所定の電子ビームの照射領域に合わせた状態で、所定の電子ビームを用いて当該アライメントマークの第2の2次電子画像を取得する工程と、
取得された第2の2次電子画像を用いて当該アライメントマークの第3の位置を検出し、出力する工程と、
を備えたことを特徴とする。
また、所定の電子ビームとして、マルチ電子ビームの中心ビームを用いると好適である。
また、第1の2次電子画像は、第2の2次電子画像よりも粗い分解能の画像として取得されると好適である。
また、基板には、複数のチップが形成され、
複数のチップは、それぞれ複数のアライメントマークを有し、
複数のチップの1つのチップが有するいずれかのアライメントマークの光学画像を用いて検出された当該アライメントマークの第1の位置と、複数のチップの他の1つのチップが有するいずれかのアライメントマークの光学画像を用いて検出された当該アライメントマークの第1の位置とを用いて、基板の配置角度を調整する工程をさらに備えると好適である。
本発明の一態様のアライメントマーク位置の検出装置は、
アライメントマークを有するパターンが形成された基板に対して、当該アライメントマークを撮像する光学式カメラと、
撮像された光学画像を用いて当該アライメントマークの第1の位置を検出する位置検出部と、
検出された第1の位置を基準にマルチ電子ビームを用いて当該アライメントマークの第1の2次電子画像を取得する画像取得機構と、
を備え、
位置検出部は、取得された第1の2次電子画像を用いて当該アライメントマークの第2の位置を検出し、
画像取得機構は、検出された第2の位置をマルチ電子ビームのうち所定の電子ビームの照射領域に合わせた状態で、所定の電子ビームを用いて当該アライメントマークの第2の2次電子画像を取得し、
位置検出部は、取得された第2の2次電子画像を用いて当該アライメントマークの第3の位置を検出することを特徴とする。
また、所定の電子ビームとして、前記マルチ電子ビームの中心ビームを用いると好適である。
また、第1の2次電子画像は、前記第2の2次電子画像よりも粗い分解能の画像として取得されると好適である。
また、基板には、複数のチップが形成され、
複数のチップは、それぞれ前記複数のアライメントマークを有し、
複数のチップの1つのチップが有するいずれかのアライメントマークの光学画像を用いて検出された当該アライメントマークの第1の位置と、複数のチップの他の1つのチップが有するいずれかのアライメントマークの光学画像を用いて検出された当該アライメントマークの第1の位置とを用いて、基板の配置角度を調整する配置角度調整部をさらに備えると好適である。
本発明の一態様によれば、マルチ電子ビームを用いて高精度にアライメントマークの位置を検出できる。
実施の形態1における検査装置の構成を示す構成図である。 実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。 実施の形態1におけるアライメントマーク位置の検出方法の要部工程を示すフローチャート図である。 実施の形態1における基板の配置角度を調整する手法を説明するための図である。 実施の形態1におけるアライメントマーク位置の検出手法を順に説明するための図である。 実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。 実施の形態1におけるマルチビームのスキャン動作を説明するための図である。 実施の形態1における検査処理を説明するための図である。 実施の形態1における比較回路内の構成の一例を示す構成図である。
以下、実施の形態では、アライメントマーク位置を検出する装置の一例として、マルチ電子ビーム検査装置について説明する。但し、アライメントマーク位置を検出する装置は、検査装置に限るものではなく、電子光学系を用いてマルチ電子ビームを照射して画像を取得する装置であれば構わない。
実施の形態1.
図1は、実施の形態1における検査装置の構成を示す構成図である。図1において、基板に形成されたパターンを検査する検査装置100は、マルチ電子ビーム検査装置の一例である。検査装置100は、画像取得機構150、及び制御系回路160を備えている。画像取得機構150は、電子ビームカラム102(電子鏡筒)及び検査室103を備えている。電子ビームカラム102内には、電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、副偏向器209、ビームセパレーター214、偏向器218、電磁レンズ224、及びマルチ検出器222が配置されている。電子銃201、電磁レンズ202、成形アパーチャアレイ基板203、電磁レンズ205、一括ブランキング偏向器212、制限アパーチャ基板213、電磁レンズ206、電磁レンズ207(対物レンズ)、主偏向器208、及び副偏向器209によって1次電子光学系を構成する。また、電磁レンズ207、ビームセパレーター214、偏向器218、及び電磁レンズ224によって2次電子光学系を構成する。
検査室103内には、少なくともXY方向に移動可能なステージ105が配置される。ステージ105上には、検査対象となる基板101(試料)が配置される。基板101には、露光用マスク基板、及びシリコンウェハ等の半導体基板が含まれる。基板101が半導体基板である場合、半導体基板には複数のチップパターン(ウェハダイ)が形成されている。基板101が露光用マスク基板である場合、露光用マスク基板には、チップパターンが形成されている。チップパターンは、複数の図形パターンによって構成される。かかる露光用マスク基板に形成されたチップパターンが半導体基板上に複数回露光転写されることで、半導体基板には複数のチップパターン(ウェハダイ)が形成されることになる。以下、基板101が半導体基板である場合を主として説明する。基板101は、例えば、パターン形成面を上側に向けてステージ105に配置される。また、ステージ105上には、検査室103の外部に配置されたレーザ測長システム122から照射されるレーザ測長用のレーザ光を反射するミラー216が配置されている。
また、検査室103内には、ステージ105上に載置された基板101を上方から撮像する光学式カメラ219がレンズを下側に向けて配置される。また、図1の例に示すように、光学式カメラ219の一部が検査室103内から外部にはみ出すように配置されても構わない。また、光学式カメラ219の照明として、図示しない白色LEDが使用されると好適である。光学式カメラ219として、例えば、CCD(Charged-coupled devices)カメラが用いられると好適である。また、光学式カメラ219は、基板101上において、例えば、mm角オーダーの視野を有し、μmオーダーの分解能を有する。光学式カメラ219は、検査室103の外部で検出回路131に接続される。
また、マルチ検出器222は、電子ビームカラム102の外部で検出回路106に接続される。検出回路106は、チップパターンメモリ123に接続される。
制御系回路160では、検査装置100全体を制御する制御計算機110が、バス120を介して、位置回路107、比較回路108、参照画像作成回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、カメラ制御回路130、マーク位置検出回路132、位置合わせ回路134、磁気ディスク装置等の記憶装置109、モニタ117、メモリ118、及びプリンタ119に接続されている。また、偏向制御回路128は、DAC(デジタルアナログ変換)アンプ144,146,148に接続される。DACアンプ146は、主偏向器208に接続され、DACアンプ144は、副偏向器209に接続される。DACアンプ148は、偏向器218に接続される。また、検出回路131は、カメラ制御回路130に接続される。
また、チップパターンメモリ123は、比較回路108及びマーク位置検出回路132に接続されている。また、ステージ105は、ステージ制御回路114の制御の下に駆動機構142により駆動される。駆動機構142では、例えば、ステージ座標系におけるX方向、Y方向、θ方向に駆動する3軸(X-Y-θ)モータの様な駆動系が構成され、XYθ方向にステージ105が移動可能となっている。これらの、図示しないXモータ、Yモータ、θモータは、例えばステップモータを用いることができる。ステージ105は、XYθ各軸のモータによって水平方向及び回転方向に移動可能である。そして、ステージ105の移動位置はレーザ測長システム122により測定され、位置回路107に供給される。レーザ測長システム122は、ミラー216からの反射光を受光することによって、レーザ干渉法の原理でステージ105の位置を測長する。ステージ座標系は、例えば、マルチ1次電子ビーム20の光軸に直交する面に対して、X方向、Y方向、θ方向が設定される。
電磁レンズ202、電磁レンズ205、電磁レンズ206、電磁レンズ207(対物レンズ)、電磁レンズ224、及びビームセパレーター214は、レンズ制御回路124により制御される。また、一括ブランキング偏向器212は、2極以上の電極により構成され、電極毎に図示しないDACアンプを介してブランキング制御回路126により制御される。副偏向器209は、4極以上の電極により構成され、電極毎にDACアンプ144を介して偏向制御回路128により制御される。主偏向器208は、4極以上の電極により構成され、電極毎にDACアンプ146を介して偏向制御回路128により制御される。偏向器218は、4極以上の電極により構成され、電極毎にDACアンプ148を介して偏向制御回路128により制御される。
電子銃201には、図示しない高圧電源回路が接続され、電子銃201内の図示しないフィラメント(カソード)と引出電極(アノード)間への高圧電源回路からの加速電圧の印加と共に、別の引出電極(ウェネルト)の電圧の印加と所定の温度のカソードの加熱によって、カソードから放出された電子群が加速させられ、電子ビーム200となって放出される。
ここで、図1では、実施の形態1を説明する上で必要な構成を記載している。検査装置100にとって、通常、必要なその他の構成を備えていても構わない。
図2は、実施の形態1における半導体基板に形成される複数のチップ領域の一例を示す図である。図2において、基板101が半導体基板(ウェハ)である場合、半導体基板(ウェハ)の検査領域330には、複数のチップ(ウェハダイ)332が2次元のアレイ状に形成されている。各チップ332には、露光用マスク基板に形成された1チップ分のマスクパターンが図示しない露光装置(ステッパ)によって例えば1/4に縮小されて転写されている。1チップ分のマスクパターンは、一般に、複数の図形パターンにより構成される。各チップ332には、複数のアライメントマーク27が形成される。図2の例では、各チップ332の領域の4角に、それぞれアライメントマーク27が配置される場合を示している。アライメントマーク27として、x方向及びy方向にエッジ(端部)を有するパターンが用いられると好適である。
各チップ332に形成される図形パターンの欠陥等を検査するにあたって、各図形パターンのエッジ位置を高精度に測定する必要がある。上述したように、搬送系における検査室103のステージ105上における基板101の位置再現性における誤差は、数100μm程度生じる。よって、チップ332毎に、高精度に位置が測定された複数のアライメントマーク27を基準にした座標系を構成する必要がある。そのために、かかる複数のアライメントマーク27の位置精度が重要になる。そこで、光学式のカメラで被検査基板上のアライメントマークを撮像するも、光学式のカメラの分割能が数μm程度であるために、検査精度で要求されるnmオーダーでの位置合わせは困難である。よって、分解能がnmオーダーの電子ビームによる2次電子画像でアライメントマーク位置を検出する必要が生じる。しかし、マルチ電子ビームの各ビームの視野は、光学式のカメラの分割能よりも小さいため、マルチ電子ビームのうち特定のビームの視野内にアライメントマークを位置合わせすることが困難であった。その結果、同じチップ内で、測定される複数のアライメントマーク位置は、マルチ電子ビームのうちの異なる電子ビームで撮像された2次電子画像から検出される場合が生じ、電子ビーム間での誤差を持った値になってしまう。そこで、実施の形態1では、同じチップ332内の複数のアライメントマーク27を、マルチ電子ビームのうち同じ特定の電子ビームで撮像可能にする。以下、具体的に説明する。
図3は、実施の形態1におけるアライメントマーク位置の検出方法の要部工程を示すフローチャート図である。図3において、実施の形態1におけるアライメントマーク位置の検出方法は、一連の工程を実施する。まずは、検査室103内のステージ105に搬送された基板101の配置角度を補正する。
光学式カメラによるアライメントマーク画像取得工程(S102)として、画像取得機構150は、複数のチップ332の1つのチップが有するいずれかのアライメントマーク27の光学画像を撮像する。同様に、画像取得機構150は、複数のチップ332の他の1つのチップが有するいずれかのアライメントマーク27の光学画像を撮像する。
図4は、実施の形態1における基板の配置角度を調整する手法を説明するための図である。図4に示すように、異なる少なくとも2つのチップ332のアライメントマーク27の位置を検出することで、基板101の配置角度の誤差を補正することができる。図4の例では、基板101上に、2次元にアレイ配置された複数のチップ332のx方向に並ぶ1列分のチップ332のうち両端の位置に形成された2つのチップ332を選択する。そして、各チップ332に配置される4つのアライメントマーク27のうち1つを選択する。例えば、同じ位置関係にあるアライメントマーク27を選択すると好適である。そして、選択されたチップ332毎に、選択されたアライメントマーク27が光学式カメラ219の視野内に入るようにステージ105を移動させる。そして、カメラ制御回路130に制御された光学式カメラ219は、選択されたチップ332毎に、選択されたアライメントマーク27を撮像する。撮像されたデータは、検出回路131に出力される。検出回路131内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータの光学画像データに変換され、光学画像データが、カメラ制御回路130を介してマーク位置検出回路132に出力される。
アライメントマーク位置検出工程(S104)として、マーク位置検出回路132は、入力された光学画像データから、選択されたチップ332毎に、選択されたアライメントマーク27の位置を検出する。例えば、x方向に延びるパターンの中心線とy方向に延びるパターンの中心線との交点をアライメントマーク27の位置として検出する。なお、光学式カメラ219の光軸とマルチ1次電子ビーム20の軌道中心軸との位置関係は予め高精度に測定されている。また、マルチ1次電子ビーム20の軌道中心軸とステージ105の相対的な位置関係についても予め高精度に測定されている。よって、光学式カメラ219の光軸とアライメントマーク27の位置との位置関係が検出できれば、ステージ105上での選択された2つのチップ332のアライメントマーク27の位置を検出できる。
基板配置角度調整工程(S106)として、ステージ制御回路114(配置角度調整部)は、複数のチップ332の1つのチップが有するいずれかのアライメントマーク27の光学画像を用いて検出された当該アライメントマーク27の位置(第1の位置)と、複数のチップ332の他の1つのチップが有するいずれかのアライメントマーク27の光学画像を用いて検出された当該アライメントマークの位置(別の第1の位置)とを用いて、基板101の配置角度を調整する。言い換えれば、ステージ制御回路114は、かかる2つのチップ332のアライメントマーク27の位置を基に、ステージ105上の基板101の配置角度を調整する。例えば、x方向に並ぶ2つのチップ332を結ぶ線が、ステージ座標系のx方向と平行ではない場合には、平行になるようにθ方向にステージ位置を回転させることで、基板配置角度を調整すればよい。
以上のように、光学式カメラ219で得られる光学画像の分解能の精度で基板101の配置角度が調整(粗調整)される。よって、各チップ332内の図形パターンの検査を行うためには、チップ332毎に、被検査画像を取得する前に、チップ332内の複数のアライメントマーク27の位置を高精度に検出する必要がある。以下、具体的に説明する。
光学式カメラによるアライメントマーク画像取得工程(S110)として、画像取得機構150は、複数のアライメントマーク27を有するパターンが形成された基板101に対して、アライメントマーク27毎に、光学式カメラ219により当該アライメントマーク27を撮像する。ここでは、被検査チップ332内の複数のアライメントマーク27に対して、画像取得機構150は、アライメントマーク27毎に、光学式カメラ219により当該アライメントマーク27を撮像する。具体的には、対象アライメントマーク27が光学式カメラ219の視野内に入るようにステージ105を移動させる。そして、カメラ制御回路130に制御された光学式カメラ219は、対象アライメントマーク27を撮像する。撮像されたデータは、検出回路131に出力される。検出回路131内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータの光学画像データに変換され、光学画像データが、カメラ制御回路130を介してマーク位置検出回路132に出力される。
アライメントマーク位置検出工程(S112)として、マーク位置検出回路132(位置検出部)は、撮像された光学画像を用いて当該アライメントマーク27の位置(第1の位置)を検出する。例えば、x方向に延びるパターンの中心線とy方向に延びるパターンの中心線との交点のステージ105上の位置をアライメントマーク27の位置として検出する。
図5は、実施の形態1におけるアライメントマーク位置の検出手法を順に説明するための図である。図5に示すように、まずは、上述した光学式カメラ219による光学画像から対象アライメントマーク27の位置を検出する。しかし、光学式カメラ219による光学画像から得られる対象アライメントマーク27の位置精度は低い。そこで、次にマルチビーム画像を用いる。
マルチビームによるアライメントマーク画像取得工程(S114)として、画像取得機構150は、アライメントマーク27毎に、検出された位置(第1の位置)を基準にマルチ1次電子ビーム20を用いて当該アライメントマーク27の2次電子画像(第1の2次電子画像)を取得する。具体的には以下のように動作する。光学画像から得られた対象アライメントマーク27の位置がマルチ1次電子ビーム20の視野内に入るようにステージ105を移動させる。
図6は、実施の形態1における成形アパーチャアレイ基板の構成を示す概念図である。図6において、成形アパーチャアレイ基板203には、2次元状の横(x方向)m列×縦(y方向)n段(m,nは2以上の整数)の穴(開口部)22がx,y方向に所定の配列ピッチで形成されている。図6の例では、23×23の穴(開口部)22が形成されている場合を示している。各穴22は、共に同じ寸法形状の矩形で形成される。或いは、同じ外径の円形であっても構わない。これらの複数の穴22を電子ビーム200の一部がそれぞれ通過することで、マルチ1次電子ビーム20が形成されることになる。次に、2次電子画像を取得する場合における画像取得機構150の動作について説明する。
電子銃201(放出源)から放出された電子ビーム200は、電磁レンズ202によって屈折させられ、成形アパーチャアレイ基板203全体を照明する。成形アパーチャアレイ基板203には、図6に示すように、複数の穴22(開口部)が形成され、電子ビーム200は、すべての複数の穴22が含まれる領域を照明する。複数の穴22の位置に照射された電子ビーム200の各一部が、かかる成形アパーチャアレイ基板203の複数の穴22をそれぞれ通過することによって、マルチ1次電子ビーム20が形成される。
形成されたマルチ1次電子ビーム20は、電磁レンズ205、及び電磁レンズ206によってそれぞれ屈折させられ、中間像およびクロスオーバーを繰り返しながら、マルチ1次電子ビーム20の各ビームの中間像面(像面共役位置)に配置されたビームセパレーター214を通過して電磁レンズ207(対物レンズ)に進む。
マルチ1次電子ビーム20が電磁レンズ207(対物レンズ)に入射すると、電磁レンズ207は、マルチ1次電子ビーム20を基板101にフォーカスする。対物レンズ207により基板101(試料)面上に焦点が合わされ(合焦され)たマルチ1次電子ビーム20は、主偏向器208及び副偏向器209によって一括して偏向され、各ビームの基板101上のそれぞれの照射位置に照射される。なお、一括ブランキング偏向器212によって、マルチ1次電子ビーム20全体が一括して偏向された場合には、制限アパーチャ基板213の中心の穴から位置がはずれ、制限アパーチャ基板206によってマルチ1次電子ビーム20全体が遮蔽される。一方、一括ブランキング偏向器212によって偏向されなかったマルチ1次電子ビーム20は、図1に示すように制限アパーチャ基板206の中心の穴を通過する。かかる一括ブランキング偏向器212のON/OFFによって、ブランキング制御が行われ、ビームのON/OFFが一括制御される。このように、制限アパーチャ基板206は、一括ブランキング偏向器212によってビームOFFの状態になるように偏向されたマルチ1次電子ビーム20を遮蔽する。そして、ビームONになってからビームOFFになるまでに形成された、制限アパーチャ基板206を通過したビーム群により、画像取得用のマルチ1次電子ビーム20が形成される。
基板101の所望する位置にマルチ1次電子ビーム20が照射されると、かかるマルチ1次電子ビーム20が照射されたことに起因して基板101からマルチ1次電子ビーム20の各ビームに対応する、反射電子を含む2次電子の束(マルチ2次電子ビーム300)が放出される。
図7は、実施の形態1におけるマルチビームのスキャン動作を説明するための図である。図7の例では、例えば、5×5列のマルチ1次電子ビーム20の場合を示している。1回のマルチ1次電子ビーム20の照射で照射可能な照射領域34は、(基板101面上におけるマルチ1次電子ビーム20のx方向のビーム間ピッチにx方向のビーム数を乗じたx方向サイズ)×(基板101面上におけるマルチ1次電子ビーム20のy方向のビーム間ピッチにy方向のビーム数を乗じたy方向サイズ)で定義される。照射領域34が、マルチ1次電子ビーム20の視野となる。そして、マルチ1次電子ビーム20を構成する各1次電子ビーム10は、自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。各1次電子ビーム10は、互いに異なるいずれかのサブ照射領域29を担当することになる。そして、各ショット時に、各1次電子ビーム10は、担当サブ照射領域29内の同じ位置を照射することになる。サブ照射領域29内の1次電子ビーム10の移動は、副偏向器209によるマルチ1次電子ビーム20全体での一括偏向によって行われる。かかる動作を繰り返し、1つの1次電子ビーム10で1つのサブ照射領域29内を順に照射していく。
基板101から放出されたマルチ2次電子ビーム300は、電磁レンズ207を通って、ビームセパレーター214に進む。
ここで、ビームセパレーター214はマルチ1次電子ビーム20の中心ビームが進む方向(軌道中心軸)に直交する面上において電界と磁界を直交する方向に発生させる。電界は電子の進行方向に関わりなく同じ方向に力を及ぼす。これに対して、磁界はフレミング左手の法則に従って力を及ぼす。そのため電子の侵入方向によって電子に作用する力の向きを変化させることができる。ビームセパレーター214に上側から侵入してくるマルチ1次電子ビーム20には、電界による力と磁界による力が打ち消し合い、マルチ1次電子ビーム20は下方に直進する。これに対して、ビームセパレーター214に下側から侵入してくるマルチ2次電子ビーム300には、電界による力と磁界による力がどちらも同じ方向に働き、マルチ2次電子ビーム300は斜め上方に曲げられ、マルチ1次電子ビーム20から分離する。
斜め上方に曲げられ、マルチ1次電子ビーム20から分離したマルチ2次電子ビーム300は、偏向器218によって、さらに曲げられ、電磁レンズ224によって、屈折させられながらマルチ検出器222に投影される。マルチ検出器222は、投影されたマルチ2次電子ビーム300を検出する。マルチ検出器222は、例えば図示しないダイオード型の2次元センサを有する。そして、マルチ1次電子ビーム20の各ビームに対応するダイオード型の2次元センサ位置において、マルチ2次電子ビーム300の各2次電子がダイオード型の2次元センサに衝突して、電子を発生し、2次電子画像データを画素毎に生成する。マルチ検出器222にて検出された強度信号は、検出回路106に出力される。
2次電子画像の取得は、上述したように、マルチ1次電子ビーム20を照射して、マルチ1次電子ビーム20の照射に起因して基板101から放出される反射電子を含むマルチ2次電子ビーム300をマルチ検出器222で検出する。マルチ検出器222によって検出された各サブ照射領域29内の画素毎の2次電子の検出データ(測定画像データ:2次電子画像データ:被検査画像データ)は、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、チップパターンメモリ123に格納される。そして、得られた2次電子画像データ(2次電子画像1のデータ)は、位置回路107からの各位置を示す情報と共に、マーク位置検出回路132に出力される。
アライメントマーク位置検出工程(S116)として、マーク位置検出回路132は、アライメントマーク27毎に、取得された2次電子画像1(第1の2次電子画像)を用いて当該アライメントマーク27の位置(第2の位置)を検出する。マルチ1次電子ビーム20の各電子ビーム10の視野(サブ照射領域29)は、光学式カメラ219の分割能よりも小さいため、図5に示すように、対象アライメントマーク27がマルチ1次電子ビーム20の照射領域34のどの位置で撮像されるのかわからない。図5の例では、例えば、5×5のマルチ1次電子ビーム20のうち右から2列目かつ下から3段目の1次電子ビーム10の視野(サブ照射領域29)内で撮像された場合を示している。
今回の対象アライメントマーク27は、図5に示す1次電子ビーム10の視野(右から2列目かつ下から3段目のサブ照射領域29)内で撮像されるも、同じチップ332内の他のアライメントマーク27が今回と同じ1次電子ビーム10の視野(右から2列目かつ下から3段目のサブ照射領域29)内で撮像されるとは限らない。そこで、実施の形態1では、以下のように動作する。
特定ビーム位置合わせ工程(S118)として、位置合わせ回路134は、アライメントマーク27毎に、検出された位置(第2の位置)をマルチ1次電子ビーム20のうちの予め設定された同じ特定の1次電子ビーム11の照射位置に合わせる。具体的には、以下のように動作する。位置合わせ回路134は、ステージ制御回路114を制御して、特定の1次電子ビーム11の視野(サブ照射領域29)内に、検出された対象アライメントマーク27の位置(第2の位置)が入るようにステージ105を移動させる。或いは、位置合わせ回路134は、偏向制御回路128を制御して、特定の1次電子ビーム11の視野(サブ照射領域29)内に、検出された対象アライメントマーク27の位置(第2の位置)が入るように、主偏向器208によりマルチ1次電子ビーム20を一括偏向する。図5の例では、特定の1次電子ビーム11として、マルチ1次電子ビーム20の中心ビームを用いる場合を示している。マルチ1次電子ビーム20では、中心から遠ざかるほどに電子光学系等に起因する収差の影響を受ける。よって、中心ビームを用いることで、他の周辺ビームを用いる場合よりも、高精度な画像を取得できる。
特定ビームによるアライメントマーク画像取得工程(S120)として、画像取得機構150は、アライメントマーク27毎に、検出された対象アライメントマーク27の位置(第2の位置)をマルチ1次電子ビーム20のうちの予め設定された同じ特定の1次電子ビーム11の視野(サブ照射領域29)に合わせた状態で、特定の1次電子ビーム11を用いて当該アライメントマーク27の2次電子画像(第2の2次電子画像)を取得する。具体的には、以下のように動作する。特定ビーム位置合わせ工程(S118)で位置合わせされた状態で、画像取得機構150は、再度、マルチ1次電子ビーム20を用いて対象アライメントマーク27の2次電子画像2を取得する。このように、特定の1次電子ビーム11だけで撮像する必要は無く、マルチ1次電子ビーム20全体で再度スキャンすればよい。これにより、基板101に到達できる1次電子ビームを制限するように1次電子ビームを選択するビーム選択機構の配置の必要性を無くすことができる。2次電子画像の取得の仕方は上述した内容と同様である。得られた2次電子画像データ(2次電子画像1のデータ)は、位置回路107からの各位置を示す情報と共に、マーク位置検出回路132に出力される。
アライメントマーク位置検出工程(S122)として、マーク位置検出回路132は、アライメントマーク27毎に、特定の1次電子ビーム11を使って取得された2次電子画像(第2の2次電子画像)を用いて当該アライメントマーク27の位置(第3の位置)を検出する。具体的には、以下のように動作する。撮像された2次電子画像2は、マルチ1次電子ビーム20全体で得られた画像データを含んでいる。しかし、ここでは、特定の1次電子ビーム11で得られた2次電位画像データが必要であって、他の1次電子ビーム10で得られた画像データは不要である。よって、マーク位置検出回路132は、マルチ1次電子ビーム20全体で得られた2次電位画像データのうち、図5に示すように、特定の1次電子ビーム11で得られた2次電位画像データ(特定ビーム画像)を抽出して、対象アライメントマーク27の位置(第3の位置)を検出すればよい。これにより、データ処理にかかる処理時間を短縮できる。検出された対象アライメントマーク27の位置(第3の位置)は、比較回路108に出力される。或いは、記憶装置109、モニタ117、若しくはメモリ118に出力される、或いはプリンタ119より出力される。
判定工程(S130)として、制御計算機110は、被検査チップ332内の全アライメントマーク27の位置検出が終了したかどうかを判定する。まだ、位置が検出されていないアライメントマーク27があれば、光学式カメラによるアライメントマーク画像取得工程(S110)に戻り、被検査チップ332内の全アライメントマーク27の位置検出が終了するまで、光学式カメラによるアライメントマーク画像取得工程(S110)からアライメントマーク位置検出工程(S122)までの各工程を繰り返す。
以上により、被検査チップ332内の全てのアライメントマーク27の位置が、マルチ1次電子ビーム20のうち特定の1次電子ビーム11を使って取得された2次電子画像から検出できる。
上述した例では、マルチビームによるアライメントマーク画像取得工程(S114)において、高精度な2次電子画像1を取得する場合について説明したが、これに限るものではない。マルチビームによるアライメントマーク画像取得工程(S114)において取得される2次電子画像1は、特定ビームによるアライメントマーク画像取得工程(S120)において取得される2次電子画像2よりも粗い分解能の画像として取得されるように構成しても好適である。例えば、各サブ照射領域29の2次電子画像が1024×1024画素で構成される場合、マルチビームによるアライメントマーク画像取得工程(S114)では、x、y方向にそれぞれ、例えば、画素1つ飛ばしで構成される512×512画素で画像を作成しても良い。これにより、データ量を1/4にできるので、データ処理を高速化できる。或いは、x、y方向にそれぞれ、例えば、画素3つ飛ばしで構成される256×256画素で画像を作成しても良い。これにより、データ量を1/16にできるので、さらにデータ処理を高速化できる。かかる解像度に劣化させた場合でも、光学画像に比べて十分高い解像度の画像を取得できる。また、対象アライメントマーク27の位置を1本の電子ビームの視野サイズよりも高精度に検出できる。
被検査チップ332内の全てのアライメントマーク27の位置が終了した後、当該被検査チップ332内の図形パターンの検査処理に進む。
図8は、実施の形態1における検査処理を説明するための図である。図8に示すように、各チップ332の領域は、例えばy方向に向かって所定の幅で複数のストライプ領域32に分割される。画像取得機構150によるスキャン動作は、例えば、ストライプ領域32毎に実施される。例えば、-x方向にステージ105を移動させながら、相対的にx方向にストライプ領域32のスキャン動作を進めていく。各ストライプ領域32は、長手方向に向かって複数の矩形領域33に分割される。対象となる矩形領域33へのビームの移動は、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって行われる。
各ストライプ領域32の幅は、照射領域34のy方向サイズと同様、或いはスキャンマージン分狭くしたサイズに設定すると好適である。図8の例では、照射領域34が矩形領域33と同じサイズの場合を示している。但し、これに限るものではない。照射領域34が矩形領域33よりも小さくても良い。或いは大きくても構わない。そして、マルチ1次電子ビーム20を構成する各1次電子ビーム10は、自身のビームが位置するx方向のビーム間ピッチとy方向のビーム間ピッチとで囲まれるサブ照射領域29内に照射され、当該サブ照射領域29内を走査(スキャン動作)する。そして、1つのサブ照射領域29のスキャンが終了したら、主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射位置が同じストライプ領域32内の隣接する矩形領域33へと移動する。かかる動作を繰り返し、ストライプ領域32内を順に照射していく。1つのストライプ領域32のスキャンが終了したら、ステージ105の移動或いは/及び主偏向器208によるマルチ1次電子ビーム20全体での一括偏向によって照射領域34が次のストライプ領域32へと移動する。以上のように各1次電子ビーム10の照射によってサブ照射領域29毎のスキャン動作および2次電子画像の取得が行われる。これらのサブ照射領域29毎の2次電子画像を組み合わせることで、矩形領域33の2次電子画像、ストライプ領域32の2次電子画像、或いはチップ332の2次電子画像が構成される。また、実際に画像比較を行う場合には、各矩形領域33内のサブ照射領域29をさらに複数のフレーム領域30に分割して、フレーム領域30毎のフレーム画像31について比較することになる。図8の例では、1つの1次電子ビーム10によってスキャンされるサブ照射領域29を例えばx,y方向にそれぞれ2分割することによって形成される4つのフレーム領域30に分割する場合を示している。
ここで、ステージ105が連続移動しながらマルチ1次電子ビーム20を基板101に照射する場合、マルチ1次電子ビーム20の照射位置がステージ105の移動に追従するように主偏向器208によって一括偏向によるトラッキング動作が行われる。そのため、マルチ2次電子ビーム300の放出位置がマルチ1次電子ビーム20の軌道中心軸に対して刻々と変化する。同様に、サブ照射領域29内をスキャンする場合に、各2次電子ビームの放出位置は、サブ照射領域29内で刻々と変化する。このように放出位置が変化した各2次電子ビームをマルチ検出器222の対応する検出領域内に照射させるように、偏向器218は、マルチ2次電子ビーム300を一括偏向する。
以上のように、画像取得機構150は、ストライプ領域32毎に、スキャン動作をすすめていく。上述したように、マルチ1次電子ビーム20を照射して、マルチ1次電子ビーム20の照射に起因して基板101から放出される反射電子を含むマルチ2次電子ビーム300は、マルチ検出器222で検出される。マルチ検出器222によって検出された各サブ照射領域29内の画素毎の2次電子の検出データ(測定画像データ:2次電子画像データ:被検査画像データ)は、測定順に検出回路106に出力される。検出回路106内では、図示しないA/D変換器によって、アナログの検出データがデジタルデータに変換され、チップパターンメモリ123に格納される。そして、得られた測定画像データは、位置回路107からの各位置を示す情報と共に、比較回路108に転送される。
図9は、実施の形態1における比較回路内の構成の一例を示す構成図である。図9において、比較回路108内には、磁気ディスク装置等の記憶装置50,51,52,56、フレーム画像作成部54、位置合わせ部57、及び比較部58が配置される。フレーム画像作成部54、位置合わせ部57、及び比較部58といった各「~部」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~部」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。フレーム画像作成部54、位置合わせ部57、及び比較部58内に必要な入力データ或いは演算された結果はその都度図示しないメモリ、或いはメモリ118に記憶される。
比較回路108内に転送された測定画像データ(ビーム画像)は、記憶装置50に格納される。また、検出された各アライメントマーク27の位置データは、記憶装置51に格納される。
そして、フレーム画像作成部54は、各1次電子ビーム10のスキャン動作によって取得されたサブ照射領域29の画像データをさらに分割した複数のフレーム領域30のフレーム領域30毎のフレーム画像31を作成する。その際、フレーム画像作成部54は、記憶装置51に格納された被検査チップ332の4つのアライメントマーク27の位置データを基準にして、各フレーム領域30を設定する。これにより、フレーム画像31内の各図形パターンの位置は、フレーム領域30の基準位置を介して、被検査チップ332の高精度に検出された4つのアライメントマーク27の位置を基準に測定可能となる。そして、フレーム領域30を被検査画像の単位領域として使用する。なお、各フレーム領域30は、画像の抜けが無いように、互いにマージン領域が重なり合うように構成されると好適である。作成されたフレーム画像31は、記憶装置56に格納される。
一方、参照画像作成回路112は、基板101に形成された複数の図形パターンの元になる設計データに基づいて、フレーム領域30毎に、フレーム画像31に対応する参照画像を作成する。具体的には、以下のように動作する。まず、記憶装置109から制御計算機110を通して設計パターンデータを読み出し、この読み出された設計パターンデータに定義された各図形パターンを2値ないしは多値のイメージデータに変換する。
上述したように、設計パターンデータに定義される図形は、例えば長方形や三角形を基本図形としたもので、例えば、図形の基準位置における座標(x、y)、辺の長さ、長方形や三角形等の図形種を区別する識別子となる図形コードといった情報で各パターン図形の形、大きさ、位置等を定義した図形データが格納されている。
かかる図形データとなる設計パターンデータが参照画像作成回路112に入力されると図形ごとのデータにまで展開し、その図形データの図形形状を示す図形コード、図形寸法などを解釈する。そして、所定の量子化寸法のグリッドを単位とするマス目内に配置されるパターンとして2値ないしは多値の設計パターン画像データに展開し、出力する。言い換えれば、設計データを読み込み、検査領域を所定の寸法を単位とするマス目として仮想分割してできたマス目毎に設計パターンにおける図形が占める占有率を演算し、nビットの占有率データを出力する。例えば、1つのマス目を1画素として設定すると好適である。そして、1画素に1/2(=1/256)の分解能を持たせるとすると、画素内に配置されている図形の領域分だけ1/256の小領域を割り付けて画素内の占有率を演算する。そして、8ビットの占有率データとなる。かかるマス目(検査画素)は、測定データの画素に合わせればよい。
次に、参照画像作成回路112は、図形のイメージデータである設計パターンの設計画像データに、所定のフィルタ関数を使ってフィルタ処理を施す。これにより、画像強度(濃淡値)がデジタル値の設計側のイメージデータである設計画像データをマルチ1次電子ビーム20の照射によって得られる像生成特性に合わせることができる。作成された参照画像の画素毎の画像データは比較回路108に出力される。比較回路108内に転送された参照画像データは、記憶装置52に格納される。
次に、位置合わせ部57は、被検査画像となるフレーム画像31と、当該フレーム画像31に対応する参照画像とを読み出し、画素より小さいサブ画素単位で、両画像を位置合わせする。例えば、最小2乗法で位置合わせを行えばよい。
そして、比較部58は、フレーム画像31と参照画像とを画素毎に比較する。比較部58は、所定の判定条件に従って画素毎に両者を比較し、例えば形状欠陥といった欠陥の有無を判定する。例えば、画素毎の階調値差が判定閾値Thよりも大きければ欠陥と判定する。そして、比較結果が出力される。比較結果は、記憶装置109、モニタ117、若しくはメモリ118に出力される、或いはプリンタ119より出力されればよい。
なお、上述した例では、ダイ-データベース検査について説明したが、これに限るものではない。ダイ-ダイ検査を行う場合であっても良い。ダイ-ダイ検査を行う場合、対象となるフレーム画像31(ダイ1)と、当該フレーム画像31と同じパターンが形成されたフレーム画像31(ダイ2)(参照画像の他の一例)との間で、上述した位置合わせと比較処理を行えばよい。
以上のように、実施の形態1によれば、マルチ電子ビームを用いて高精度にアライメントマークの位置を検出できる。
以上の説明において、一連の「~回路」は、処理回路を含み、その処理回路には、電気回路、コンピュータ、プロセッサ、回路基板、量子回路、或いは、半導体装置等が含まれる。また、各「~回路」は、共通する処理回路(同じ処理回路)を用いてもよい。或いは、異なる処理回路(別々の処理回路)を用いても良い。プロセッサ等を実行させるプログラムは、磁気ディスク装置、磁気テープ装置、FD、或いはROM(リードオンリメモリ)等の記録媒体に記録されればよい。例えば、位置回路107、比較回路108、参照画像作成回路112、ステージ制御回路114、レンズ制御回路124、ブランキング制御回路126、偏向制御回路128、カメラ制御回路130、マーク位置検出回路132、及び位置合わせ回路134は、上述した少なくとも1つの処理回路で構成されても良い。例えば、これらの回路内での処理を制御計算機110で実施しても良い。
以上、具体例を参照しつつ実施の形態について説明した。しかし、本発明は、これらの具体例に限定されるものではない。図1の例では、1つの照射源となる電子銃201から照射された1本のビームから成形アパーチャアレイ基板203によりマルチ1次電子ビーム20を形成する場合を示しているが、これに限るものではない。複数の照射源からそれぞれ1次電子ビームを照射することによってマルチ1次電子ビーム20を形成する態様であっても構わない。
また、装置構成や制御手法等、本発明の説明に直接必要しない部分等については記載を省略したが、必要とされる装置構成や制御手法を適宜選択して用いることができる。
その他、本発明の要素を具備し、当業者が適宜設計変更しうる全てのアライメントマーク位置の検出方法は、本発明の範囲に包含される。
10 1次電子ビーム
11 特定の1次電子ビーム
20 マルチ1次電子ビーム
22 穴
27 アライメントマーク
29 サブ照射領域
30 フレーム領域
31 フレーム画像
32 ストライプ領域
33 矩形領域
34 照射領域
50,51,52,56 記憶装置
54 フレーム画像作成部
57 位置合わせ部
58 比較部
100 検査装置
101 基板
102 電子ビームカラム
103 検査室
105 ステージ
106 検出回路
107 位置回路
108 比較回路
109 記憶装置
110 制御計算機
112 参照画像作成回路
114 ステージ制御回路
117 モニタ
118 メモリ
119 プリンタ
120 バス
122 レーザ測長システム
123 チップパターンメモリ
124 レンズ制御回路
126 ブランキング制御回路
128 偏向制御回路
130 カメラ制御回路
131 検出回路
132 マーク位置検出回路
134 位置合わせ回路
142 駆動機構
144,146,148 DACアンプ
150 画像取得機構
160 制御系回路
201 電子銃
202 電磁レンズ
203 成形アパーチャアレイ基板
205,206,207,224,226 電磁レンズ
208 主偏向器
209 副偏向器
212 一括ブランキング偏向器
213 制限アパーチャ基板
214 ビームセパレーター
216 ミラー
218 偏向器
219 光学式カメラ
222 マルチ検出器
300 マルチ2次電子ビーム
330 検査領域
332 チップ

Claims (7)

  1. アライメントマークを有するパターンが形成された基板に対して、光学式カメラにより当該アライメントマークを撮像する工程と、
    撮像された光学画像を用いて当該アライメントマークの第1の位置を検出する工程と、
    検出された第1の位置を基準にマルチ電子ビームを用いて当該アライメントマークの第1の2次電子画像を取得する工程と、
    取得された第1の2次電子画像を用いて当該アライメントマークの第2の位置を検出する工程と、
    検出された第2の位置を前記マルチ電子ビームのうち所定の電子ビームの照射領域に合わせた状態で、前記所定の電子ビームを用いて当該アライメントマークの第2の2次電子画像を取得する工程と、
    取得された第2の2次電子画像を用いて当該アライメントマークの第3の位置を検出し、出力する工程と、
    を備えたことを特徴とするアライメントマーク位置の検出方法。
  2. 前記所定の電子ビームとして、前記マルチ電子ビームの中心ビームを用いることを特徴とする請求項1記載のアライメントマーク位置の検出方法。
  3. 前記第1の2次電子画像は、前記第2の2次電子画像よりも粗い分解能の画像として取得されることを特徴とする請求項1又は2記載のアライメントマーク位置の検出方法。
  4. 前記基板には、複数のチップが形成され、
    前記複数のチップは、それぞれ複数のアライメントマークを有し、
    前記複数のチップの1つのチップが有するいずれかのアライメントマークの光学画像を用いて検出された当該アライメントマークの前記第1の位置と、前記複数のチップの他の1つのチップが有するいずれかのアライメントマークの光学画像を用いて検出された当該アライメントマークの前記第1の位置とを用いて、前記基板の配置角度を調整する工程をさらに備えたことを特徴とする請求項1~3いずれか記載のアライメントマーク位置の検出方法。
  5. アライメントマークを有するパターンが形成された基板に対して、当該アライメントマークを撮像する光学式カメラと、
    撮像された光学画像を用いて当該アライメントマークの第1の位置を検出する位置検出部と、
    検出された第1の位置を基準にマルチ電子ビームを用いて当該アライメントマークの第1の2次電子画像を取得する画像取得機構と、
    を備え、
    前記位置検出部は、取得された第1の2次電子画像を用いて当該アライメントマークの第2の位置を検出し、
    前記画像取得機構は、検出された第2の位置を前記マルチ電子ビームのうち所定の電子ビームの照射領域に合わせた状態で、前記所定の電子ビームを用いて当該アライメントマークの第2の2次電子画像を取得し、
    前記位置検出部は、取得された第2の2次電子画像を用いて当該アライメントマークの第3の位置を検出することを特徴とするアライメントマーク位置の検出装置。
  6. 前記所定の電子ビームとして、前記マルチ電子ビームの中心ビームを用いることを特徴とする請求項5記載のアライメントマーク位置の検出装置。
  7. 前記基板には、複数のチップが形成され、
    前記複数のチップは、それぞれ複数のアライメントマークを有し、
    前記複数のチップの1つのチップが有するいずれかのアライメントマークの光学画像を用いて検出された当該アライメントマークの前記第1の位置と、前記複数のチップの他の1つのチップが有するいずれかのアライメントマークの光学画像を用いて検出された当該アライメントマークの前記第1の位置とを用いて、前記基板の配置角度を調整する配置角度調整部をさらに備えたことを特徴とする請求項5~6いずれか記載のアライメントマーク位置の検出装置。
JP2019166779A 2019-09-13 2019-09-13 アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置 Active JP7344725B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166779A JP7344725B2 (ja) 2019-09-13 2019-09-13 アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166779A JP7344725B2 (ja) 2019-09-13 2019-09-13 アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置

Publications (2)

Publication Number Publication Date
JP2021044461A JP2021044461A (ja) 2021-03-18
JP7344725B2 true JP7344725B2 (ja) 2023-09-14

Family

ID=74863214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166779A Active JP7344725B2 (ja) 2019-09-13 2019-09-13 アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置

Country Status (1)

Country Link
JP (1) JP7344725B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009912A1 (ja) * 2022-07-05 2024-01-11 株式会社ニューフレアテクノロジー マルチビーム画像取得装置及びマルチビーム画像取得方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091342A (ja) 2003-08-08 2005-04-07 Ebara Corp 試料欠陥検査装置及び方法並びに該欠陥検査装置及び方法を用いたデバイス製造方法
JP2006216611A (ja) 2005-02-01 2006-08-17 Hitachi High-Technologies Corp パターン検査装置
JP2007157575A (ja) 2005-12-07 2007-06-21 Hitachi High-Technologies Corp 電子線検査装置を用いたパターン欠陥検査方法及びそのシステム、並びに写像投影型又はマルチビーム型電子線検査装置
JP2016134486A (ja) 2015-01-19 2016-07-25 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム像の回転角測定方法、マルチ荷電粒子ビーム像の回転角調整方法、及びマルチ荷電粒子ビーム描画装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091342A (ja) 2003-08-08 2005-04-07 Ebara Corp 試料欠陥検査装置及び方法並びに該欠陥検査装置及び方法を用いたデバイス製造方法
JP2006216611A (ja) 2005-02-01 2006-08-17 Hitachi High-Technologies Corp パターン検査装置
JP2007157575A (ja) 2005-12-07 2007-06-21 Hitachi High-Technologies Corp 電子線検査装置を用いたパターン欠陥検査方法及びそのシステム、並びに写像投影型又はマルチビーム型電子線検査装置
JP2016134486A (ja) 2015-01-19 2016-07-25 株式会社ニューフレアテクノロジー マルチ荷電粒子ビーム像の回転角測定方法、マルチ荷電粒子ビーム像の回転角調整方法、及びマルチ荷電粒子ビーム描画装置

Also Published As

Publication number Publication date
JP2021044461A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
US10215718B2 (en) Electron beam inspection apparatus and electron beam inspection method
JP6546509B2 (ja) パターン検査方法及びパターン検査装置
KR102269794B1 (ko) 멀티 전자 빔 조사 장치, 멀티 전자 빔 조사 방법, 및 멀티 전자 빔 검사 장치
JP7352447B2 (ja) パターン検査装置及びパターン検査方法
US20200104980A1 (en) Multi-electron beam image acquisition apparatus, and multi-electron beam image acquisition method
US11004193B2 (en) Inspection method and inspection apparatus
US20200168430A1 (en) Electron beam image acquisition apparatus and electron beam image acquisition method
JP7386619B2 (ja) 電子ビーム検査方法及び電子ビーム検査装置
JP7442375B2 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP2020119682A (ja) マルチ電子ビーム照射装置、マルチ電子ビーム検査装置、及びマルチ電子ビーム照射方法
JP2020087507A (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
JP7409988B2 (ja) パターン検査装置及び輪郭線同士のアライメント量取得方法
US10984525B2 (en) Pattern inspection method and pattern inspection apparatus
JP7344725B2 (ja) アライメントマーク位置の検出方法及びアライメントマーク位置の検出装置
US20230077403A1 (en) Multi-electron beam image acquisition apparatus, and multi-electron beam image acquisition method
JP6966319B2 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
KR102676080B1 (ko) 멀티 전자 빔 화상 취득 방법, 멀티 전자 빔 화상 취득 장치 및 멀티 전자 빔 검사 장치
JP7385493B2 (ja) マルチ荷電粒子ビーム位置合わせ方法及びマルチ荷電粒子ビーム検査装置
TW202226315A (zh) 多射束圖像取得裝置及多射束圖像取得方法
JP2022163680A (ja) マルチ電子ビーム画像取得方法、マルチ電子ビーム画像取得装置、及びマルチ電子ビーム検査装置
JP7442376B2 (ja) マルチ電子ビーム検査装置及びマルチ電子ビーム検査方法
TWI775448B (zh) 多電子束檢查裝置及其調整方法
WO2024009912A1 (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法
JP2021169972A (ja) パターン検査装置及びパターン検査方法
JP2024007428A (ja) マルチビーム画像取得装置及びマルチビーム画像取得方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R150 Certificate of patent or registration of utility model

Ref document number: 7344725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150