JP7342905B2 - Composite manufacturing method - Google Patents

Composite manufacturing method Download PDF

Info

Publication number
JP7342905B2
JP7342905B2 JP2021046356A JP2021046356A JP7342905B2 JP 7342905 B2 JP7342905 B2 JP 7342905B2 JP 2021046356 A JP2021046356 A JP 2021046356A JP 2021046356 A JP2021046356 A JP 2021046356A JP 7342905 B2 JP7342905 B2 JP 7342905B2
Authority
JP
Japan
Prior art keywords
composite material
particles
mixture
producing
material according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021046356A
Other languages
Japanese (ja)
Other versions
JP2022145096A (en
Inventor
ジョンハン ファン
洋充 田中
喜恵 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2021046356A priority Critical patent/JP7342905B2/en
Publication of JP2022145096A publication Critical patent/JP2022145096A/en
Application granted granted Critical
Publication of JP7342905B2 publication Critical patent/JP7342905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、窒化ホウ素を用いた複合材の製造方法等に関する。 The present invention relates to a method for manufacturing a composite material using boron nitride.

電子機器(半導体モジュール等)の高密度化や高性能化等に伴う構造変化により、従来と異なる高放熱性の電気絶縁材料が用いられるようになった。例えば、高熱伝導なセラミックス(AlN等)の基板に替えて、樹脂(マトリックス)中に高熱伝導な絶縁材(フィラー)を分散させた複合材料が、絶縁シート等に用いられる。このような(有機/無機)複合材料は、成形性、加工性、異種材との接着性等に優れる共に、比較的安価でもある。 Due to structural changes associated with higher density and higher performance of electronic devices (semiconductor modules, etc.), electrical insulating materials with high heat dissipation properties that are different from conventional ones have come to be used. For example, instead of a substrate made of highly thermally conductive ceramics (such as AlN), a composite material in which a highly thermally conductive insulating material (filler) is dispersed in a resin (matrix) is used for insulating sheets and the like. Such (organic/inorganic) composite materials have excellent moldability, processability, adhesion to different materials, etc., and are also relatively inexpensive.

ところで、複合材料用のフィラーには、種々のセラミックス粒子(繊維を含む)が用いられる。例えば、シリカ(SiO)、アルミナ(Al)、窒化アルミニウム(AlN)等の粒子が利用される。しかし、シリカやアルミナは熱伝導率が小さい。また窒化アルミニウムは水(HO)と反応してアンモニア(NH)を発生するため、耐湿性が低く長期信頼性に劣る。そこで、熱伝導性、耐熱性、電気絶縁性等に優れ、化学的にも安定な窒化ホウ素(BN)が複合材料のフィラーとして用いられるようになった。 By the way, various ceramic particles (including fibers) are used as fillers for composite materials. For example, particles of silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), etc. are used. However, silica and alumina have low thermal conductivity. Furthermore, since aluminum nitride reacts with water (H 2 O) to generate ammonia (NH 3 ), it has low moisture resistance and poor long-term reliability. Therefore, boron nitride (BN), which has excellent thermal conductivity, heat resistance, electrical insulation, etc., and is chemically stable, has come to be used as a filler for composite materials.

窒化ホウ素には、一般的に、六方晶系の常圧相(適宜「h-BN」ともいう。)と立方晶系の高圧相(適宜「c-BN」ともいう。)がある。通常、六方晶系窒化ホウ素(h-BN)がフィラーとして用いられる。 Boron nitride generally has a hexagonal normal pressure phase (sometimes referred to as "h-BN") and a cubic high pressure phase (sometimes referred to as "c-BN"). Hexagonal boron nitride (h-BN) is usually used as a filler.

h-BNは、黒鉛と類似した六角網目層が積層された鱗片状からなり、面方向(a軸方向)と厚さ方向(c軸方向)で熱伝導率が大きく異なる熱伝導異方性を有する。そこで、h-BN粒子を配向させて、特定方向(例えば熱源側から冷却源側へ向かう方向)の熱伝導率(放熱性等)を高めた複合材料が提案されている。これに関連した記載が、例えば、下記の特許文献にある。 h-BN is composed of a scale-like structure in which hexagonal mesh layers similar to graphite are laminated, and exhibits thermal conductivity anisotropy with large differences in thermal conductivity in the plane direction (a-axis direction) and thickness direction (c-axis direction). have Therefore, a composite material has been proposed in which h-BN particles are oriented to increase thermal conductivity (heat dissipation, etc.) in a specific direction (for example, from the heat source side to the cooling source side). Descriptions related to this can be found, for example, in the following patent documents.

特開2012-255055JP2012-255055 特開2018-159062JP2018-159062 特開2020-45456JP2020-45456

特許文献1~3はいずれも、粉砕等により微細化したh-BN粒子を用いて、その充填量を抑制しつつ、複合材料の熱伝導率の向上を図っている。しかし、それらの熱伝導率は必ずしも十分ではなかった。 Patent Documents 1 to 3 all use h-BN particles made fine by pulverization or the like to suppress the filling amount and improve the thermal conductivity of the composite material. However, their thermal conductivity was not necessarily sufficient.

本発明はこのような事情に鑑みて為されたものであり、高熱伝導な新たな複合材等を提供することを目的とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide a new composite material etc. with high thermal conductivity.

本発明者はこの課題を解決すべく鋭意研究した結果、六方晶系の窒化ホウ素からなる粒子(単に「BN粒子」という。)の形態制御により、BN粒子を含む複合材の熱伝導率を顕著に高めることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive research to solve this problem, the present inventors found that by controlling the morphology of hexagonal boron nitride particles (simply referred to as "BN particles"), the thermal conductivity of composite materials containing BN particles was significantly increased. succeeded in increasing it. By developing this result, we have completed the present invention described below.

《複合材の製造方法》
本発明は、熱伝導粒子とバインダの混合物から複合材を得る成形工程を備える複合材の製造方法であって、該熱伝導粒子は、六方晶系の窒化ホウ素からなるBN粒子を含み、該BN粒子は、粒径:1~100μmで厚さ:0.1~5μmであると共に該厚さに対する該粒径の比率であるアスペクト比が10~300である複合材の製造方法である。
《Composite manufacturing method》
The present invention is a method for producing a composite material, which includes a molding step of obtaining a composite material from a mixture of thermally conductive particles and a binder, wherein the thermally conductive particles include BN particles made of hexagonal boron nitride, and the BN particles include hexagonal boron nitride particles. The method is for producing a composite material in which the particles have a particle size of 1 to 100 μm, a thickness of 0.1 to 5 μm, and an aspect ratio, which is the ratio of the particle size to the thickness, of 10 to 300.

本発明の製造方法によれば、熱伝導性に優れる複合材を得ることができる。この理由は定かではないが次のように考えられる。本発明に係るBN粒子は、特定の形態(粒径と厚さ)を有することにより、複合材中において、高熱伝導率な方向(面方向、a軸方向、(100)方向)へ配向し易くなり、また隣接する粒子間で接触し易くなった。これにより、熱伝導粒子(BN粒子)間における熱伝導パスが多数形成されるようになり、本発明に係る複合材は高い熱伝導率を発揮するようになったと考えられる。 According to the manufacturing method of the present invention, a composite material with excellent thermal conductivity can be obtained. The reason for this is not certain, but it is thought to be as follows. Since the BN particles according to the present invention have a specific morphology (particle size and thickness), they can be easily oriented in a direction of high thermal conductivity (in-plane direction, a-axis direction, (100) direction) in a composite material. It also became easier for adjacent particles to come into contact with each other. As a result, many heat conduction paths are formed between the heat conduction particles (BN particles), and it is thought that the composite material according to the present invention exhibits high thermal conductivity.

《複合材》
本発明は、複合材としても把握される。例えば、本発明は、熱伝導粒子がバインダで結着させてなる複合材であって、該熱伝導粒子は、六方晶系の窒化ホウ素からなるBN粒子を含み、該BN粒子の配向度は50%以上であり、該BN粒子の接触率は70%以上である複合材でもよい。本発明の複合材は、例えば、その全体に対する空隙率が15%以下であるとよい。
《Composite material》
The invention is also understood as a composite material. For example, the present invention provides a composite material in which thermally conductive particles are bound with a binder, the thermally conductive particles include BN particles made of hexagonal boron nitride, and the degree of orientation of the BN particles is 50. % or more, and the contact rate of the BN particles may be 70% or more. For example, the composite material of the present invention preferably has a porosity of 15% or less relative to its entirety.

《その他》
(1)本明細書でいう「~材」は、「材料」または「部材」を意味する。複合材は、形状が不定な複合材料(素材等)でもよいし、所望形状に成形、加工等された複合部材でもよい。
"others"
(1) As used herein, "material" means "material" or "member." The composite material may be a composite material (such as a raw material) with an indefinite shape, or a composite member that has been molded, processed, etc. into a desired shape.

(2)本明細書でいう「x~y」は、特に断らない限り、下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。本明細書でいう「x~yμm」は、特に断らない限り、xμm~yμmを意味する。他の単位系(MPa、W/mK、Ωm等)についても同様である。 (2) "x to y" as used herein includes a lower limit x and an upper limit y, unless otherwise specified. A new range such as "a to b" can be established by setting any numerical value included in the various numerical values or numerical ranges described herein as a new lower limit or upper limit. "x~yμm" as used herein means xμm~yμm unless otherwise specified. The same applies to other unit systems (MPa, W/mK, Ωm, etc.).

試料の製作に用いた各BN粉末の粒度分布図である。FIG. 3 is a particle size distribution diagram of each BN powder used in the production of samples. その各BN粉末のSEM像である。It is a SEM image of each BN powder. 試料3と試料C4の複合材の断面を観察したSEM像である。This is an SEM image of a cross section of a composite material of Sample 3 and Sample C4. 配向度と熱伝導率の関係を示す散布図である。It is a scatter diagram showing the relationship between the degree of orientation and thermal conductivity. 空隙率と熱伝導率の関係を示す散布図である。It is a scatter diagram showing the relationship between porosity and thermal conductivity. BN粒子の含有率と熱伝導率の関係を示す散布図である。It is a scatter diagram which shows the relationship between the content rate of BN particles and thermal conductivity. BN粒子の含有率と空隙率の関係を示す散布図である。It is a scatter diagram showing the relationship between the content rate of BN particles and the porosity. 各試料の試験片に関するX線回折測定を示す模式図である。It is a schematic diagram showing the X-ray diffraction measurement regarding the test piece of each sample. SEM像に基づく接触率の算出方法を示す模式図である。It is a schematic diagram which shows the calculation method of a contact rate based on a SEM image.

本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、複合材(材料、部材等)のみならず、その製造方法等にも適宜該当する。方法的な構成要素であっても物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from this specification may be added to the components of the present invention. The content described in this specification applies not only to composite materials (materials, members, etc.), but also to methods for manufacturing the same. Even method-related components can be material-related components. Which embodiment is best depends on the object, required performance, etc.

《熱伝導粒子》
熱伝導粒子には、少なくとも六方晶構造の窒化ホウ素(h-BN)の粒子(BN粒子)が含まれる。以下、このBN粒子について詳しく説明する。なお、熱伝導粒子として、立方晶構造の窒化ホウ素(c-BN)の粒子や他種粒子(セラミックス粒子、金属粒子等)が含まれてもよい。
《Thermal conductive particles》
The thermally conductive particles include at least hexagonal boron nitride (h-BN) particles (BN particles). The BN particles will be explained in detail below. Note that the thermally conductive particles may include particles of cubic boron nitride (c-BN) and other types of particles (ceramic particles, metal particles, etc.).

BN粒子は、以下のような特定の形態(例えば、粒径、厚さ、アスペクト比等)を有するとよい。 The BN particles may have the following specific shapes (for example, particle size, thickness, aspect ratio, etc.).

(1)粒径
BN粒子の粒径は、例えば、1~100μm、10~60μm、14~40μmさらには18~30μmである。粒径が過小でも過大でも、複合材中におけるBN粒子の配向度が低下し得る。
(1) Particle size The particle size of the BN particles is, for example, 1 to 100 μm, 10 to 60 μm, 14 to 40 μm, and further 18 to 30 μm. If the particle size is too small or too large, the degree of orientation of the BN particles in the composite material may decrease.

本明細書でいうBN粒子の「粒径」は、特に断らない限り、BN粒子からなる粉末(単に「BN粉末」という。)の粒度分布から定まる50%径(D50:メディアン径)とする。粒度分布はレーザ回折法により求められる。なお、本明細書でいう「粒径」は、粒子の大きさを代表する指標値であり、粒子の形状(略球状、略円板状、略鱗片状、略繊維状、略長球状、略球状等)とは関係ない。 Unless otherwise specified, the "particle size" of the BN particles in this specification is the 50% diameter (D50: median diameter) determined from the particle size distribution of a powder made of BN particles (simply referred to as "BN powder"). Particle size distribution is determined by laser diffraction method. In addition, "particle size" as used herein is an index value representing the size of the particle, and the shape of the particle (approximately spherical, approximately disc-shaped, approximately scaly, approximately fibrous, approximately spheroidal, approximately It has nothing to do with spherical shape, etc.).

(2)厚さ
BN粒子の厚さは、例えば、0.1~5μm、0.3~3μm、0.5~2.5μmさらには1~2μmである。薄くなるほど、BN粒子が一定方向に配列しやすくなる。厚さが過大になると、BN粒子は変形し難くなり、複合材中において、空隙率の増加等が生じ得る。なお、BN粒子は、六角格子構造の網目状をしたh-BN単層でも、それらの積層体または集合体(凝集体、二次粒子)でもよく、必ずしも鱗片状でなくてもよい。
(2) Thickness The thickness of the BN particles is, for example, 0.1 to 5 μm, 0.3 to 3 μm, 0.5 to 2.5 μm, and further 1 to 2 μm. The thinner the layer, the easier it is for the BN particles to align in a certain direction. If the thickness becomes too large, the BN particles will be difficult to deform, which may cause an increase in porosity in the composite material. Note that the BN particles may be a single h-BN layer having a hexagonal lattice structure, a laminate or an aggregate thereof (agglomerate, secondary particle), and do not necessarily have to be scale-like.

本明細書でいうBN粒子の「厚さ」は、顕微鏡によるBN粉末の観察像に基づいて、所定の視野内から任意に抽出した複数のBN粒子について測定した厚さの算術平均値とする。 The "thickness" of the BN particles in this specification is the arithmetic mean value of the thicknesses measured for a plurality of BN particles arbitrarily extracted from within a predetermined field of view based on the observed image of the BN powder with a microscope.

(3)アスペクト比
BN粒子のアスペクト比は、例えば、10~300、20~100さらには30~75である。アスペクト比が過小なBN粒子は、空隙率の増加や接触率の低下を招く。なお、本明細書でいうアスペクト比(粒径/厚さ)は、上述した方法で定まるBN粒子の「厚さ」と「粒径」に基づいて算出される。
(3) Aspect Ratio The aspect ratio of the BN particles is, for example, 10 to 300, 20 to 100, or even 30 to 75. BN particles with too small an aspect ratio cause an increase in porosity and a decrease in contact ratio. Note that the aspect ratio (particle size/thickness) referred to in this specification is calculated based on the "thickness" and "particle size" of the BN particles determined by the method described above.

(4)嵩密度
BN粒子の嵩密度は、例えば、0.1~0.6g/cm、0.15~0.5g/cmさらには0.2~0.4g/cmである。嵩密度が過大では、BN粒子の比表面積(単位質量あたりの表面積)の減少、BN粒子間へのバインダ(樹脂)の介入性(侵入性)の低下等により、複合材が脆くなり得る。なお、本明細書でいうBN粒子の嵩密度は、100mlのメスシリンダーに匙で掬い取ったBN粉末の質量を測定して求まる。BN粉末は、体積に影響を与える動作(タッピング等)を行わずにメスシリンダーへ投入した。
(4) Bulk Density The bulk density of the BN particles is, for example, 0.1 to 0.6 g/cm 3 , 0.15 to 0.5 g/cm 3 , and further 0.2 to 0.4 g/cm 3 . If the bulk density is too large, the composite material may become brittle due to a decrease in the specific surface area (surface area per unit mass) of the BN particles, a decrease in the ability of the binder (resin) to intervene between the BN particles, etc. The bulk density of BN particles as used herein is determined by measuring the mass of BN powder scooped into a 100 ml measuring cylinder with a spoon. The BN powder was charged into the measuring cylinder without performing any operation (such as tapping) that would affect the volume.

《バインダ》
バインダ(マトリックス)は、複合材の仕様に応じて適宜選択される。例えば、樹脂やゴム・エラストマー等の有機材料をバインダに用いると、複合材の絶縁性、熱伝導性、成形性等が確保され易い。
《Binder》
The binder (matrix) is appropriately selected according to the specifications of the composite material. For example, if an organic material such as resin, rubber, or elastomer is used as a binder, the insulation, thermal conductivity, moldability, etc. of the composite material can be easily ensured.

樹脂は、熱硬化性樹脂でも、熱可塑性樹脂でもよい。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂等である。熱可塑性樹脂は、例えば、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリフェニレンサルファイド等である。ゴムは、例えば、エチレン- プロピレン- ジエンゴム(EPDM) 、ブチルゴム等である。本明細書では、特に断らない限り、ゴム・エラストマーを含めて、単に「樹脂」という。なお、複合材の絶縁性が不要なら、金属材料(例えば低融点金属等)をバインダとしてもよい。 The resin may be a thermosetting resin or a thermoplastic resin. Examples of the thermosetting resin include epoxy resin, phenol resin, and silicone resin. Examples of the thermoplastic resin include polystyrene, polymethyl methacrylate, polycarbonate, and polyphenylene sulfide. Examples of the rubber include ethylene-propylene-diene rubber (EPDM) and butyl rubber. In this specification, unless otherwise specified, the term "resin" includes rubber and elastomer. Note that if the insulating properties of the composite material are not required, a metal material (for example, a low melting point metal) may be used as the binder.

《複合材》
複合材は、熱伝導粒子(特にBN粒子)がバインダで結着されてなる。複合材を特定する指標として、例えば、配向度、接触率、空隙率、含有率、熱伝導率等がある。
《Composite material》
The composite material is made up of thermally conductive particles (particularly BN particles) bound together with a binder. Examples of indicators for specifying composite materials include degree of orientation, contact ratio, porosity, content, and thermal conductivity.

(1)配向度
配向度は、複合材中におけるBN粒子の向きを指標する。配向度が大きいほど、配向方向の熱伝導率が向上し得る。配向度は、例えば、50~100%、55~95%、60~90%、70~85%である。
(1) Degree of orientation The degree of orientation indicates the direction of BN particles in the composite material. The higher the degree of orientation, the higher the thermal conductivity in the orientation direction. The degree of orientation is, for example, 50-100%, 55-95%, 60-90%, 70-85%.

配向度は、複合材のX線回折測定(図5A参照)から得られるプロファイル(XRDパターン)に基づくピーク強度比から特定される。具体的にいうと、h-BNについて、(100)面のピーク強度:I(100)、(002)面のピーク強度:I(002)として、次式から配向度が定まる。
配向度(%)=100×I(100)/{I(100)+I(002)}
The degree of orientation is identified from the peak intensity ratio based on the profile (XRD pattern) obtained from X-ray diffraction measurement of the composite material (see FIG. 5A). Specifically, for h-BN, the degree of orientation is determined from the following formula, where the peak intensity of the (100) plane: I(100) and the peak intensity of the (002) plane: I(002).
Orientation degree (%) = 100 × I (100) / {I (100) + I (002)}

(2)接触率
接触率は、複合材中における熱伝導粒子(主にBN粒子)の接触割合(緻密具合)を指標する。接触率も大きいほど、複合材の熱伝導率が向上し得る。接触率は、例えば、70~99%、75~97%さらには80~95%である。
(2) Contact ratio The contact ratio is an index of the contact ratio (density) of thermally conductive particles (mainly BN particles) in the composite material. The higher the contact ratio, the better the thermal conductivity of the composite material. The contact rate is, for example, 70-99%, 75-97%, or even 80-95%.

接触率は、複合材の断面を顕微鏡で観察した断面像を画像処理して、次のように定量的に求めた(図5B参照)。先ず、断面像を二値化処理した二値画像を得る。二値画像から任意に抽出した視野(例えば130μm×70μm)に解析線を引く。その解析線に沿って、接触部(例えばBN粒子同士の接触部)と非接触部(例えばBN粒子と樹脂部または空隙部との接触部)を判定する。それぞれの数(解析線に沿ってカウントされる画素数)から、次式により接触率が定まる。
接触率(%)=100×(接触部の数)/{(接触部の数)+(非接触部の数)}
The contact ratio was quantitatively determined as follows by image processing a cross-sectional image of the cross-section of the composite material observed under a microscope (see FIG. 5B). First, a binary image is obtained by binarizing a cross-sectional image. An analysis line is drawn in a field of view (for example, 130 μm x 70 μm) arbitrarily extracted from the binary image. Along the analysis line, contact portions (for example, contact portions between BN particles) and non-contact portions (for example, contact portions between BN particles and resin portions or void portions) are determined. From each number (the number of pixels counted along the analysis line), the contact rate is determined by the following equation.
Contact rate (%) = 100 x (number of contact parts) / {(number of contact parts) + (number of non-contact parts)}

このような操作を、二値画像から任意に抽出した3視野について、視野毎に引いた5本の解析線について行う。つまり、合計15本の解析線それぞれについて、上述した接触率を算出する。これらの算術平均値を本発明でいう「接触率」とする。 Such operations are performed on five analysis lines drawn for each field of view for three fields of view arbitrarily extracted from the binary image. That is, the above-mentioned contact rate is calculated for each of the 15 analysis lines in total. These arithmetic mean values are referred to as the "contact rate" in the present invention.

(3)空隙率
空隙率は、複合材中で熱伝導粒子およびバインダが無い領域の割合を指標する。空隙率は小さいほど、複合材の熱伝導率が向上し得る。空隙率は、例えば、0~15%さらには5~10%である。
(3) Porosity Porosity is an indicator of the percentage of the area in the composite material that is free of thermally conductive particles and binder. The smaller the porosity, the better the thermal conductivity of the composite material. The porosity is, for example, 0 to 15%, or even 5 to 10%.

空隙率は、アルキメデス法により求めた複合材の見掛密度(D)と、複合材の原料(BN粉末、バインダ等)の配合量と真密度から算出した理論密度(Dth)とから、下式により算出される。
空隙率(%)=100×{1-(D/Dth)}
The porosity is determined by the following formula from the apparent density (D) of the composite material determined by the Archimedes method and the theoretical density (Dth) calculated from the compounding amount of raw materials (BN powder, binder, etc.) and true density of the composite material. Calculated by
Porosity (%) = 100 x {1-(D/Dth)}

(4)含有率
含有率は、複合材全体に対するBN粒子の体積割合である。BN粒子の含有率は多いほど、複合材の熱伝導率が向上し得る。含有率は、例えば、50~98体積%、65~97体積%、70~96体積%さらには80~94体積%である。
(4) Content rate The content rate is the volume ratio of the BN particles to the entire composite material. The higher the content of BN particles, the higher the thermal conductivity of the composite material. The content is, for example, 50 to 98% by volume, 65 to 97% by volume, 70 to 96% by volume, and further 80 to 94% by volume.

含有率は、複合材の製造時なら、原料(例えば熱伝導粒子とバインダ)の真密度と配合量から特定される。製造後の複合材なら、上述した複合材の断面像を画像処理して求まる熱伝導粒子の面積割合から算出・特定されてもよい。 When manufacturing a composite material, the content is determined from the true density and blending amount of raw materials (for example, thermally conductive particles and binder). In the case of a manufactured composite material, it may be calculated and specified from the area ratio of thermally conductive particles determined by image processing the cross-sectional image of the composite material described above.

(5)熱伝導率
複合材の熱伝導率は、例えば、20~60W/mKさらには35~50W/mKとなり得る。なお、特に断らない限り、熱伝導率は、BN粒子の主たる配向方向(a軸方向/図5A参照)に沿って測定される。
(5) Thermal conductivity The thermal conductivity of the composite material can be, for example, 20 to 60 W/mK, or even 35 to 50 W/mK. Note that unless otherwise specified, the thermal conductivity is measured along the main orientation direction of the BN particles (a-axis direction/see FIG. 5A).

《製造方法》
(1)成形工程
熱伝導粒子(フィラー)とバインダ(マトリックス)の混合物を成形することにより、それらが結着(分散)した複合材が得られる。
"Production method"
(1) Molding process By molding a mixture of thermally conductive particles (filler) and a binder (matrix), a composite material in which they are bound (dispersed) can be obtained.

成形工程は、例えば、圧縮成形、押出成形、射出成形、トランスファー成形等によりなされる。混合物全体に対する熱伝導粒子(特にBN粒子)の含有率や複合材の仕様(特性、形状等)に応じて、適切な方法が選択されるとよい。BN粒子の含有率を大きくした複合材は、例えば、圧縮成形により製造されるとよい。 The molding process is performed, for example, by compression molding, extrusion molding, injection molding, transfer molding, or the like. An appropriate method may be selected depending on the content of thermally conductive particles (particularly BN particles) in the entire mixture and the specifications (characteristics, shape, etc.) of the composite material. A composite material with a high content of BN particles may be manufactured, for example, by compression molding.

圧縮成形には、一軸圧縮成形、冷間等方加圧成形(CIP:Cold Isostatic Press)等がある。一軸圧縮成形は、成形型のキャビティへ充填した混合物へ、一軸方向の圧縮力を印加してなされる。これにより、鱗片状(板状)のBN粒子を、その一軸方向に対して略直交する方向に配向(つまり、その一軸方向にc軸が沿うように配向)させた複合材が効率的に得られる。 Compression molding includes uniaxial compression molding, cold isostatic pressing (CIP), and the like. Uniaxial compression molding is performed by applying a compressive force in a uniaxial direction to a mixture filled into a mold cavity. As a result, a composite material in which scale-like (plate-like) BN particles are oriented in a direction substantially perpendicular to the uniaxial direction (that is, oriented so that the c-axis is along the uniaxial direction) can be efficiently obtained. It will be done.

混合物を圧縮して複合材にする圧縮工程は、例えば、圧縮力(成形圧力)が5~100MPa、10~50MPaさらには20~35MPaである。圧縮力が過小では、緻密(高熱伝導率)な複合材が得られず、圧縮力が過大では 生産性の低下やコストの増加を招き得る。 In the compression step of compressing the mixture to form a composite material, the compression force (molding pressure) is, for example, 5 to 100 MPa, 10 to 50 MPa, or even 20 to 35 MPa. If the compression force is too low, a dense (high thermal conductivity) composite material cannot be obtained, and if the compression force is too high, it may lead to decreased productivity and increased costs.

混合物(混練物、コンパウンド等)を成形型(金型)のキャビティへ充填する際、または圧縮工程中に、混合物を加振してもよい(加振工程)。これにより、空隙率の小さい緻密な複合材が得られ易くなる。なお、混合物の加振は、成形型に取り付けたバイブレータ、超音波振動装置等により行える。 When filling the mixture (kneaded material, compound, etc.) into the cavity of a mold (mold) or during the compression process, the mixture may be vibrated (vibration process). This makes it easier to obtain a dense composite material with a small porosity. Note that the mixture can be vibrated using a vibrator attached to the mold, an ultrasonic vibration device, or the like.

また、圧縮工程前(混合物を複合材にする本成形工程前)に、圧縮工程の圧縮力よりも小さい圧力を混合物へ加える予圧工程を行ってもよい。予圧工程により、空隙率の小さい緻密な複合材が得られ易くなる。予圧工程は、一回だけ行っても、複数回行ってもよい。予圧工程の圧縮力は、例えば、0.1~3MPaさらには0.5~1MPaである。予圧工程は、混合物を充填した成形型のキャビティ内でなされると、本来の圧縮工程へ移行し易くて効率的である。なお、混合物のキャビティへの充填を複数回に分けて、その都度、予圧工程を行ってもよい。 Further, before the compression step (before the main forming step of turning the mixture into a composite material), a pre-pressing step may be performed to apply a pressure smaller than the compression force of the compression step to the mixture. The pre-pressing step makes it easier to obtain a dense composite material with low porosity. The preloading process may be performed only once or multiple times. The compression force in the preloading process is, for example, 0.1 to 3 MPa, and further 0.5 to 1 MPa. If the pre-compression process is performed in the cavity of the mold filled with the mixture, it is easy to proceed to the original compression process and it is efficient. Note that the filling of the mixture into the cavity may be divided into a plurality of times, and the prepressing step may be performed each time.

加振工程と予圧工程の両方を行う場合、各工程は逐次なされてもよいし、併行(同時)になされてもよい。各工程を逐次行う場合、その順序は問わないが、例えば、加振工程後に予圧工程がなされるとよい。 When both the vibration step and the preload step are performed, each step may be performed sequentially or in parallel (simultaneously). When performing each process sequentially, the order does not matter, but for example, it is preferable that the preload process is performed after the vibration process.

(2)カップリング剤
混合物は、熱伝導粒子とバインダとの親和性を高めるカップリング剤を含んでもよい。これにより、バインダと熱伝導粒子の接触性(濡れ性)が改善され、熱伝導粒子間へバインダが侵入し易くなり、緻密で高熱伝導率な複合材が得られる。
(2) Coupling agent The mixture may include a coupling agent that increases the affinity between the thermally conductive particles and the binder. This improves the contact (wettability) between the binder and the thermally conductive particles, making it easier for the binder to penetrate between the thermally conductive particles, resulting in a dense and highly thermally conductive composite material.

混合物中のカップリング剤は、熱伝導粒子の表面処理(カップリング処理、疎水化処理等)により導入されたものでも、熱伝導粒子とバインダの混合(混練)時に添加されたものでもよい。バインダが有機材料(樹脂、ゴム・エラストマー等)なら、例えば、バインダ側の官能基(アミノ基、エポキシ基、イソシアネート基、ビニル基、アクリル基等)に対応する反応基を備えた種々のシランカップリング剤を用いるとよい。 The coupling agent in the mixture may be one introduced by surface treatment (coupling treatment, hydrophobization treatment, etc.) of the thermally conductive particles, or one added at the time of mixing (kneading) the thermally conductive particles and the binder. If the binder is an organic material (resin, rubber, elastomer, etc.), for example, various silane cups equipped with reactive groups corresponding to the functional groups (amino group, epoxy group, isocyanate group, vinyl group, acrylic group, etc.) on the binder side can be used. It is recommended to use a ring agent.

代表的なシランカップリング剤として、例えば、ヘキサメチルジシラザン(HMDS:C19NSi)がある。なお、シランカップリング剤は、通常、無機材料である熱伝導粒子(BN粒子等)側にある官能基(ヒドロキシキ基、メトキシ基、エトキシ基等)にも対応する反応基(シリル基等)を備える。 A typical silane coupling agent is, for example, hexamethyldisilazane (HMDS: C 6 H 19 NSi 2 ). In addition, the silane coupling agent usually has a reactive group (silyl group, etc.) that also corresponds to a functional group (hydroxyl group, methoxy group, ethoxy group, etc.) on the side of the thermally conductive particles (BN particles, etc.) that are inorganic materials. Equipped with

カップリング剤の含有量(配合量・添加量)は、例えば、未処理の熱伝導粒子全体100質量部に対して0.1~3質量部、0.5~2.5質量部さらには1~2質量部である。過少では効果が乏しく、過多にしても効果の向上は少ない。 The content (compounding amount/addition amount) of the coupling agent is, for example, 0.1 to 3 parts by mass, 0.5 to 2.5 parts by mass, or even 1 part by mass, based on 100 parts by mass of the entire untreated thermally conductive particles. ~2 parts by mass. If it is too little, the effect will be poor, and if it is too much, there will be little improvement in the effect.

(3)補足
複合材は、その特性向上に寄与する補助粒子を含んでもよい。熱伝導粒子は、BN粒子のみでもよいし、材質、特性、粒径等が異なる複数種の粒子が混在したものでもよい。例えば、BN粒子以外に、c-BN粒子、炭素粒子(ナノカーボン粒子、黒鉛粒子、ダイヤモンド粒子等)、磁性粒子等が、複合材に含まれてもよい。
(3) Supplementary information The composite material may contain auxiliary particles that contribute to improving its properties. The thermally conductive particles may be only BN particles, or may be a mixture of multiple types of particles having different materials, properties, particle sizes, etc. For example, in addition to BN particles, c-BN particles, carbon particles (nanocarbon particles, graphite particles, diamond particles, etc.), magnetic particles, etc. may be included in the composite material.

バインダが熱硬化性樹脂からなる場合、成形後に、熱硬化処理(キュア処理)がなされるとよい。複合材は、最終製品形状またはそれに近い形状のものでもよいし、後加工される素材や中間材でもよい。 When the binder is made of a thermosetting resin, it is preferable to perform a thermosetting treatment (cure treatment) after molding. The composite material may have a final product shape or a shape close to it, or may be a post-processed material or an intermediate material.

所望形態のBN粒子は、例えば、市販のBN粉末を分級(振り分け等)して得られる。BN粉末は、ホウ酸メラミン(C・2HBO)の熱分解により調製されてもよい。ちなみに、ホウ酸メラミンは、例えば、ホウ酸とメラミンの加温水溶液を冷却(放冷)して得られる。 BN particles in a desired form can be obtained, for example, by classifying (distributing, etc.) commercially available BN powder. BN powder may be prepared by pyrolysis of melamine borate (C 3 H 6 N 6 .2H 3 BO 3 ). Incidentally, melamine borate can be obtained, for example, by cooling (standing to cool) a heated aqueous solution of boric acid and melamine.

《用途》
熱伝導性や絶縁性に優れる複合材は、例えば、電子機器等の基板、ケース、放熱部材等、またはそれらの一部に用いられるとよい。複合材の熱伝導率や比抵抗(電気抵抗率)は、熱伝導粒子の含有率やバインダの種類により調整され得る。
《Application》
Composite materials with excellent thermal conductivity and insulation properties are preferably used for, for example, substrates, cases, heat dissipation members, etc. of electronic devices, or parts thereof. The thermal conductivity and specific resistance (electrical resistivity) of the composite material can be adjusted by the content of thermally conductive particles and the type of binder.

諸元の異なるBN粉末を用いて複数の試料(複合材)を製作し、各試料の特性を評価した。以下、このような実施例を示しつつ、本発明を具体的に説明する。 A plurality of samples (composite materials) were manufactured using BN powder with different specifications, and the characteristics of each sample were evaluated. Hereinafter, the present invention will be specifically explained while showing such examples.

《BN粉末》
(1)諸元
表1と図1A、図1B(両者を併せて「図1」という。)に示した4種類(呼称:A~D)のBN粉末を用意した。表1に示した呼称に応じて、各BN粉末をA粉、B粉、C粉およびD粉という。
《BN powder》
(1) Specifications Four types (names: A to D) of BN powders shown in Table 1 and FIGS. 1A and 1B (together referred to as "FIG. 1") were prepared. According to the names shown in Table 1, each BN powder is referred to as A powder, B powder, C powder, and D powder.

図1Aは、各粉末の粒度分布である。その粒度分布から定まる各粉末の50%径(D50)を表1に「粒径」として示した。粒度分布の測定は、レーザ回折式粒度分布測定装置(株式会社セイシン企業製LMS-2000E)を用いて室温下(約20℃)で行った。 FIG. 1A shows the particle size distribution of each powder. The 50% diameter (D50) of each powder determined from the particle size distribution is shown in Table 1 as "particle size". The particle size distribution was measured at room temperature (approximately 20° C.) using a laser diffraction particle size distribution analyzer (LMS-2000E, manufactured by Seishin Enterprise Co., Ltd.).

図1Bは、各粉末を走査型電子顕微鏡(株式会社日立ハイテクノロジーズ製S-4800)で観察して得たSEM像である。そのSEM像に基づいて、視野(例えば250μm×200μm)内にある5~10個のBN粒子の厚さを測定した。その算術平均値を表1に「厚さ」として示した。 FIG. 1B is an SEM image obtained by observing each powder with a scanning electron microscope (S-4800 manufactured by Hitachi High-Technologies Corporation). Based on the SEM image, the thickness of 5 to 10 BN particles within a field of view (for example, 250 μm×200 μm) was measured. The arithmetic mean value is shown in Table 1 as "thickness".

表1に示した各粉末のアスペクト比(粒径/厚さ)は、表1に示した「粒径」と「厚さ」から算出した。 The aspect ratio (particle size/thickness) of each powder shown in Table 1 was calculated from the "particle size" and "thickness" shown in Table 1.

表1に示した嵩密度は、既述した方法により、BN粉末:100mlの質量を測定して求めた。 The bulk density shown in Table 1 was determined by measuring the mass of 100 ml of BN powder by the method described above.

(2)調製
各粉末は次のように調製した。
A粉は、市販のh-BN粉末(モメンティブ社製PT110)を微粒化装置(株式会社スギノマシン製スターバーストHJP-25008)により粉砕加工して得た。B粉にはデンカ株式会社製窒化ホウ素粉末HGP、C粉にはデンカ株式会社製窒化ホウ素粉末SGP、D粉にはモメンティブ社製PT110をそれぞれ用いた。
(2) Preparation Each powder was prepared as follows.
Powder A was obtained by pulverizing commercially available h-BN powder (PT110, manufactured by Momentive) using a micronizer (Starburst HJP-25008, manufactured by Sugino Machine Co., Ltd.). Boron nitride powder HGP manufactured by Denka Corporation was used as powder B, boron nitride powder SGP manufactured by Denka Corporation was used as powder C, and PT110 manufactured by Momentive Corporation was used as powder D.

(3)表面処理
試料4では、ヘキサメチルジシラザン(HMDS/信越化学工業株式会社製SZ-31)を用いて疎水化処理(シランカップリング処理)したA粉を用いた。HMDSは、BN粉末100質量部に対して5質量部加えた。疎水化処理は、具体的にいうと、BN粉末とトルエンとHMDSを攪拌混合(60℃×5hr)した後、常温真空乾燥炉で12hr乾燥させた。こうして疎水化したBN粒子からなる粉末を試料4の製作に用いた。
(3) Surface treatment In sample 4, Powder A was used which was subjected to hydrophobization treatment (silane coupling treatment) using hexamethyldisilazane (HMDS/SZ-31 manufactured by Shin-Etsu Chemical Co., Ltd.). 5 parts by mass of HMDS was added to 100 parts by mass of BN powder. Specifically, the hydrophobization treatment was performed by stirring and mixing BN powder, toluene, and HMDS (60° C. x 5 hours), and then drying the mixture in a vacuum drying oven at room temperature for 12 hours. A powder made of BN particles thus made hydrophobic was used in the production of Sample 4.

《試料の製作》
各BN粉末を用いて、表1に示す複数の試料(複合材)を製作した。バインダ(マトリックス)には、一液加熱硬化型エポキシ樹脂(セメダイン株式会社製EP160/以降、単に「樹脂」という。)を用いた。表1に示したBN粒子の含有率は、BN粉末とバインダの合計に対する体積割合である。その含有率は、BN粉末とバインダの配合量と真密度から算出して求めた。
《Sample production》
A plurality of samples (composite materials) shown in Table 1 were manufactured using each BN powder. A one-component heat-curable epoxy resin (EP160 manufactured by Cemedine Co., Ltd./hereinafter simply referred to as "resin") was used as the binder (matrix). The content of the BN particles shown in Table 1 is the volume ratio to the total of the BN powder and the binder. The content was calculated from the blending amounts of the BN powder and binder and the true density.

具体的には、次のようにして複合材を製作した。各BN粉末と樹脂をプラスチック製容器内で10分間混練した。真空乾燥させた混練物を解砕して、BN粒子の表面に樹脂が付着したコンパウンド(粒状の混合物)を得た。 Specifically, the composite material was manufactured as follows. Each BN powder and resin were kneaded for 10 minutes in a plastic container. The vacuum-dried kneaded material was crushed to obtain a compound (granular mixture) in which resin was attached to the surface of BN particles.

コンパウンドを3等分して、金型(成形型)へ3回に分けて充填した(充填工程)。各充填は、バイブレータ(CH25A(エクセン株式会社社製)を150Hzで振動させて、金型を加振しつつ行った(加振工程)。また、1回充填する毎に、キャビティ内のコンパウンドを軽く加圧(3~5MPa程度)して、その上面を平坦にした(予圧工程)。 The compound was divided into three equal parts and filled into a mold (molding mold) in three parts (filling step). Each filling was performed by vibrating the mold with a vibrator (CH25A (manufactured by Exen Co., Ltd.) at 150 Hz (vibration process). Also, after each filling, the compound in the cavity was Light pressure was applied (approximately 3 to 5 MPa) to flatten the upper surface (prepressing step).

このような予成形後に、コンパウンド全体を一軸方向に加圧する一軸圧縮成形(成形工程/圧縮工程)を行った。その成形圧力は表1にまとめて示した。なお、コンパウンドの充填および成形は、金型を130℃に加熱して行った。 After such preforming, uniaxial compression molding (molding process/compression process) was performed in which the entire compound was pressurized in a uniaxial direction. The molding pressures are summarized in Table 1. Note that filling and molding of the compound were performed by heating the mold to 130°C.

こうして円柱状の成形体(φ14mm×20mm)を得た。その成形体を大気雰囲気中で加熱(120℃×30分)して樹脂(バインダ)を熱硬化させた。得られた円柱状の複合材から切り出した正方形状のシート(12mm×12mm×2mm)を試験片に供した。切り出しはビューラー社製IsoMet1000を用いて、加圧方向(一軸方向)に沿って行った。つまり、その加圧方向に対して、シート面(12mm×12mm)の方向が平行で、シート厚(1mm)の方向が垂直となるように切り出した。 In this way, a cylindrical molded body (φ14 mm×20 mm) was obtained. The molded body was heated in the air (120° C. x 30 minutes) to thermoset the resin (binder). A square sheet (12 mm x 12 mm x 2 mm) cut out from the obtained cylindrical composite material was used as a test piece. Cutting was performed along the pressing direction (uniaxial direction) using IsoMet1000 manufactured by Buehler. That is, the sheet was cut out so that the direction of the sheet surface (12 mm x 12 mm) was parallel and the direction of the sheet thickness (1 mm) was perpendicular to the pressing direction.

《観察・測定》
(1)XRD/配向度
図5Aに示すようにして、各試料の表面をX線回折解析(XRD/Cu-Kα/株式会社リガク製UltraV)した。こうして、各試料のXRD(2θ=20°~60°)を得た。
《Observation/Measurement》
(1) XRD/Orientation degree As shown in FIG. 5A, the surface of each sample was subjected to X-ray diffraction analysis (XRD/Cu-Kα/UltraV manufactured by Rigaku Co., Ltd.). In this way, XRD (2θ=20° to 60°) of each sample was obtained.

各試料のBN粒子のa軸方向の配向度を、XRDに基づいて既述した方法により算出した。得られた結果を表1に併せて示した。 The degree of orientation of the BN particles in each sample in the a-axis direction was calculated by the method described above based on XRD. The obtained results are also shown in Table 1.

(2)SEM/接触率
各試料の断面を走査型電子顕微鏡(SEM)で観察した。試料3と試料C4の断面のSEM像を図2に例示した。図2中の配向方向は、上述した加圧方向に直交する方向(試験片の厚さ方向)である。
(2) SEM/Contact Ratio The cross section of each sample was observed using a scanning electron microscope (SEM). SEM images of the cross sections of Sample 3 and Sample C4 are illustrated in FIG. The orientation direction in FIG. 2 is a direction (thickness direction of the test piece) orthogonal to the above-mentioned pressing direction.

各試料の接触率をSEM像に基づいて既述した方法により算出した(図5B参照)。画像処理は、フリーソフトウェア(Image J)を用いて行った。得られた結果を表1に併せて示した。 The contact rate of each sample was calculated by the method described above based on the SEM image (see FIG. 5B). Image processing was performed using free software (Image J). The obtained results are also shown in Table 1.

(3)密度/空隙率
各試料の見掛の密度(D)をアルキメデス法により求めた。得られた結果を表1に併せて示した。
(3) Density/Porosity The apparent density (D) of each sample was determined by the Archimedes method. The obtained results are also shown in Table 1.

また、各試料の見掛の密度(D)と理論密度(Dth)から、次式により空隙率を求めた。理論密度(Dth)は、各試料の製作に用いた原料(BN粉末、バインダ等)の配合量と真密度から算出した。算出した各空隙率を表1に併せて示した。
空隙率(%)=100×{1-(D/Dth)}
Further, the porosity was determined from the apparent density (D) and theoretical density (Dth) of each sample using the following formula. Theoretical density (Dth) was calculated from the blending amount of raw materials (BN powder, binder, etc.) used for manufacturing each sample and the true density. The calculated porosity is also shown in Table 1.
Porosity (%) = 100 x {1-(D/Dth)}

(4)熱伝導率
各試料の熱伝導率(λ)をナノフラッシュ法により求めた。具体的にいうと、ナノフラッシュ法(測定装置:NETZSCH製LFA447)で測定した熱拡散率(α)と、示差走査熱量計(DSC)で求めた比熱(Cp)と、アルキメデス法で求めた密度(D)とから、λ=α・Cp・Dとして熱伝導率を算出した。
(4) Thermal conductivity The thermal conductivity (λ) of each sample was determined by the nanoflash method. Specifically, the thermal diffusivity (α) measured by the nanoflash method (measuring device: NETZSCH LFA447), the specific heat (Cp) determined by a differential scanning calorimeter (DSC), and the density determined by the Archimedes method. (D), the thermal conductivity was calculated as λ=α・Cp・D.

熱拡散率は、BN粒子の配向方向(a軸方向/図2、図5A参照)について測定した。こうして得られた各試料の熱伝導率(試験片の厚さ方向)を表1に併せて示した。 Thermal diffusivity was measured in the orientation direction of the BN particles (a-axis direction/see FIGS. 2 and 5A). The thermal conductivity (in the thickness direction of the test piece) of each sample thus obtained is also shown in Table 1.

表1に示した各試料の特性に基づいて、配向度と熱伝導率の関係を図3Aに、空隙率と熱伝導率の関係を図3Bに、BN粒子の含有率と熱伝導率の関係を図4Aに、BN粒子の含有率と空隙率の関係を図4Bにそれぞれ示した。なお、図3Aと図3Bを併せて「図3」、図4Aと図4Bを併せて「図4」という。 Based on the characteristics of each sample shown in Table 1, the relationship between the degree of orientation and thermal conductivity is shown in Figure 3A, the relationship between porosity and thermal conductivity is shown in Figure 3B, and the relationship between BN particle content and thermal conductivity is shown in Figure 3A. FIG. 4A shows the relationship between the content of BN particles and the porosity, and FIG. 4B shows the relationship between the content of BN particles and the porosity. Note that FIGS. 3A and 3B are collectively referred to as "FIG. 3," and FIGS. 4A and 4B are collectively referred to as "FIG. 4."

《評価》
表1、図2、図3および図4から、次のことがわかった。粒径、厚さまたはアスペクト比が所定の範囲にあるBN粒子からなるA粉を用いた試料1~4はいずれも、試料C1~C5よりも、高配向度および高接触率であり、非常に高い熱伝導率を示した。特に、カップリング剤で表面処理したBN粒子を用いた試料4は、大きな熱伝導率は発揮した。
"evaluation"
From Table 1, FIG. 2, FIG. 3, and FIG. 4, the following was found. Samples 1 to 4 using powder A consisting of BN particles with particle size, thickness, or aspect ratio within a predetermined range all have a higher degree of orientation and a higher contact rate than samples C1 to C5, and are extremely It showed high thermal conductivity. In particular, Sample 4 using BN particles surface-treated with a coupling agent exhibited high thermal conductivity.

また、試料2~4はいずれも、BN粒子の含有率が多いにも拘わらず、空隙率が10%以下となり、高い熱伝導率を示すこともわかった。さらに、いずれの試料も、比抵抗が1014Ω・m程度あることは確認している。こうして本発明によれば、高熱伝導率で絶縁性に優れる複合材が提供されることが確認された。 It was also found that samples 2 to 4 all had porosity of 10% or less and exhibited high thermal conductivity, despite having a high content of BN particles. Furthermore, it has been confirmed that each sample has a specific resistance of approximately 10 14 Ω·m. Thus, it was confirmed that the present invention provides a composite material with high thermal conductivity and excellent insulation properties.

Figure 0007342905000001
Figure 0007342905000001

Claims (10)

熱伝導粒子とバインダの混合物を加圧して複合材を得る成形工程を備える複合材の製造方法であって、
該熱伝導粒子は、六方晶系の窒化ホウ素からなるBN粒子を含み、
該BN粒子は、鱗片状で、レーザ回折法により求まる粒度分布から定まる50%径(D50)である粒径1~100μmで、顕微鏡観察像の視野内で測定したBN粒子の厚さの算術平均値として求まる厚さ0.1~5μmであると共に該厚さに対する該粒径の比率であるアスペクト比が10~300であり、
該BN粒子は、該混合物全体に対して70~98体積%含まれる複合材の製造方法。
A method for producing a composite material comprising a forming step of pressurizing a mixture of thermally conductive particles and a binder to obtain a composite material,
The thermally conductive particles include BN particles made of hexagonal boron nitride,
The BN particles are scaly and have a 50% diameter (D50) particle size of 1 to 100 μm determined from the particle size distribution determined by laser diffraction method , and the arithmetic value of the thickness of the BN particles measured within the field of view of the microscopic image. The thickness determined as an average value is 0.1 to 5 μm , and the aspect ratio, which is the ratio of the particle size to the thickness , is 10 to 300,
A method for producing a composite material in which the BN particles are contained in an amount of 70 to 98% by volume based on the entire mixture .
前記BN粒子は、嵩密度が0.1~0.6g/cmである請求項1に記載の複合材の製造方法。 The method for producing a composite material according to claim 1, wherein the BN particles have a bulk density of 0.1 to 0.6 g/cm 3 . 前記混合物は、前記熱伝導粒子と前記バインダとの親和性を高めるカップリング剤を含む請求項1または2に記載の複合材の製造方法。 The method for manufacturing a composite material according to claim 1 or 2 , wherein the mixture includes a coupling agent that increases the affinity between the thermally conductive particles and the binder. 前記成形工程は、前記混合物を5~500MPaで圧縮する圧縮工程を備える請求項1~のいずれかに記載の複合材の製造方法。 The method for producing a composite material according to any one of claims 1 to 3, wherein the molding step includes a compression step of compressing the mixture at 5 to 500 MPa. 前記成形工程は、前記圧縮工程前に、該圧縮工程の圧縮力よりも小さい圧力を前記混合物へ少なくとも一回加える予圧工程をさらに備える請求項に記載の複合材の製造方法。 5. The method for manufacturing a composite material according to claim 4 , wherein the molding step further includes a pre-pressing step of applying a pressure smaller than the compression force of the compression step to the mixture at least once before the compression step. 前記成形工程は、前記混合物を加振する加振工程をさらに備える請求項1~のいずれかに記載の複合材の製造方法。 The method for manufacturing a composite material according to any one of claims 1 to 5 , wherein the molding step further comprises a vibrating step of vibrating the mixture. 前記混合物を加圧して得られた成形体を該加圧方向に沿って切り出してシートを得る請求項1~6のいずれかに記載の複合材の製造方法。 The method for producing a composite material according to any one of claims 1 to 6, wherein a sheet is obtained by cutting the molded body obtained by pressing the mixture along the pressing direction. 前記複合材は、前記BN粒子の配向度50%以上であると共に該BN粒子の接触率70%以上である請求項1~7のいずれかに記載の複合材の製造方法 The method for producing a composite material according to any one of claims 1 to 7, wherein in the composite material, the degree of orientation of the BN particles is 50% or more, and the contact ratio of the BN particles is 70% or more. 前記複合材は、その全体に対する空隙率15%以下である請求項1~のいずれかに記載の複合材の製造方法 The method for producing a composite material according to any one of claims 1 to 8 , wherein the composite material has a porosity of 15% or less relative to the entire composite material. 前記複合材は、熱伝導率が20~60W/mKである請求項1~のいずれかに記載の複合材の製造方法 The method for producing a composite material according to any one of claims 1 to 9 , wherein the composite material has a thermal conductivity of 20 to 60 W/mK .
JP2021046356A 2021-03-19 2021-03-19 Composite manufacturing method Active JP7342905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021046356A JP7342905B2 (en) 2021-03-19 2021-03-19 Composite manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021046356A JP7342905B2 (en) 2021-03-19 2021-03-19 Composite manufacturing method

Publications (2)

Publication Number Publication Date
JP2022145096A JP2022145096A (en) 2022-10-03
JP7342905B2 true JP7342905B2 (en) 2023-09-12

Family

ID=83454320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021046356A Active JP7342905B2 (en) 2021-03-19 2021-03-19 Composite manufacturing method

Country Status (1)

Country Link
JP (1) JP7342905B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000150283A (en) 1998-11-05 2000-05-30 Bridgestone Corp Injection molding method for resin mold
JP2002507229A (en) 1997-06-26 2002-03-05 ザ・ダウ・ケミカル・カンパニー Filler-containing polymer composition
JP2006135201A (en) 2004-11-09 2006-05-25 Kakuichi Kasei Kk Rare-earth-based bond magnet, compound therefor, and manufacturing methods thereof
JP2014056974A (en) 2012-09-13 2014-03-27 Starlite Co Ltd Insulating thermally conductive heat sink
JP2015096587A (en) 2013-10-09 2015-05-21 株式会社豊田中央研究所 Composite material and production method thereof
JP2016017086A (en) 2014-07-04 2016-02-01 スターライト工業株式会社 Electrically insulating thermally conductive resin composition and method for producing the same
WO2019112048A1 (en) 2017-12-08 2019-06-13 積水化学工業株式会社 Laminate and electronic device
JP2019519460A (en) 2016-06-16 2019-07-11 スリーエム イノベイティブ プロパティズ カンパニー Hexagonal boron nitride molded body, hexagonal boron nitride granulated product for producing it and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03216298A (en) * 1990-01-19 1991-09-24 Idemitsu Kosan Co Ltd Compression molding method
JPH0453716A (en) * 1990-06-22 1992-02-21 Matsushita Electric Works Ltd Casting material for simplified resin mold

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002507229A (en) 1997-06-26 2002-03-05 ザ・ダウ・ケミカル・カンパニー Filler-containing polymer composition
JP2000150283A (en) 1998-11-05 2000-05-30 Bridgestone Corp Injection molding method for resin mold
JP2006135201A (en) 2004-11-09 2006-05-25 Kakuichi Kasei Kk Rare-earth-based bond magnet, compound therefor, and manufacturing methods thereof
JP2014056974A (en) 2012-09-13 2014-03-27 Starlite Co Ltd Insulating thermally conductive heat sink
JP2015096587A (en) 2013-10-09 2015-05-21 株式会社豊田中央研究所 Composite material and production method thereof
JP2016017086A (en) 2014-07-04 2016-02-01 スターライト工業株式会社 Electrically insulating thermally conductive resin composition and method for producing the same
JP2019519460A (en) 2016-06-16 2019-07-11 スリーエム イノベイティブ プロパティズ カンパニー Hexagonal boron nitride molded body, hexagonal boron nitride granulated product for producing it and method for producing the same
WO2019112048A1 (en) 2017-12-08 2019-06-13 積水化学工業株式会社 Laminate and electronic device

Also Published As

Publication number Publication date
JP2022145096A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
Zhang et al. Hybrid fillers of hexagonal and cubic boron nitride in epoxy composites for thermal management applications
TWI667196B (en) Graphite/graphene composite material, heat collector, heat conductor, heat radiator and heat-radiation system
JPH111621A (en) Highly heat-conductive composite material and method
JP5405890B2 (en) Thermally conductive moldings and their applications
Liang et al. Synergetic enhancement of thermal conductivity by constructing BN and AlN hybrid network in epoxy matrix
JP7079378B2 (en) Boron nitride powder and its manufacturing method, as well as composite materials and heat dissipation members
JP2016533282A (en) Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds for producing such components, methods for producing such components and uses thereof
JP7333914B2 (en) Thermally conductive resin molding and its manufacturing method
JP6285155B2 (en) Heat dissipation member and its use
JP7342905B2 (en) Composite manufacturing method
Norley et al. The development of a natural graphite heat-spreader
Li et al. Boron nitride whiskers and nano alumina synergistically enhancing the vertical thermal conductivity of epoxy-cellulose aerogel nanocomposites
JP7452478B2 (en) Thermal conductive material and its manufacturing method
JP2002114575A (en) Hexagonal boron nitride plate, method for manufacturing the same and application of the same
US20220098463A1 (en) Thermal dissipation composite material and manufacturing method thereof
KR101351704B1 (en) Fabrication methods of metal/polymer/ceramic matrix composites containing randomly distributed or directionally aligned graphenes by mechanical process
CN112918030B (en) Boron nitride film with plane orientation, preparation method thereof, boron nitride composite film containing boron nitride film, thermal interface material and application
JP2023060476A (en) Heat-conductive material and manufacturing method thereof
JP2022078711A (en) Heat conductive material and manufacturing method thereof
CN113337253A (en) Heat-conducting gasket and preparation method thereof
JP2023070122A (en) Heat conductive material and method for producing the same
US20230227709A1 (en) Flowable hardenable composition, thermally conductive composition, and electronic heat sink assembly including the same
US11910571B2 (en) Housing parts, housings and processes for preparing the same
JP2023108214A (en) Composite and production method of the same
JP2023049135A (en) Composite material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7342905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150