JP2022078711A - Heat conductive material and manufacturing method thereof - Google Patents

Heat conductive material and manufacturing method thereof Download PDF

Info

Publication number
JP2022078711A
JP2022078711A JP2020189583A JP2020189583A JP2022078711A JP 2022078711 A JP2022078711 A JP 2022078711A JP 2020189583 A JP2020189583 A JP 2020189583A JP 2020189583 A JP2020189583 A JP 2020189583A JP 2022078711 A JP2022078711 A JP 2022078711A
Authority
JP
Japan
Prior art keywords
particles
filler
heat conductive
crystalline
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020189583A
Other languages
Japanese (ja)
Inventor
ジョンハン ファン
Jonhan Fan
洋充 田中
Hiromitsu Tanaka
喜恵 大平
Yoshie Ohira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2020189583A priority Critical patent/JP2022078711A/en
Publication of JP2022078711A publication Critical patent/JP2022078711A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a heat conductive material capable of achieving a dramatic increase of heat conductivity.SOLUTION: A heat conductive material includes a composite particle having a crystalline particle of boron nitride and an amorphous particle of boron nitride smaller than the crystalline particle and adhered on a surface of the crystalline particle. A composite material can be obtained by using a filler having the composite particle as a skeleton. The amorphous particle preferably carries an auxiliary particle (such as a carbon nano-tube) having larger heat conductivity than the crystalline particle. The composite particle can be obtained, for instance, through a calcination process that heats a mixture of a crystalline particle of boron nitride (such as h-BN) and melamine borate. A use of a hydrophobing filler can further help improve the heat conductivity and specific resistance of the composite material.SELECTED DRAWING: Figure 10

Description

本発明は、窒化ホウ素を用いた熱伝導材等に関する。 The present invention relates to a heat conductive material or the like using boron nitride.

電子機器(半導体モジュール等)の高密度や高性能化等に伴う構造変化により、従来と異なる高放熱性の電気絶縁材料が用いられるようになった。例えば、高熱伝導率のセラミックス(AlN等)の基板に替えて、樹脂中に高熱伝導な絶縁材(フィラー)を分散させた複合材料が絶縁シート等に用いられている。このような(有機/無機)複合材料は、成形性、加工性、異種材との接着性等に優れ、比較的安価でもある。 Due to structural changes associated with high density and high performance of electronic devices (semiconductor modules, etc.), electrically insulating materials with high heat dissipation that are different from conventional materials have come to be used. For example, instead of a substrate made of ceramics (AlN or the like) having high thermal conductivity, a composite material in which an insulating material (filler) having high thermal conductivity is dispersed in a resin is used for an insulating sheet or the like. Such (organic / inorganic) composite materials are excellent in moldability, processability, adhesiveness to dissimilar materials, etc., and are relatively inexpensive.

ところで、複合材料用のフィラーとして、種々のセラミックス粒子(繊維を含む)が用いられる。例えば、シリカ(SiO)、アルミナ(Al)、窒化アルミニウム(AlN)等の粒子である。しかし、シリカやアルミナは熱伝導率が小さく、また窒化アルミニウムは水(HO)と反応してアンモニア(NH)を発生するため、耐湿性が低く長期信頼性に劣る。そこで、高熱伝導性および高電気絶縁性であると共に、化学的にも安定な窒化ホウ素(BN)が複合材料のフィラーとして多用されている。 By the way, various ceramic particles (including fibers) are used as fillers for composite materials. For example, particles such as silica (SiO 2 ), alumina (Al 2 O 3 ), and aluminum nitride (Al N). However, silica and alumina have low thermal conductivity, and aluminum nitride reacts with water ( H2O ) to generate ammonia ( NH3 ), so that the moisture resistance is low and the long-term reliability is inferior. Therefore, boron nitride (BN), which has high thermal conductivity and high electrical insulation and is chemically stable, is often used as a filler for composite materials.

窒化ホウ素には、一般的に、六方晶系の常圧相(適宜「h-BN」ともいう。)と、立方晶系の高圧相((適宜「c-BN」ともいう。)とがある。通常、六方晶系窒化ホウ素(h-BN)がフィラーとして用いられる。 Boron nitride generally includes a hexagonal normal pressure phase (also referred to as “h-BN” as appropriate) and a cubic high pressure phase (also referred to as “c-BN” as appropriate). Hexagonal boron nitride (h-BN) is usually used as a filler.

h-BNは、黒鉛と類似した六角網目層が積層された鱗片状からなり、面方向と厚さ方向で熱伝導率が大きく異なる熱伝導異方性を有する。また、h-BN粒子は、充填される樹脂中において、面方向に配向し易い。このため、例えば、h-BN粒子を高充填しても、厚さ方向(シート状の複合材料なら、熱源側から冷却源側へ向かう方向)の放熱性(熱伝導率)が不足する傾向にあった。 h-BN is composed of scaly layers in which hexagonal mesh layers similar to graphite are laminated, and has thermal conductivity anisotropy in which the thermal conductivity differs greatly in the plane direction and the thickness direction. Further, the h-BN particles are likely to be oriented in the plane direction in the resin to be filled. Therefore, for example, even if h-BN particles are highly filled, the heat dissipation (thermal conductivity) in the thickness direction (in the case of a sheet-shaped composite material, the direction from the heat source side to the cooling source side) tends to be insufficient. there were.

そこで、h-BN粒子を含む複合材料の熱伝導性(放熱性)を高める提案が種々なされており、例えば、下記の特許文献に関連した記載がある。 Therefore, various proposals have been made to enhance the thermal conductivity (heat dissipation) of the composite material containing h-BN particles, and for example, there is a description related to the following patent document.

特開昭59-64355JP-A-59-64355 特開2010-260225JP-A-2010-260225 特開2011-184507JP 2011-184507 特開2012-171842JP 2012-171842 特開2012-255055Japanese Patent Application Laid-Open No. 2012-255055 特開2018-159062JP-A-2018-159062

もっとも、いずれの特許文献でも、結晶質なh-BNからなるフィラーを用いているに過ぎない。 However, all the patent documents only use a filler made of crystalline h-BN.

本発明はこのような事情に鑑みて為されたものであり、従来と構造が異なる新たな窒化ホウ素粒子を用いた熱伝導材等を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a heat conductive material or the like using new boron nitride particles having a structure different from that of the conventional one.

本発明者はこの課題を解決すべく鋭意研究した結果、窒化ホウ素の結晶質粒子に、窒化ホウ素の非晶質粒子を付着させた複合粒子をフィラーの骨格として利用することにより、複合材の熱伝導率を高めることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of diligent research to solve this problem, the present inventor has obtained the heat of the composite material by using the composite particles in which the amorphous particles of boron nitride are attached to the crystalline particles of boron nitride as the skeleton of the filler. Succeeded in increasing the conductivity. By developing this result, the present invention described below was completed.

《熱伝導材》
本発明は、
窒化ホウ素の結晶質粒子と該結晶質粒子よりも小さく該結晶質粒子の表面に付着した窒化ホウ素の非晶質粒子とを有する複合粒子を含む熱伝導材である。
《Heat conductive material》
The present invention
It is a heat conductive material containing composite particles having crystalline particles of boron nitride and amorphous particles of boron nitride that are smaller than the crystalline particles and adhere to the surface of the crystalline particles.

本発明に係る複合粒子を用いれば、高熱伝導率の熱伝導材(複合材を含む。)を得ることが可能となる。この理由は定かではないが、次のように考えられる。複合粒子中の非晶質粒子は、結晶質粒子よりも他の高熱伝導率な物質(補助粒子)等を多く担持し得る。このため、非晶質粒子および補助粒子を介して、結晶質粒子の隣接間に熱伝導パスが形成されるようになり、複合材の熱伝導率が顕著に向上するようになったと考えられる。 By using the composite particles according to the present invention, it is possible to obtain a heat conductive material (including a composite material) having a high heat conductivity. The reason for this is not clear, but it can be thought of as follows. Amorphous particles in composite particles can carry more substances (auxiliary particles) having high thermal conductivity than crystalline particles. Therefore, it is considered that the heat conduction path is formed between the adjacent crystalline particles via the amorphous particles and the auxiliary particles, and the heat conductivity of the composite material is remarkably improved.

《熱伝導材の製造方法》
本発明は、熱伝導材の製造方法としても把握される。例えば、本発明は、窒化ホウ素の結晶質粒子とホウ酸メラミンとの混合物を加熱する焼成工程を備え、該結晶質粒子の表面に該結晶質粒子よりも小さい窒化ホウ素の非晶質粒子を付着させた複合粒子を得る熱伝導材の製造方法でもよい。
<< Manufacturing method of heat conductive material >>
The present invention is also understood as a method for manufacturing a heat conductive material. For example, the present invention comprises a firing step of heating a mixture of boron nitride crystalline particles and melamine borate, and adheres amorphous boron nitride particles smaller than the crystalline particles to the surface of the crystalline particles. It may be a method of manufacturing a heat conductive material which obtains the composite particles which have been made.

《複合材/熱伝導部材》
本発明は、熱伝導材の一形態である複合材または熱伝導部材としても把握される。例えば、本発明の熱伝導材は、複合粒子を含むフィラーがマトリックスに分散した複合材でもよい。また本発明の熱伝導材(複合材)は、放熱部材、基板、ケース等の熱伝導部材でもよい。
<< Composite / heat conductive member >>
The present invention is also grasped as a composite material or a heat conductive member which is a form of a heat conductive material. For example, the heat conductive material of the present invention may be a composite material in which a filler containing composite particles is dispersed in a matrix. Further, the heat conductive material (composite material) of the present invention may be a heat conductive member such as a heat radiating member, a substrate, or a case.

《その他》
(1)本明細書でいう「~材」は、「材料」または「部材」を意味する。例えば、熱伝導材は、複合粒子またはその粉末、補助粒子を含む複合粒子またはその粉末からなる材料(原料)でもよい。また、熱伝導材は、それら粒子または粉末と、母材(マトリックス)または結合材(バインダ)とを有する有形な複合材(素材を含む)または所望形状の複合部材でもよい。
"others"
(1) The "-material" as used herein means a "material" or a "member". For example, the heat conductive material may be a material (raw material) composed of composite particles or powder thereof, composite particles containing auxiliary particles or powder thereof. Further, the heat conductive material may be a tangible composite material (including a material) having these particles or powder and a base material (matrix) or a binder (binder), or a composite member having a desired shape.

(2)本明細書でいう「x~y」は、特に断らない限り、下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。本明細書でいう「x~yμm」は、特に断らない限り、xμm~yμmを意味する。他の単位系(W/mK、Ωm等)についても同様である。 (2) Unless otherwise specified, "x to y" in the present specification include a lower limit value x and an upper limit value y. A range such as "a to b" may be newly established with any numerical value included in the various numerical values or numerical ranges described in the present specification as a new lower limit value or upper limit value. As used herein, "x to yμm" means xμm to yμm unless otherwise specified. The same applies to other unit systems (W / mK, Ωm, etc.).

実施例で用いた各フィラー粒子を模式的に示すモデル図である。It is a model figure which shows typically each filler particle used in an Example. 試料1と試料2のフィラー粒子を観察したSEM像である。It is an SEM image which observed the filler particle of a sample 1 and a sample 2. 試料3と試料Cのフィラー粒子を観察したSEM像である。It is an SEM image which observed the filler particle of a sample 3 and a sample C. 試料M1と試料M3の複合材を観察したSEM像である。It is an SEM image which observed the composite material of the sample M1 and the sample M3. 試料1と試料2のフィラー粒子に係るX線回折パターンである。It is an X-ray diffraction pattern which concerns on the filler particle of a sample 1 and a sample 2. 各試料の複合材の熱伝導率を示す棒グラフである。It is a bar graph which shows the thermal conductivity of the composite material of each sample. 各試料の複合材について、比抵抗と熱伝導率の関係を示す散布図である。It is a scatter diagram which shows the relationship between specific resistance and thermal conductivity about the composite material of each sample. 試料M31の複合材に基づいて、フィラーの充填率が熱伝導率に及ぼす影響を示すグラフである。It is a graph which shows the influence which the filling rate of a filler has on the thermal conductivity based on the composite material of a sample M31. 試料M3の複合材に基づいて、非晶質粒子と補助粒子の体積割合が熱伝導率に及ぼす影響を示すグラフである。3 is a graph showing the effect of the volume ratio of amorphous particles and auxiliary particles on thermal conductivity based on the composite material of sample M3. 本発明に係る複合材を模式的に示したモデル図である。It is a model figure which shows schematically the composite material which concerns on this invention.

本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、熱伝導材(フィラー、複合材、部材を含む。)のみならず、その製造方法等にも適宜該当する。方法的な構成要素であっても物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from the present specification may be added to the components of the present invention. The contents described in the present specification appropriately correspond not only to the heat conductive material (including the filler, the composite material, and the member) but also to the manufacturing method thereof and the like. Even a methodical component can be a component related to an object. Which embodiment is the best depends on the target, required performance, and the like.

《複合粒子》
複合粒子は、窒化ホウ素(BN)からなる結晶質粒子と、窒化ホウ素からなる非晶質粒子を備える。非晶質粒子は結晶質粒子の表面に付着している。非晶質粒子の付着は、化学結合(ファンデルワールス結合を含む)、焼結、接着等のいずれでもよい。なお、結晶質粒子の表面に付着している粒子の全てが非晶質粒子でなくてもよい。つまり、結晶質粒子に付着した粒子の一部は、結晶化していてもよい。
《Composite particles》
The composite particles include crystalline particles made of boron nitride (BN) and amorphous particles made of boron nitride. Amorphous particles are attached to the surface of crystalline particles. The adhesion of the amorphous particles may be any of chemical bonds (including van der Waals bonds), sintering, adhesion and the like. It should be noted that all of the particles adhering to the surface of the crystalline particles do not have to be amorphous particles. That is, some of the particles attached to the crystalline particles may be crystallized.

非晶質粒子は、例えば、結晶質粒子と非晶質粒子の合計量に対して5~20体積%さらには7~15体積%含まれるとよい。非晶質粒子が過少では、その効果が乏しくなる。非晶質粒子が過多では、結晶質粒子が相対的に過少となり、熱伝導率が低下し得る。 The amorphous particles may be contained, for example, in an amount of 5 to 20% by volume, more preferably 7 to 15% by volume, based on the total amount of the crystalline particles and the amorphous particles. If the amount of amorphous particles is too small, the effect will be poor. If there are too many amorphous particles, the number of crystalline particles will be relatively small, and the thermal conductivity may decrease.

各粒子の体積割合(体積%)は、複合粒子の調製時の原料の体積割合(配合量と密度から算出される。)から特定される。補助粒子の体積割合、複合材全体に対する各粒子の体積割合等についても、同様な手法で特定され得る。なお、非晶質粒子をホウ酸メラミンから得る場合、焼成工程により、非晶質粒子の体積はホウ酸メラミンの体積の1/5となる。従って、非晶質粒子の所望体積量に対してホウ酸メラミンの配合体積量を5倍にするとよい。なお、非晶質粒子の体積割合が大きいほど、X線回折パターンのピークがブロードになり得る(図5参照)。 The volume ratio (% by volume) of each particle is specified from the volume ratio (calculated from the blending amount and density) of the raw material at the time of preparing the composite particle. The volume ratio of auxiliary particles, the volume ratio of each particle to the entire composite material, and the like can also be specified by the same method. When the amorphous particles are obtained from melamine borate, the volume of the amorphous particles becomes 1/5 of the volume of melamine borate by the firing step. Therefore, it is advisable to increase the blending volume of melamine borate to 5 times the desired volume of the amorphous particles. The larger the volume ratio of the amorphous particles, the broader the peak of the X-ray diffraction pattern can be (see FIG. 5).

《結晶質粒子》
結晶質粒子は、例えば、六方晶構造の窒化ホウ素(h-BN)または立方晶構造の窒化ホウ素(c-BN)である。通常、h-BN粒子が結晶質粒子として用いられる。
《Crystalline particles》
The crystalline particles are, for example, hexagonal boron nitride (h-BN) or cubic boron nitride (c-BN). Usually, h-BN particles are used as crystalline particles.

結晶質粒子のサイズや形態は問わない。h-BNからなる結晶質粒子のサイズは、例えば、最大長が1~100μm、10~60μmさらには20~40μm程度である。最大長は、例えば、結晶質粒子を顕微鏡の観察像(例えばSEM像)から求まる。敢えていうなら、一視野(1500μm×1000μm)あたりに存在する結晶質粒子の各最大長を算術した平均値を結晶質粒子のサイズとしてもよい。このような粒子サイズの特定は、本発明でいう非晶質粒子、複合粒子、補助粒子等にも該当する。また、粒子の形状(略鱗片状、略繊維状、略長球状、略球状等)とは関係なく、粒子サイズを単に「粒径」ともいう。 The size and morphology of crystalline particles do not matter. The size of the crystalline particles composed of h-BN has, for example, a maximum length of 1 to 100 μm, 10 to 60 μm, and further 20 to 40 μm. The maximum length can be obtained, for example, from an observation image of a microscope (for example, an SEM image) of crystalline particles. If you dare to say it, the size of the crystalline particles may be the average value obtained by arithmetically calculating the maximum lengths of the crystalline particles existing in one field of view (1500 μm × 1000 μm). Such specification of particle size also corresponds to amorphous particles, composite particles, auxiliary particles and the like as used in the present invention. Further, the particle size is also simply referred to as "particle size" regardless of the shape of the particles (substantially scaly, substantially fibrous, substantially long spherical, substantially spherical, etc.).

h-BN自体(単層)は六角格子構造の網目状であるが、結晶質粒子自体は、h-BN単層でも、それらの積層体または集合体(凝集体、二次粒子)でもよい。従って結晶質粒子は、必ずしも鱗片状でなくてもよい。 The h-BN itself (single layer) has a mesh-like structure with a hexagonal lattice structure, but the crystalline particles themselves may be an h-BN single layer or a laminate or aggregate (aggregate, secondary particles) thereof. Therefore, the crystalline particles do not necessarily have to be scaly.

《非晶質粒子》
非晶質粒子は、結晶質粒子の表面に付着できるサイズや形態であればよい。通常、非晶質粒子は、結晶質粒子よりも小さい。なお、本明細書では、既述した観察像から特定できる最大長に基づいて粒子の大小を判断する。
《Amorphous particles》
The amorphous particles may be of any size and morphology that can be attached to the surface of the crystalline particles. Amorphous particles are usually smaller than crystalline particles. In this specification, the size of the particles is determined based on the maximum length that can be specified from the above-mentioned observation image.

結晶質粒子に付着している各非晶質粒子の最大長は、例えば、結晶質粒子の最大長の1/1000~1/5、1/500~1/10さらには1/200~1/20程度である。敢えていうと、非晶質粒子の最大長は、例えば、0.1~30μm、0.5~15μmさらには1~5μm程度でもよい。非晶質粒子の形状は種々あり得るが、例えば、非晶質粒子は鱗片状である。勿論、非晶質粒子は、その他の形状(略繊維状、略長球状、略球状等)でもよい。 The maximum length of each amorphous particle adhering to the crystalline particles is, for example, 1/1000 to 1/5, 1/500 to 1/10, and further 1/200 to 1/1 of the maximum length of the crystalline particles. It is about 20. Suffice it to say, the maximum length of the amorphous particles may be, for example, 0.1 to 30 μm, 0.5 to 15 μm, or even 1 to 5 μm. Amorphous particles can have various shapes, for example, amorphous particles are scaly. Of course, the amorphous particles may have other shapes (substantially fibrous, substantially long spherical, substantially spherical, etc.).

ちなみに、窒化ホウ素の結晶性の程度(結晶質粒子と非晶質粒子の区別)は、X線回折(XRD)のプロファイルから判断される。結晶質粒子のプロファイルにはピークがあり、非晶質粒子のプロファイルには明確なピークが観られず、全体がブロード(ハローパターン)状となる。 Incidentally, the degree of crystallinity of boron nitride (distinguishing between crystalline particles and amorphous particles) is determined from the profile of X-ray diffraction (XRD). There are peaks in the profile of crystalline particles, no clear peaks can be seen in the profile of amorphous particles, and the whole is broad (halo pattern).

《補助粒子》
熱伝導材は、非晶質粒子に担持されて、結晶質粒子間の熱伝導パス形成に寄与する補助粒子を含むとよい。補助粒子として、熱伝導材の仕様等に応じて、サイズや熱伝導率等が異なる種々の粒子を用いることができる。補助粒子は、少なくとも結晶質粒子よりも小さいとよい。さらに補助粒子は、非晶質粒子よりも小さくてもよい。なお、補助粒子は、結晶質粒子および/または非晶質粒子よりも熱伝導率が大きいと好ましい。
《Auxiliary particles》
The heat conductive material may contain auxiliary particles that are supported on the amorphous particles and contribute to the formation of a heat conduction path between the crystalline particles. As auxiliary particles, various particles having different sizes, thermal conductivity, etc. can be used depending on the specifications of the heat conductive material and the like. Auxiliary particles should be at least smaller than crystalline particles. Further, the auxiliary particles may be smaller than the amorphous particles. It is preferable that the auxiliary particles have a higher thermal conductivity than the crystalline particles and / or the amorphous particles.

補助粒子の一例として、炭素粒子がある。炭素粒子として、例えば、黒鉛粒子(カーボンブラックを含む。)、ダイヤモンド粒子、ナノカーボン粒子がある。ナノカーボン粒子には、例えば、カーボンナノチューブ(CNT)、カーボンナノホーン(CNH)、フラーレン、グラフェン等がある。CNTは、高熱伝導率である共に、アスペクト比が10以上あり、少量でも熱伝導パスの形成がされ易い点で他の炭素粒子よりも優れる。 An example of auxiliary particles is carbon particles. Examples of carbon particles include graphite particles (including carbon black), diamond particles, and nanocarbon particles. Examples of the nanocarbon particles include carbon nanotubes (CNT), carbon nanohorns (CNH), fullerenes, graphene and the like. CNTs are superior to other carbon particles in that they have high thermal conductivity, an aspect ratio of 10 or more, and easily form a thermal conduction path even in a small amount.

炭素粒子は、例えば、最大長が0.001~5μmさらには0.01~2μmである。他の粒子との大小比較は、上述した視野内における最大長の算術平均値に基づいて行うとよい。 The carbon particles have, for example, a maximum length of 0.001 to 5 μm and even 0.01 to 2 μm. The magnitude comparison with other particles may be performed based on the above-mentioned arithmetic mean value of the maximum length in the field of view.

補助粒子は、例えば、結晶質粒子、非晶質粒子および補助粒子の合計量に対して5~20体積%さらには7~15体積%が含まれるとよい。非晶質粒子と補助粒子の合計量に対して観れば、補助粒子は20~60体積%さらには30~55体積%(非晶質粒子なら40~80体積%さらには45~70体積%)含まれるとよい。補助粒子が過少では、その効果が乏しくなる。補助粒子が過多では、結晶質粒子や非晶質粒子が相対的に過少となり、熱伝導率が低下し得る。また、高導電率な補助粒子(炭素粒子等)が過多になると、熱伝導材の比抵抗(電気抵抗率)が低下し得る。 The auxiliary particles may be contained, for example, in an amount of 5 to 20% by volume, further 7 to 15% by volume, based on the total amount of crystalline particles, amorphous particles and auxiliary particles. Looking at the total amount of amorphous particles and auxiliary particles, auxiliary particles are 20 to 60% by volume, further 30 to 55% by volume (40 to 80% by volume, even 45 to 70% by volume for amorphous particles). It should be included. If the number of auxiliary particles is too small, the effect will be poor. If there are too many auxiliary particles, the number of crystalline particles and amorphous particles will be relatively small, and the thermal conductivity may decrease. Further, if the amount of auxiliary particles (carbon particles or the like) having high conductivity becomes excessive, the specific resistance (electric resistivity) of the heat conductive material may decrease.

《複合材》
熱伝導材は、複合粒子(さらに補助粒子を含む)からなるフィラーと、フィラーを固定するマトリックス(バインダを含む。以下、単に「マトリックス」という。)とからなる複合材(素材または部材)でもよい。
《Composite material》
The heat conductive material may be a composite material (material or member) composed of a filler composed of composite particles (including auxiliary particles) and a matrix (including a binder; hereinafter simply referred to as “matrix”) for fixing the filler. ..

(1)フィラー
マトリックスへのフィラーの充填率は、例えば、複合材全体に対して50~90体積%さらには60~80体積%である。複合材の熱伝導率は充填率に応じて変化するが、充填率を過大にしても熱伝導率はあまり向上しない。フィラーの充填率は、製造時なら原料の配合量から特定され、複合材中におけるフィラーの充填率は既述したように、複合材(断面)の観察像から算出・特定される。
(1) The filling rate of the filler in the filler matrix is, for example, 50 to 90% by volume and further 60 to 80% by volume with respect to the entire composite material. The thermal conductivity of the composite material changes depending on the filling rate, but even if the filling rate is excessively increased, the thermal conductivity does not improve so much. The filling rate of the filler is specified from the blending amount of the raw materials at the time of production, and the filling rate of the filler in the composite material is calculated and specified from the observation image of the composite material (cross section) as described above.

フィラーの全体または一部(複合粒子、補助粒子)は、マトリックスとの親和性を高める表面処理がなされているとよい。これにより、マトリックス中におけるフィラーの分散性、充填性、密着性等が向上して、複合材の熱伝導率および/または比抵抗が向上し得る。 All or part of the filler (composite particles, auxiliary particles) may be surface-treated to enhance the affinity with the matrix. As a result, the dispersibility, filling property, adhesion and the like of the filler in the matrix can be improved, and the thermal conductivity and / or the specific resistance of the composite material can be improved.

表面処理は、例えば、疎水化処理またはカップリング処理である。マトリックスが有機材料(樹脂、ゴム・エラストマー等)なら、例えば、シランカップリング処理やフッ素プラズマ処理等の表面処理をフィラーに行えばよい。シランカップリング処理は、マトリックス側の官能基(アミノ基、エポキシ基、イソシアネート基、ビニル基、アクリル基等)に対応する反応基を備えた種々のシランカップリング剤を用いて行える。代表的なシランカップリング剤として、例えば、ヘキサメチルジシラザン(HMDS:C19NSi)がある。なお、シランカップリング剤は、通常、無機材料であるフィラー(複合粒子、補助粒子等)側にある官能基(ヒドロキシキ基、メトキシ基、エトキシ基等)にも対応する反応基(シリル基等)を備える。 The surface treatment is, for example, a hydrophobizing treatment or a coupling treatment. If the matrix is an organic material (resin, rubber, elastomer, etc.), surface treatment such as silane coupling treatment or fluorine plasma treatment may be performed on the filler. The silane coupling treatment can be carried out using various silane coupling agents having a reactive group corresponding to a functional group (amino group, epoxy group, isocyanate group, vinyl group, acrylic group, etc.) on the matrix side. As a typical silane coupling agent, there is, for example, hexamethyldisilazane (HMDS: C 6 H 19 NSi 2 ). The silane coupling agent usually has a reactive group (silyl group, etc.) corresponding to a functional group (hydroxyki group, methoxy group, ethoxy group, etc.) on the filler (composite particle, auxiliary particle, etc.) side which is an inorganic material. ).

表面処理剤の含有量(配合量・添加量)は、例えば、未処理前のフィラー全体100質量部に対して0.1~3質量部、0.5~2.5質量部さらには1~2質量部である。過少な表面処理剤ではその効果が乏しく、表面処理剤を過多にしても効果の向上は少ない。 The content (blending amount / addition amount) of the surface treatment agent is, for example, 0.1 to 3 parts by mass, 0.5 to 2.5 parts by mass, and further 1 to 1 to 100 parts by mass with respect to 100 parts by mass of the untreated filler. 2 parts by mass. If the amount of the surface treatment agent is too small, the effect is poor, and if the amount of the surface treatment agent is too large, the effect is not improved.

なお、混合(混練を含む。)前のフィラーに表面処理を予め行う他、マトリックスとフィラーの混合時に表面処理剤(カップリング剤等)が配合・添加等されてもよい。 In addition to subjecting the filler before mixing (including kneading) to a surface treatment in advance, a surface treatment agent (coupling agent or the like) may be added or added when the matrix and the filler are mixed.

(2)マトリックス
マトリックス(バインダを含む)は、例えば、絶縁性を有する有機材料からなる。具体的にいうと、通常、樹脂やゴム・エラストマー等がマトリックスとなる。樹脂は、熱硬化性樹脂でも、熱可塑性樹脂でもよい。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂等である。熱可塑性樹脂は、例えば、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリフェニレンサルファイド等である。ゴムは、例えば、エチレン- プロピレン- ジエンゴム( E P D M ) 、ブチルゴム等である。なお、本明細書では、特に断らない限り、ゴム・エラストマーを含めて、単に「樹脂」という。
(2) Matrix The matrix (including the binder) is made of, for example, an organic material having an insulating property. Specifically, a resin, rubber, elastomer, or the like is usually used as a matrix. The resin may be a thermosetting resin or a thermoplastic resin. The thermosetting resin is, for example, an epoxy resin, a phenol resin, a silicone resin, or the like. The thermoplastic resin is, for example, polystyrene, polymethylmethacrylate, polycarbonate, polyphenylene sulfide and the like. The rubber is, for example, ethylene-propylene-diene rubber (EPDM), butyl rubber, or the like. In the present specification, unless otherwise specified, it is simply referred to as "resin" including rubber and elastomer.

《製造方法》
(1)複合粒子
結晶質粒子と非晶質粒子からなる複合粒子の製造方法は種々考えられる。例えば、窒化ホウ素の結晶質粒子とホウ酸メラミン(錯体または塩)との混合物を加熱する焼成工程を経て複合粒子は得られる。より具体的にいうと、例えば、次のような各工程の一部または全部がなされるとよい。
"Production method"
(1) Composite particles Various methods for producing composite particles composed of crystalline particles and amorphous particles can be considered. For example, composite particles are obtained through a firing step of heating a mixture of boron nitride crystalline particles and melamine borate (complex or salt). More specifically, for example, it is preferable that a part or all of the following steps are performed.

混合物は、例えば、窒化ほう素粉末(h-BN粉末等)とホウ酸メラミン粉末を混合して得られる。このような混合は、ボールミル、振動ミル、V型混合機等を用いてなされる(混合工程)。このとき、積層状態のh-BN粒子も粉砕され得ると好ましい。 The mixture is obtained by mixing, for example, boron nitride powder (h-BN powder or the like) and melamine borate powder. Such mixing is performed using a ball mill, a vibration mill, a V-type mixer, or the like (mixing step). At this time, it is preferable that the laminated h-BN particles can also be pulverized.

窒化ホウ素粉末をホウ酸メラミンを調製した溶液へ直接加えるときは、その混合前または混合後(さらには濾過後)に、溶媒(通常は水)を除去してもよい。溶媒の除去は、例えば、真空乾燥(エバポレーション)により行える(乾燥工程)。なお、溶媒の除去は、例えば、常温域(例えば10~40℃)で行えばよい。 When the boron nitride powder is added directly to the prepared solution of melamine borate, the solvent (usually water) may be removed before or after the mixing (and even after filtration). The solvent can be removed by, for example, vacuum drying (evaporation) (drying step). The solvent may be removed, for example, in a normal temperature range (for example, 10 to 40 ° C.).

乾燥させた混合物をそのまま焼成してもよいし、その混合物を加圧成形した成形体を焼成してもよい。成形体は、例えば、混合物を金型成形、CIP(Cold Isostatic Pressing/冷間等方圧加工法)成形、RIP(Rubber Isostatic Pressing/ゴム等方圧加工法)成形等して得られる(成形工程)。なお、成形体は、焼成後の粉砕が可能な形状であれば足る。成形圧力もハンドリングできる成形体が得られる程度で足り、例えば、50~500MPaさらには100~300MPa程度でよい。 The dried mixture may be fired as it is, or a molded product obtained by pressure-molding the mixture may be fired. The molded product is obtained, for example, by molding the mixture, CIP (Cold Isostatic Pressing) molding, RIP (Rubber Isostatic Pressing) molding, or the like (molding step). ). It is sufficient that the molded body has a shape that can be crushed after firing. The molding pressure is also sufficient to obtain a molded body that can be handled, and may be, for example, about 50 to 500 MPa and further about 100 to 300 MPa.

混合物(その成形体を含む。)を、例えば、真空中や不活性ガス中で加熱すると、焼成体(焼結体)が得られる。その加熱温度は、例えば、1600℃~2000℃、1700~1900℃さらには1750~1850℃とすればよい。加熱時間は、例えば、0.3~3時間さらには0.7~2時間とすればよい。なお、HIP(Hot Isostatic Pressing/熱間等方圧加工法)により、上述した成形と焼成が同時になされてもよい。 When the mixture (including its molded product) is heated, for example, in vacuum or in an inert gas, a calcined product (sintered product) is obtained. The heating temperature may be, for example, 1600 ° C to 2000 ° C, 1700 to 1900 ° C, and further 1750 to 1850 ° C. The heating time may be, for example, 0.3 to 3 hours or even 0.7 to 2 hours. The above-mentioned molding and firing may be performed at the same time by HIP (Hot Isostatic Pressing).

焼成体を、例えば、大気雰囲気中で粉砕することにより、複合粒子からなる粉末(「複合化粉末」という。)が得られる(粉末化工程)。なお、焼成体の粉砕は、小型粉砕機やクラッシャー機等を用いて行える。 By pulverizing the fired body in an atmospheric atmosphere, for example, a powder composed of composite particles (referred to as “composite powder”) can be obtained (powdering step). The fired body can be crushed using a small crusher, a crusher, or the like.

複合化粉末の粒度は、例えば、篩い分けにより1~100μmさらには1~53μmに分級されて用いられてもよい。粉末の平均粒径(メジアン径:D50)でいえば、例えば、5~45μmさらには16~22μmに調整されてもよい。 The particle size of the composite powder may be classified into 1 to 100 μm and further 1 to 53 μm by sieving, for example. The average particle size of the powder (median diameter: D50) may be adjusted to, for example, 5 to 45 μm or even 16 to 22 μm.

(2)複合材
マトリックス中にフィラーが分散(充填)された複合材は、例えば、圧縮成形、射出成形、トランスファー成形等により形成される。マトリックスが熱硬化性樹脂からなる場合、成形後に、熱硬化処理(キュア処理)がなされるとよい。複合材は、最終製品形状またはそれに近い形状のものでもよいし、後加工される素材や中間材でもよい。
(2) Composite material The composite material in which the filler is dispersed (filled) in the matrix is formed by, for example, compression molding, injection molding, transfer molding, or the like. When the matrix is made of a thermosetting resin, it is preferable that a thermosetting treatment (cure treatment) is performed after molding. The composite material may be in the shape of a final product or a shape close to it, or may be a material to be post-processed or an intermediate material.

ちなみに、ホウ酸メラミンは、公知な種々の方法により製造される。例えば、ホウ酸とメラミンの加温水溶液を冷却(放冷)すると、白色粉末が析出する。こうして得られた白色粉末を脱水、乾燥させると、無水のホウ酸メラミン(C・2HBO)が得られる。 By the way, melamine borate is produced by various known methods. For example, when a heated aqueous solution of boric acid and melamine is cooled (cooled), a white powder is precipitated. When the white powder thus obtained is dehydrated and dried, anhydrous borate melamine (C 3H 6 N 6.2H 3 BO 3 ) is obtained.

《用途》
複合粒子を含むフィラーがマトリックス中に分散した複合材は、マトリックスの材質やフィラーの充填率に応じて、所望の熱伝導性や絶縁性を発揮し得るため、例えば、電子機器等の基板、ケース、放熱部材等、またはそれらの一部に用いられるとよい。なお、複合材の熱伝導率は、例えば、13~60W/mK、15~40W/mKさらには18~35W/mKとなり得る。複合材の比抵抗は、例えば、10~10Ωmさらには10~10Ωmとなり得る。
《Use》
A composite material in which a filler containing composite particles is dispersed in a matrix can exhibit desired thermal conductivity and insulating properties depending on the material of the matrix and the filling rate of the filler. Therefore, for example, a substrate or a case of an electronic device or the like. , Heat dissipation member, etc., or a part of them. The thermal conductivity of the composite material can be, for example, 13 to 60 W / mK, 15 to 40 W / mK, and further 18 to 35 W / mK. The specific resistance of the composite material can be, for example, 10 to 10 4 Ωm and further 10 2 to 10 3 Ωm.

h-BNからなる結晶質粒子を用いた種々のフィラーを用意し、各フィラーをマトリックスである樹脂中に充填した複合材を製作した。各フィラーの構造(組織)を観察すると共に、各複合材の熱伝導率と比抵抗を評価した。以下、このような具体例を示しつつ、本発明を説明する。 Various fillers using crystalline particles made of h-BN were prepared, and a composite material in which each filler was filled in a resin as a matrix was produced. The structure (structure) of each filler was observed, and the thermal conductivity and resistivity of each composite material were evaluated. Hereinafter, the present invention will be described with reference to such specific examples.

《フィラーの製作》
5種類のフィラー(試料1~3、試料31および試料C)を用意した。図1に、各フィラー(モデル)を模式的に示した。試料1のフィラーは、h-BNの結晶質粒子のみからなる。試料2のフィラーは、その結晶質粒子にBNの非晶質粒子を付着させた複合粒子からなる。試料3のフィラーは、その複合粒子をさらにカーボンナノチューブ(CNT)で修飾した粒子からなる。試料Cは、結晶質粒子をCNTで修飾した粒子からなる。なお、試料31のフィラーは、試料3の粒子に疎水化処理を施した粒子からなる。
《Manufacturing of filler》
Five types of fillers (Samples 1 to 3, Sample 31 and Sample C) were prepared. FIG. 1 schematically shows each filler (model). The filler of Sample 1 consists only of crystalline particles of h-BN. The filler of sample 2 is composed of composite particles in which amorphous particles of BN are attached to the crystalline particles. The filler of sample 3 is composed of particles obtained by further modifying the composite particles with carbon nanotubes (CNT). Sample C is composed of particles obtained by modifying crystalline particles with CNT. The filler of the sample 31 is composed of particles obtained by subjecting the particles of the sample 3 to a hydrophobic treatment.

(1)試料1(結晶質粒子)
試料1のフィラー(結晶質粒子)には市販のh-BN粉末(デンカ株式会社製デンカボロンナイトライド粉末SGP)を用いた(20g)。この粉末は、BN純度:99%以上、粒度:18μm(D50)、結晶度(GI値):0.9であった。以下、結晶質粒子源には、そのh-BN粉末を用いた。
(1) Sample 1 (crystalline particles)
Commercially available h-BN powder (Denkaboron nitride powder SGP manufactured by Denka Co., Ltd.) was used as the filler (crystalline particles) of Sample 1 (20 g). This powder had a BN purity of 99% or more, a particle size of 18 μm (D50), and a crystallinity (GI value) of 0.9. Hereinafter, the h-BN powder was used as the crystalline particle source.

(2)試料2(複合粒子)
ホウ酸メラミン粉末とh-BN粉末を原料として、複合粒子からなるフィラーを製作した。
(2) Sample 2 (composite particles)
Using melamine borate powder and h-BN powder as raw materials, a filler composed of composite particles was produced.

先ず、ホウ酸メラミン粉末は次のように調製した。ホウ酸(市販試薬:24g)を95℃に加熱した純水(800ml)に投入し、十分に撹拌して完全に溶解させた。このホウ酸水溶液へ、メラミン(市販試薬16g)を投入して、同様に完全に溶解させた。この混合水溶液を約25℃まで水冷した後、さらに真空吸引ろ過器で脱水した。得られた残留物を真空乾燥炉で真空乾燥(40℃×12時間)させた。こうして得られた白色粉末をXRDで分析したところ、無水のホウ酸メラミン(C・2HBO)であることが同定された。 First, the borate melamine powder was prepared as follows. Boric acid (commercially available reagent: 24 g) was added to pure water (800 ml) heated to 95 ° C., and the mixture was sufficiently stirred to completely dissolve it. Melamine (commercially available reagent 16 g) was added to this boric acid aqueous solution and completely dissolved in the same manner. The mixed aqueous solution was cooled to about 25 ° C. and then dehydrated with a vacuum suction filter. The obtained residue was vacuum dried (40 ° C. × 12 hours) in a vacuum drying oven. When the white powder thus obtained was analyzed by XRD, it was identified as anhydrous borate melamine (C 3H 6 N 6.2H 3 BO 3 ).

次に、h-BN粉末(16g)とホウ酸メラミン粉末(20g)をアセトン160gと一緒にボールミルで混合(12時間)した(混合工程)。得られた混合粉末をろ過した後、残留物を真空常温乾燥(エバポレーション)させた(乾燥工程)。濾過・乾燥はアセトン等有機溶媒を揮発させるために行った。 Next, h-BN powder (16 g) and melamine borate powder (20 g) were mixed with 160 g of acetone in a ball mill (12 hours) (mixing step). After filtering the obtained mixed powder, the residue was vacuum dried at room temperature (evaporation) (drying step). Filtration and drying were performed to volatilize an organic solvent such as acetone.

さらに、濾過・乾燥した混合粉末をCIP成形した。CIP成形は、混合粉末を2重の塩化ビニール袋に入れて行った。こうして成形塊(50mm×10mm程度)を得た。このときの成形圧力は3t/cm(294MPa)とした。 Further, the filtered and dried mixed powder was CIP molded. CIP molding was carried out by placing the mixed powder in a double vinyl chloride bag. In this way, a molded ingot (about 50 mm × 10 mm) was obtained. The molding pressure at this time was 3 t / cm 2 (294 MPa).

成形塊を加熱炉に入れて減圧した後、窒素ガスフロー下で加熱(1800℃×1時間)した(焼成工程)。得られた焼成体を卓上型クラッシャーで0.2時間粉砕した(粉砕工程)。粉砕物を篩い分級して粒度1~53μmとした。こうして複合粒子からなるフィラーを得た。このフィラー(100体積%)は、それぞれの密度と配合質量から換算すると、結晶質粒子:80体積%、非晶質粒子:20体積%に相当した。 The molded mass was placed in a heating furnace to reduce the pressure, and then heated (1800 ° C. × 1 hour) under a nitrogen gas flow (firing step). The obtained fired body was crushed with a tabletop crusher for 0.2 hours (crushing step). The pulverized material was sieved and classified to have a particle size of 1 to 53 μm. In this way, a filler composed of composite particles was obtained. This filler (100% by volume) corresponds to crystalline particles: 80% by volume and amorphous particles: 20% by volume when converted from the respective densities and blending masses.

(3)試料3(複合粒子+補助粒子)
ホウ酸メラミン粉末、h-BN粉末およびCNT粉末を原料として、CNT(粒子)で修飾した複合粒子からなるフィラーを製作した。CNT粉末にはNanocyl社製NC7000(平均直径:9.5nm、平均長さ:1.5μm)を用いた。以下、補助粒子源には、そのCNT粉末を用いた。
(3) Sample 3 (composite particles + auxiliary particles)
Using melamine borate powder, h-BN powder and CNT powder as raw materials, a filler composed of composite particles modified with CNT (particles) was produced. NC7000 (average diameter: 9.5 nm, average length: 1.5 μm) manufactured by Nanocyl was used as the CNT powder. Hereinafter, the CNT powder was used as the auxiliary particle source.

h-BN粉末(16g)、ホウ酸メラミン粉末(10g)およびCNT粉末(2g)を秤量して配合した以外は、試料3のフィラーと同様に製作した。こうしてCNT(補助粒子)で修飾された複合粒子からなるフィラーを得た。このフィラー(100体積%)は、結晶質粒子:80体積%、非晶質粒子:10体積%、CNT:10体積%に相当した。 It was produced in the same manner as the filler of Sample 3 except that h-BN powder (16 g), melamine borate powder (10 g) and CNT powder (2 g) were weighed and blended. In this way, a filler composed of composite particles modified with CNTs (auxiliary particles) was obtained. This filler (100% by volume) corresponded to crystalline particles: 80% by volume, amorphous particles: 10% by volume, and CNTs: 10% by volume.

(4)試料31(複合粒子+補助粒子+疎水化処理)
試料3のフィラーに対して、ヘキサメチルジシラザン(HMDS/信越化学工業株式会社製SZ-31)を用いて疎水化処理(シランカップリング処理)したフィラーも製作した。HMDSはフィラー100質量部に対して5質量部加えた。疎水化処理は、具体的にいうと、トルエンとHMDSを攪拌混合(60℃×5hr)した後、常温真空乾燥炉で12hr乾燥させた。こうしてCNTで修飾された複合粒子が疎水化されたフィラーを得た。
(4) Sample 31 (composite particles + auxiliary particles + hydrophobizing treatment)
A filler in which the filler of sample 3 was hydrophobized (silane coupling treatment) was also produced using hexamethyldisilazane (HMDS / SZ-31 manufactured by Shin-Etsu Chemical Co., Ltd.). HMDS was added in an amount of 5 parts by mass with respect to 100 parts by mass of the filler. Specifically, in the hydrophobizing treatment, toluene and HMDS were stirred and mixed (60 ° C. × 5 hr), and then dried in a room temperature vacuum drying oven for 12 hr. In this way, a filler obtained by hydrophobizing the composite particles modified with CNT was obtained.

(5)試料C(結晶質粒子+補助粒子)
h-BN粉末とCNT粉末を原料として、CNTで修飾した結晶質粒子からなるフィラーを製作した。h-BN粉末(18g)およびCNT粉末(2g)を秤量して配合した以外は、試料3のフィラーと同様に製作した。こうしてCNT(補助粒子)で修飾された結晶質粒子からなるフィラーを得た。このフィラー(100体積%)は、結晶質粒子:90体積%、CNT:10体積%に相当した。
(5) Sample C (crystalline particles + auxiliary particles)
Using h-BN powder and CNT powder as raw materials, a filler composed of crystalline particles modified with CNT was produced. It was produced in the same manner as the filler of sample 3 except that h-BN powder (18 g) and CNT powder (2 g) were weighed and blended. In this way, a filler composed of crystalline particles modified with CNTs (auxiliary particles) was obtained. This filler (100% by volume) corresponded to crystalline particles: 90% by volume and CNT: 10% by volume.

《複合材の製作》
各フィラーをマトリックスに分散させた複合材を製作した。各フィラーの充填率は、特に断らない限り、複合材全体(100体積%)に対して70体積%とした。マトリックス(バインダ)には、一液加熱硬化型エポキシ樹脂(セメダイン株式会社製EP160/以降、単に「樹脂」という。)を用いた。具体的には、次のようにして複合材を製作した。
<< Production of composite materials >>
A composite material in which each filler was dispersed in a matrix was produced. Unless otherwise specified, the filling rate of each filler was set to 70% by volume with respect to the entire composite material (100% by volume). For the matrix (binder), a one-component heat-curable epoxy resin (EP160 / hereafter manufactured by Cemedine Co., Ltd., simply referred to as "resin") was used. Specifically, the composite material was produced as follows.

各フィラーと樹脂をプラスチック製容器内で10分間混練した。真空乾燥させた混練物を解砕して、フィラーの粒子が樹脂で被覆されたコンパウンドを得た。このコンパウンドを金型に充填して、一軸方向に圧縮成形した。このとき、成形圧力:15MPa、金型温度:120℃とした。こうして円柱状の複合成形体(φ14mm×20mm)を得た。複合成形体を大気雰囲気中で加熱(120℃×30分)して樹脂を硬化させた。こうして、樹脂中にフィラーが分散した複合材を得た。本実施例では、試料1、試料2、試料3、試料31、試料Cの各フィラーを用いた複合材を、順に試料M1、試料M2、試料M3、試料M31、試料MCという。なお、参考試料として、CNT粉末のみをフィラーとした複合材も同様に製作した(試料MT)。 Each filler and resin were kneaded in a plastic container for 10 minutes. The vacuum-dried kneaded product was crushed to obtain a compound in which the filler particles were coated with a resin. This compound was filled in a mold and compression molded in the uniaxial direction. At this time, the molding pressure was 15 MPa and the mold temperature was 120 ° C. In this way, a columnar composite molded body (φ14 mm × 20 mm) was obtained. The composite molded product was heated in an atmospheric atmosphere (120 ° C. × 30 minutes) to cure the resin. In this way, a composite material in which the filler was dispersed in the resin was obtained. In this embodiment, the composite material using each filler of Sample 1, Sample 2, Sample 3, Sample 31, and Sample C is referred to as Sample M1, Sample M2, Sample M3, Sample M31, and Sample MC in this order. As a reference sample, a composite material containing only CNT powder as a filler was also produced in the same manner (Sample MT).

《観察》
(1)SEM
試料1~3および試料Cの各フィラー粒子を走査型電子顕微鏡(SEM)で観察した。それらの観察像を図2および図3に示した。また試料M1と試料M3の各複合材の断面をSEMで観察した観察像を図4に示した。
"observation"
(1) SEM
Each filler particle of Samples 1 to 3 and Sample C was observed with a scanning electron microscope (SEM). The observed images are shown in FIGS. 2 and 3. Further, FIG. 4 shows an observation image of the cross section of each composite material of the sample M1 and the sample M3 observed by SEM.

(2)XRD
試料1と試料2のフィラー粒子をX線回折解析(XRD/Cu-Kα)した。得られた回折パターンを図5にまとめて示した。
(2) XRD
The filler particles of Sample 1 and Sample 2 were subjected to X-ray diffraction analysis (XRD / Cu-Kα). The obtained diffraction patterns are summarized in FIG.

《測定》
(1)熱伝導率
複合材の熱伝導率(λ)をナノフラッシュ法により求めた。具体的にいうと、ナノフラッシュ法で測定した熱拡散率(α)と、示差走査熱量計(DSC)で求めた比熱(Cp)と、アルキメデス法で求めた密度(ρ)とから、λ=α・Cp・ρとして熱伝導率を算出した。熱拡散率の測定には、円柱状の複合材から、軸方向(加圧方向)に垂直な方向に切り出した薄い板状のサンプルを用いた。こうして、複合材の加圧方向(通常、配向方向に略直交する方向)を伝熱方向と想定したときの熱伝導率を求めた。
"measurement"
(1) Thermal conductivity The thermal conductivity (λ) of the composite material was determined by the nanoflash method. Specifically, from the thermal diffusivity (α) measured by the nanoflash method, the specific heat (Cp) determined by the differential scanning calorimeter (DSC), and the density (ρ) determined by the Archimedes method, λ = The thermal conductivity was calculated as α, Cp, and ρ. For the measurement of the thermal diffusivity, a thin plate-shaped sample cut out from the columnar composite material in the direction perpendicular to the axial direction (pressurization direction) was used. In this way, the thermal conductivity when the pressurizing direction of the composite material (usually the direction substantially orthogonal to the orientation direction) is assumed to be the heat transfer direction is obtained.

(2)比抵抗
各複合材の比抵抗は、上記の円板状サンプルを用いて、室温域で直流四端子法により測定した。
(2) Specific resistance The specific resistance of each composite material was measured by the DC four-terminal method in the room temperature range using the above-mentioned disc-shaped sample.

得られた各試料の熱伝導率と比抵抗を図6および図7にまとめて示した。また、図8には、試料M31に基づいて、フィラーの充填率と熱伝導率の関係を示した。さらに図9には、試料M3に基づいて、非晶質粒子と補助粒子(CNT)の体積割合と熱伝導率の関係を示した。なお、図9の場合、複合材全体に対するフィラーの充填率:70体積%と、フィラー全体に対する結晶質粒子の割合:80体積%とは不変とした。つまり、非晶質粒子とCNTの合計割合をフィラー全体に対して20体積%としたまま、非晶質粒子とCNTの体積割合を変化させた。 The thermal conductivity and resistivity of each of the obtained samples are summarized in FIGS. 6 and 7. Further, FIG. 8 shows the relationship between the filling rate of the filler and the thermal conductivity based on the sample M31. Further, FIG. 9 shows the relationship between the volume ratio of the amorphous particles and the auxiliary particles (CNT) and the thermal conductivity based on the sample M3. In the case of FIG. 9, the filling rate of the filler with respect to the entire composite material: 70% by volume and the ratio of the crystalline particles to the entire filler: 80% by volume were unchanged. That is, the volume ratio of the amorphous particles and the CNTs was changed while keeping the total ratio of the amorphous particles and the CNTs at 20% by volume with respect to the entire filler.

《評価》
(1)構造(形態)
図2から明らかなように、試料2の粒子は、h-BN粒子(試料1の粒子)の表面に、それよりも小さい粒子(最大長1~10μm程度)が付着した複合粒子であることが確認できた。図5から明らかなように、試料1の粒子は結晶質粒子であり、試料2に観られる小粒子は非晶質粒子であることもわかった。
"evaluation"
(1) Structure (form)
As is clear from FIG. 2, the particles of sample 2 are composite particles in which smaller particles (maximum length of about 1 to 10 μm) are attached to the surface of h-BN particles (particles of sample 1). It could be confirmed. As is clear from FIG. 5, it was also found that the particles of sample 1 are crystalline particles and the small particles observed in sample 2 are amorphous particles.

図3から明らかなように、複合粒子の表面には、CNT(補助粒子)がBNの非晶質粒子を介して結晶質粒子(h-BN粒子)の表面および側面に多く担持されることもわかった(試料3)。一方、BNの結晶質粒子のみには、CNTがその側面に僅かしか付着しないこともわかった(試料C)。 As is clear from FIG. 3, on the surface of the composite particle, a large amount of CNT (auxiliary particle) is supported on the surface and the side surface of the crystalline particle (h-BN particle) via the amorphous particle of BN. I found it (Sample 3). On the other hand, it was also found that CNT adhered only slightly to the side surface of the crystalline particles of BN (Sample C).

図4から明らかなように、CNTが担持された複合粒子をフィラーとする複合材(試料M3)では、隣接する結晶質粒子(h-BN粒子)の隙間に非晶質粒子およびCNTが介在して、各粒子が密接した状態となっていた。つまり、結晶質粒子の隣接間が非晶質粒子とCNTにより連接され、熱伝導パスが形成された状態となっていることが確認された。また、試料M3の複合材では、結晶質粒子の向きも一定ではなく、その配向性は低かった。 As is clear from FIG. 4, in the composite material (sample M3) in which the composite particles carrying CNTs are used as fillers, the amorphous particles and CNTs are interposed in the gaps between the adjacent crystalline particles (h-BN particles). The particles were in close contact with each other. That is, it was confirmed that the adjacent spaces of the crystalline particles were connected to the amorphous particles by CNTs to form a heat conduction path. Further, in the composite material of the sample M3, the orientation of the crystalline particles was not constant, and the orientation thereof was low.

一方、結晶質粒子のみをフィラーとする複合材(試料M1)では、各結晶質粒子が一定方向(加圧方向に略直交する方向)に配向していると共に、各結晶質粒子間に樹脂が介在した状態となっていた。つまり、隣接する結晶質粒子同士の接触が樹脂により遮断され、それらの間に熱伝導パスが形成され難いことが確認された。 On the other hand, in the composite material (Sample M1) containing only crystalline particles as a filler, each crystalline particle is oriented in a certain direction (direction substantially orthogonal to the pressurizing direction), and a resin is formed between the crystalline particles. It was in an intervening state. That is, it was confirmed that the contact between the adjacent crystalline particles was blocked by the resin, and it was difficult to form a heat conduction path between them.

(2)特性
図6から明らかなように、複合粒子にCNTを担持させたフィラーを用いた複合材(試料M3、M31)は、結晶質粒子のみからなるフィラーを用いた複合材(試料M1)と比較して、熱伝導率が21~43%程度も顕著に向上した。また、試料MCの複合材は、高熱伝導率なCNTを含むにもかかわらず、試料M1よりも熱伝導率が低下した。これらのことから、フィラー粒子に非晶質粒子が存在することにより、多くの補助粒子(CNT)が複合粒子の表面に担持され、それにより熱伝導率が顕著に向上することがわかった。
(2) Characteristics As is clear from FIG. 6, the composite material (samples M3 and M31) using the filler in which the CNT is supported on the composite particles is the composite material (sample M1) using the filler consisting only of crystalline particles. The thermal conductivity was significantly improved by about 21 to 43% as compared with the above. Further, although the composite material of the sample MC contained CNT having a high thermal conductivity, the thermal conductivity was lower than that of the sample M1. From these facts, it was found that the presence of amorphous particles in the filler particles causes many auxiliary particles (CNTs) to be supported on the surface of the composite particles, thereby significantly improving the thermal conductivity.

図7から明らかなように、試料M3、M31の複合材は、高導電性のCNTを含むにもかかわらず、CNTを含まない試料M1、M2の複合材に近い比抵抗を示すこともわかった。また、試料M3、M31の複合材は、非晶質粒子を含まない試料MCの複合材(CNT量は同じ)よりも比抵抗が大きくなることもわかった。 As is clear from FIG. 7, it was also found that the composite material of the samples M3 and M31 showed a specific resistance close to that of the composite material of the samples M1 and M2 containing no CNT, although it contained the highly conductive CNT. .. It was also found that the composite material of the samples M3 and M31 had a higher specific resistance than the composite material of the sample MC containing no amorphous particles (the amount of CNT was the same).

さらに、図6および図7に示した試料M3と試料M31の比較からわかるように、疎水化処理したフィラーを用いることにより、熱伝導率および比抵抗(電気抵抗率)がさらに向上することもわかった。 Further, as can be seen from the comparison between the sample M3 and the sample M31 shown in FIGS. 6 and 7, it was also found that the thermal conductivity and the specific resistance (electric resistivity) are further improved by using the hydrophobized filler. rice field.

(3)充填率
図8から明らかなように、複合材の熱伝導率は、フィラーの充填率に応じて増加するが、充填率が70体積%%付近を超えると、その増加傾向は緩やかになることもわかった。
(3) Filling rate As is clear from FIG. 8, the thermal conductivity of the composite material increases according to the filling rate of the filler, but when the filling rate exceeds around 70% by volume, the increasing tendency gradually increases. I also found that it would be.

(4)非晶質粒子と補助粒子の割合
図9から明らかなように、非晶質粒子が補助粒子(CNT)との合計量に対して40~80体積%さらには45~75体積%となるフィラー粒子を用いると、熱伝導率の高い複合材が得られることがわかった。
(4) Ratio of amorphous particles and auxiliary particles As is clear from FIG. 9, the amount of amorphous particles is 40 to 80% by volume and further 45 to 75% by volume with respect to the total amount of auxiliary particles (CNT). It was found that a composite material having high thermal conductivity can be obtained by using the filler particles.

《考察》
以上の結果からわかるように、窒化ホウ素の複合粒子を骨格とするフィラーを用いることにより、複合材の熱伝導率を大幅に向上させ得ることがわかった。このような熱伝導率の飛躍的な向上は、図10に示すように、高熱伝導性の結晶質粒子が非晶質粒子と補助粒子で連接されて熱伝導パスが形成される結果、熱伝導のパーコレーションが生じたためと考えられる。
<< Consideration >>
As can be seen from the above results, it was found that the thermal conductivity of the composite material can be significantly improved by using a filler having a boron nitride composite particle as a skeleton. As shown in FIG. 10, such a dramatic improvement in thermal conductivity is a result of the heat conduction path being formed by connecting the crystalline particles with high heat conductivity with the amorphous particles and the auxiliary particles. It is probable that the percoration of.

Claims (12)

窒化ホウ素の結晶質粒子と該結晶質粒子よりも小さく該結晶質粒子の表面に付着した窒化ホウ素の非晶質粒子とを有する複合粒子を含む熱伝導材。 A heat conductive material containing composite particles having boron nitride crystalline particles and amorphous boron nitride particles smaller than the crystalline particles and adhering to the surface of the crystalline particles. 前記結晶質粒子と前記非晶質粒子の合計量に対して、該非晶質粒子は5~20体積%含まれる請求項1に記載の熱伝導材。 The heat conductive material according to claim 1, wherein the amorphous particles are contained in an amount of 5 to 20% by volume based on the total amount of the crystalline particles and the amorphous particles. さらに、前記結晶質粒子よりも熱伝導率が大きく前記非晶質粒子に担持された補助粒子を含む請求項1または2に記載の熱伝導材。 The heat conductive material according to claim 1 or 2, further comprising auxiliary particles supported on the amorphous particles, which have a higher thermal conductivity than the crystalline particles. 前記補助粒子は、炭素粒子を含む請求項3に記載の熱伝導材。 The heat conductive material according to claim 3, wherein the auxiliary particles include carbon particles. 前記炭素粒子は、カーボンナノチューブを含む請求項4に記載の熱伝導材。 The heat conductive material according to claim 4, wherein the carbon particles include carbon nanotubes. 前記結晶質粒子と前記非晶質粒子と前記補助粒子の合計量に対して、該補助粒子は5~20体積%含まれる請求項3~5のいずれかに記載の熱伝導材。 The heat conductive material according to any one of claims 3 to 5, wherein the auxiliary particles are contained in an amount of 5 to 20% by volume based on the total amount of the crystalline particles, the amorphous particles and the auxiliary particles. 前記非晶質粒子と前記補助粒子の合計量に対して、該非晶質粒子は40~80体積%含まれる請求項3~6のいずれかに記載の熱伝導材。 The heat conductive material according to any one of claims 3 to 6, wherein the amorphous particles are contained in an amount of 40 to 80% by volume based on the total amount of the amorphous particles and the auxiliary particles. 前記複合粒子を含むフィラーがマトリックスに分散してなる複合材である請求項1~7のいずれかに記載の熱伝導材。 The heat conductive material according to any one of claims 1 to 7, which is a composite material in which a filler containing the composite particles is dispersed in a matrix. 前記フィラーの充填率は、前記複合材全体に対して50~90体積%である請求項8に記載の熱伝導材。 The heat conductive material according to claim 8, wherein the filling rate of the filler is 50 to 90% by volume with respect to the entire composite material. 前記フィラーは、マトリックスとの親和性を高める表面処理がなされている請求項8または9に記載の熱伝導材。 The heat conductive material according to claim 8 or 9, wherein the filler is surface-treated to enhance the affinity with the matrix. 窒化ホウ素の結晶質粒子とホウ酸メラミンとの混合物を加熱する焼成工程を備え、
該結晶質粒子の表面に該結晶質粒子よりも小さい窒化ホウ素の非晶質粒子を付着させた複合粒子を得る熱伝導材の製造方法。
It comprises a firing step of heating a mixture of boron nitride crystalline particles and melamine borate.
A method for producing a heat conductive material for obtaining composite particles in which amorphous particles of boron nitride smaller than the crystalline particles are adhered to the surface of the crystalline particles.
前記混合物は、さらに、前記結晶質粒子よりも熱伝導率が大きく前記非晶質粒子に担持される補助粒子を含む請求項11に記載の熱伝導材の製造方法。 The method for producing a heat conductive material according to claim 11, wherein the mixture further contains auxiliary particles having a higher thermal conductivity than the crystalline particles and being carried on the amorphous particles.
JP2020189583A 2020-11-13 2020-11-13 Heat conductive material and manufacturing method thereof Pending JP2022078711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020189583A JP2022078711A (en) 2020-11-13 2020-11-13 Heat conductive material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020189583A JP2022078711A (en) 2020-11-13 2020-11-13 Heat conductive material and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2022078711A true JP2022078711A (en) 2022-05-25

Family

ID=81707064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020189583A Pending JP2022078711A (en) 2020-11-13 2020-11-13 Heat conductive material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2022078711A (en)

Similar Documents

Publication Publication Date Title
Zhang et al. Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials
JP6678999B2 (en) Hexagonal boron nitride powder, method for producing the same, resin composition and resin sheet
JP6261050B2 (en) Aluminum nitride powder
CN111164047B (en) Hexagonal boron nitride powder, method for producing same, and composition and heat dissipating material using same
TW201927689A (en) Hexagonal boron nitride powder and method for producing the same, and composition and heat dissipation material using the same
Zhang et al. Hybrid fillers of hexagonal and cubic boron nitride in epoxy composites for thermal management applications
KR102471589B1 (en) Graphite/graphene composite, heat collector, heat conductor, heat sink and heat dissipation system
JP7079378B2 (en) Boron nitride powder and its manufacturing method, as well as composite materials and heat dissipation members
Wu et al. Novel in-situ constructing approach for vertically aligned AlN skeleton and its thermal conductivity enhancement effect on epoxy
WO2021200724A1 (en) Boron nitride sintered body, composite body, method for producing said boron nitride sintered body, method for producing said composite body, and heat dissipation member
JP4920135B2 (en) Electrical insulator-coated vapor-phase carbon fiber, method for producing the same, and use thereof
JP7452478B2 (en) Thermal conductive material and its manufacturing method
JP2022078711A (en) Heat conductive material and manufacturing method thereof
KR101351704B1 (en) Fabrication methods of metal/polymer/ceramic matrix composites containing randomly distributed or directionally aligned graphenes by mechanical process
KR102384105B1 (en) heat dissipation composite material and method of fabricating of the same
WO2020196644A1 (en) Bulk boron nitride particles, thermally conductive resin composition, and heat dissipating member
JP2002114575A (en) Hexagonal boron nitride plate, method for manufacturing the same and application of the same
JP2023060476A (en) Heat-conductive material and manufacturing method thereof
Zhou et al. Enhancing cryogenic thermal conductivity of epoxy composites through the incorporation of boron nitride nanosheets/nanodiamond aerogels prepared by directional‐freezing method
Han et al. Thermally conductive fillers
JP2022145096A (en) Composite material and production method of the same
Kong et al. Conformal BN coating to enhance the electrical insulation and thermal conductivity of spherical graphite fillers for electronic encapsulation field
WO2022039235A1 (en) Sheet containing boron nitride particles each having hollow part
KR101624945B1 (en) Composite of blockcopolymer/mwnt/metal, and the manufacturing method thereof
JP7203290B2 (en) Sheet-like hexagonal boron nitride sintered body and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240216