JP7452478B2 - Thermal conductive material and its manufacturing method - Google Patents

Thermal conductive material and its manufacturing method Download PDF

Info

Publication number
JP7452478B2
JP7452478B2 JP2021046346A JP2021046346A JP7452478B2 JP 7452478 B2 JP7452478 B2 JP 7452478B2 JP 2021046346 A JP2021046346 A JP 2021046346A JP 2021046346 A JP2021046346 A JP 2021046346A JP 7452478 B2 JP7452478 B2 JP 7452478B2
Authority
JP
Japan
Prior art keywords
particles
composite
filler
crystalline
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021046346A
Other languages
Japanese (ja)
Other versions
JP2022145088A (en
Inventor
ジョンハン ファン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2021046346A priority Critical patent/JP7452478B2/en
Publication of JP2022145088A publication Critical patent/JP2022145088A/en
Application granted granted Critical
Publication of JP7452478B2 publication Critical patent/JP7452478B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、窒化ホウ素を用いた熱伝導材等に関する。 The present invention relates to a thermally conductive material using boron nitride.

電子機器(半導体モジュール等)の高密度化や高性能化等に伴う構造変化により、従来と異なる高放熱性の電気絶縁材料が用いられるようになった。例えば、高熱伝導なセラミックス(AlN等)の基板に替えて、樹脂中に高熱伝導な絶縁材(フィラー)を分散させた複合材料が絶縁シート等に用いられている。このような(有機/無機)複合材料は、成形性、加工性、異種材との接着性等に優れ、比較的安価でもある。 Due to structural changes associated with higher density and higher performance of electronic devices (semiconductor modules, etc.), electrical insulating materials with high heat dissipation properties that are different from conventional ones have come to be used. For example, instead of a substrate made of highly thermally conductive ceramics (such as AlN), a composite material in which a highly thermally conductive insulating material (filler) is dispersed in a resin is used for insulating sheets and the like. Such (organic/inorganic) composite materials have excellent moldability, processability, adhesion to different materials, and are relatively inexpensive.

ところで、複合材料用のフィラーとして、種々のセラミックス粒子(繊維を含む)が用いられる。例えば、シリカ(SiO)、アルミナ(Al)、窒化アルミニウム(AlN)等の粒子である。しかし、シリカやアルミナは熱伝導率が小さい。また窒化アルミニウムは水(HO)と反応してアンモニア(NH)を発生するため、耐湿性が低く長期信頼性に劣る。そこで、熱伝導性、耐熱性、電気絶縁性等に優れ、化学的にも安定な窒化ホウ素(BN)が複合材料のフィラーとして用いられている。 By the way, various ceramic particles (including fibers) are used as fillers for composite materials. For example, they are particles of silica (SiO 2 ), alumina (Al 2 O 3 ), aluminum nitride (AlN), and the like. However, silica and alumina have low thermal conductivity. Furthermore, since aluminum nitride reacts with water (H 2 O) to generate ammonia (NH 3 ), it has low moisture resistance and poor long-term reliability. Therefore, boron nitride (BN), which has excellent thermal conductivity, heat resistance, electrical insulation, and is chemically stable, is used as a filler in composite materials.

窒化ホウ素には、一般的に、六方晶系の常圧相(適宜「h-BN」ともいう。)と立方晶系の高圧相(適宜「c-BN」ともいう。)がある。通常、六方晶系窒化ホウ素(h-BN)がフィラーとして用いられる。 Boron nitride generally has a hexagonal normal pressure phase (sometimes referred to as "h-BN") and a cubic high pressure phase (sometimes referred to as "c-BN"). Hexagonal boron nitride (h-BN) is usually used as a filler.

h-BNは、黒鉛と類似した六角網目層が積層された鱗片状からなり、面方向と厚さ方向で熱伝導率が大きく異なる熱伝導異方性を有する。また、h-BN粒子は、充填される樹脂中において、面方向に配向し易い。このため、例えば、h-BN粒子を高充填しても、厚さ方向(シート状の複合材料なら、熱源側から冷却源側へ向かう方向)の放熱性(熱伝導率)が不足する傾向にあった。 h-BN has a scale-like structure in which hexagonal mesh layers similar to graphite are laminated, and has thermal conductivity anisotropy in which the thermal conductivity is greatly different in the plane direction and the thickness direction. In addition, h-BN particles tend to be oriented in the plane direction in the resin filled. For this reason, for example, even if highly filled with h-BN particles, heat dissipation (thermal conductivity) in the thickness direction (in the case of a sheet-like composite material, from the heat source side to the cooling source side) tends to be insufficient. there were.

そこで、h-BN粒子を含む複合材料の熱伝導性(放熱性)を高める提案が種々なされており、例えば、下記の特許文献1~6に関連した記載がある。 Therefore, various proposals have been made to improve the thermal conductivity (heat dissipation) of composite materials containing h-BN particles, and for example, there are related descriptions in Patent Documents 1 to 6 below.

特開昭59-64355Japanese Patent Publication No. 59-64355 特開2010-260225JP2010-260225 特開2011-184507JP2011-184507 特開2012-171842JP2012-171842 特開2012-255055JP2012-255055 特開2018-159062JP2018-159062 特開平2-143433JP 2-143433 特開2011-51166JP2011-51166 特開2013-86433JP2013-86433 特開2014-237805JP2014-237805 特開2019-513203JP2019-513203

もっとも、特許文献1~6のいずれも、結晶質なh-BNをフィラーに用いているに過ぎない。なお、特許文献7~11には、鉄粉等の磁性粉末を複合材料のフィラーに用いる旨が記載されているが、窒化ホウ素に関する具体的な記載はない。 However, all of Patent Documents 1 to 6 only use crystalline h-BN as a filler. Note that Patent Documents 7 to 11 describe the use of magnetic powder such as iron powder as a filler for composite materials, but there is no specific description regarding boron nitride.

本発明はこのような事情に鑑みて為されたものであり、窒化ホウ素粒子を用いた新たな熱伝導材等を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a new thermally conductive material using boron nitride particles.

本発明者はこの課題を解決すべく鋭意研究した結果、窒化ホウ素の結晶質粒子に窒化ホウ素の非晶質粒子を付着させた複合粒子を骨格とすると共に、その非晶質粒子に磁性粒子を担持させてなるフィラーを用いることで、複合材の熱伝導率を高めることに成功した。この成果を発展させることにより、以降に述べる本発明を完成するに至った。 As a result of intensive research to solve this problem, the inventors of the present invention have created a composite particle skeleton in which amorphous particles of boron nitride are attached to crystalline particles of boron nitride, and have attached magnetic particles to the amorphous particles. By using a supported filler, we succeeded in increasing the thermal conductivity of the composite material. By developing this result, we have completed the present invention described below.

《熱伝導材》
本発明は、窒化ホウ素の結晶質粒子と該結晶質粒子よりも小さく該結晶質粒子の表面に付着した窒化ホウ素の非晶質粒子と該非晶質粒子に担持された磁性粒子とを有する複合粒子を含む熱伝導材である。
《Thermal conductive material》
The present invention provides composite particles having crystalline particles of boron nitride, amorphous particles of boron nitride smaller than the crystalline particles and attached to the surface of the crystalline particles, and magnetic particles supported on the amorphous particles. It is a thermally conductive material containing

本発明に係る複合粒子を用いれば、熱伝導性に優れる熱伝導材(複合材を含む。)が得られる。この理由は定かではないが、次のように考えられる。複合粒子中の非晶質粒子は、複合粒子間(特に結晶質粒子間)の接触割合や接触面積を増加させると共に、補助粒子(例えば磁性粒子)を担持し得る。 By using the composite particles according to the present invention, a thermally conductive material (including a composite material) having excellent thermal conductivity can be obtained. Although the reason for this is not certain, it is thought to be as follows. The amorphous particles in the composite particles increase the contact ratio and contact area between the composite particles (particularly between the crystalline particles), and can support auxiliary particles (for example, magnetic particles).

補助粒子の一例である磁性粒子も、通常、高熱伝導率な物質(例えば鉄属元素等の金属)からなる。そして、非晶質粒子および磁性粒子を介して、結晶質粒子の隣接間で熱伝導パスが形成され得る。こうして、本発明に係る複合粒子を含む熱伝導材(例えば複合材)は、熱伝導率が顕著に向上するようになったと考えられる。 Magnetic particles, which are an example of auxiliary particles, are also usually made of a substance with high thermal conductivity (for example, a metal such as an iron element). A heat conduction path can then be formed between adjacent crystalline particles via the amorphous particles and the magnetic particles. In this way, it is considered that the thermally conductive material (for example, composite material) containing the composite particles according to the present invention has significantly improved thermal conductivity.

なお、本発明に係る複合粒子は、磁性粒子を含むため、磁場による配向制御が可能である。このため、複合材中において、高熱伝導率となる特定方向(例えばa軸方向(100))へ複合粒子(特に結晶質粒子)を配向させて、複合材の所定方向の熱伝導率をさらに高めることも可能となる。 Note that since the composite particles according to the present invention include magnetic particles, their orientation can be controlled by a magnetic field. For this reason, in the composite material, composite particles (especially crystalline particles) are oriented in a specific direction (for example, the a-axis direction (100)) that has high thermal conductivity, thereby further increasing the thermal conductivity of the composite material in a predetermined direction. It also becomes possible.

《熱伝導材の製造方法》
本発明は、熱伝導材の製造方法としても把握される。例えば、本発明は、窒化ホウ素の結晶質粒子とホウ酸メラミンと磁性粒子との混合物を加熱する焼成工程を備える熱伝導材の製造方法でもよい。
《Method for manufacturing thermally conductive material》
The present invention can also be understood as a method for manufacturing a thermally conductive material. For example, the present invention may be a method for manufacturing a thermally conductive material that includes a firing step of heating a mixture of crystalline particles of boron nitride, melamine borate, and magnetic particles.

《複合材料/熱伝導部材》
本発明の熱伝導材は、複合粒子からなるフィラー等として把握される他、複合粒子(フィラー)を含む複合材料、さらには複合材料からなる部材(熱伝導部材)等としても把握される。熱伝導材の一形態である複合材料は、複合粒子を含むフィラーがマトリックスに分散してなる。熱伝導材の一形態である熱伝導部材には、例えば、放熱部材、基板、ケース等がある。
《Composite materials/thermal conductive materials》
The thermally conductive material of the present invention is not only understood as a filler made of composite particles, but also as a composite material containing composite particles (filler), and furthermore, a member made of a composite material (thermal conductive member). A composite material, which is a type of thermally conductive material, is made up of a filler containing composite particles dispersed in a matrix. Thermal conductive members, which are one form of thermally conductive materials, include, for example, heat dissipating members, substrates, cases, and the like.

《その他》
(1)本明細書でいう「~材」は、「材料」または「部材」を意味する。例えば、熱伝導材は、複合粒子またはその粉末(原材料)、その複合粒子(粉末)と母材(マトリックス)または結合材(バインダ)とを有する複合材(材料、素材、部材等)でもよい。
"others"
(1) As used herein, "material" means "material" or "member." For example, the thermally conductive material may be a composite particle or a powder thereof (raw material), or a composite material (material, raw material, member, etc.) having the composite particle (powder) and a base material (matrix) or a binding material (binder).

(2)本明細書でいう「x~y」は、特に断らない限り、下限値xおよび上限値yを含む。本明細書に記載した種々の数値または数値範囲に含まれる任意の数値を新たな下限値または上限値として「a~b」のような範囲を新設し得る。本明細書でいう「x~ynm」は、特に断らない限り、xnm~ynmを意味する。他の単位系(μm、W/mK、Ωm等)についても同様である。 (2) "x to y" as used herein includes a lower limit x and an upper limit y, unless otherwise specified. A new range such as "a to b" can be established by setting any numerical value included in the various numerical values or numerical ranges described herein as a new lower limit or upper limit. "x~ynm" as used herein means xnm~ynm unless otherwise specified. The same applies to other unit systems (μm, W/mK, Ωm, etc.).

実施例で用いた各フィラー粒子を模式的に示すモデル図である。FIG. 3 is a model diagram schematically showing each filler particle used in Examples. 試料1および試料2のフィラー粒子を観察したSEM像である。3 is a SEM image of filler particles of Sample 1 and Sample 2. 試料3のフィラー粒子を観察したSEM像とEDX像である。These are an SEM image and an EDX image of filler particles of Sample 3. 試料1と試料2のフィラー粒子に係るXRDプロファイルである。3 is an XRD profile of filler particles of Sample 1 and Sample 2. 各試料の複合材の熱伝導率を示す棒グラフである。It is a bar graph showing the thermal conductivity of the composite material of each sample. 各試料の複合材について、比抵抗と熱伝導率の関係を示す散布図である。It is a scatter diagram showing the relationship between specific resistance and thermal conductivity for each sample composite material. 試料M3の複合材に基づいて、フィラーの充填率と熱伝導率の関係を示すグラフである。It is a graph showing the relationship between filler filling rate and thermal conductivity based on the composite material of sample M3. 本発明に係る複合材を模式的に示したモデル図である。1 is a model diagram schematically showing a composite material according to the present invention.

本発明の構成要素に、本明細書中から任意に選択した一つまたは二つ以上の構成要素を付加し得る。本明細書で説明する内容は、熱伝導材(フィラー、複合材(材料、部材等)を含む。)のみならず、その製造方法等にも適宜該当する。方法的な構成要素であっても物に関する構成要素となり得る。いずれの実施形態が最良であるか否かは、対象、要求性能等によって異なる。 One or more components arbitrarily selected from this specification may be added to the components of the present invention. The content described in this specification applies not only to thermally conductive materials (including fillers and composite materials (materials, members, etc.)), but also to methods for manufacturing the same. Even method-related components can be material-related components. Which embodiment is best depends on the object, required performance, etc.

《複合粒子》
複合粒子は、窒化ホウ素(BN)からなる結晶質粒子と、窒化ホウ素からなる非晶質粒子を備える。非晶質粒子は結晶質粒子の表面に付着している。非晶質粒子の付着は、化学結合(ファンデルワールス結合を含む)、焼結、接着等のいずれでもよい。なお、非晶質粒子は、結晶質粒子の表面に付着している全粒子の一部でもよい。また結晶質粒子に付着した粒子の一部は結晶化したBNでもよい。
《Composite particles》
The composite particles include crystalline particles made of boron nitride (BN) and amorphous particles made of boron nitride. Amorphous particles are attached to the surface of crystalline particles. The amorphous particles may be attached by chemical bonding (including van der Waals bonding), sintering, adhesion, or the like. Note that the amorphous particles may be part of all particles attached to the surface of the crystalline particles. Moreover, some of the particles attached to the crystalline particles may be crystallized BN.

非晶質粒子は、例えば、複合粒子全体(または結晶質粒子と非晶質粒子の合計量)に対して5~20体積%さらには7~15体積%含まれるとよい。非晶質粒子が過少では、その効果が乏しくなる。非晶質粒子が過多では、結晶質粒子が相対的に過少となり、熱伝導率が低下し得る。 The amorphous particles may be contained in an amount of, for example, 5 to 20% by volume, and more preferably 7 to 15% by volume, based on the entire composite particles (or the total amount of crystalline particles and amorphous particles). If there are too few amorphous particles, the effect will be poor. If there are too many amorphous particles, there will be a relatively small number of crystalline particles, and the thermal conductivity may decrease.

各粒子の体積割合(体積%)は、複合粒子の調製時の原料の体積割合(配合量と密度から算出される。)から特定される。磁性粒子の体積割合、複合材全体に対する各粒子の体積割合等についても、同様な手法で特定され得る。なお、非晶質粒子をホウ酸メラミンから得る場合、焼成工程により、非晶質粒子の体積はホウ酸メラミンの体積の1/5となる。従って、非晶質粒子の所望体積量に対して、ホウ酸メラミンの配合体積量を5倍にするとよい。なお、非晶質粒子の体積割合が大きいほど、X線回折パターンのピークがブロードになり得る(図4参照)。 The volume ratio (volume %) of each particle is specified from the volume ratio (calculated from the blended amount and density) of the raw material at the time of preparing the composite particles. The volume ratio of the magnetic particles, the volume ratio of each particle to the entire composite material, etc. can also be specified using a similar method. In addition, when obtaining amorphous particles from melamine borate, the volume of the amorphous particles becomes 1/5 of the volume of melamine borate due to the firing process. Therefore, it is preferable to increase the volume of melamine borate by 5 times the desired volume of the amorphous particles. Note that the larger the volume ratio of amorphous particles, the broader the peak of the X-ray diffraction pattern may become (see FIG. 4).

《結晶質粒子》
結晶質粒子は、例えば、六方晶構造の窒化ホウ素(h-BN)または立方晶構造の窒化ホウ素(c-BN)である。通常、h-BN粒子が結晶質粒子として用いられる。
《Crystalline particles》
The crystalline particles are, for example, hexagonal boron nitride (h-BN) or cubic boron nitride (c-BN). Usually, h-BN particles are used as the crystalline particles.

結晶質粒子のサイズや形態は問わない。h-BNからなる結晶質粒子のサイズは、例えば、最大長が1~100μm、10~60μmさらには20~40μm程度である。最大長は、例えば、結晶質粒子の顕微鏡による観察像(例えばSEM像)から求まる。敢えていうなら、一視野(1500μm×1000μm)あたりに存在する結晶質粒子の各最大長を算術した平均値を結晶質粒子のサイズとしてもよい。このような粒子サイズの特定は、本発明でいう非晶質粒子、複合粒子、磁性粒子等にも該当する。また、粒子の形状(略鱗片状、略繊維状、略長球状、略球状等)とは関係なく、粒子サイズを単に「粒径」ともいう。 The size and form of the crystalline particles do not matter. The size of the crystalline particles made of h-BN is, for example, a maximum length of about 1 to 100 μm, 10 to 60 μm, and further 20 to 40 μm. The maximum length is determined, for example, from a microscopic observation image (for example, a SEM image) of the crystalline particles. If I were to say so, the size of the crystalline particles may be determined by calculating the average value of the maximum lengths of the crystalline particles present in one field of view (1500 μm×1000 μm). Such particle size specification also applies to amorphous particles, composite particles, magnetic particles, etc. in the present invention. Further, the particle size is also simply referred to as "particle size", regardless of the shape of the particles (substantially scaly, substantially fibrous, substantially spheroidal, substantially spherical, etc.).

h-BN自体(単層)は六角格子構造の網目状であるが、結晶質粒子自体は、h-BN単層でも、それらの積層体または集合体(凝集体、二次粒子)でもよい。従って、本明細書でいう結晶質粒子は、必ずしも鱗片状でなくてもよい。 The h-BN itself (single layer) has a network-like hexagonal lattice structure, but the crystalline particles themselves may be a single layer of h-BN, or a laminate or aggregate thereof (agglomerate, secondary particle). Therefore, the crystalline particles referred to herein do not necessarily have to be scaly.

《非晶質粒子》
非晶質粒子は、結晶質粒子の表面に付着できるサイズや形態であればよい。通常、非晶質粒子は、結晶質粒子よりも小さい。なお、本明細書では、既述した観察像から特定できる最大長に基づいて粒子の大小を判断する。
《Amorphous particles》
The amorphous particles may have any size or shape as long as they can adhere to the surface of the crystalline particles. Amorphous particles are usually smaller than crystalline particles. In this specification, the size of particles is determined based on the maximum length that can be determined from the observed image described above.

結晶質粒子に付着している各非晶質粒子の最大長は、例えば、結晶質粒子の最大長の1/1000~1/5、1/500~1/10さらには1/200~1/20程度である。敢えていうと、非晶質粒子の最大長は、例えば、0.1~30μm、0.5~15μmさらには1~5μm程度でもよい。非晶質粒子の形状は種々あり得るが、例えば、非晶質粒子は鱗片状である。勿論、非晶質粒子は、その他の形状(略繊維状、略長球状、略球状等)でもよい。 The maximum length of each amorphous particle attached to a crystalline particle is, for example, 1/1000 to 1/5, 1/500 to 1/10, or 1/200 to 1/2 of the maximum length of the crystalline particle. It is about 20. To put it bluntly, the maximum length of the amorphous particles may be, for example, about 0.1 to 30 μm, 0.5 to 15 μm, or even about 1 to 5 μm. Although the amorphous particles can have various shapes, for example, the amorphous particles are scaly. Of course, the amorphous particles may have other shapes (substantially fibrous, substantially spheroidal, substantially spherical, etc.).

ちなみに、窒化ホウ素の結晶性の程度(結晶質粒子と非晶質粒子の区別)は、X線回折(XRD)のプロファイルから判断される。結晶質粒子のプロファイルにはピークがあり、非晶質粒子のプロファイルには明確なピークが観られず、全体がブロード(ハローパターン)状となる。 Incidentally, the degree of crystallinity of boron nitride (distinguishing between crystalline particles and amorphous particles) is determined from the X-ray diffraction (XRD) profile. The profile of crystalline particles has a peak, while the profile of amorphous particles does not have a clear peak, and the entire profile has a broad (halo pattern) shape.

《磁性粒子》
磁性粒子は、非晶質粒子に担持されて、結晶質粒子間の熱伝導パス形成または複合粒子の配向制御等に寄与する。磁性粒子の存在形態(複合粒子内の配置)は問わない。磁性粒子は、その一部が非晶質粒子と接触している限り、結晶質粒子と接触(さらには付着、結合等)していてもよい。また磁性粒子は、その一部が露出していてもよいし、全体が非晶質粒子と結晶質粒子により囲繞(包囲)されていてもよい。
《Magnetic particles》
The magnetic particles are supported on the amorphous particles and contribute to forming heat conduction paths between the crystalline particles or controlling the orientation of the composite particles. The existing form of the magnetic particles (arrangement within the composite particle) does not matter. The magnetic particles may be in contact with (further attached to, bonded with, etc.) the crystalline particles, as long as part of the magnetic particles is in contact with the amorphous particles. Furthermore, the magnetic particles may be partially exposed or may be entirely surrounded by amorphous particles and crystalline particles.

磁性粒子として、熱伝導材の仕様等に応じて、材質、特性、サイズ等が異なる種々の粒子を用いることができる。磁性粒子は、軟磁性粒子でも硬磁性粒子でもよく、例えば、強磁性元素(例えば鉄族元素:Fe、Co、Ni)の単体(純Fe等)、合金(例えばFeNi合金)または化合物(例えばFeを含む各種フェライト)からなる。特に純金属または合金からなる磁性粒子(例えばFe粒子等)は高熱伝導率であり好ましい。 As the magnetic particles, various particles having different materials, characteristics, sizes, etc. can be used depending on the specifications of the thermally conductive material. The magnetic particles may be soft magnetic particles or hard magnetic particles, and are, for example, simple substances (such as pure Fe), alloys (such as FeNi alloys), or compounds (such as FeNi alloys) of ferromagnetic elements (such as iron group elements: Fe, Co, and Ni). 3 O 4 ). In particular, magnetic particles (eg, Fe particles) made of pure metal or alloy are preferred because they have high thermal conductivity.

磁性粒子は、結晶質粒子よりも小さい非晶質粒子に、担持され易いサイズ(粒径)であるとよい。例えば、磁性粒子の最大長は、1~1000nm、10~500nmさらには50~250nmであるとよい。なお、磁性粒子のサイズや他粒子との大小比較は、上述した視野内における最大長の算術平均値に基づいて行う。こうして定まる粒子サイスが1μm以下の粒子を本明細書では「ナノ粒子」という。 The magnetic particles preferably have a size (particle diameter) that allows them to be easily supported by amorphous particles that are smaller than crystalline particles. For example, the maximum length of the magnetic particles is preferably 1 to 1000 nm, 10 to 500 nm, or even 50 to 250 nm. Note that the size of the magnetic particles and the size comparison with other particles are performed based on the arithmetic mean value of the maximum length within the field of view described above. Particles having a particle size of 1 μm or less determined in this manner are referred to as "nanoparticles" in this specification.

磁性粒子は、例えば、複合粒子全体(結晶質粒子、非晶質粒子および磁性粒子の合計量)に対して5~20体積%さらには7~15体積%が含まれるとよい。非晶質粒子と磁性粒子の合計量に対して観れば、磁性粒子は20~60体積%さらには30~55体積%(非晶質粒子なら40~80体積%さらには45~70体積%)含まれるとよい。磁性粒子が過少では、その効果が乏しくなる。磁性粒子が過多では、結晶質粒子や非晶質粒子が相対的に過少となり、熱伝導率が低下し得る。また、高導電率な磁性粒子(鉄粒子等)が過多になると、熱伝導材の絶縁性(比抵抗)が低下し得る。 The magnetic particles may be contained in an amount of, for example, 5 to 20% by volume, or more preferably 7 to 15% by volume, based on the entire composite particles (total amount of crystalline particles, amorphous particles, and magnetic particles). Considering the total amount of amorphous particles and magnetic particles, magnetic particles account for 20 to 60% by volume, and even 30 to 55% by volume (40 to 80% by volume, and even 45 to 70% by volume for amorphous particles). Good to include. If there are too few magnetic particles, the effect will be poor. If there are too many magnetic particles, there will be relatively too few crystalline particles or amorphous particles, and the thermal conductivity may decrease. Furthermore, if there are too many highly conductive magnetic particles (such as iron particles), the insulation properties (specific resistance) of the thermally conductive material may decrease.

複合粒子には、材質、特性、粒径等が異なる複数種の磁性粒子が混在していてもよい。非晶質粒子には、磁性粒子以外の異種粒子が担持されていてもよい。異種粒子として、例えば、炭素粒子がある。炭素粒子は、例えば、ナノカーボン粒子(CNT等)、黒鉛粒子(カーボンブラックを含む。)、ダイヤモンド粒子等である。このような粒子は、複合粒子の熱伝導性や耐熱性等を向上させ得る補助粒子となり得る。 The composite particles may include a mixture of multiple types of magnetic particles having different materials, properties, particle sizes, and the like. Different types of particles other than magnetic particles may be supported on the amorphous particles. Examples of foreign particles include carbon particles. Examples of carbon particles include nanocarbon particles (CNT, etc.), graphite particles (including carbon black), diamond particles, and the like. Such particles can serve as auxiliary particles that can improve the thermal conductivity, heat resistance, etc. of the composite particles.

《複合材》
熱伝導材は、複合粒子からなるフィラーと、フィラーを固定するマトリックス(バインダを含む。)とからなる複合材(材料、素材、部材等)でもよい。
《Composite material》
The thermally conductive material may be a composite material (material, raw material, member, etc.) consisting of a filler made of composite particles and a matrix (including a binder) that fixes the filler.

(1)フィラー
マトリックスへのフィラーの充填率は、例えば、複合材全体に対して60~87体積%さらには65~85体積%である。複合材の熱伝導率は、その充填率に応じて変化し得るが、充填率を過大にしても熱伝導率はあまり向上しない。フィラーの充填率は、製造時なら原料の真密度と配合量から特定される。既述したような複合材(断面)の観察像から、複合材におけるフィラーの充填率を算出・特定してもよい。
(1) Filler The filling rate of the filler in the matrix is, for example, 60 to 87% by volume, and more preferably 65 to 85% by volume, based on the entire composite material. The thermal conductivity of a composite material can vary depending on its filling rate, but even if the filling rate is increased too much, the thermal conductivity does not improve much. The filling rate of the filler is specified at the time of manufacturing based on the true density and blending amount of the raw materials. The filling rate of the filler in the composite material may be calculated and specified from the observed image of the composite material (cross section) as described above.

フィラーの全体または一部(複合粒子、磁性粒子)は、マトリックスとの親和性を高める表面処理がなされてもよい。これにより、マトリックス中におけるフィラーの分散性、充填性、密着性等が向上して、複合材の熱伝導率および/または比抵抗が向上し得る。 All or part of the filler (composite particles, magnetic particles) may be subjected to surface treatment to increase affinity with the matrix. This improves the dispersibility, filling properties, adhesion, etc. of the filler in the matrix, and can improve the thermal conductivity and/or specific resistance of the composite material.

表面処理は、例えば、疎水化処理またはカップリング処理である。マトリックスが有機材料(樹脂、ゴム・エラストマー等)なら、例えば、シランカップリング処理やフッ素プラズマ処理等の表面処理をフィラーに行えばよい。シランカップリング処理は、マトリックス側の官能基(アミノ基、エポキシ基、イソシアネート基、ビニル基、アクリル基等)に対応する反応基を備えた種々のシランカップリング剤を用いて行える。代表的なシランカップリング剤として、例えば、ヘキサメチルジシラザン(HMDS:C19NSi)がある。なお、シランカップリング剤は、通常、無機材料であるフィラー(複合粒子、磁性粒子等)側にある官能基(ヒドロキシキ基、メトキシ基、エトキシ基等)にも対応する反応基(シリル基等)を備える。 The surface treatment is, for example, a hydrophobic treatment or a coupling treatment. If the matrix is an organic material (resin, rubber, elastomer, etc.), the filler may be subjected to surface treatment such as silane coupling treatment or fluorine plasma treatment. The silane coupling treatment can be performed using various silane coupling agents having reactive groups corresponding to the functional groups (amino group, epoxy group, isocyanate group, vinyl group, acrylic group, etc.) on the matrix side. A typical silane coupling agent is, for example, hexamethyldisilazane (HMDS: C 6 H 19 NSi 2 ). Note that silane coupling agents usually have reactive groups (such as silyl groups, etc.) that also correspond to functional groups (hydroxy groups, methoxy groups, ethoxy groups, etc.) on the side of fillers (composite particles, magnetic particles, etc.) that are inorganic materials. ).

表面処理剤の含有量(配合量・添加量)は、例えば、未処理のフィラー全体100質量部に対して0.1~3質量部、0.5~2.5質量部さらには1~2質量部である。過少な表面処理剤ではその効果が乏しく、表面処理剤を過多にしても効果の向上は少ない。 The content (compounding amount/addition amount) of the surface treatment agent is, for example, 0.1 to 3 parts by mass, 0.5 to 2.5 parts by mass, and further 1 to 2 parts by mass, based on 100 parts by mass of the entire untreated filler. Part by mass. If too little of the surface treatment agent is used, the effect will be poor, and if too much of the surface treatment agent is used, the effect will not improve much.

なお、混合(混練を含む。)前のフィラーに表面処理を予め行う他、マトリックスとフィラーの混合時に表面処理剤(カップリング剤等)を配合・添加等してもよい。 In addition to surface-treating the filler before mixing (including kneading), a surface-treating agent (such as a coupling agent) may be blended or added at the time of mixing the matrix and filler.

(2)マトリックス
マトリックス(バインダを含む)は、例えば、絶縁性を有する有機材料からなる。具体的にいうと、通常、樹脂やゴム・エラストマー等がマトリックスとなる。樹脂は、熱硬化性樹脂でも、熱可塑性樹脂でもよい。熱硬化性樹脂は、例えば、エポキシ樹脂、フェノール樹脂、シリコーン樹脂等である。熱可塑性樹脂は、例えば、ポリスチレン、ポリメチルメタクリレート、ポリカーボネート、ポリフェニレンサルファイド等である。ゴムは、例えば、エチレン- プロピレン- ジエンゴム(EPDM) 、ブチルゴム等である。なお、本明細書では、特に断らない限り、ゴム・エラストマーを含めて、単に「樹脂」という。
(2) Matrix The matrix (including the binder) is made of, for example, an insulating organic material. Specifically, the matrix is usually a resin, rubber, elastomer, or the like. The resin may be a thermosetting resin or a thermoplastic resin. Examples of the thermosetting resin include epoxy resin, phenol resin, and silicone resin. Examples of the thermoplastic resin include polystyrene, polymethyl methacrylate, polycarbonate, and polyphenylene sulfide. Examples of the rubber include ethylene-propylene-diene rubber (EPDM) and butyl rubber. In this specification, unless otherwise specified, the term "resin" includes rubber and elastomer.

《製造方法》
(1)複合粒子
複合粒子の製造方法は種々考えられる。複合粒子は、例えば、窒化ホウ素の結晶質粒子とホウ酸メラミン(錯体または塩)と磁性粒子との混合物を加熱する焼成工程を経て得られる。具体的にいうと、例えば、次のような各工程の一部または全部がなされるとよい。
"Production method"
(1) Composite particles Various methods for producing composite particles can be considered. Composite particles are obtained, for example, through a firing process in which a mixture of crystalline particles of boron nitride, melamine borate (complex or salt), and magnetic particles is heated. Specifically, for example, some or all of the following steps may be performed.

混合物は、例えば、窒化ほう素粉末(h-BN粉末等)とホウ酸メラミン粉末と磁性粉末(例えば、ナノ鉄粉、カルボニル鉄粉等)を混合して得られる。このような混合は、ボールミル、振動ミル、V型混合機等を用いてなされる(混合工程)。このとき、積層(または凝集)状態のh-BN粒子も粉砕され得ると好ましい。 The mixture is obtained, for example, by mixing boron nitride powder (h-BN powder, etc.), boric acid melamine powder, and magnetic powder (eg, nano iron powder, carbonyl iron powder, etc.). Such mixing is performed using a ball mill, a vibration mill, a V-type mixer, etc. (mixing step). At this time, it is preferable that h-BN particles in a laminated (or agglomerated) state can also be pulverized.

窒化ホウ素粉末(さらに磁性粉末)をホウ酸メラミンの調製溶液へ直接加えるとき、その混合前または混合後(さらには濾過後)に、溶媒(通常は水)を除去(乾燥)してもよい。溶媒の除去は、例えば、真空乾燥(エバポレーション)により行える(乾燥工程)。なお、溶媒の除去は、例えば、常温域(例えば10~40℃)で行えばよい。 When adding boron nitride powder (and also magnetic powder) directly to the prepared solution of melamine borate, the solvent (usually water) may be removed (drying) before or after mixing (and after filtration). The solvent can be removed, for example, by vacuum drying (evaporation) (drying step). Note that the solvent may be removed, for example, at room temperature (eg, 10 to 40°C).

乾燥させた混合物をそのまま焼成してもよいし、その混合物を加圧成形した成形体を焼成してもよい。成形体は、例えば、混合物を金型成形、CIP(Cold Isostatic Pressing/冷間等方圧加工法)成形、RIP(Rubber Isostatic Pressing/ゴム等方圧加工法)成形等して得られる(成形工程)。なお、成形体は、焼成後の粉砕が可能な形状であれば足る。成形圧力もハンドリングできる成形体が得られる程度で足り、例えば、5~500MPaさらには30~100MPa程度でよい。 The dried mixture may be fired as it is, or a molded product obtained by pressure molding the mixture may be fired. The molded body is obtained, for example, by molding the mixture with a mold, CIP (cold isostatic pressing), RIP (rubber isostatic pressing), etc. (molding process) ). Note that it is sufficient that the molded body has a shape that allows it to be crushed after firing. It is sufficient that the molding pressure is such that a molded product that can be handled is obtained, for example, about 5 to 500 MPa, or more preferably about 30 to 100 MPa.

混合物(その成形体を含む。)を、例えば、真空中や不活性ガス中で加熱すると、焼成体(焼結体)が得られる。その加熱温度は、例えば、1600℃~2000℃、1700~1900℃さらには1750~1850℃とすればよい。加熱時間は、例えば、0.2~3時間さらには0.5~2時間とすればよい。なお、HIP(Hot Isostatic Pressing/熱間等方圧加工法)により、上述した成形と焼成が同時になされてもよい。 When the mixture (including its molded body) is heated, for example, in a vacuum or in an inert gas, a fired body (sintered body) is obtained. The heating temperature may be, for example, 1600°C to 2000°C, 1700°C to 1900°C, or further 1750°C to 1850°C. The heating time may be, for example, 0.2 to 3 hours, or more preferably 0.5 to 2 hours. Note that the above-described molding and firing may be performed simultaneously by HIP (Hot Isostatic Pressing).

焼成体を、例えば、大気雰囲気中で粉砕することにより、複合粒子からなる粉末(「複合化粉末」という。)が得られる(粉末化工程)。なお、焼成体の粉砕は、小型粉砕機やクラッシャー機等を用いて行える。 A powder made of composite particles (referred to as "composite powder") is obtained by pulverizing the fired body, for example, in the air (powdering step). Note that the sintered body can be crushed using a small crusher, a crusher, or the like.

複合化粉末の粒度は、例えば、篩い分けにより1~100μmさらには1~53μmに分級されて用いられてもよい。粉末の平均粒径(メジアン径:D50)でいえば、例えば、5~45μmさらには16~22μmに調整されてもよい。 The particle size of the composite powder may be classified, for example, by sieving into 1 to 100 μm, or even 1 to 53 μm. The average particle size (median diameter: D50) of the powder may be adjusted to, for example, 5 to 45 μm, or further 16 to 22 μm.

(2)複合材
マトリックス中にフィラーが分散(充填)された複合材は、例えば、圧縮成形、射出成形、トランスファー成形等して得られる。磁場中成形された複合材は、複合粒子の配向制御により優れた熱伝導性を発揮し得る。なお、結晶質粒子がh-BNなら、配向磁場の印加方向(配向方向)は、例えば、h-BNがその結晶面(002)に沿って配向する方向(通常、a軸方向<100>)とするとよい。
(2) Composite material A composite material in which a filler is dispersed (filled) in a matrix can be obtained by, for example, compression molding, injection molding, transfer molding, or the like. Composite materials formed in a magnetic field can exhibit excellent thermal conductivity by controlling the orientation of composite particles. In addition, if the crystalline particles are h-BN, the direction in which the orienting magnetic field is applied (orientation direction) is, for example, the direction in which h-BN is oriented along its crystal plane (002) (usually the a-axis direction <100>). It is good to say.

マトリックスが熱硬化性樹脂からなる場合、成形後に、熱硬化処理(キュア処理)がなされるとよい。複合材は、最終製品形状またはそれに近い形状のものでもよいし、後加工される素材や中間材でもよい。 When the matrix is made of a thermosetting resin, it is preferable to perform a thermosetting treatment (cure treatment) after molding. The composite material may have a final product shape or a shape close to it, or may be a post-processed material or an intermediate material.

ちなみに、ホウ酸メラミンは、公知な種々の方法により製造される。例えば、ホウ酸とメラミンの加温水溶液を冷却(放冷)すると、白色粉末が析出する。こうして得られた白色粉末を脱水、乾燥させると、無水のホウ酸メラミン(C・2HBO)が得られる。 Incidentally, melamine borate is produced by various known methods. For example, when a heated aqueous solution of boric acid and melamine is cooled (left to cool), a white powder is precipitated. When the white powder thus obtained is dehydrated and dried, anhydrous melamine borate (C 3 H 6 N 6 .2H 3 BO 3 ) is obtained.

《用途》
複合粒子を含むフィラーがマトリックス中に分散した複合材は、マトリックスの材質やフィラーの充填率に応じて、所望の熱伝導性や絶縁性を発揮し得る。複合材の熱伝導率は、例えば、13~60W/mK、15~40W/mKさらには18~35W/mKとなり得る。複合材の比抵抗は、例えば、10~10Ωm、10~10Ωmさらには10~10Ωmとなり得る。複合材は、例えば、電子機器等の基板、ケース、放熱部材等、またはそれらの一部に用いられるとよい。
《Application》
A composite material in which a filler containing composite particles is dispersed in a matrix can exhibit desired thermal conductivity and insulation depending on the material of the matrix and the filling rate of the filler. The thermal conductivity of the composite material can be, for example, 13 to 60 W/mK, 15 to 40 W/mK, or even 18 to 35 W/mK. The specific resistance of the composite material can be, for example, 10 to 10 8 Ωm, 10 2 to 10 7 Ωm, or even 10 3 to 10 6 Ωm. The composite material may be used for, for example, a substrate, a case, a heat dissipation member, etc. of electronic equipment, or a part thereof.

h-BNからなる結晶質粒子を用いた種々のフィラーを用意し、各フィラーをマトリックスである樹脂中に充填した複合材を製作した。各フィラーの構造(組織)を観察すると共に、各複合材の熱伝導率と比抵抗を評価した。以下、このような具体例を示しつつ、本発明を説明する。 Various fillers using crystalline particles made of h-BN were prepared, and composite materials were manufactured by filling each filler into a resin matrix. The structure (tissue) of each filler was observed, and the thermal conductivity and specific resistance of each composite material were evaluated. The present invention will be described below with reference to such specific examples.

《フィラーの製作》
3種類のフィラー(試料1~3)を用意した。図1に、各フィラー(モデル)を模式的に示した。試料1のフィラーは、h-BNの結晶質粒子のみからなる。試料2のフィラーは、その結晶質粒子にBNの非晶質粒子を付着させた複合粒子からなる。試料3のフィラーは、試料2の複合粒子をナノサイズ(最大長1μm以下)の鉄粒子(「ナノ鉄粒子」という。)で修飾した粒子からなる。このナノ鉄粒子が本発明でいう磁性粒子に相当する。
《Production of filler》
Three types of fillers (Samples 1 to 3) were prepared. FIG. 1 schematically shows each filler (model). The filler of Sample 1 consists only of h-BN crystalline particles. The filler of Sample 2 was composed of composite particles in which amorphous particles of BN were attached to crystalline particles. The filler of sample 3 consists of particles obtained by modifying the composite particles of sample 2 with nano-sized (maximum length 1 μm or less) iron particles (referred to as "nano iron particles"). These nano-iron particles correspond to the magnetic particles in the present invention.

(1)試料1(結晶質粒子)
試料1のフィラー(結晶質粒子)には市販のh-BN粉末(デンカ株式会社製デンカボロンナイトライド粉末SGP)を用いた(20g)。この粉末は、BN純度:99%以上、粒度:18μm(D50)、結晶度(GI値):0.9であった。以下、結晶質粒子源には、そのh-BN粉末を用いた。
(1) Sample 1 (crystalline particles)
Commercially available h-BN powder (Denka boron nitride powder SGP manufactured by Denka Corporation) was used as the filler (crystalline particles) of Sample 1 (20 g). This powder had a BN purity of 99% or more, a particle size of 18 μm (D50), and a crystallinity (GI value) of 0.9. Hereinafter, the h-BN powder was used as a crystalline particle source.

(2)試料2(結晶質粒子+非晶質粒子)
h-BN粉末とホウ酸メラミン粉末を原料として、複合粒子からなるフィラーを製作した。
(2) Sample 2 (crystalline particles + amorphous particles)
A filler consisting of composite particles was produced using h-BN powder and melamine borate powder as raw materials.

先ず、ホウ酸メラミン粉末は次のように調製した。ホウ酸(市販試薬:24g)を95℃に加熱した純水(800ml)に投入し、十分に撹拌して完全に溶解させた。このホウ酸水溶液へ、メラミン(市販試薬16g)を投入して、同様に完全に溶解させた。この混合水溶液を約25℃まで水冷した後、さらに真空吸引ろ過器で脱水した。得られた残留物を真空乾燥炉で真空乾燥(40℃×12時間)させた。こうして得られた白色粉末をXRDで分析したところ、無水のホウ酸メラミン(C・2HBO)であることが同定された。 First, melamine borate powder was prepared as follows. Boric acid (commercially available reagent: 24 g) was poured into pure water (800 ml) heated to 95° C., and thoroughly stirred to completely dissolve it. Melamine (16 g of a commercially available reagent) was added to this boric acid aqueous solution and completely dissolved in the same manner. This mixed aqueous solution was water-cooled to about 25° C., and then further dehydrated using a vacuum suction filter. The obtained residue was vacuum dried (40°C x 12 hours) in a vacuum drying oven. When the white powder thus obtained was analyzed by XRD, it was identified as anhydrous melamine borate (C 3 H 6 N 6 .2H 3 BO 3 ).

次に、h-BN粉末(16g)とホウ酸メラミン粉末(20g)をアセトン(160g)と一緒にボールミルで混合(12時間)した(混合工程)。得られた混合粉末をろ過した後、残留物を真空常温乾燥(エバポレーション)させた(乾燥工程)。濾過・乾燥はアセトン等有機溶媒を揮発させるために行った。 Next, h-BN powder (16 g) and melamine borate powder (20 g) were mixed together with acetone (160 g) in a ball mill (12 hours) (mixing step). After filtering the obtained mixed powder, the residue was dried under vacuum at room temperature (evaporation) (drying step). Filtration and drying were performed to volatilize organic solvents such as acetone.

さらに、濾過・乾燥した混合粉末をCIP成形した。CIP成形は、混合粉末を2重の塩化ビニール袋に入れて行った。こうして成形塊(50mm×10mm程度)を得た。このときの成形圧力は3t/cm(294MPa)とした。 Furthermore, the filtered and dried mixed powder was subjected to CIP molding. CIP molding was performed by placing the mixed powder in a double-layered vinyl chloride bag. In this way, a molded block (approximately 50 mm x 10 mm) was obtained. The molding pressure at this time was 3 t/cm 2 (294 MPa).

成形塊を加熱炉に入れて減圧した後、窒素ガスフロー下で加熱(1800℃×1時間)した(焼成工程)。得られた焼成体を卓上型クラッシャーで0.2時間粉砕した(粉砕工程)。粉砕物を篩い分級して粒度1~53μmとした。こうして複合粒子からなるフィラーを得た。このフィラー(100体積%)は、それぞれの密度と配合質量から換算すると、結晶質粒子:80体積%、非晶質粒子:20体積%に相当した。 The molded lump was placed in a heating furnace and the pressure was reduced, and then heated (1800° C. x 1 hour) under a nitrogen gas flow (firing step). The obtained fired body was crushed for 0.2 hours using a tabletop crusher (pulverization step). The pulverized material was sieved and classified to have a particle size of 1 to 53 μm. In this way, a filler consisting of composite particles was obtained. This filler (100 volume %) corresponded to crystalline particles: 80 volume % and amorphous particles: 20 volume % when converted from their respective densities and blended masses.

(3)試料3(結晶質粒子+非晶質粒子+ナノ鉄粒子)
h-BN粉末、ホウ酸メラミン粉末およびナノ鉄粒子の粉末(「ナノ鉄粉」という。)を原料として、ナノ鉄粒子で修飾した複合粒子からなるフィラーを製作した。ナノ鉄粉(磁性粒子源)にはQSI社製Nano・Iron(平均粒径:25nm)を用いた。なお、ナノ鉄粉の各粒子はいずれも最大長が40nm以下(1μm未満)であることをレーザー回折式粒度分布測定装置(株式会社セイシン企業製LMS-2000E)により確認している。
(3) Sample 3 (crystalline particles + amorphous particles + nano iron particles)
A filler consisting of composite particles modified with nano-iron particles was produced using h-BN powder, melamine borate powder, and nano-iron particle powder (referred to as "nano-iron powder") as raw materials. Nano Iron (average particle size: 25 nm) manufactured by QSI was used as the nano iron powder (magnetic particle source). It was confirmed using a laser diffraction particle size distribution analyzer (LMS-2000E, manufactured by Seishin Enterprise Co., Ltd.) that each particle of the nano iron powder had a maximum length of 40 nm or less (less than 1 μm).

h-BN粉末(16g)、ホウ酸メラミン粉末(10g)およびナノ鉄粉(7g)を秤量して配合した以外は、試料2のフィラーと同様に製作した。こうしてナノ鉄粒子で修飾された複合粒子からなるフィラーを得た。このフィラー(100体積%)は、結晶質粒子:80体積%、非晶質粒子:10体積%、ナノ鉄粒子:10体積%に相当した。 The filler was manufactured in the same manner as Sample 2 except that h-BN powder (16 g), melamine borate powder (10 g), and nano iron powder (7 g) were weighed and blended. In this way, a filler consisting of composite particles modified with nano-iron particles was obtained. This filler (100% by volume) corresponded to crystalline particles: 80% by volume, amorphous particles: 10% by volume, and nano-iron particles: 10% by volume.

《複合材の製作》
各フィラーをマトリックスに分散させた複合材を製作した。各フィラーの充填率は、特に断らない限り、複合材全体(100体積%)に対して70体積%とした。マトリックス(バインダ)には、一液加熱硬化型エポキシ樹脂(セメダイン株式会社製EP160/以降、単に「樹脂」という。)を用いた。具体的には、次のようにして複合材を製作した。
《Production of composite materials》
Composite materials were manufactured in which each filler was dispersed in a matrix. The filling rate of each filler was 70% by volume with respect to the entire composite material (100% by volume) unless otherwise specified. A one-component heat-curable epoxy resin (EP160 manufactured by Cemedine Co., Ltd./hereinafter simply referred to as "resin") was used as the matrix (binder). Specifically, the composite material was manufactured as follows.

各フィラーと樹脂をプラスチック製容器内で10分間混練した。真空乾燥させた混練物を解砕して、フィラーの粒子が樹脂で被覆されたコンパウンドを得た。このコンパウンドを金型に充填して、一軸方向に圧縮成形した。このとき、成形圧力:15MPa、金型温度:120℃とした。こうして得た円柱状の複合成形体(φ14mm×20mm)を、大気雰囲気中で加熱(120℃×30分)して、硬化した樹脂中にフィラーが分散した複合材を得た。本実施例では、試料1、試料2、試料3の各フィラーを用いた複合材を、順に試料M1、試料M2、試料M3という。 Each filler and resin were kneaded in a plastic container for 10 minutes. The vacuum-dried kneaded material was crushed to obtain a compound in which filler particles were coated with resin. This compound was filled into a mold and compression molded in a uniaxial direction. At this time, the molding pressure was 15 MPa and the mold temperature was 120°C. The thus obtained cylindrical composite molded body (φ14 mm×20 mm) was heated in the air (120° C.×30 minutes) to obtain a composite material in which the filler was dispersed in the cured resin. In this example, composite materials using fillers of sample 1, sample 2, and sample 3 are referred to as sample M1, sample M2, and sample M3 in this order.

《観察》
(1)SEM/EDX
試料1~3の各フィラー粒子を走査型電子顕微鏡(SEM)で観察した。試料3については、エネルギー分散型X線分析(EDX)による元素分析も行った。それらの観察像を図2および図3に示した。
"observation"
(1) SEM/EDX
Each filler particle of Samples 1 to 3 was observed using a scanning electron microscope (SEM). Sample 3 was also subjected to elemental analysis by energy dispersive X-ray analysis (EDX). The observed images are shown in FIGS. 2 and 3.

(2)XRD
試料1と試料2のフィラー粒子をX線回折解析(XRD/Cu-Kα)した。得られた回折パターンを図4にまとめて示した。
(2) XRD
The filler particles of Sample 1 and Sample 2 were subjected to X-ray diffraction analysis (XRD/Cu-Kα). The obtained diffraction patterns are summarized in FIG. 4.

《測定》
(1)熱伝導率
複合材の熱伝導率(λ)をナノフラッシュ法により求めた。具体的にいうと、ナノフラッシュ法で測定した熱拡散率(α)と、示差走査熱量計(DSC)で求めた比熱(Cp)と、アルキメデス法で求めた密度(ρ)とから、λ=α・Cp・ρとして熱伝導率を算出した。熱拡散率の測定には、円柱状の複合材から、軸方向(加圧方向)に垂直な方向に切り出した薄い板状のサンプルを用いた。こうして、複合材の加圧方向(通常、配向方向に略直交する方向)を伝熱方向と想定したときの熱伝導率を求めた。
"measurement"
(1) Thermal conductivity The thermal conductivity (λ) of the composite material was determined by the nanoflash method. Specifically, λ= Thermal conductivity was calculated as α・Cp・ρ. For the measurement of thermal diffusivity, a thin plate-shaped sample cut out from a cylindrical composite material in a direction perpendicular to the axial direction (pressing direction) was used. In this way, the thermal conductivity was determined assuming that the pressing direction of the composite material (usually a direction substantially perpendicular to the orientation direction) was the heat transfer direction.

(2)比抵抗
各複合材の比抵抗は、上記の円板状サンプルを用いて、室温域で直流四端子法により測定した。
(2) Specific resistance The specific resistance of each composite material was measured by the DC four-probe method at room temperature using the above disk-shaped sample.

得られた各試料の熱伝導率と比抵抗を図5および図6にまとめて示した。また、図7には、試料M3に基づいて、フィラーの充填率と熱伝導率の関係を示した。 The thermal conductivity and specific resistance of each sample obtained are shown together in FIGS. 5 and 6. Further, FIG. 7 shows the relationship between filler filling rate and thermal conductivity based on sample M3.

《評価》
(1)構造(形態)
図2から明らかなように、試料2の粒子は、h-BN粒子(試料1の粒子)の表面に、それよりも小さい粒子(最大長1~10μm程度)が付着していることが確認できた。図4から明らかなように、試料1の粒子は結晶質粒子であり、試料2に観られる小粒子は非晶質粒子であることもわかった。
"evaluation"
(1) Structure (form)
As is clear from Figure 2, it can be confirmed that the particles of sample 2 have smaller particles (maximum length of about 1 to 10 μm) attached to the surface of the h-BN particles (particles of sample 1). Ta. As is clear from FIG. 4, it was also found that the particles of Sample 1 were crystalline particles, and the small particles observed in Sample 2 were amorphous particles.

図3から明らかなように、試料3の粒子(複合粒子)は、ナノ鉄粒子(磁性粒子)がBNの非晶質粒子を介して結晶質粒子(h-BN粒子)の表面に付着していることもわかった(試料3)。 As is clear from Figure 3, in the particles of sample 3 (composite particles), nano iron particles (magnetic particles) are attached to the surface of crystalline particles (h-BN particles) via amorphous BN particles. (Sample 3).

図4から明らかなように、ナノ鉄粒子が担持された複合粒子をフィラーとする複合材(試料M3)では、隣接する結晶質粒子(h-BN粒子)の隙間に非晶質粒子およびナノ鉄粒子が介在して、各粒子が密接した状態となっていた。つまり、結晶質粒子の隣接間が非晶質粒子とナノ鉄粒子により連接され、熱伝導パスが形成された状態となっていることが確認された。なお、試料M3の複合材の成形時に磁場を印加すれば、結晶質粒子を所望方向に配向させることも可能になる。 As is clear from FIG. 4, in the composite material (sample M3) in which the filler is composite particles carrying nano-iron particles, amorphous particles and nano-iron particles are present in the gaps between adjacent crystalline particles (h-BN particles). The particles were interposed and the particles were in close contact with each other. In other words, it was confirmed that adjacent crystalline particles were connected by amorphous particles and nano-iron particles, forming a heat conduction path. Note that by applying a magnetic field during molding of the composite material of sample M3, it is also possible to orient the crystalline particles in a desired direction.

結晶質粒子のみをフィラーとする複合材(試料M1)では、各結晶質粒子が一定方向(加圧方向に略直交する方向)に配向しているが、各結晶質粒子間に樹脂により遮断(分断)された状態となっていた。つまり、隣接する結晶質粒子同士の接触が樹脂により阻害されて、それらの間で熱伝導パスが形成され難いことがわかった。 In the composite material containing only crystalline particles as filler (sample M1), each crystalline particle is oriented in a certain direction (substantially perpendicular to the pressurizing direction), but the resin blocks the gaps between each crystalline particle ( It was in a state of being divided. In other words, it was found that contact between adjacent crystalline particles was inhibited by the resin, making it difficult to form a heat conduction path between them.

(2)特性
図5から明らかなように、複合粒子にナノ鉄粒子を担持させたフィラーを用いた複合材(試料M3)は、結晶質粒子のみからなるフィラーを用いた複合材(試料M1)と比較して、熱伝導率が顕著に向上した。
(2) Characteristics As is clear from Figure 5, the composite material using a filler in which composite particles support nano-iron particles (sample M3) is different from the composite material using a filler consisting only of crystalline particles (sample M1). Thermal conductivity was significantly improved compared to

図6から明らかなように、試料M3の複合材は、高導電性のナノ鉄粒子を含むにもかかわらず、10Ωmの大きな比抵抗を示すこともわかった。これは、ナノ鉄粒子が複合粒子内で電気絶縁体である結晶質粒子および非晶質粒子に包まれた状態となっているたためと考えられる。 As is clear from FIG. 6, it was also found that the composite material of sample M3 exhibited a large specific resistance of 10 4 Ωm despite containing highly conductive nano-iron particles. This is considered to be because the nano-iron particles are surrounded by crystalline particles and amorphous particles, which are electrical insulators, within the composite particles.

いずれにしても、結晶質粒子(h-BN)の表面に非晶質粒子およびナノ鉄粒子(磁性粒子)が担持された複合粒子をフィラーに用いることにより、熱伝導率と比抵抗を高次元で両立した複合材が得られることが確認された。 In any case, by using composite particles as a filler in which amorphous particles and nano iron particles (magnetic particles) are supported on the surface of crystalline particles (h-BN), thermal conductivity and specific resistance can be improved to a high level. It was confirmed that a composite material compatible with both can be obtained.

(3)充填率
図7から明らかなように、複合材の熱伝導率は、フィラーの充填率に応じて増加するが、充填率が90体積%付近になると、その熱伝導率は減少傾向になることもわかった。
(3) Filling rate As is clear from Figure 7, the thermal conductivity of the composite material increases depending on the filling rate of the filler, but when the filling rate approaches 90% by volume, the thermal conductivity tends to decrease. I also found out that it happens.

《考察》
以上の結果からわかるように、窒化ホウ素からなる結晶質粒子と非晶質粒子に磁性粒子が担持された複合粒子をフィラーに用いると、複合材の熱伝導率や比抵抗を大幅に向上させれることがわかった。なお、熱伝導率の飛躍的な向上は、図8に示すように、高熱伝導性の結晶質粒子が非晶質粒子と磁性粒子で連接されて、熱伝導パスが形成された結果、熱伝導のパーコレーションが生じたと考えられる。
《Consideration》
As can be seen from the above results, the thermal conductivity and specific resistance of the composite material can be significantly improved when composite particles made of boron nitride crystalline particles and amorphous particles with magnetic particles supported are used as a filler. I understand. Furthermore, as shown in Figure 8, the dramatic improvement in thermal conductivity is due to the formation of a thermal conduction path by connecting highly thermally conductive crystalline particles with amorphous particles and magnetic particles. It is thought that percolation occurred.

Claims (9)

窒化ホウ素の結晶質粒子と該結晶質粒子よりも小さく該結晶質粒子の表面に付着した窒化ホウ素の非晶質粒子と該非晶質粒子に担持された磁性粒子とを有する複合粒子を含み、
該磁性粒子は鉄粒子を含む熱伝導材。
Composite particles having crystalline particles of boron nitride, amorphous particles of boron nitride smaller than the crystalline particles and attached to the surface of the crystalline particles, and magnetic particles supported on the amorphous particles ,
The magnetic particles are a thermally conductive material containing iron particles .
前記複合粒子の全量に対して、前記非晶質粒子は5~20体積%含まれる請求項1に記載の熱伝導材。 The thermally conductive material according to claim 1, wherein the amorphous particles are contained in an amount of 5 to 20% by volume based on the total amount of the composite particles. 前記複合粒子の全量に対して、前記磁性粒子は5~20体積%含まれる請求項1または2に記載の熱伝導材。 The thermally conductive material according to claim 1 or 2, wherein the magnetic particles are contained in an amount of 5 to 20% by volume based on the total amount of the composite particles. 前記非晶質粒子と前記磁性粒子の合計量に対して、該非晶質粒子は40~80体積%含まれる請求項1~3のいずれかに記載の熱伝導材。 The thermally conductive material according to any one of claims 1 to 3, wherein the amorphous particles are contained in an amount of 40 to 80% by volume based on the total amount of the amorphous particles and the magnetic particles. 前記鉄粒子は、粒子サイズが1μm以下であるナノ粒子からなる請求項1~4のいずれかに記載の熱伝導材。 The thermally conductive material according to any one of claims 1 to 4, wherein the iron particles are nanoparticles having a particle size of 1 μm or less. 前記複合粒子を含むフィラーがマトリックスに分散してなる複合材である請求項1~のいずれかに記載の熱伝導材。 The thermally conductive material according to any one of claims 1 to 5 , which is a composite material in which the filler containing the composite particles is dispersed in a matrix. 前記フィラーの充填率は、前記複合材全体に対して60~87体積%である請求項に記載の熱伝導材。 The thermally conductive material according to claim 6 , wherein a filling rate of the filler is 60 to 87% by volume based on the entire composite material. 前記フィラーは、マトリックスとの親和性を高める表面処理がなされている請求項またはに記載の熱伝導材。 8. The thermally conductive material according to claim 6 , wherein the filler is surface-treated to increase its affinity with the matrix. 窒化ホウ素の結晶質粒子とホウ酸メラミンと磁性粒子との混合物を加熱する焼成工程を備え、
請求項1~のいずれかに記載の熱伝導材が得られる製造方法。
comprising a firing step of heating a mixture of crystalline particles of boron nitride, melamine borate, and magnetic particles;
A manufacturing method for obtaining the thermally conductive material according to any one of claims 1 to 8 .
JP2021046346A 2021-03-19 2021-03-19 Thermal conductive material and its manufacturing method Active JP7452478B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021046346A JP7452478B2 (en) 2021-03-19 2021-03-19 Thermal conductive material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021046346A JP7452478B2 (en) 2021-03-19 2021-03-19 Thermal conductive material and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2022145088A JP2022145088A (en) 2022-10-03
JP7452478B2 true JP7452478B2 (en) 2024-03-19

Family

ID=83454339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021046346A Active JP7452478B2 (en) 2021-03-19 2021-03-19 Thermal conductive material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7452478B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023248671A1 (en) * 2022-06-24 2023-12-28 住友理工株式会社 Molded urethane foam and production method therefor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505729A (en) 2006-10-07 2010-02-25 モーメンティブ・パフォーマンス・マテリアルズ・インク Mixed boron nitride composition and method for producing the same
JP2012171842A (en) 2011-02-23 2012-09-10 Denki Kagaku Kogyo Kk Composite particle of melamine borate and boron nitride, and method for producing boron nitride particle using the same
CN105038136A (en) 2015-08-31 2015-11-11 华中科技大学 Preparing method for polymer composite heat dissipating material
JP2020511004A (en) 2017-02-28 2020-04-09 ロジャース コーポレーションRogers Corporation Thermal interface manufacturing method, thermal interface, and thermal management assembly including thermal interface

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62256771A (en) * 1986-04-30 1987-11-09 倉富 龍郎 Cubic boron nitride sintered body and manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010505729A (en) 2006-10-07 2010-02-25 モーメンティブ・パフォーマンス・マテリアルズ・インク Mixed boron nitride composition and method for producing the same
JP2012171842A (en) 2011-02-23 2012-09-10 Denki Kagaku Kogyo Kk Composite particle of melamine borate and boron nitride, and method for producing boron nitride particle using the same
CN105038136A (en) 2015-08-31 2015-11-11 华中科技大学 Preparing method for polymer composite heat dissipating material
JP2020511004A (en) 2017-02-28 2020-04-09 ロジャース コーポレーションRogers Corporation Thermal interface manufacturing method, thermal interface, and thermal management assembly including thermal interface

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ho Sun Lim、ほか5名,Anisotropically Alignable Magnetic Boron Nitride Platelets Decorated with Iron Oxide Nanoparticles,Chemistry of Materials,米国,2013年08月27日,Vol.25 No.16,Page.3315-3319

Also Published As

Publication number Publication date
JP2022145088A (en) 2022-10-03

Similar Documents

Publication Publication Date Title
Wei et al. Enhanced thermal conductivity of epoxy composites by constructing aluminum nitride honeycomb reinforcements
US10834854B2 (en) Methods for the manufacture of thermal interfaces, thermal interfaces, and articles comprising the same
Zhang et al. Hybrid fillers of hexagonal and cubic boron nitride in epoxy composites for thermal management applications
TWI838500B (en) Blocky boron nitride particles, heat conductive resin composition, and heat dissipation member
JP5814688B2 (en) Thermally conductive resin composition and heat dissipation material containing the same
US11339055B2 (en) Graphite/graphene composite material, heat collector, a heat conductor, a heat dissipator, a heat-dissipation system, and a method of producing the graphite/graphene composite material
WO2020196679A1 (en) Boron nitride powder, method for producing same, composite material, and heat dissipation member
EP1881943A1 (en) Fabrication methods of metal/polymer/ceramic matrix composites containing randomly distributed or directionally aligned nanofibers
JP2016533282A (en) Components produced by thermoplastic processing of polymers / boron nitride compounds, polymers / boron nitride compounds for producing such components, methods for producing such components and uses thereof
JP7452478B2 (en) Thermal conductive material and its manufacturing method
JP2021506730A (en) A powder composition containing first and second aggregates of inorganic particles, and a polymer composition containing a polymer and a powder composition.
JP6786047B2 (en) Method of manufacturing heat conductive sheet
KR102479099B1 (en) Composite material
JP2013136658A (en) Thermally conductive filler
Zhou et al. Enhancing cryogenic thermal conductivity of epoxy composites through the incorporation of boron nitride nanosheets/nanodiamond aerogels prepared by directional‐freezing method
JP7533144B2 (en) Manufacturing method of thermal conductive material
JP3458196B2 (en) High thermal conductive resin composition
WO2020196644A1 (en) Bulk boron nitride particles, thermally conductive resin composition, and heat dissipating member
JP7342905B2 (en) Composite manufacturing method
JP2023060476A (en) Heat-conductive material and manufacturing method thereof
JP2023173930A (en) Heat conductive particle, composite material, and method for manufacturing the same
WO2022039235A1 (en) Sheet containing boron nitride particles each having hollow part
KR101624945B1 (en) Composite of blockcopolymer/mwnt/metal, and the manufacturing method thereof
JP7203290B2 (en) Sheet-like hexagonal boron nitride sintered body and method for producing the same
JP2023049135A (en) Composite material and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7452478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150