JP7342720B2 - 圧縮自着火式内燃機関システム - Google Patents

圧縮自着火式内燃機関システム Download PDF

Info

Publication number
JP7342720B2
JP7342720B2 JP2020012692A JP2020012692A JP7342720B2 JP 7342720 B2 JP7342720 B2 JP 7342720B2 JP 2020012692 A JP2020012692 A JP 2020012692A JP 2020012692 A JP2020012692 A JP 2020012692A JP 7342720 B2 JP7342720 B2 JP 7342720B2
Authority
JP
Japan
Prior art keywords
fuel
injection
fuel injection
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020012692A
Other languages
English (en)
Other versions
JP2021116790A (ja
Inventor
雄司 原田
諒平 大野
俊明 ▲崎▼間
晰遥 葛
洋幸 山下
駿 難波
晃 倉持
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2020012692A priority Critical patent/JP7342720B2/ja
Publication of JP2021116790A publication Critical patent/JP2021116790A/ja
Application granted granted Critical
Publication of JP7342720B2 publication Critical patent/JP7342720B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

ここに開示する技術は、圧縮自着火式内燃機関システムに関する。
特許文献1には、ディーゼルエンジンが記載されている。このディーゼルエンジンは、燃料の噴射を複数回に分けて行う。これにより、複数回の燃焼が順次行われるようになり、燃焼騒音が抑制される。
特開2016-070193号公報
ところで、特許文献1に記載されているディーゼルエンジンは、ビストンの上面にリエントラント型のキャビティを有している。燃料噴射弁から噴射した燃料の噴霧は、キャビティの表面に沿って流れるため、先に噴射した燃料噴霧と、後から噴射した燃料噴霧とは重ならない。その結果、煤の発生を抑制することができる。
特許文献1に記載されているディーゼルエンジンとは異なり、ガソリンを燃料とした内燃機関において、圧縮自着火により燃焼させることで熱効率を向上させる技術が知られている。この内燃機関において、内燃機関の全運転領域において圧縮自着火による燃焼を可能にすれば、内燃機関の熱効率が大幅に向上する。
高負荷領域においてを圧縮自着火による燃焼を行おうとすれば、燃焼騒音が増大するという問題が生じる。そこで、特許文献1に記載されているディーゼルエンジンのように、複数回に分けて燃料噴射を行うことで、燃焼騒音を抑制することが考えられる。
ところが、リエントラント型のキャビティを有していない内燃機関において、複数回の燃料噴射を行うと、燃料噴霧同士が重なり合ってしまい、煤が大置に発生してしまうという新たな問題が生じる。
ここに開示する技術は、圧縮自着火により混合気が燃焼する内燃機関において、燃焼騒音の抑制と煤の発生の抑制とを両立させる。
ここに開示する技術は、燃焼室内に燃料を噴射する燃料噴射弁を用いた圧縮自着火式内燃機関システムに係る。
前記燃料噴射弁は、複数の噴射孔を有し、前記複数の噴射孔から前記燃焼室内の周方向における異なる複数の空間領域に向けて、個別に燃料を噴射可能に構成される。
この圧縮自着火式内燃機関システムは、
前記燃料噴射弁を制御するコントローラをさらに備え、
前記コントローラは、圧縮行程において、前記複数の空間領域のうちの一部の空間領域に向けて、前記燃料噴射弁の一部の噴射孔から燃料の噴射を開始し、前記燃料の噴射の開始後に、前記燃料噴射弁が、前記一部の空間領域を除く他の空間領域に向けて、他の噴射孔から燃料の噴射を開始するよう前記燃料噴射弁を制御する。
燃料噴射弁は、複数の噴射孔が、燃焼室内において周方向に仮想的に分割された複数の空間領域に向けて、個別に燃料を噴射する。いずれかの噴射孔から燃料を噴射すると、当該噴射孔に対応する空間領域に、混合気が形成される。
燃料噴射弁は、圧縮行程において、一部の噴射孔から燃料の噴射を開始する。当該噴射孔に対応する一部の空間領域に混合気が形成される。
燃料噴射弁は、前記の燃料噴射の開始後に、他の噴射孔から燃料の噴射を開始する。当該噴射孔に対応する他の空間領域に混合気が形成される。
燃料噴射弁は、燃料噴射を複数回に分けて行う。各燃料噴射によって形成された混合気が、圧縮自着火により順次燃焼する。燃焼室内の混合気が一斉に燃焼を開始しないため、燃焼圧が急峻に上昇するような燃焼が回避される。燃焼騒音が抑制される。
燃料噴射弁は、燃料噴射を複数回に分けて行うが、燃料を噴射する方向が周方向に異なる。このため、燃料噴霧同士が重ならない。その結果、煤の発生を抑制することができる。この内燃機関を搭載した車両は、排出ガス性能が向上する。
ここに開示する技術において、前記燃料の噴射の開始タイミングが早い噴射孔の径は、前記燃料の噴射の開始タイミングが遅い噴射孔の径よりも大きい。
噴射期間が一定であれば、噴射孔の径が大きいと、噴射される燃料量が多く、噴射孔の径が小さいと、噴射される燃料量が少ない。噴射の開始タイミングが早い噴射孔の径が、相対的に大きいと、燃料噴射弁は、多くの燃料を早いタイミングで燃焼室内に噴射できる。噴射のタイミングが早いと燃焼までの時間を長く確保できるから、多量の燃料を気化させる時間が確保できる。
逆に、噴射の開始タイミングが遅い噴射孔の径が相対的に小さいことによって、遅いタイミングで燃焼室内に噴射される燃料量は少ない。燃焼までの時間が短くても、噴射した燃料が気化できる。
燃料の噴射タイミングに応じて噴射する燃料量を調節することによって、未燃燃料の増大、及び/又は、煤の発生が抑制される。
ここに開示する別の技術において、前記コントローラは、前記燃料の噴射の開始タイミングが早い噴射の噴射期間を、前記燃料の噴射の開始タイミングが遅い噴射の噴射期間よりも長く設定する。
噴射孔の径が同じであれば、噴射期間が長いと、噴射される燃料量が多く、噴射期間が短いと、噴射される燃料量が少ない。開始タイミングが早い噴射の噴射期間が、相対的に長いと、燃料噴射弁は、多くの燃料を早いタイミングで燃焼室内に噴射できる。前述したように、噴射のタイミングが早いと燃焼までの時間を長く確保できるから、多量の燃料を気化させる時間が確保できる。
逆に、開始タイミングが遅い噴射の噴射期間を相対的に短くすれば、遅いタイミングで燃焼室内に噴射される燃料量を少なくできる。燃焼までの時間が短くても、噴射した燃料が気化できる。
前記コントローラは、圧縮自着火式内燃機関の回転数を取得し、前記取得した回転数が高い場合は、低い場合よりも、前記圧縮行程において噴射する燃料の噴射開始時期を進角する、としてもよい。
内燃機関の回転数が高いと、混合気が燃焼室内において高温環境に晒される時間が短いため、混合気の過早着火が抑制される。内燃機関の回転数が高い場合に、燃料噴射弁が燃料の噴射を開始する時期を進角しても、過早着火は抑制される。
また、燃料噴射を開始する時期を進角すれば、燃料の噴射から燃焼が開始するまでの時間が長くなるから、燃料の気化時間が確保される。内燃機関の回転数が高い場合に、未燃燃料の増大、及び/又は、煤の発生の抑制に有利になる。
尚、膨張行程において噴射する燃料の噴射の開始時期は、内燃機関の回転数が高い場合も、回転数が低い場合も、同じ時期にしてもよい。膨張行程に噴射した燃料は、燃焼までの時間が極めて短く、ディーゼルエンジンの拡散燃焼のような燃焼をするためである。
以上説明したように、前記の圧縮自着火式内燃機関システムによると、燃焼騒音の抑制と煤の発生の抑制とを両立できる。
図1は、内燃機関の構成を例示するシステム図である。 図2は、燃料噴射弁の構成を例示する断面図である。 図3は、燃料噴射弁が燃焼室内の各空間領域に燃料を噴射する状態を例示する遷移図である。 図4は、混合気の燃焼に関する各パラメータのタイミングチャートである。 図5は、燃料噴射弁の制御に関するフローチャートである。 図6は、内燃機関の運転領域を例示する図である。 図7は、内燃機関の基準回転時と高回転時との燃料の噴射態様を例示するタイミングチャートである。 図8は、図7とは異なる、内燃機関の基準回転時と高回転時との燃料の噴射態様を例示するタイミングチャートである。 図9は、燃料噴射弁の噴射孔の変形例を示す図である。 図10は、燃料噴射弁が燃焼室内の各空間領域に燃料を噴射する状態を例示する図3対応図である。 図11は、燃料噴射弁の噴射孔の変形例を示す図である。
以下、圧縮自着火式内燃機関システムについて、図面を参照しながら説明をする。尚、以下の説明は、例示である。図1は、内燃機関1のシステム図を示している。この内燃機関1は、圧縮自着火式の4ストローク機関である。内燃機関1の燃料は、ガソリン、又は、ガソリンを含有する液体燃料である。内燃機関1は、4輪の車両に搭載されている。内燃機関1の出力を駆動輪に伝達することによって車両が走行する。
(内燃機関の全体構成)
内燃機関1は、シリンダブロック21と、シリンダブロック21の上に載置されるシリンダヘッド22と、を備えている。シリンダブロック21の内部には、複数のシリンダ23が設けられている。複数のシリンダ23は、クランクシャフト26の方向に並んで配置されている。尚、内燃機関1のシリンダ数、及び、シリンダの配列は、特定の数及び配列に限定されない。
各シリンダ23内には、クランクシャフト26に対しコネクティングロッド27を介して連結されるピストン24が内挿されている。ピストン24は、シリンダ23内を往復する。ピストン24の上面と、シリンダヘッド22の天井部と、シリンダ23の内周面とは、燃焼室3を形成する。
内燃機関1には、吸気管41が接続されている。図示は省略するが、吸気管41は、各燃焼室3に接続されている。吸気管41は、各燃焼室3へ吸気を供給する。吸気管41には、スロットル弁411が介設している。
内燃機関1には、排気管42が接続されている。図示は省略するが、排気管42は、各燃焼室3に接続されている。排気管42は、各燃焼室3から排気を排出する。
シリンダヘッド22には、シリンダ23毎に燃料噴射弁5が取り付けられている。燃料噴射弁5は、燃焼室3内に直接、燃料を噴射する。燃料噴射弁5には、図示は省略する燃料タンクから、燃料が供給される。燃料噴射弁5の構成の詳細は、後述する。
内燃機関1はまた、冷却水回路64を有している。冷却水回路64は、冷却水の熱交換を行うラジエータ641を有している。冷却水は、内燃機関1とラジエータ641との間を循環する。
内燃機関1は、コントローラ70を有している。コントローラ70は、内燃機関1の運転を制御する。図1のシステム図において、コントローラ70には、各種のセンサが接続されている。具体的に図1のシステム図においては、吸気温センサ71、水温センサ72、クランク角度センサ73、車速センサ74、アクセル踏み込み量センサ75、スロットル弁開度センサ76、及び、筒内圧センサ77が、コントローラ70に接続されている。
ここで、吸気温センサ71は、吸気管41に取り付けられかつ、吸気管41を流れる吸気の温度に関係する計測信号をコントローラ70に出力する。水温センサ72は、冷却水回路64に取り付けられ、冷却水の温度に関係する計測信号をコントローラ70に出力する。
クランク角度センサ73は、内燃機関1に取り付けられかつ、クランクシャフト26の回転角度に関係する計測信号をコントローラ70に出力する。
車速センサ74は、車両の車輪に取り付けられかつ、車両の車速に関係する計測信号をコントローラ70に出力する。アクセル踏み込み量センサ75は、アクセルペダル751に取り付けられかつ、アクセルペダル751の踏み込み量に関係する計測信号をコントローラ70に出力する。
スロットル弁開度センサ76は、スロットル弁411に取り付けられかつ、スロットル弁411の開度に関係する計測信号をコントローラ70に出力する。筒内圧センサ77は、シリンダヘッド22に取り付けられかつ、燃焼室3内の圧力に関係する計測信号をコントローラ70に出力する。
コントローラ70は、これらのセンサ71~77の計測信号に基づいて内燃機関1の運転状態を判断する。
コントローラ70は、燃料噴射弁5に、制御信号を出力する。コントローラ70は、内燃機関1の運転状態に応じた制御信号を出力する。
燃料噴射弁5は、コントローラ70からの制御信号を受け、所定の量の燃料を、所定のタイミングで、シリンダ23内に噴射する。燃料噴射弁5による燃料の噴射に関しては、後で詳述する。
燃焼室3内に燃料が噴射されることによって、燃焼室3内には混合気が形成される。ピストン24が上昇するに従い燃焼室3内の温度が高まる。混合気の酸化反応は、次第に進行する。燃焼室3内の温度が自着火温度を超えると、混合気は、自着火により燃焼する。
(燃料噴射弁の構成)
図2は、燃料噴射弁5の構成を例示している。燃料噴射弁5は、ソレノイド式の噴射弁である。つまり、燃料噴射弁5は、ソレノイドコイルに通電することにより、ニードルをストロークさせ、それによって、噴射孔を開く。この燃料噴射弁5は、複数の噴射孔56を個別に開閉可能に構成されている。
燃料噴射弁5は、バルブボディ51と、ニードル52と、ソレノイドコイル53と、可動コア54と、固定コア55とを有している。
バルブボディ51は、略円筒状である。バルブボディ51は、燃料の通路を形成する。バルブボディ51の基端部(つまり、図2における上端部)には、燃料が流入する流入口511が設けられている。バルブボディ51の先端部(つまり、図2における下端部)は塞がっていると共に、複数の噴射孔56が形成されている。
複数の噴射孔56は、拡大図201に示すように、第1噴射孔561、第2噴射孔562、第3噴射孔563、第4噴射孔564、第5噴射孔565及び第6噴射孔566を含む。第1~第6噴射孔561~566は、周方向に等角度間隔で配置されている。第1~第6噴射孔561~566の径は全て同じである。第1~第6噴射孔561~566の孔軸は、燃料噴射弁5の軸に対して傾いている。第1~第6噴射孔561~566は、拡大図201及び図3に示すように、燃料噴射弁5の先端から斜め下向きに燃料F1、F2、F3、F4、F5、F6を噴射する。
ニードル52は、第1~第6噴射孔561~566を開閉する。ニードル52は、バルブボディ51内において、燃料噴射弁5の軸に沿って伸びている。ニードル52の先端は、バルブボディ51の先端部に当接している。ニードル52は、その基端部に設けられたスプリング520によって、バルブボディ51の先端側へ付勢されている。ニードル52は、非通電時には第1~第6噴射孔561~566を閉じる。
ニードル52は、円柱状である。ニードル52はまた、図2の拡大図202に示すように、周方向に6つに分割されている。6つの分割ニードル521は、第1~第6噴射孔561~566のそれぞれに対応する。つまり、6つの分割ニードル521は、第1~第6噴射孔561~566のそれぞれを、個別に開閉する。
ニードル52には、可動コア54が外挿されている。可動コア54は、円環状を有していると共に、ニードル52と同様に、周方向に6つに分割されている。6つの分割可動コア541は、6つの分割ニードル521のそれぞれに対応する。各分割可動コア541は、各分割ニードル521に固定されている。尚、各分割可動コア541には、水が通過する通路542が、軸方向に貫通して形成されている。
可動コア54よりも、バルブボディ51の基端側には、固定コア55が配設されている。固定コア55は、バルブボディ51に内挿されかつ、バルブボディ51に固定されている。固定コア55には、燃料が流れる通路551が、軸方向に貫通して形成されている。
ソレノイドコイル53は、バルブボディ51に外挿されている。ソレノイドコイル53は、周方向に6つに分割されている。6つの分割ソレノイドコイル531は、6個の分割可動コア541のそれぞれに対応する。燃料噴射弁5は、6つの分割ソレノイドコイル531に個別に通電可能に構成されている。
いずれかの分割ソレノイドコイル531に通電すると、当該分割ソレノイドコイル531に対応する分割可動コア541が、固定コア55の方へ吸引される。これにより、当該分割可動コア541に対応する分割ニードル521が、スプリング520の付勢力に抗して基端側へ移動し、当該分割ニードル521に対応する噴射孔56から、燃料が噴射する。燃料噴射弁5は、第1~第6噴射孔561~566から、個別に燃料F1、F2、F3、F4、F5、F6を噴射できる。
(燃料の噴射態様)
燃料噴射弁5は、複数の噴射孔561~566を通じて、燃焼室3内における周方向に異なる複数の空間領域31~36に向けて、個別に燃料F1、F2、F3、F4、F5、F6を噴射できる。
図3は、燃料噴射弁5が燃焼室3内の第1~第6空間領域31~36に燃料を噴射する状態を例示する遷移図である。先ず、工程P301において、燃料噴射弁5は、第1噴射孔561から第1空間領域31へ燃料F1を噴射する。次に、工程P302において、燃料噴射弁5は、第2噴射孔562から第2空間領域32へ燃料F2を噴射する。第1噴射孔561の孔軸の向きと、第2噴射孔562の孔軸の向きとは異なるため、第2噴射孔562から噴射された燃料の噴霧は、第1噴射孔561が噴射した第1空間領域31に対して、周方向に異なる第2空間領域32へ到達する。
工程P303において、燃料噴射弁5は、第3噴射孔563から第3空間領域33へ燃料F3を噴射する。第3噴射孔563から噴射された燃料の噴霧は、第1噴射孔561が噴射した第1空間領域31及び第2噴射孔562が噴射した第2空間領域32に対して、周方向に異なる第3空間領域33へ到達する。
工程P304において、燃料噴射弁5は、第4噴射孔564から第4空間領域34へ燃料F4を噴射し、続く工程P305において、燃料噴射弁5は、第5噴射孔565から第5空間領域35へ燃料F5を噴射し、工程P306において、燃料噴射弁5は、第6噴射孔566から第6空間領域36へ燃料F6を噴射する。燃料噴射弁5は、燃焼室3内を、周方向に仮想的に分割した複数の空間領域のそれぞれへ、噴射タイミングをずらして燃料を噴射できる。以下において、燃料噴射弁5が実行する燃料噴射態様を、空間分割噴射と呼ぶ場合がある。
図4は、混合気の燃焼に関する各パラメータのタイミングチャートである。符号401は、燃料噴射弁5のリフト量を例示している。燃料噴射弁5は、圧縮行程の期間から、燃料の噴射を開始する。燃料噴射弁5は、第1~第6噴射孔561~566から個別に、第1~第6空間領域31~36へ、燃料F1、F2、F3、F4、F5、F6を順次噴射する。燃料噴射弁5は、6回の燃料噴射を実行する。第1~第3噴射孔561~563からの燃料噴射は、圧縮上死点前に行われる。第4~第6噴射孔564~566からの燃料噴射は、圧縮上死点後に行われる。各燃料噴射の噴射期間は、図4の構成例においては同じである。
尚、図4の構成例においては、噴射と噴射との間に休止期間を設けているが、噴射と噴射との間に休止期間を設けなくてもよい。また、燃料の噴射の開始タイミングがずれていればよく、複数の噴射期間の一部が重なっていてもよい。
燃料の噴射後、ピストン24が上昇するに従い、燃焼室3内の温度が次第に高まる。燃焼室3内の混合気の酸化反応も進行する。図4の符号402は、燃焼室3内の熱発生率の変化を例示している。最初に燃料が噴射された第1空間領域31の混合気は、酸化反応が先行して進むため、CA1において先に自着火をして燃焼を開始する。二番目に燃料が噴射された第2空間領域32の混合気は、CA1よりも遅れたCA2において自着火をして燃焼を開始する。第3空間領域33の混合気は、CA2よりも遅れたCA3において自着火をして燃焼を開始する。
先に開始する燃焼が燃焼室3内の一部の空間領域に制限されるため、燃焼圧が急峻に上昇するような燃焼が回避される。また、開始タイミングをずらして、複数の空間領域における燃焼が順次行われるため、燃焼室3内全体としては、急速な燃焼を行いつつも、燃焼のピークが高くなりすぎることが抑制される。その結果、燃焼騒音の増大が抑制される。
図4の構成例において、第4空間領域34、第5空間領域35及び第6空間領域36への燃料噴射は、燃焼室3内において燃焼が開始した後に行われる。第4空間領域34、第5空間領域35及び第6空間領域36へ噴射された燃料は、それぞれCA4、CA5、CA6において自着火をして燃焼を開始する。これらの燃焼は、ディーゼルエンジンの拡散燃焼に近い燃焼である。
第4噴射孔564、第5噴射孔565、及び、第6噴射孔566からの燃料噴射は、燃焼室3内における燃焼が開始した後であるものの、燃焼が開始した空間領域とは異なる空間領域34~36のそれぞれに燃料が噴射される。燃料は、当該空間領域内の空気と十分に混ざり合うことができるため、煤の発生が抑制される。
図4の符号403は、煤の発生量を例示している。同図の破線は、燃料の分割噴射を行う従来の内燃機関における煤の発生量を例示している。従来の内燃機関は、燃料の噴射を、タイミングをずらして行っても、後から噴射する燃料を、燃焼を開始した火炎に向かって噴射するため、煤の発生量が増える。
これに対し、同図の実線は、この内燃機関1の煤の発生量を示している。この内燃機関1は、前述したように、後から噴射する燃料を、燃焼が開始していない空間領域に向かって噴射するため、煤の発生量を低減できる。
尚、燃料噴射弁5は、第4噴射孔564、第5噴射孔565、及び、第6噴射孔566からの噴射を、圧縮上死点前に行ってもよい。
従って、この内燃機関1は、燃焼騒音の抑制と、煤の発生の抑制とを両立できる。
図5は、コントローラ70が実行する、燃料噴射弁5の制御に関するフローチャートを例示している。スタート後のステップS1において、コントローラ70は、各種センサの値を取得する。続くステップS2において、コントローラ70は、前述した空間分割噴射が必要であるか否かを判断する。コントローラ70は、具体的には、内燃機関1の運転状態が、予め設定された空間分割噴射を行う領域内にある場合、空間分割噴射が必要であると判断する。
図6は、空間分割噴射を行う領域(つまり、空間分割領域)602を例示している。内燃機関1の回転数と負荷とによって規定される運転領域601において、空間分割領域602は、負荷の高い領域に設定されている。内燃機関1の負荷が高いと、燃料量が増えると共に、熱発生量が増えて燃焼室3内の温度が高くなるため、混合気の過早着火が発生しやすくなる。燃焼騒音を抑制しつつ、自着火による燃焼を実現するために、コントローラ70は、前述した空間分割噴射を行い、燃焼騒音を抑制と、煤の発生の抑制とを両立させる。
ステップS2の判定がYESの場合、プロセスはステップS3に進む。ステップS2の判定がNOの場合、プロセスはリターンする。尚、内燃機関1の運転状態が空間分割領域602内にない場合、燃料噴射弁5は、複数の噴射孔56から同時に燃料を噴射してもよい。また、燃料噴射弁5は、内燃機関1の運転状態が空間分割領域602内にない場合、燃料を、複数回に分けて噴射してもよい。
ステップS3において、コントローラ70は、燃料噴射の時期、及び、燃料噴射量を設定する。コントローラ70は、内燃機関1の運転状態に応じて、燃料噴射の時期、及び、燃料噴射量を設定する。
図7は、内燃機関1の基準回転時と、基準回転よりも高回転時との、燃料の噴射態様を例示するタイミングチャートである。チャート702に示すように、内燃機関1が高回転の場合、コントローラ70は、第1噴射孔561、第2噴射孔562、及び、第3噴射孔563から噴射する燃料の、噴射開始タイミングを、基準回転時の噴射開始タイミング(チャート701参照)よりも進角する。内燃機関1が高回転の場合、混合気が、燃焼室3内で高温環境に晒される時間が短い。そのため、混合気は過早着火しにくくなる。内燃機関1の回転数が高い場合に、燃料噴射弁5が燃料の噴射を開始する時期を進角しても、過早着火が抑制される。燃料噴射を開始する時期を進角すれば、燃料の噴射から燃焼が開始するまでの時間が長くなるから、燃料の気化時間が確保される。内燃機関1が高回転の場合に、未燃燃料の増大、及び/又は、煤の発生の抑制に有利になる。
尚、第1噴射孔561、第2噴射孔562、及び、第3噴射孔563からの噴射期間は同じである。前述したように、各噴射孔56の径が同じであるため、各噴射において噴射される燃料量は、同じである。
コントローラ70は、第4噴射孔564、第5噴射孔565、及び、第6噴射孔566から噴射する燃料の、噴射開始タイミングは、基準回転時と高回転時とで同じに設定する。第4噴射孔564、第5噴射孔565、及び、第6噴射孔566からの燃料噴射は、燃焼室3内で燃焼が開始した後に行うため、前述したように、ディーゼルエンジンの拡散燃焼のような燃焼になる。そのため、第4噴射孔564、第5噴射孔565、及び、第6噴射孔566から噴射する燃料の噴射タイミングは、内燃機関1の回転数の高低に関わらず一定に維持する。
尚、燃料の噴射時期が遅すぎると、噴射した燃料が、燃焼室3内の全体へ拡散してしまい、燃焼室3内が、複数の空間領域に分割されない恐れがある。燃料の噴射タイミングには、遅角限界が存在する。
図5のフローに戻り、コントローラ70は、ステップS3において燃料の噴射時期、及び、燃料の噴射量を設定すれば、続くステップS4において、設定した時期及び設定した噴射量で、燃料噴射弁5に燃料の噴射を実行させる。
これにより、前述したように、内燃機関1の負荷が高い場合でも、燃焼騒音を抑制しつつ、煤の発生を抑制した圧縮自着火による燃焼が実現する。内燃機関1が高負荷で運転している場合に圧縮自着火による燃焼を行うため、内燃機関1の熱効率が向上する。
(変形例)
前述した構成では、燃料噴射弁5は、第1~第6噴射孔561~566からの噴射期間を同じにしている。これとは異なり、例えば図8に示すように、燃焼が開始する前に噴射する第1、第2及び第3噴射孔561、562、563の噴射期間を相対的に長く、燃焼が開始した後に噴射する第4、第5及び第6噴射孔564、565、566の噴射期間を相対的に短くしてもよい。燃焼が開始した後に噴射する噴射量が少ないから、煤の発生を抑制する上で、有利になる。
尚、図8の構成例においては、図7と同様に、基準回転時よりも高回転時には(チャート802)、第1噴射孔561、第2噴射孔562、及び、第3噴射孔563から噴射する燃料の、噴射開始タイミングを、基準回転時の噴射開始タイミング(チャート801)よりも進角している。
また、図8の構成例においては、第1、第2及び第3噴射孔561、562、563の噴射期間を次第に短くしているが、第1、第2及び第3噴射孔561、562、563の噴射期間は同じにしてもよい。同様に、図8の構成例においては、第4、第5及び第6噴射孔564、565、566の噴射期間を次第に短くしているが、第4、第5及び第6噴射孔564、565、566の噴射期間は同じにしてもよい。
また、前述した構成では、燃料噴射弁5は、同じ径の噴射孔561~566を有している。これとは異なり、例えば図9に示すように、燃料噴射弁5は、異なる径の噴射孔561~566を有してもよい。第1~第6噴射孔561~566は、径が順番に小さくなる。第1~第6噴射孔561~566の内、第1噴射孔561の径が最も大きく、第6噴射孔566の径が最も小さい。最大径の第1噴射孔561と最小径の第6噴射孔566とは、周方向に隣り合っている。噴射期間が同じ場合に、径の大きい噴射孔は、燃料の噴射量が相対的に多く、径の小さい噴射孔は、燃料の噴射量が相対的に少ない。
第1噴射孔561から第6噴射孔566の順に燃料を噴射すると、燃焼が開始する前に噴射する第1、第2及び第3噴射孔561~563からの噴射量は、相対的に多い。燃焼が開始した後に噴射する第4、第5及び第6噴射孔564~566からの噴射量は、相対的に少ない。煤の発生を抑制する上で、有利になる。
燃料噴射弁5が燃料を噴射する順番は、図3に例示するように、周方向に噴射孔56が並んだ順で噴射することに限らない。例えば図10に例示するように、第1噴射孔561(工程P1001)、第3噴射孔563(工程P1002)、第5噴射孔565(工程P1003)、第2噴射孔562(工程P1004)、第4噴射孔564(工程P1005)、及び、第6噴射孔566(工程P1006)の順番に、燃料を噴射してもよい。工程P1001~P1003までの燃料噴射は、例えば圧縮上死点前に行う燃料噴射である。工程P1004~P1006までの燃料噴射は、燃焼室3内での燃焼が開始した後に行う燃料噴射である。工程P1004~P1006までの燃料噴射は、燃焼が開始している空間領域に隣接した空間領域へ燃料を噴射するため、当該燃料の着火性が高まるという利点がある。
尚、図11に示すように、径の大きい噴射孔、つまり、第1噴射孔561、第2噴射孔562及び第3噴射孔563と、径の小さい噴射孔、つまり、第4噴射孔564、第5噴射孔565及び第6噴射孔566と、を周方向に交互に配置してもよい。この構成の燃料噴射弁5を用いて、図10に示すように第1噴射孔561、第3噴射孔563、第5噴射孔565、第2噴射孔562、第4噴射孔564、及び、第6噴射孔566の順番に、燃料を噴射すれば、圧縮上死点前に噴射する燃料の噴射量を相対的に多く、圧縮上死点後に噴射する燃料の噴射量を相対的に少なくできる。また、この構成では、燃焼が開始している空間領域に隣接した空間領域へ噴射する燃料の噴射量が少ないため、当該燃料の着火性がさらに高まる。
尚、前述した構成では、燃料噴射弁5は、6個の噴射孔561~566を有している。燃料噴射弁5は、適宜の数の噴射孔を有することができる。
また、燃料噴射弁5は、一噴射孔ずつ燃料を噴射せずに、一回の噴射の際に、6個の噴射孔561~566の内の一部でかつ、複数の噴射孔から同時に燃料を噴射してもよい。
前述した各構成例は、互いに組み合わせることができる。
尚、ここに開示する技術は、前述した内燃機関1に適用することに限らない。ここに開示する技術は、ディーゼル燃料を用いる圧縮自着火式の内燃機関に適用することも可能である。
1 内燃機関
3 燃焼室
31 第1空間領域
32 第2空間領域
33 第3空間領域
34 第4空間領域
35 第5空間領域
36 第6空間領域
5 燃料噴射弁
561 第1噴射孔
562 第2噴射孔
563 第3噴射孔
564 第4噴射孔
565 第5噴射孔
566 第6噴射孔
70 コントローラ(制御部)

Claims (3)

  1. 燃焼室内に燃料を噴射する燃料噴射弁を備える圧縮自着火式内燃機関システムであって、
    前記燃料噴射弁は、複数の噴射孔を有し、前記複数の噴射孔から前記燃焼室内の周方向における異なる複数の空間領域に向けて、個別に燃料を噴射可能に構成され、
    前記燃料噴射弁を制御するコントローラをさらに備え、
    前記コントローラは、圧縮行程において、前記複数の空間領域のうちの一部の空間領域に向けて、前記燃料噴射弁の一部の噴射孔から燃料の噴射を開始し、前記燃料の噴射の開始後に、前記燃料噴射弁が、前記一部の空間領域を除く他の空間領域に向けて、他の噴射孔から燃料の噴射を開始するよう前記燃料噴射弁を制御し、
    前記燃料の噴射の開始タイミングが早い噴射孔の径は、前記燃料の噴射の開始タイミングが遅い噴射孔の径よりも大きい圧縮自着火式内燃機関システム。
  2. 燃焼室内に燃料を噴射する燃料噴射弁を備える圧縮自着火式内燃機関システムであって、
    前記燃料噴射弁は、複数の噴射孔を有し、前記複数の噴射孔から前記燃焼室内の周方向における異なる複数の空間領域に向けて、個別に燃料を噴射可能に構成され、
    前記燃料噴射弁を制御するコントローラをさらに備え、
    前記コントローラは、圧縮行程において、前記複数の空間領域のうちの一部の空間領域に向けて、前記燃料噴射弁の一部の噴射孔から燃料の噴射を開始し、前記燃料の噴射の開始後に、前記燃料噴射弁が、前記一部の空間領域を除く他の空間領域に向けて、他の噴射孔から燃料の噴射を開始するよう前記燃料噴射弁を制御し、
    前記コントローラは、前記燃料の噴射の開始タイミングが早い噴射の噴射期間を、前記燃料の噴射の開始タイミングが遅い噴射の噴射期間よりも長く設定する圧縮自着火式内燃機関システム。
  3. 請求項1又は2に記載の圧縮自着火式内燃機関システムにおいて、
    前記コントローラは、圧縮自着火式内燃機関の回転数を取得し、前記取得した回転数が高い場合は、低い場合よりも、前記圧縮行程において噴射する燃料の噴射開始時期を進角する圧縮自着火式内燃機関システム。
JP2020012692A 2020-01-29 2020-01-29 圧縮自着火式内燃機関システム Active JP7342720B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012692A JP7342720B2 (ja) 2020-01-29 2020-01-29 圧縮自着火式内燃機関システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012692A JP7342720B2 (ja) 2020-01-29 2020-01-29 圧縮自着火式内燃機関システム

Publications (2)

Publication Number Publication Date
JP2021116790A JP2021116790A (ja) 2021-08-10
JP7342720B2 true JP7342720B2 (ja) 2023-09-12

Family

ID=77174405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012692A Active JP7342720B2 (ja) 2020-01-29 2020-01-29 圧縮自着火式内燃機関システム

Country Status (1)

Country Link
JP (1) JP7342720B2 (ja)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62298659A (ja) * 1986-06-18 1987-12-25 Mazda Motor Corp 直噴式デイ−ゼルエンジンの燃料噴射ノズル
JPH08218981A (ja) * 1995-02-09 1996-08-27 Nippon Clean Engine Lab Co Ltd 圧縮着火内燃機関の多噴口多段多角度燃料噴射ノズル並びに その燃焼方式

Also Published As

Publication number Publication date
JP2021116790A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
US9599058B2 (en) Control device of gasoline direct-injection engine
JP5741352B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP5494568B2 (ja) ガソリンエンジン
JP5494545B2 (ja) 火花点火式ガソリンエンジン
JP6015047B2 (ja) エンジンの制御装置
JP2016000969A5 (ja)
JP6465147B2 (ja) 予混合圧縮着火式エンジン
JP6278089B1 (ja) 予混合圧縮着火式エンジンシステム
US11506168B2 (en) Gasoline internal combustion engine with assisted compression ignition
JP7342720B2 (ja) 圧縮自着火式内燃機関システム
JP7415605B2 (ja) 水噴射弁を備える内燃機関の制御方法、及び、水噴射弁を備える内燃機関
JP2021088983A (ja) 圧縮自着火エンジンの制御装置
JP4274063B2 (ja) 内燃機関の制御装置
JP6439818B2 (ja) 予混合圧縮着火式エンジンの制御装置
JP7415604B2 (ja) 水噴射弁を備える内燃機関の制御方法、及び、水噴射弁を備える内燃機関
JP6436219B1 (ja) 予混合圧縮着火式エンジン
JP4702214B2 (ja) 筒内噴射式内燃機関の始動制御装置
JP5935275B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP4967691B2 (ja) ガソリンエンジンの制御装置
JP6292249B2 (ja) 予混合圧縮着火式エンジン
JP2006257999A (ja) 内燃機関
JP6436220B1 (ja) 予混合圧縮着火式エンジン
JP6244881B2 (ja) 直噴エンジンの制御装置
JP2018172980A (ja) 予混合圧縮着火式エンジン
JP6477848B1 (ja) 予混合圧縮着火式エンジン

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7342720

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150