JP7340130B1 - Non-contact temperature sensor - Google Patents

Non-contact temperature sensor Download PDF

Info

Publication number
JP7340130B1
JP7340130B1 JP2022071749A JP2022071749A JP7340130B1 JP 7340130 B1 JP7340130 B1 JP 7340130B1 JP 2022071749 A JP2022071749 A JP 2022071749A JP 2022071749 A JP2022071749 A JP 2022071749A JP 7340130 B1 JP7340130 B1 JP 7340130B1
Authority
JP
Japan
Prior art keywords
thermistor
paste
metal particle
temperature sensor
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022071749A
Other languages
Japanese (ja)
Other versions
JP2023161389A (en
Inventor
直文 蕨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022071749A priority Critical patent/JP7340130B1/en
Application granted granted Critical
Publication of JP7340130B1 publication Critical patent/JP7340130B1/en
Publication of JP2023161389A publication Critical patent/JP2023161389A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

【課題】従来の非接触型温度センサは、サーミスタの電極面を絶縁基盤の導体部面に塗布された導電性ペースト上(半田、又は金属粒子ペースト)に対向する様に配設し電気的に接続するが、ペーストの塗布量差による熱膨張差、表面張力差、また内包された気泡の膨張、発生するガス等により、絶縁基盤より浮き上がる現象が生じ、その隙間から対流が生まれ入射エネルギ-を感知する精度、速度が落ち、更に金属粒子ペーストにおいては非オーミック接触となり測定値に不安が残る。【解決手段】絶縁基盤からの浮き上がり防止は、サーミスタにウェイト、棒体又は弾性体等用い、サーミスタを介して継続的な押圧を導電材に加え、絶縁基盤上面とサーミスタの感熱機能の組成物抵抗体層の隙間を調整し、金属粒子ペーストではオーミック接続を高め、他の半田及び金属粒子ペースト共に発熱源からのエネルギを効率よく正確に捉え、測定精度を高めた非接触型温度センサである。【選択図】 図1[Problem] In a conventional non-contact temperature sensor, the electrode surface of the thermistor is arranged so as to face the conductive paste (solder or metal particle paste) applied to the conductor surface of the insulating substrate. However, due to the difference in thermal expansion and surface tension due to the difference in the amount of paste applied, the expansion of the enclosed bubbles, and the gas generated, a phenomenon occurs where the paste rises above the insulating base, and convection is generated from the gap, which absorbs the incident energy. Sensing accuracy and speed decrease, and metal particle paste causes non-ohmic contact, leaving concerns about measured values. [Solution] To prevent the thermistor from lifting up from the insulating base, use a weight, rod, elastic body, etc. for the thermistor, apply continuous pressure to the conductive material through the thermistor, and create a composition resistance between the upper surface of the insulating base and the heat-sensitive function of the thermistor. It is a non-contact temperature sensor that adjusts the gap between the body layers, improves the ohmic connection with the metal particle paste, and efficiently and accurately captures the energy from the heat source with other solders and metal particle pastes, increasing measurement accuracy. [Selection diagram] Figure 1

Description

本発明は、絶縁物上に感熱機能の組成物抵抗体層を具備したサーミスタ(図2)と、それを搭載する一対の導体部を備えた絶縁基盤との間隔に関する事と、該サーミスタと該絶縁基盤間に介在する導電材の一種である、金属粒子ペーストのオーミック接触に関する。 The present invention relates to the spacing between a thermistor (FIG. 2) having a composition resistor layer with a heat-sensitive function on an insulator and an insulating substrate having a pair of conductor parts on which the thermistor is mounted, and It relates to ohmic contact of metal particle paste, which is a type of conductive material interposed between insulating substrates.

絶縁物上に感熱機能のある組成物抵抗体層を具備したサーミスタの電極部と、絶縁基盤上に備えた一対の導体部とを電気的に接続すると、非接触型温度センサが可能となる。 A non-contact temperature sensor is made possible by electrically connecting the electrode part of a thermistor having a composition resistor layer with a heat-sensitive function on an insulating material and a pair of conductor parts provided on an insulating substrate.

非接触型温度センサは、測定の対象物が発している放射線エネルギー(遠赤を含む赤外線や紫外線等)を、非接触で温度を感知し、電気的に接続されたリード線等のユニットを介して温度表示や温度制御を行っている。 Non-contact temperature sensors detect the temperature of radiation energy (infrared rays including far infrared rays, ultraviolet rays, etc.) emitted by the object to be measured without contact, and then detect the temperature through units such as electrically connected lead wires. temperature display and temperature control.

その非接触型温度センサを利用した製品としては、コピー機、プリンター、オーブンレンジ、体温計、風速センサ等が挙げられる。 Products using the non-contact temperature sensor include copy machines, printers, microwave ovens, thermometers, wind speed sensors, and the like.

大きな特徴を従来型の接触式温度センサと比較すると、従来型ではコピー、プリンター等の定着用熱ローラと接している為にローラに少なからずキズを発生させ印刷物にスジが生じる不具合があるが、非接触型温度センサの場合はローラと接していない為にキズを発生させる事が無く、又オーブンレンジでは的を絞って食品の温度観察ができ解凍等に便利である。 Comparing the major features with conventional contact type temperature sensors, we find that conventional types come in contact with the fusing heat roller of copiers, printers, etc., which causes some scratches on the roller and causes streaks on printed matter. In the case of a non-contact type temperature sensor, since it is not in contact with the roller, it does not cause scratches, and in the microwave oven, the temperature of the food can be observed in a targeted manner, which is convenient for thawing, etc.

国際公開番号W02016/152222号公報International publication number W02016/152222

図1に示す一例として挙げた非接触型温度センサは、対象物(8、発熱源)から発せられる放射線エネルギ-(7、遠赤を含む赤外線、紫外線)が、対象物側の絶縁基盤下面(5a)から熱伝導によって絶縁基盤上面(5b)へと移動し、移動してきた絶縁基盤上面(5b)の温度をサーミスタの組成物抵抗体層(4)が測定をしているものである。 In the non-contact temperature sensor shown in Figure 1, radiation energy (7, infrared rays including far-infrared, ultraviolet rays) emitted from an object (8, heat generation source) is transmitted to the lower surface of an insulating substrate on the object side. The composition resistor layer (4) of the thermistor moves from 5a) to the upper surface of the insulating substrate (5b) by heat conduction, and measures the temperature of the upper surface of the insulating substrate (5b).

特許文献1は、絶縁物上に感熱機能のある組成物抵抗体層を具備し、一対の電極を備えたサーミスタを絶縁基盤に配設するが、サーミスタと絶縁基盤との間隔が大きくなったり又はサーミスタ本体の勾配が大きくなったりする場合があり、入射してきたエネルギ-に対する測定が不安定となり、温度に対しての精度は低く不正確な制御に至り、結果として歩留まりは低くなる。 In Patent Document 1, a composition resistor layer having a heat-sensitive function is provided on an insulator, and a thermistor having a pair of electrodes is disposed on an insulating base, but the gap between the thermistor and the insulating base becomes large or The slope of the thermistor body may become large, making measurement of incident energy unstable, leading to low precision and inaccurate control of temperature, and resulting in low yield.

図3及び図7の模式図は歩留まり低下要因の主な状態である。 The schematic diagrams in FIGS. 3 and 7 show the main conditions that cause a decrease in yield.

歩留まり低下のメカニズムは、絶縁物上に電気的に接続された一対の電極部を備えた感熱機能の組成物抵抗体層を具備したサーミスタ(2)は表面実装部品であり、その形状と重さは一例として1.0(長さ)×0.5(幅)×0.3(厚み)[mm](以後1005と記載)の形状では、絶縁物にアルミナを用いると嵩密度が3.5g/cmであれば、体積×嵩密度より0.525mg、また長さ1.6mm、幅0.8mm、厚み0.3mm(以後1608と記載)の形状であれば、1.344mgであり、軽い為に組立加工中の振動、加熱過程の風、組立用治工具の熱膨張による歪みが生む振動の影響を容易に受け、最初に正しい配設が行われても図3の様なサーミスタ本体が勾配を形成した状態になってしまう。 The mechanism of the decrease in yield is that the thermistor (2), which has a composition resistor layer with a heat-sensitive function and a pair of electrodes electrically connected on an insulator, is a surface-mounted component, and its shape and weight are As an example, in a shape of 1.0 (length) x 0.5 (width) x 0.3 (thickness) [mm] (hereinafter referred to as 1005), if alumina is used as the insulator, the bulk density is 3.5 g. / cm3 , it is 0.525 mg from volume x bulk density, and if it has a shape of 1.6 mm in length, 0.8 mm in width, and 0.3 mm in thickness (hereinafter described as 1608), it is 1.344 mg, Because it is light, it is easily affected by vibrations generated during assembly, wind during the heating process, and distortion caused by thermal expansion of assembly jigs and tools. ends up forming a slope.

また原材料である導電材からの影響も大きく、塗布量差による熱膨張差及び表面張力差、また内包されている気泡や加熱過程で生まれるガス等によりサ-ミスタは、容易に浮き上がる、勾配を形成する現象を生じやすい(図3)(図7)。 In addition, the conductive material used as the raw material has a large effect, and the thermistor easily lifts up or forms a slope due to differences in thermal expansion and surface tension due to differences in the amount of coating, as well as bubbles contained within and gases generated during the heating process. (Fig. 3) (Fig. 7).

これらは配設時に一対の導体部(6)を備えた絶縁基盤(5)との接触を向上させる介助材(仮止材)が、絶縁基盤上面(5b)と接する感熱機能の組成物抵抗体層(4)表面を汚染する為に使用できない事が大きな要因である。 These are composition resistors with a heat-sensitive function, in which a supporting material (temporary bonding material) that improves contact with an insulating substrate (5) equipped with a pair of conductor parts (6) at the time of installation is in contact with the upper surface (5b) of the insulating substrate. A major reason is that layer (4) cannot be used because it contaminates the surface.

導電材は二種あり、一つは半田ペースト、二つ目が金属粒子(金、銀、白金等)を有機系、例えばエポキシ樹脂等をフィラ-としたペースト状の金属粒子ペースト、又は無機系材料、例えばガラス等をフィラ-として混ぜ合わせた金属粒子ペースト(銀ペースト、金ペースト等)がある。 There are two types of conductive materials: one is a solder paste, and the second is an organic type of metal particles (gold, silver, platinum, etc.), such as a metal particle paste with a filler of epoxy resin, or an inorganic type. There are metal particle pastes (silver paste, gold paste, etc.) that are made by mixing materials such as glass as fillers.

電気的接続に半田ペーストを用いた場合は、表面張力等により円錐状で固体化し機械的強度の低下や対流現象等(10)を生む勾配が形成され、抵抗値振れ幅(リップリ)が大きくなり、また金属粒子ペーストの場合は内部に含まれた金属粒子の配向性が乱れ(図7)、金属粒子が互いに接触しない非オーミック接触となる事で(図5)、抵抗値振れ幅(リップル)も大きく、更に測定精度の信頼性も劣る。 When solder paste is used for electrical connections, it solidifies in a conical shape due to surface tension, etc., forming a gradient that causes a decrease in mechanical strength and convection phenomena (10), which increases resistance value fluctuation (ripple). In addition, in the case of metal particle paste, the orientation of the metal particles contained inside is disordered (Figure 7), resulting in non-ohmic contact where the metal particles do not touch each other (Figure 5), resulting in resistance fluctuation (ripple). is also large, and the reliability of measurement accuracy is also poor.

ここで述べる「金属粒子の配向性が乱れる状態」とは、図7に示す加熱により軟化した導電材の一種である金属粒子ペーストが、押圧が無く、又は絶縁基盤との接触を向上させる段落(0012)に記載した介助剤が無い事により勾配を形成し、金属粒子の方向が不揃いとなり、互いの金属粒子の接触がない非オーミック接触に至る事を指している。 The "state in which the orientation of metal particles is disordered" described here refers to the state in which the metal particle paste, which is a type of conductive material softened by heating, is not pressed or the state in which the contact with the insulating substrate is improved ( In the absence of the aid described in 0012), a gradient is formed and the directions of the metal particles are uneven, leading to non-ohmic contact in which the metal particles do not come into contact with each other.

オーミック接触が生まれるメカニズムを他の表面実装抵抗部品で述べると、片方の電極部には上下、左右側面、特性を引出す面の計5ケ所に電極部があり、電気的に接続する場合は導電材に含まれている介助剤(例えばロジン、フラックス)が5面に対しての濡れ性を高める働きをし、さらに段落(0012)に記載した絶縁基盤との接触を向上させる介助材が介在する事で押圧と同等の効果を生み、部品が浮き上がらない配向性の良いオーミック接触を得られる。 Explaining the mechanism by which ohmic contact is created using other surface mount resistance components, one electrode has electrodes in five locations: top and bottom, left and right sides, and the surface that brings out the characteristics. The auxiliary agent (for example, rosin, flux) contained in the material acts to increase the wettability of the five surfaces, and the auxiliary agent that improves the contact with the insulating substrate described in paragraph (0012) is also present. This produces the same effect as pressing, and provides ohmic contact with good orientation that prevents parts from lifting.

しかし図2の様なサーミスタは、電極部が下面1ケ所だけで他の四面(左右、上面、短辺と高さ辺で構成された面)は絶縁物(セラミックス、樹脂等)の為に、導電材内に介助材が存在しても濡れる事は無く弾かれ、更に絶縁基盤との接触を向上させる段落(0012)に記載した介助材が無い事で浮き上がる現象は、半田ペースト、金属粒子ペーストの双方とも回避はできない。 However, the thermistor shown in Figure 2 has only one electrode on the bottom surface, and the other four surfaces (left, right, top, short and height sides) are made of insulators (ceramics, resin, etc.). Even if there is a supporting material in the conductive material, it will not get wet and will be repelled, and will further improve the contact with the insulating substrate. Both cannot be avoided.

これはサーミスタ(2)の重量より導電材(7、半田ペースト、金属粒子ペースト)の表面張力や、内包される気泡の熱膨張力等が大きい事で、段落(0012)に記載した絶縁基盤との接触を向上させる介助剤が無い為に、金属粒子ペーストの場合ではオーミック接触を得られないまま浮き上がりによる勾配を形成し、これはサーミスタの極小化が進む程、例えば1608より小さくなる、1005、長さ0.3、幅0.15、厚み0.3[mm]の03015では、電極部(3)面積が更に小さい事で加速される。 This is because the surface tension of the conductive material (7, solder paste, metal particle paste) and the thermal expansion force of the enclosed bubbles are greater than the weight of the thermistor (2). In the case of metal particle paste, because there is no auxiliary agent to improve the contact, a gradient is formed due to uplift without being able to obtain ohmic contact, and this becomes smaller as the thermistor becomes smaller, for example, from 1608, 1005, In 03015, which has a length of 0.3, a width of 0.15, and a thickness of 0.3 [mm], the electrode part (3) area is even smaller, so that acceleration is achieved.

図3の様な浮き上がる現象、サーミスタが勾配を形成した状態で配設されると、計測中に軽くなった気体は上昇し対流現象(10)を生み熱が逃げ、抵抗値が飽和するまでの到達時間が嵩み、更に金属粒子ペーストでは非オーミック接続となり、図5の低電流(10μA以下)領域においてI-V特性に障害を生み、周囲温度等の変化により他の電流域でも不安定な抵抗値となる。 When the thermistor is installed with a gradient as shown in Figure 3, the gas that becomes lighter during measurement rises, creating a convection phenomenon (10), causing heat to escape, until the resistance value is saturated. The arrival time increases, and metal particle paste results in a non-ohmic connection, which causes problems with the IV characteristics in the low current (10 μA or less) region shown in Figure 5, and causes instability in other current regions due to changes in ambient temperature, etc. It becomes the resistance value.

これらの問題に鑑み本発明は、導電材(7)の一種、金属粒子ペーストはオーミック接触を形成し、尚且つ半田ペーストと金属粒子ペーストの双方の導電材が勾配の形成を抑制する事で、対流(10)の影響がない絶縁基盤(5)とサーミスタ(2)の感熱機能の組成物抵抗体層(4)との隙間の技術開示を行う。 In view of these problems, the present invention provides that the metal particle paste, a type of conductive material (7), forms ohmic contact, and that the conductive materials of both the solder paste and the metal particle paste suppress the formation of gradients. A technical disclosure will be made of a gap between an insulating substrate (5) and a composition resistor layer (4) with a heat-sensitive function of a thermistor (2), which is not affected by convection (10).

請求項1に記載する発明は、非接触型温度センサは一対の導体部(6)を備えた絶縁基盤(5)と、前記一対の導体部(6)と電気的に接続できる一対の電極部(3)を備えた感熱機能の組成物抵抗体層(4)を具備したサーミスタ(2)とからなり、前記一対の導体部(6)と前記一対の電極部(3)を電気的に接続する為に導電材(7)を介在させ対向する形で配設し、前記導電材(7)に継続した押圧を加えて、前記絶縁基盤上面(5b)と前記組成物抵抗体層(4)との間隔が、好ましくは2.0mm以下で有る事を特徴とする非接触型温度センサである。 In the invention described in claim 1, the non-contact temperature sensor includes an insulating base (5) having a pair of conductor parts (6), and a pair of electrode parts electrically connectable to the pair of conductor parts (6). (3) and a thermistor (2) having a composition resistor layer (4) with a heat-sensitive function, electrically connecting the pair of conductor parts (6) and the pair of electrode parts (3). In order to do this, a conductive material (7) is interposed between the conductive material (7) and continuous pressure is applied to the insulating substrate upper surface (5b) and the composition resistor layer (4). This is a non-contact type temperature sensor characterized in that the distance between the two is preferably 2.0 mm or less.

請求項2に記載する発明は、前記絶縁基盤上面(5b)と前記組成物抵抗体層(4)の間隔が、最も好ましくは0.7mm以下の請求項1に記載した非接触型温度センサである。 The invention according to claim 2 is the non-contact temperature sensor according to claim 1, wherein the distance between the upper surface of the insulating substrate (5b) and the composition resistor layer (4) is most preferably 0.7 mm or less. be.

請求項3に記載する発明は、請求項1乃至請求項2に記載した前記サーミスタの勾配が、3/10以下で形成された非接触型温度センサである。 The invention described in claim 3 is a non-contact type temperature sensor in which the slope of the thermistor described in claims 1 to 2 is formed to be 3/10 or less.

請求項4に記載する発明は、一対の導体部(6)を備えた絶縁基盤(5)と、前記一対の導体部(6)と対向する形で配設する一対の電極部(3)を備えた感熱機能の組成物抵抗体層(4)を具備したサーミスタ(2)と、前記一対の導体部(6)と前記一対の電極部(3)とを電気的に接続する為に介在する導電材(7)とからなり、前記絶縁基盤上面(5b)と前記組成物抵抗体層(4)との間隔が、好ましくは2.0mm以下で有る事を特徴とした非接触型温度センサにおいて、前記導電材(7)の金属粒子ペースト(7a)がオーミク接触を備えた事を特徴とする非接触型温度センサである。 The invention described in claim 4 includes an insulating base (5) having a pair of conductor parts (6), and a pair of electrode parts (3) disposed to face the pair of conductor parts (6). A thermistor (2) having a composition resistor layer (4) having a heat-sensitive function is interposed to electrically connect the pair of conductor parts (6) and the pair of electrode parts (3). In a non-contact temperature sensor comprising a conductive material (7), the distance between the upper surface of the insulating base (5b) and the composition resistor layer (4) is preferably 2.0 mm or less. , is a non-contact temperature sensor characterized in that the metal particle paste (7a) of the conductive material (7) has ohmic contact.

サーミスタの電極部(3)と絶縁基盤の導体部(6)を電気的に接続する導電材(7)は、半田ペースト若しくは金、銀、銅、白金等の金属粒子を含んだ金属粒子ペースがあり、何れもオーミック接触が重視され、一例として銀ペーストではナミックス(株)製H9403系等がある。 The conductive material (7) that electrically connects the electrode part (3) of the thermistor and the conductor part (6) of the insulating base is a solder paste or a metal particle paste containing metal particles of gold, silver, copper, platinum, etc. In both cases, emphasis is placed on ohmic contact, and one example of silver paste is H9403 series manufactured by Namics Co., Ltd.

図8は金属粒子ペーストがオーミック接触を備える一例の模式図で、サーミスタが配設された時から加熱(硬化)終了までの間、サーミスタ(2)を介して導電材(7)の金属粒子ペーストに、継続した押圧を加え金属粒子方向が一方向に揃い接点が点接触から線接触、そして面接触となり図6の様なオーミック接触となり、更に配設後の勾配も形成されない。 FIG. 8 is a schematic diagram of an example in which the metal particle paste has ohmic contact, and the metal particle paste of the conductive material (7) is passed through the thermistor (2) from the time the thermistor is placed until the end of heating (hardening). Then, by applying continuous pressure, the direction of the metal particles is aligned in one direction, and the contacts change from point contact to line contact to surface contact, resulting in ohmic contact as shown in FIG. 6, and furthermore, no gradient is formed after placement.

図8の状態で導電材に半田ペーストを用いると、配設後の勾配は抑制され対流(10)現象も抑制される構造となる。 If solder paste is used as the conductive material in the state shown in FIG. 8, the structure will be such that the gradient after placement is suppressed and the convection (10) phenomenon is also suppressed.

発明の効果の観察は、JIS規格等で規定されているものではない為に、ここではI-V特性によるオーミック接触の有無と、測定温度の無負荷抵抗値の振れ幅(リップル現象)を観察し、振れ幅が±1℃未満が最も好ましい温度揺れ幅、±1℃≦振れ幅≦±2℃が好ましい揺れ幅、±2℃を超える場合は使用するには不適切とし、尚且つ非オーミック接触が観察された場合は、好ましい揺れ幅、最も好ましい揺れ幅に関わらす不適切と判断した。 Observation of the effects of the invention is not stipulated by JIS standards, etc., so here we will observe the presence or absence of ohmic contact due to IV characteristics and the amplitude of the no-load resistance value fluctuation (ripple phenomenon) at the measured temperature. However, the most preferred temperature fluctuation width is less than ±1°C, the preferred fluctuation width is ±1°C≦swing width≦±2°C, and it is unsuitable for use if it exceeds ±2°C, and is non-ohmic. If contact was observed, it was judged to be inappropriate regardless of the preferred or most preferred vibration width.

またサーミスタの配設状況は、加熱後(硬化後)図9に記載したC-D,C-E間の高さの違いをレーザ変位計で測定し差異を観察し、その違いを勾配として記録した。 In addition, to determine the placement of the thermistor, measure the difference in height between CD and C-E shown in Figure 9 after heating (after curing) using a laser displacement meter, observe the difference, and record the difference as a slope. did.

図4は、85℃抵抗値振れ幅の測定方法の一例の模式図、オーミック接触の有無は、図5のI-V特性の観察をカーブトレーザ若しくはオシロスコープで行い、10μA以下の領域において直線の場合はオーミック接触、曲線の場合は非オーミック接触と判定した。 Figure 4 is a schematic diagram of an example of a method for measuring resistance fluctuation width at 85°C.The presence or absence of ohmic contact can be determined by observing the IV characteristics in Figure 5 using a curved laser or oscilloscope. In the case of ohmic contact, it was determined as non-ohmic contact in the case of a curve.

表2より、温度振れ幅±2℃以下及びオーミック接触も良好なもの、双方の条件を満たす試料番号は、表2-1の実施例試料番号1乃至表2-5の実施例試料番号25まで、また勾配では、0のものが実施例試料番号1から実施例試料番号20迄、許された勾配は実施例試料番号25の3/10迄が許容できる勾配と観察でき、これらの結果から、隙間の範囲は、下限値が絶縁基盤上面(5b)とサーミスタ(2)の組成物抵抗体層(4)が接触した状態(表2-1)、上限値が、絶縁基盤上面(5b)より2.0mm以下(表2-5)である事が観察できた。 From Table 2, the sample numbers that satisfy both the conditions of temperature fluctuation of ±2°C or less and good ohmic contact are from Example sample number 1 in Table 2-1 to Example sample number 25 in Table 2-5. , Regarding the slope, it can be observed that the slope of 0 is from Example sample number 1 to Example sample number 20, and the allowed slope is up to 3/10 of Example sample number 25. From these results, The range of the gap is such that the lower limit is when the upper surface of the insulating substrate (5b) and the composition resistor layer (4) of the thermistor (2) are in contact (Table 2-1), and the upper limit is when the upper surface of the insulating substrate (5b) is in contact with the composition resistor layer (4) of the thermistor (2). It was observed that the diameter was 2.0 mm or less (Table 2-5).

また最も好ましい隙間は、表2-1より下限値が絶縁基盤上面(5b)とサーミスタの組成物抵抗体層が接触している状態であり、表2-3より上限値は絶縁基盤上面(5b)とサーミスタの組成物抵抗体層の隙間が0.7mm以下である事が観察できた。 Furthermore, from Table 2-1, the most preferable gap is that the lower limit value is a state in which the upper surface of the insulating substrate (5b) and the composition resistor layer of the thermistor are in contact, and the upper limit value from Table 2-3 is the condition where the upper surface of the insulating substrate (5b) is in contact with the composition resistor layer of the thermistor. ) and the composition resistor layer of the thermistor were observed to have a gap of 0.7 mm or less.

発明の効果に用いた実施例は、治工具を用いてウェイト(22)からサーミスタ(2)を介して導電材(7)に継続した押圧を加えオーミック接触を導き、その後抵抗値の振れ幅、サーミスタの配設状況を観察した。 In the embodiment used for the effects of the invention, continuous pressure is applied from the weight (22) to the conductive material (7) via the thermistor (2) using a jig to induce ohmic contact, and then the fluctuation range of the resistance value is The placement of the thermistor was observed.

サーミスタの配設状況は、加熱(硬化)終了後、図9に示すサーミスタ三隅の高さ違いより勾配を測定し、また配設時にスペーサ(23)を用いる事で、サーミスタ(2)の組成物抵抗体層(4)と絶縁基盤上面(5b)の隙間を調整し、対流(10)現象との温度振れ幅との関係把握ができ、許される勾配は表2-1乃至表2-5より、下限値が0勾配、上限値が表2-5実施例試料番号25より、3/10迄である事が観察できた。 The composition of the thermistor (2) can be determined by measuring the slope from the height difference between the three corners of the thermistor shown in Fig. 9 after heating (curing), and by using a spacer (23) during the arrangement. By adjusting the gap between the resistor layer (4) and the top surface of the insulating substrate (5b), it is possible to understand the relationship between the convection (10) phenomenon and the temperature fluctuation width, and the permissible gradient can be found from Tables 2-1 to 2-5. From Table 2-5, Example Sample No. 25, it was observed that the lower limit value was 0 slope and the upper limit value was up to 3/10.

実施例の配設状況は、表2-1乃至表2-4迄サーミスタの勾配は観察できず対流の発生が無いが、隙間が大きくなる表2-6(2.5mm以上)になると熱が逃げる現象が、温度振れ幅(リップル現象)よりが観察できた。 As for the arrangement situation in the example, in Tables 2-1 to 2-4, the slope of the thermistor cannot be observed and no convection occurs, but when the gap becomes large (2.5 mm or more) in Table 2-6, heat is generated. The escape phenomenon was observed in terms of temperature fluctuation (ripple phenomenon).

非接触型温度センサ構造の一例図An example of a non-contact temperature sensor structure 組成物抵抗体層を具備したサーミスタの一例図An example diagram of a thermistor equipped with a composition resistor layer 特許文献の構造図の一例An example of a structural diagram of a patent document 測定状態の模式図の一例An example of a schematic diagram of measurement conditions V-Iカーブ曲線の例(オーミックと非オーミック接触の差)Example of VI curve (difference between ohmic and non-ohmic contact) オーミック接触の金属粒子ペースト内の配向性模式図の一例An example of a schematic diagram of orientation in metal particle paste with ohmic contact 非オーミック接触の金属粒子ペースト内の配向性模式図の一例An example of a schematic diagram of orientation in metal particle paste with non-ohmic contact 押圧を加えた状態図の模式図の一例An example of a schematic diagram of a state diagram with pressure applied 勾配の測定方法の模式図の一例An example of a schematic diagram of the slope measurement method ウェイト、スペーサを用いずに押圧を加える一例図An example of applying pressure without using weights or spacers

絶縁物上に一対の電極と電気的に接続する感熱機能の組成物抵抗体層を具備したサーミスタ(2)の造り方は、一例として、絶縁物上に一対の電極部となるPt、Au等の金属を少なくとも一種スパッタし、ドライエッチし、アニールし、組成物抵抗体を一対の電極部の一部を残し少なくとも一回スパッタし積層し、金属等をリフトオフし、所定部分をSiOで被覆し、1608、場合によっては2.0(長さ)mm、1.25(幅)mm、厚み0.3mmの2125形状、又は1005形状にダイシングする。 For example, a thermistor (2) having a composition resistor layer with a heat-sensitive function that is electrically connected to a pair of electrodes on an insulator can be made by using Pt, Au, etc., which will become a pair of electrodes on an insulator. sputter at least one type of metal, dry-etch, and anneal, sputter and laminate the composition resistor at least once leaving a part of the pair of electrode parts, lift off the metal, etc., and coat a predetermined portion with SiO 2 Then, it is diced into 1608, 2125 shape, or 1005 shape with 2.0 (length) mm, 1.25 (width) mm, and 0.3 mm thickness depending on the case.

スパッタ以外の方法では、一対の電極部を蒸着し形成し、次にリフトオフしシンタリングし、次にメタルマスク等を用いて組成物抵抗体層を電極部の一部を残し印刷し、レべリングし、アニールし電極部(3)の一部を残しガラス被覆しダイシングする方法もある。 In a method other than sputtering, a pair of electrode parts are formed by vapor deposition, then lift-off and sintering are performed, and then a composition resistor layer is printed using a metal mask, leaving only a part of the electrode parts, and then leveled. There is also a method of ringing, annealing, leaving a part of the electrode part (3), covering it with glass, and dicing.

電極部以外をガラス被覆する場合は、条件によってはガラスが加熱により組成物抵抗体層を侵食し、組成物抵抗体層内のCo、Ni等の重金属の移動が起こり、抵抗値に変動が生じやすい。特に焼結阻害剤のFeが含まれている場合は顕著に起こりやすくなる。 When covering areas other than the electrodes with glass, depending on the conditions, the glass may erode the composition resistor layer due to heating, causing movement of heavy metals such as Co and Ni within the composition resistor layer, resulting in fluctuations in resistance value. Cheap. This is particularly likely to occur if Fe, which is a sintering inhibitor, is included.

図4に記載した一例の模式図の様に発明の効果を観察した。白金測温抵抗体で85℃にコントロールされた油槽を用い、非接触型温度センサが取付けられる孔部分(12)以外は密閉状態とし、油面から発生する放射線エネルギ-を感知し抵抗値の振れ幅を観察する(抵抗値振れ幅は対流、放射、伝導等の影響が顕著に現れる)。 The effects of the invention were observed as shown in the schematic diagram of an example shown in FIG. An oil tank controlled at 85°C with a platinum resistance thermometer is used, and the area other than the hole (12) where a non-contact temperature sensor is installed is sealed, and radiation energy generated from the oil surface is sensed to detect fluctuations in resistance. Observe the width (resistance value fluctuations are significantly affected by convection, radiation, conduction, etc.).

また周囲からの電磁波や赤外線等を遮断する為に、暗室及び用いる治工具を出来るだけ艶消黒色で被覆し、外部ファクタによる影響も減らした。 In addition, in order to block electromagnetic waves and infrared rays from the surrounding area, the darkroom and the tools used were coated with matte black as much as possible to reduce the influence of external factors.

準備する原材料として、絶縁物上に電気的に接続された一対の電極部(3)を備えた感熱機能の組成物抵抗体層(4)を具備したサーミスタ(2)、実施例では1608形状を用い、他に一例として、一対の導体部を備えた絶縁基盤(5)、好ましくはポリイミド基盤等の赤外線透過率並びに吸収率が高いものであり外部との接続が可能なもの、半田ペースト又は他の導電性ペースト(7)、例えば銀ペーストが必要となる。 As a raw material to be prepared, a thermistor (2) having a composition resistor layer (4) with a heat-sensitive function and a pair of electrode parts (3) electrically connected on an insulating material, in the example, a 1608 shape. In addition, as an example, an insulating board (5) equipped with a pair of conductor parts, preferably a board with high infrared transmittance and absorption such as a polyimide board and which can be connected to the outside, solder paste or other A conductive paste (7), for example a silver paste, is required.

絶縁基盤の赤外線の吸収率が高い場合は、到達する時間は短いが放熱性は劣る、透過率が高い場合は、サーミスタの感熱機能の組成物抵抗体層を直接暖める事ができ、放熱性は絶縁基盤等の密度や構造に左右される。 If the absorption rate of infrared rays of the insulating substrate is high, the time it takes to reach the infrared rays is short, but the heat dissipation is poor; if the transmittance is high, the composition of the thermistor's heat-sensitive function can directly warm the resistor layer, and the heat dissipation is poor. It depends on the density and structure of the insulation board, etc.

一例として挙げた図1を作製する副資材としては、一例として記載した図8で説明をすると、サーミスタの上に載せるウェイト(22)、及びそのホルダ(21)、絶縁基盤との隙間を確保する絶縁物板片のスペーサ(23)、加熱温度に耐えるプレート(19)、本発明では熱拡散率が高く熱膨張の小さいものを選定し、例えば単結晶アルミナ、SiC等である。 The auxiliary materials used to produce the example shown in Figure 1 are as follows: the weight (22) to be placed on the thermistor, its holder (21), and the gap between it and the insulating base. In the present invention, for the spacer (23) made of an insulating plate piece and the plate (19) that can withstand heating temperature, materials with high thermal diffusivity and small thermal expansion are selected, such as single crystal alumina, SiC, etc.

図8において説明をすると、最初にプレート(19)のピン(20)に絶縁基盤(5)を固定し、次に絶縁基盤上の一対の導体部(6)間にスペーサとなる絶縁物板(23)例えば硬質ガラスを仮付けし、次に絶縁基盤上の導体部分(6)に銀ペースト(7)を塗布し(この順序は逆でも良い)、その銀ペースト(7)と接触する様に一対のサーミスタの電極部(3)を対向する様に載せ、絶縁基盤方向に軽く押し、次にホルダ(21)とウェイト(22)を載せ導電材(7)に継続した押圧を加える。またホルダ(21)は覆いとなる為に風除効果もある。 To explain with reference to FIG. 8, first, the insulating base (5) is fixed to the pin (20) of the plate (19), and then the insulating plate (5) serving as a spacer is placed between the pair of conductor parts (6) on the insulating base. 23) For example, temporarily attach hard glass, then apply silver paste (7) to the conductor part (6) on the insulating board (this order may be reversed), and make sure that it comes into contact with the silver paste (7). Place the electrode parts (3) of a pair of thermistors so as to face each other, press lightly toward the insulating base, then place the holder (21) and weight (22) and apply continuous pressure to the conductive material (7). Furthermore, since the holder (21) serves as a cover, it also has a windproof effect.

この時の銀ペースト(7)は、用いたスペーサ(23)の厚み、又は絶縁基盤上面(5b)より0.2mm以上、0.4mm以下になる様に塗布し、更に絶縁基盤の導体部(6)及びサーミスタ電極部(3)が隠蔽できる体積が必要である。 At this time, the silver paste (7) was applied so that the thickness of the spacer (23) used or the upper surface of the insulating substrate (5b) was 0.2 mm or more and 0.4 mm or less, and the conductor part of the insulating substrate ( 6) and a volume that can hide the thermistor electrode part (3) is required.

スペーサ(23)は、サーミスタの組成物抵抗体層と絶縁基盤上面(5b)との隙間を調整し、更にウェイトはサーミスタの加熱中の風、振動、導電材の膨張等によるズレ、勾配の発生を防ぎ継続した押圧を目的としている。 The spacer (23) adjusts the gap between the composition resistor layer of the thermistor and the upper surface of the insulating substrate (5b), and the weight also adjusts the gap between the composition resistor layer of the thermistor and the upper surface of the insulating substrate (5b), and the weight is used to adjust the gap between the thermistor and the upper surface of the insulating substrate. The purpose is to prevent and maintain continuous pressure.

図8はウェイト(22)がサーミスタ(2)固体別に対応した模式図で、重量は好ましくは1.0g/mm以上が良い。 FIG. 8 is a schematic diagram showing the weights (22) corresponding to the thermistor (2) solid, and the weight is preferably 1.0 g/mm 2 or more.

図10に、ウェイト(22)、スペーサ(23)を用いずに押圧と隙間をコントロールする方法の模式図の二例を記載した。 FIG. 10 shows two examples of schematic diagrams of a method for controlling the pressure and the gap without using the weight (22) or the spacer (23).

図10の左側はスペーサ(23)を使用せず、ウェイト(22)の代わりに絶縁基盤上面(5b)とサーミスタの組成物抵抗体層(4)の隙間を調整できる高さ調整棒体(25)例えばネジであり、棒体の上下を調整する事でサーミスタ(2)の組成物抵抗体層(4)と絶縁基盤上面(5b)の隙間が調整、固定でき、導電材に継続した押圧が加えられオーミック接触を得て電気的に接続できる、右図も同様にスペーサ(23)を使用せず、板材体(26、弾性体を含)の深さをフォミングで調整し、絶縁基盤上面(5b)と組成物抵抗体層(4)との隙間を調整し固定する事で、導電材に継続した押圧を加えオーミック接触を導き電気的に接続させる副資材の治工具である。 The left side of FIG. 10 does not use a spacer (23), and instead of a weight (22), a height adjustment rod (25 ) For example, by adjusting the top and bottom of the rod, the gap between the composition resistor layer (4) of the thermistor (2) and the top surface of the insulating base (5b) can be adjusted and fixed, and continuous pressure is applied to the conductive material. Similarly, the figure on the right does not use a spacer (23), the depth of the plate body (26, including the elastic body) is adjusted by forming, and the upper surface of the insulation board ( By adjusting and fixing the gap between 5b) and the composition resistor layer (4), it is an auxiliary material jig that applies continuous pressure to the conductive material to lead to ohmic contact and electrical connection.

次に銀ペースト(7)を加熱により軟化、硬化させ、サーミスタ電極部(3)と絶縁基盤の導体部(6)を電気的に接続し、冷却後ホルダ(21)とスペーサ(23)(絶縁物板)を取り外す。 Next, the silver paste (7) is softened and hardened by heating, the thermistor electrode part (3) and the conductor part (6) of the insulating base are electrically connected, and after cooling, the holder (21) and the spacer (23) (insulated (object plate).

実施例おいて絶縁版(23)を仮付けしない場合は、余分な導電材を吸収する為にサーミスタの電極部若しくは絶縁基盤の導体部側又は両方に、スリット、ディンプル又はバンプ状等何れかのバッファ-を施す事が好ましい。 In the embodiment, if the insulating plate (23) is not temporarily attached, a slit, dimple, bump, etc. is formed on the electrode part of the thermistor, the conductor part side of the insulating base, or both in order to absorb excess conductive material. It is preferable to apply a buffer.

図1における「A」は、実施例では用いたスペーサの厚みとなる。 "A" in FIG. 1 is the thickness of the spacer used in the example.

図4に記載した85℃に設定された油槽上面(16)より3mm離れた孔(11)の位置に、実施例で作製した非接触型温度センサ(1)を取付け、板材体等で直接外気が当たらない様に覆い(11)を設け、出力される抵抗値の振れ幅(リップル)を測定するが、測定値は油槽温度85℃ではなく、サーミスタ抵抗値が飽和した時から1分間の振れ幅(リップル)を記載したものである。 The non-contact temperature sensor (1) prepared in the example was attached to the hole (11) 3 mm away from the top surface (16) of the oil tank set at 85°C as shown in Figure 4, and the outside air was directly A cover (11) is provided to prevent the thermistor resistance from being hit, and the fluctuation width (ripple) of the output resistance value is measured.However, the measured value is not the oil tank temperature of 85℃, but the fluctuation for one minute from the time when the thermistor resistance value is saturated. The width (ripple) is described.

測定の精度を高める為に、予め非接触型温度センサを65℃乃至90℃の範囲において油槽内にラッピングしてから浸漬し各抵抗値を測定し、その後測定に至った。 In order to improve measurement accuracy, the non-contact temperature sensor was wrapped in an oil bath at a temperature of 65° C. to 90° C. and then immersed in the oil tank to measure each resistance value, and then the measurement was carried out.

感熱機能の組成物抵抗体層を具備している絶縁物の材質は、例えば結晶質ではアルミナ、ステアタイト、非晶質では硬質ガラス、例えばパイレックス(登録商標)ガラス、eガラス、sガラス、有機物では四フッ化エチレン、PP等があり、実施例ではアルミナを使用した。 The material of the insulator comprising the composition resistor layer having a heat-sensitive function is, for example, a crystalline material such as alumina or steatite, and an amorphous material such as hard glass such as Pyrex (registered trademark) glass, e-glass, s-glass, or organic material. Examples include tetrafluoroethylene, PP, etc., and alumina was used in the examples.

感熱機能の組成物抵抗体層は、コバルト、マンガン、ニッケル、銅、ランタン及び鉄の中から選ばれた少なくとも二種を含む複合酸化物のNTCサーミスタ、又はチタン酸バリウムに微量の希土類元素を含んだPTCサーミスタがある。 The composition resistor layer with a heat-sensitive function is an NTC thermistor of a composite oxide containing at least two selected from cobalt, manganese, nickel, copper, lanthanum, and iron, or barium titanate containing a trace amount of a rare earth element. There is a PTC thermistor.

実施例で用いた組成物抵抗体層は、体積抵抗率:1.5kΩ・cm、B定数:4200K(25℃/85℃)のNTCサーミスタを使用した。 The composition resistor layer used in the examples was an NTC thermistor with a volume resistivity of 1.5 kΩ·cm and a B constant of 4200 K (25° C./85° C.) .

絶縁基盤は、フレキシブルタイプではポリイミド、PET、リジットタイプでは紙フェノール、ガラスエポキシ等の基盤があり、導体部は銅等の金属を中心とした基材で、銅箔、銅線等がある。 The insulating base is made of polyimide or PET for the flexible type, and paper phenol or glass epoxy for the rigid type.The conductor part is made of a base material mainly made of metal such as copper, such as copper foil or copper wire.

本発明で述べている「勾配」とは、サーミスタが配設され導電材と接触してから加熱(硬化)を経て電気的に接続され、冷却後、固体別サーミスタ三隅の高さ違いを図9に示したC-D、C-E間で測定し、その値よりX/10勾配と言う形に換算し、表2にはX=「換算した値」として記載した。 The "gradient" mentioned in the present invention refers to the difference in height of the three corners of the thermistor for each solid body after the thermistor is placed, contacts a conductive material, and is electrically connected through heating (hardening). It was measured between CD and CE shown in , and the value was converted into a form called X/10 slope, and in Table 2, X = "converted value".

本発明で述べている「配設」とは、サーミスタの電極部が導電材に接触してから加熱(硬化)終了迄の範囲を指し、「配設状況」とはサーミスタの勾配を指している。 The "arrangement" mentioned in the present invention refers to the range from when the electrode part of the thermistor contacts the conductive material until the end of heating (hardening), and the "arrangement situation" refers to the slope of the thermistor. .

1 非接触型温度センサ
2 抵抗体層を具備したサーミスタ
3 サーミスタの電極部
4 組成物抵抗体層
5 絶縁基盤
5a 絶縁基盤下面
5b 絶縁基盤上面
6 絶縁基盤の導体部
7 導電材(半田ペースト、金属粒子ペースト)
7a 導電材の中の金属粒子
7b 金属粒子ペースト内の有機物
8 対象物(発熱源)
9 放射エネルギ-(赤外線等)
10 熱の逃げ(対流、放射)
11 密閉用覆い(蓋体)
12 測定用孔
13 リード線
14 油槽筐体
15 油槽
16 油槽上面
17 導電材の中に含まれていた気泡の膨張後
18 計測器(DMM等)
19 プレート
20 絶縁基盤とプレートの位置合わせピン
21 ホルダ
22 ウェイト(サーミスタ固体別に対応)
23 スペーサ(隙間を維持する絶縁物)
24 レーザ変位計
25 棒体(サーミスタ固体別対応押圧調整ネジ等)
26 タップ
27 板材体(サーミスタ固体別に対応)
1 Non-contact temperature sensor 2 Thermistor with a resistor layer 3 Electrode part of the thermistor 4 Composition resistor layer 5 Insulating base 5a Lower surface of the insulating base 5b Upper surface of the insulating base 6 Conductor part of the insulating base 7 Conductive material (solder paste, metal particle paste)
7a Metal particles in the conductive material 7b Organic matter in the metal particle paste 8 Target object (heat source)
9 Radiant energy (infrared rays, etc.)
10 Heat escape (convection, radiation)
11 Sealing cover (lid body)
12 Measuring hole 13 Lead wire 14 Oil tank housing 15 Oil tank 16 Oil tank top surface 17 After expansion of air bubbles contained in the conductive material 18 Measuring device (DMM, etc.)
19 Plate 20 Positioning pin between insulation board and plate 21 Holder 22 Weight (corresponds to each thermistor solid)
23 Spacer (insulator that maintains the gap)
24 Laser displacement meter 25 Rod (press adjustment screw for each thermistor solid, etc.)
26 Tap 27 Plate body (corresponds to each thermistor solid)

Claims (2)

非接触型温度センサは一対の導体部を備えた絶縁基盤と、前記一対の導体部と電気的に接続できる一対の電極部を備えた感熱機能の組成物抵抗体層を具備したサーミスタとからなり、前記一対の導体部と前記一対の電極部を電気的に接続する為に導電材を介在させ対向する形で配設し、前記導電材に継続した押圧を加え前記絶縁基盤上面と前記組成物抵抗体層との隙間が2mm以下である前記サーミスタの傾きが、3/10以下である事を特徴とした非接触型温度センサ。 The non-contact temperature sensor consists of an insulating base having a pair of conductor parts, and a thermistor having a composition resistor layer with a heat-sensitive function and having a pair of electrode parts that can be electrically connected to the pair of conductor parts. , in order to electrically connect the pair of conductor parts and the pair of electrode parts, a conductive material is interposed between the pair and the electrode parts, and a conductive material is interposed therebetween, and continuous pressure is applied to the conductive material to connect the upper surface of the insulating substrate and the composition. A non-contact temperature sensor characterized in that the thermistor has a gap of 2 mm or less with respect to the resistor layer, and the slope of the thermistor is 3/10 or less. 請求項1に記載した非接触型温度センサを具備した製品
A product comprising the non-contact temperature sensor according to claim 1 .
JP2022071749A 2022-04-25 2022-04-25 Non-contact temperature sensor Active JP7340130B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022071749A JP7340130B1 (en) 2022-04-25 2022-04-25 Non-contact temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022071749A JP7340130B1 (en) 2022-04-25 2022-04-25 Non-contact temperature sensor

Publications (2)

Publication Number Publication Date
JP7340130B1 true JP7340130B1 (en) 2023-09-07
JP2023161389A JP2023161389A (en) 2023-11-07

Family

ID=87882158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022071749A Active JP7340130B1 (en) 2022-04-25 2022-04-25 Non-contact temperature sensor

Country Status (1)

Country Link
JP (1) JP7340130B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158146A (en) 2001-11-21 2003-05-30 Matsushita Electric Ind Co Ltd Semiconductor element and semiconductor element mounted substrate as well as semiconductor element mounting method employing the semiconductor element or the semiconductor element mounted substrate
WO2007122925A1 (en) 2006-04-24 2007-11-01 Murata Manufacturing Co., Ltd. Electronic component, electronic component device using same, and method for manufacturing same
JP2014070953A (en) 2012-09-28 2014-04-21 Mitsubishi Materials Corp Temperature sensor
WO2015104868A1 (en) 2014-01-07 2015-07-16 株式会社村田製作所 Temperature sensor
WO2016152222A1 (en) 2015-03-25 2016-09-29 Semitec株式会社 Infrared temperature sensor and device using infrared temperature sensor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2701565B2 (en) * 1991-03-22 1998-01-21 松下電器産業株式会社 Thin film thermistor and method of manufacturing the same
JP2734218B2 (en) * 1991-03-22 1998-03-30 松下電器産業株式会社 Thin film thermistor
JPH10261507A (en) * 1997-03-18 1998-09-29 Murata Mfg Co Ltd Thermistor element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003158146A (en) 2001-11-21 2003-05-30 Matsushita Electric Ind Co Ltd Semiconductor element and semiconductor element mounted substrate as well as semiconductor element mounting method employing the semiconductor element or the semiconductor element mounted substrate
WO2007122925A1 (en) 2006-04-24 2007-11-01 Murata Manufacturing Co., Ltd. Electronic component, electronic component device using same, and method for manufacturing same
JP2014070953A (en) 2012-09-28 2014-04-21 Mitsubishi Materials Corp Temperature sensor
WO2015104868A1 (en) 2014-01-07 2015-07-16 株式会社村田製作所 Temperature sensor
WO2016152222A1 (en) 2015-03-25 2016-09-29 Semitec株式会社 Infrared temperature sensor and device using infrared temperature sensor

Also Published As

Publication number Publication date
JP2023161389A (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN106465481B (en) Planar heating element with PTC resistor structure
JP5399730B2 (en) Substrate with sensor and method of manufacturing substrate with sensor
JP2012508870A (en) Sensor element and method for manufacturing sensor element
US5057811A (en) Electrothermal sensor
JP7340130B1 (en) Non-contact temperature sensor
JP2010114167A (en) Low-resistive chip resistor, and method for manufacturing the same
JP2008066295A (en) Heating element circuit pattern, susceptor mounting it, and semiconductor manufacturing device
CN107957300A (en) Platinum temperature-sensing element
JP2010043930A (en) Noncontact temperature sensor
EP3253175A1 (en) Thick film element provided with covering layer having high heat-conduction capability
JP3210530B2 (en) Thermistor flow rate sensor
Greiner et al. Direct Measurement of the Electrocaloric Temperature Change in Multilayer Ceramic Components using Resistance‐Welded Thermocouple Wires
US11419186B2 (en) Thick film element having coated substrate with high heat conductivity
JPH11273836A (en) Fixing heater and image forming device
KR20150122372A (en) Temperature sensor structure for reducing thermal time constant
JP6339413B2 (en) heater
JP2018032571A (en) heater
JP3790740B2 (en) Fixing heater, fixing device, and image forming apparatus
JPH09184746A (en) Flow rate sensor
JPH03237345A (en) Method for measuring thermal conductivity
JPS62231148A (en) Thermal analysis instrument
KR101626047B1 (en) Temperature sensor structure for reducing thermal time constant and method thereof
JP3563726B2 (en) Wafer support member
JP4009138B2 (en) Wafer support member
JP4243216B2 (en) Wafer support member

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R150 Certificate of patent or registration of utility model

Ref document number: 7340130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150