JP7336130B2 - Refrigerant circulation cooling device - Google Patents

Refrigerant circulation cooling device Download PDF

Info

Publication number
JP7336130B2
JP7336130B2 JP2019097540A JP2019097540A JP7336130B2 JP 7336130 B2 JP7336130 B2 JP 7336130B2 JP 2019097540 A JP2019097540 A JP 2019097540A JP 2019097540 A JP2019097540 A JP 2019097540A JP 7336130 B2 JP7336130 B2 JP 7336130B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
pipe
space
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019097540A
Other languages
Japanese (ja)
Other versions
JP2020193716A (en
Inventor
恒雄 栗田
晃司 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2019097540A priority Critical patent/JP7336130B2/en
Publication of JP2020193716A publication Critical patent/JP2020193716A/en
Application granted granted Critical
Publication of JP7336130B2 publication Critical patent/JP7336130B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばヒートパイプのように、密閉空間内に冷媒を封入し、熱源周辺の内壁で冷媒を加熱・気化させ、低温部周辺の内壁で冷却・凝縮させ、これを再度熱源周辺の内壁に供給することで、熱源の冷却を行う冷媒循環型の冷却装置に関する。 The present invention, for example, like a heat pipe, encloses a refrigerant in a closed space, heats and vaporizes the refrigerant on the inner wall around the heat source, cools and condenses the refrigerant on the inner wall around the low-temperature part, and re-condenses it on the inner wall around the heat source. It relates to a refrigerant circulation type cooling device that cools a heat source by supplying a refrigerant to the cooling device.

ヒートパイプに代表される冷媒循環型の冷却装置においては、密閉空間の内部においては、熱源周辺の内壁との接触で冷媒が加熱・気化し、気化したガスが低温部周辺の内壁で冷却・凝縮され、再度液状化した冷媒を毛細管現象を利用して熱源に循環させている。 In a refrigerant circulation type cooling device represented by a heat pipe, inside a closed space, the refrigerant is heated and vaporized by contact with the inner wall around the heat source, and the vaporized gas is cooled and condensed on the inner wall around the low temperature part. The refrigerant that has been liquefied again is circulated to the heat source using capillary action.

特許文献1には、パイプ内に、液相の作動流体が熱源から受熱して沸騰、蒸発する沸騰部と、気相の作動流体が潜熱を奪われて凝縮する凝縮部からなる密閉空間を形成し、このパイプの内圧や内部温度が一方値に達したときに、パイプ内のガスを排出することが記載されている。 In Patent Document 1, a closed space consisting of a boiling portion where a liquid-phase working fluid receives heat from a heat source and boils and evaporates and a condensation portion where a gas-phase working fluid loses latent heat and condenses is formed in a pipe. However, when the internal pressure or internal temperature of this pipe reaches one value, the gas inside the pipe is discharged.

特開2007-003114号公報JP 2007-003114 A

しかし、特に熱源が高温に達する場合、熱源との接触部において密閉空間内の冷媒が急激に気化して、大量の気泡が発生する。この気泡が熱源周辺の内壁に付着した状態で蓄積すると、断熱層を形成し、新たな液相冷媒が内壁に接触するのを妨げ、冷却効率の悪化を招いてしまう。
したがって、こうした冷媒循環型の冷却装置においては、熱源周辺の内部空間内に停留する気泡をスムースに冷媒流とともに低温部に移送させることが有効である。
However, especially when the heat source reaches a high temperature, the refrigerant in the sealed space rapidly vaporizes at the contact portion with the heat source, generating a large amount of bubbles. When these bubbles accumulate on the inner wall around the heat source, they form a heat-insulating layer, which prevents new liquid-phase refrigerant from coming into contact with the inner wall, resulting in deterioration of cooling efficiency.
Therefore, in such a refrigerant circulation type cooling device, it is effective to smoothly transfer the air bubbles remaining in the internal space around the heat source to the low-temperature part together with the refrigerant flow.

一方、発明者らは、特願2017-217145号において、自ら開発した精密加工技術を活用し、生理的食塩水が充填される管状電極に、切開進行方向に向けて微細な小孔を形成する技術を提案した。小孔の径を厳密に制御することにより、組織切開時における管状電極の発熱によって生理的食塩水の蒸気圧が所定の圧力を超えたときのみ、小孔から組織に向けて生理的食塩水を吐出させ、管状電極を所定温度以下に冷却することが可能となった。 On the other hand, in Japanese Patent Application No. 2017-217145, the inventors utilize the self-developed precision processing technology to form fine holes in the tubular electrode filled with physiological saline in the direction of the incision progress. proposed the technique. By strictly controlling the diameter of the small hole, the physiological saline solution is directed into the tissue through the small hole only when the vapor pressure of the saline solution exceeds a predetermined pressure due to the heat generated by the tubular electrode during tissue incision. It became possible to discharge and cool the tubular electrode to a predetermined temperature or less.

ここで、この小孔は、管内圧力が所定の圧力以下の場合は穴周辺の表面と生理食塩水との表面張力や摩擦力などによって吐出が制限される。一方、温度上昇に伴う生理食塩水の膨張で管内圧が上昇、所定の圧力以上になることで、表面張力や摩擦力などの抗力を打ち破ったときのみ、生理的食塩水が最適量吐出されるよう定められている。
さらに生理食塩水の温度が上昇すると、蒸発が発生し、これに伴い体積の増加に伴い管内圧も増加するとともに、発生した蒸気周辺の表面張力、摩擦力も急激に低下する。
したがって、管内の液体の濡れ性や粘性などに応じて、小孔の径を選定すれば、液体内に発生した蒸気のみを吐出させ、気液を分離することができる。
Here, when the internal pressure of the small hole is less than a predetermined pressure, the ejection is limited by the surface tension and frictional force between the surface around the hole and the physiological saline. On the other hand, due to the expansion of the saline due to the rise in temperature, the pressure inside the tube rises and exceeds a predetermined pressure. is defined as
Furthermore, when the temperature of the physiological saline rises, evaporation occurs, and along with this, the pressure inside the pipe increases as the volume increases, and the surface tension and frictional force around the generated steam rapidly decrease.
Therefore, by selecting the diameter of the small holes according to the wettability and viscosity of the liquid in the pipe, it is possible to discharge only the vapor generated in the liquid and separate the gas and liquid.

この原理を利用すれば、冷媒循環型の冷却装置において、液相冷媒を吸熱部分で気化させることで大量の熱を吸収させ、発生した蒸気のみを分離し、この部分に液相の冷媒を循環供給させれば冷却効率を大きく向上させることができる。
また、ヒートパイプに代表される冷媒循環型の冷却装置においては、受熱部で気化した冷媒を冷却部で凝縮した後、重力で受熱部に還流させるようにすることが冷却効率上好ましく、受熱部を上方、冷却部を下方に配置すると冷却効率の悪化を招いてしまう。
そこで、本発明の目的は、特別な機構を要することなく、熱源周辺の内部空間内に停留する気泡をスムースに冷媒流とともに低温部に移送させ、冷媒循環型の冷却装置の熱交換効率を高めるとともに、受熱部と冷却部を上下に逆転させても、冷媒流の循環を可能として、冷却効率の悪化を防止することにある。
Using this principle, in a refrigerant circulation cooling system, a large amount of heat is absorbed by evaporating the liquid-phase refrigerant in the heat absorption part, and only the generated vapor is separated, and the liquid-phase refrigerant is circulated in this part. Cooling efficiency can be greatly improved by supplying it.
In a refrigerant circulation type cooling device typified by a heat pipe, it is preferable in terms of cooling efficiency that the refrigerant vaporized in the heat receiving portion is condensed in the cooling portion and then circulated to the heat receiving portion by gravity. is arranged above and the cooling unit is arranged below, the cooling efficiency will deteriorate.
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to improve the heat exchange efficiency of a refrigerant circulation type cooling device by smoothly transferring air bubbles remaining in an internal space around a heat source to a low-temperature part together with a refrigerant flow without requiring a special mechanism. In addition, even if the heat-receiving part and the cooling part are turned upside down, it is possible to circulate the coolant flow and prevent the deterioration of the cooling efficiency.

この目的を達成するため、本発明による冷媒循環型の冷却装置は、内部に冷媒を封入した密封空間と、この密封空間内に区画された、熱源と熱交換可能に近接する受熱空間及び低温領域と熱交換可能に接触する冷却空間と、受熱空間と冷却空間とを連通する開口とを備え、開口の径あるいは幅と、前記受熱空間の幅及び長さを選定することで、熱源からの熱量により受熱空間において冷媒中に発生した蒸気を開口から冷却空間に還流させるとともに、冷却空間で凝縮した冷媒を受熱空間に還流させ、開口に常時循環供給するようにした。 In order to achieve this object, the refrigerant circulation type cooling device according to the present invention comprises: a sealed space in which a refrigerant is enclosed; and an opening communicating between the heat receiving space and the cooling space. By selecting the diameter or width of the opening and the width and length of the heat receiving space, the amount of heat from the heat source The steam generated in the refrigerant in the heat receiving space is circulated through the opening to the cooling space, and the refrigerant condensed in the cooling space is circulated to the heat receiving space and constantly circulated and supplied to the opening.

本発明によれば、径が選定された小孔から、熱源からの熱量により受熱空間で発生した冷媒中蒸気を冷却空間に噴出させるとともに、冷却空間で凝縮した冷媒を受熱空間に圧送することができるので、液相の冷媒が小孔に常時循環供給され、熱交換効率を向上させるとともに、受熱部と冷却部を上下に逆転させても、冷媒流を循環させることができる。 According to the present invention, the vapor in the refrigerant generated in the heat receiving space by the amount of heat from the heat source can be ejected from the small hole with a selected diameter into the cooling space, and the refrigerant condensed in the cooling space can be pressure-fed to the heat receiving space. Therefore, the liquid-phase refrigerant is always circulated and supplied to the small holes, improving the heat exchange efficiency, and the refrigerant flow can be circulated even if the heat-receiving part and the cooling part are turned upside down.

図1は、本発明に基づく実施例の全体構造を示す図である。FIG. 1 shows the overall structure of an embodiment according to the invention. 図2は、本発明に基づく実施例を上下逆転させて使用する場合を示す図である。FIG. 2 is a diagram showing a case where the embodiment based on the present invention is used upside down. 図3は、区画壁により受熱空間を形成した変形例を示す図である。FIG. 3 is a diagram showing a modification in which a heat receiving space is formed by partition walls. 図4は、図3の変形例を上下逆転させて使用する場合を示す図である。FIG. 4 is a diagram showing a case where the modified example of FIG. 3 is used upside down. 図5は、密封空間を断面8の字状にした例を示す図である。FIG. 5 is a diagram showing an example in which the sealed space has an eight-shaped cross section. 図6は、図5の変形例を上下逆転させて使用する場合を示す図である。FIG. 6 is a diagram showing a case where the modified example of FIG. 5 is used upside down. 図7は、密封空間を断面Tの字状にした例を示す図である。FIG. 7 is a diagram showing an example in which the sealed space has a T-shaped cross section. 図8は、図7の変形例を上下逆転させて使用する場合を示す図である。FIG. 8 is a diagram showing a case where the modified example of FIG. 7 is used upside down. 図9は、密封空間内部の隔壁により、底部に凝縮した冷媒を貯留し、細管に循環させる例を示す図である。FIG. 9 is a diagram showing an example in which the condensed coolant is stored at the bottom by the partition wall inside the sealed space and circulated through the fine tubes.

本実施例は、図1に示すように、上面に冷却対象の熱源を接触させ、下面で冷却を行うトップヒート形式の冷却装置に適用したものである。
垂直方向左右に配置された2本の管1a、1bと、それらの上端と下端に接続される水平方向の管1c、1dは、互いに気密に接合されることで、長方形の辺に沿うような形態の密閉空間を形成している。これが本実施例における冷却素子の1ユニットを形成し、図において、垂直方向左側の管1aの上面部に冷却対象の熱源2が、そして、水平方向上側の管1cの上面が、それぞれ熱伝達可能に近接している。この実施例では、垂直方向左側の管1aの上方部が受熱空間、水平方向の管1cおよび垂直方向右側の管1bのうち、低温領域3と熱伝達可能に接触している部分が冷却空間を構成する。
This embodiment, as shown in FIG. 1, is applied to a top heat type cooling device in which a heat source to be cooled is brought into contact with the upper surface and cooling is performed on the lower surface.
Two pipes 1a and 1b arranged on the left and right sides in the vertical direction and horizontal pipes 1c and 1d connected to the upper and lower ends of the pipes are airtightly joined to each other so as to form a shape along the sides of the rectangle. form a closed space. This forms one unit of the cooling element in this embodiment, and in the figure, the heat source 2 to be cooled is on the upper surface of the tube 1a on the left in the vertical direction, and the upper surface of the tube 1c on the upper side in the horizontal direction is heat transferable. close to. In this embodiment, the upper portion of the vertically left tube 1a is the heat receiving space, and the portion of the horizontal tube 1c and the vertically right tube 1b that is in heat transferable contact with the low temperature region 3 is the cooling space. Configure.

垂直方向左側の管1aの上端と水平方向上側の管1cの左端、そして、垂直方向右側の管1bの上端と水平方向上側の管1cの右端とは、それぞれ開口としての小孔4、小孔5を介して連通している。また、水平方向下側の管1dには、図において右方の圧力が上昇したときのみ左方に圧力を放出する逆止弁6が設けられている。 The upper end of the vertically left tube 1a and the left end of the horizontally upper tube 1c, and the upper end of the vertically right tube 1b and the right end of the horizontally upper tube 1c are provided with a small hole 4 and a small hole as openings, respectively. 5 are in communication. In addition, a check valve 6 is provided in the pipe 1d on the lower side in the horizontal direction to release the pressure to the left side only when the pressure on the right side in the figure rises.

熱源2が常温で冷却装置稼働前では、冷媒(本実施例では水)は、垂直方向左側の管1a、水平方向下側の管1d、垂直方向右側の管1bに充填されており、表面張力により、内径(以下、「管径」という。)の小さい垂直方向左側の管1aは、ほぼ上端まで冷媒が充填され管径の大きい垂直方向右側の管1bの水位より高くなっている。なお、本実施例では、冷却装置稼働前では、水平方向上側の管1cと、垂直方向右側の管1bの上方部は真空状態としている。
このとき、液面の上昇高さhは、以下の式で与えられる。
h=2T・cosθ/ρgr
ただし、Tは表面張力、θは接触角、ρは冷媒密度、gは重力加速度、rは管径である。
なお、垂直方向左側の管1aと垂直方向右側の管1bの管径は10μm-100mmの範囲で、管1aの管径<管1bの管径、且つ上式に基づく液面上昇の高さの差を満たすよう選定されており、水平方向上側の管1cと、水平方向下側の管1dの管径は任意に選定可能である。
When the heat source 2 is at room temperature and the cooling device is not in operation, the refrigerant (water in this embodiment) is filled in the vertically left tube 1a, the horizontally lower tube 1d, and the vertically right tube 1b, and the surface tension As a result, the vertically left pipe 1a, which has a smaller inner diameter (hereinafter referred to as “pipe diameter”), is filled with refrigerant almost to the upper end and is higher than the water level of the vertically right pipe 1b, which has a larger pipe diameter. In this embodiment, the upper portion of the horizontal upper pipe 1c and the upper portion of the vertical right pipe 1b are in a vacuum state before operation of the cooling device.
At this time, the rising height h of the liquid level is given by the following equation.
h=2T·cos θ/ρgr
where T is the surface tension, θ is the contact angle, ρ is the refrigerant density, g is the gravitational acceleration, and r is the pipe diameter.
The diameter of the pipe 1a on the left side in the vertical direction and the pipe diameter of the pipe 1b on the right side in the vertical direction are in the range of 10 μm to 100 mm. The pipe diameters of the horizontally upper pipe 1c and the horizontally lower pipe 1d can be arbitrarily selected so as to satisfy the difference.

この状態で、熱源2の温度が上昇し冷却装置を稼働させると、熱源2に接触する垂直方向左側の管1aの上面部で冷媒温度の急上昇に伴い、冷媒が気化して大量の熱を吸収する。これに伴って突沸が発生し、垂直方向左側の管1a内において、小孔4周辺の内部圧力が断続的に急上昇する。このように、本実施例では、垂直方向左側の管1a上方部の空間が受熱空間を構成する。
内部圧力の急上昇に伴い、冷媒は細管1a内部を介して1d側、もしくは小孔4を介して空間1c側に移動しようとする。本発明では主に細管1a及び小孔4に関して、内径、長さ、冷媒と管内面との摩擦、表面張力、冷媒の慣性力などを調整することで、冷媒の多くが小孔4を通過して水平方向上側の菅1c内に噴出するように、小孔4の直径などが設定されている。
In this state, when the temperature of the heat source 2 rises and the cooling device is operated, the refrigerant temperature rises sharply at the upper surface of the vertically left pipe 1a in contact with the heat source 2, and the refrigerant evaporates and absorbs a large amount of heat. do. Along with this, bumping occurs, and the internal pressure around the small hole 4 rises intermittently in the left tube 1a in the vertical direction. Thus, in this embodiment, the space above the pipe 1a on the left side in the vertical direction constitutes the heat receiving space.
As the internal pressure rises sharply, the refrigerant tries to move to the 1d side through the narrow tube 1a or to the space 1c side through the small hole 4 . In the present invention, most of the refrigerant passes through the small holes 4 by adjusting the inner diameter, length, friction between the refrigerant and the inner surface of the tube, surface tension, inertial force of the refrigerant, etc. The diameter of the small hole 4 and the like are set so that the water is ejected into the tube 1c on the upper side in the horizontal direction.

ここで、熱源加熱による蒸発に伴って冷媒の体積が膨張する際、細管内、小孔内それぞれの膨張に抗する摩擦による圧力損失はダルシーワイズバッハの式より、

Figure 0007336130000001
ただし、fは管摩擦係数、Lは配管長さ(m)、Dは管径(m)、Vは管内流速(m/s)、ρは 流体の密度(kg/m3)である。
管内径0.1mm、長さ20mmの細管にあけられた小孔4の直径を0.02mm、管厚さ0.05mmとし、流体密度、管摩擦係数、管内流速を一定と仮定すると、細管内面と冷媒の摩擦による圧力損失は、小孔の内面と冷媒の摩擦による圧力損失の80倍となる。つまり、小孔4周辺の圧力上昇は主に小孔4を介して解放されようとする。
さらに流体が水で密度可変とすると、管径の小さい管1a内のほとんどが水で満たされている状態で、密度比が約1700分の1の蒸気が小孔4の周辺に発生すると、両者の圧力損失の差の飛躍的な拡大に伴い、発生した蒸気は、垂直方向左側の管1a内に滞留することなく小孔4から排出されることになる。 Here, when the volume of the refrigerant expands as the refrigerant evaporates due to the heating of the heat source, the pressure loss due to friction against the expansion inside the narrow tubes and inside the small holes is as follows from the Darcy-Weisbach formula:
Figure 0007336130000001
where f is the pipe friction coefficient, L is the pipe length (m), D is the pipe diameter (m), V is the pipe flow velocity (m/s), and ρ is the fluid density (kg/m 3 ).
Assuming that the diameter of the small hole 4 drilled in a tube with an inner diameter of 0.1 mm and a length of 20 mm is 0.02 mm and the tube thickness is 0.05 mm, and that the fluid density, tube friction coefficient, and flow velocity inside the tube are constant, the flow rate between the inner surface of the tube and the refrigerant is The pressure loss due to friction is 80 times the pressure loss due to friction between the inner surface of the small holes and the refrigerant. In other words, the pressure increase around the small hole 4 tries to be released mainly through the small hole 4 .
Furthermore, if the fluid is water and the density is variable, when most of the inside of the pipe 1a with a small pipe diameter is filled with water, and steam with a density ratio of about 1/1700 is generated around the small hole 4, both With the dramatic increase in the pressure loss difference between the two, the generated steam is discharged from the small hole 4 without remaining in the pipe 1a on the left side in the vertical direction.

小孔4から噴出した冷媒蒸気は、真空状態であった水平方向上側の管1cを冷媒の蒸気圧で満たした後、小孔5を通過して垂直方向右側の管1b内に進入する。水平方向上側の管1cと垂直方向右側の管1bは、低温領域3と熱伝達可能に接触していることから、冷媒蒸気は、水平方向下側の管1dとの接続部に向けて、低温領域3により徐々に凝縮しながら下降することになる。本実施例では、低温領域3と接触する、水平方向上側の管1cの一部と、垂直方向右側の管1bの内部空間が冷却空間を構成する。
水平方向下側の管1dでは、垂直方向右側の管1b内は、冷媒蒸気の進入に伴い、内部圧力が上昇し、凝縮した冷媒は、逆止弁6を介して垂直方向左側の管1bとの接続部側に排出され、再度垂直方向左側の管1aに還流し、小さな管径による表面張力の作用も加わり、気化した冷媒を補填し、上述の作動を繰り返すことになる。
Refrigerant vapor ejected from the small hole 4 fills the horizontally upper tube 1c, which was in a vacuum state, with vapor pressure of the refrigerant, and then passes through the small hole 5 and enters the vertically right tube 1b. Since the horizontally upper pipe 1c and the vertically right pipe 1b are in contact with the low-temperature region 3 so as to allow heat transfer, the refrigerant vapor flows toward the connection portion with the horizontally lower pipe 1d. It descends while gradually condensing in region 3. In this embodiment, a portion of the horizontally upper tube 1c and the inner space of the vertically right tube 1b, which are in contact with the low temperature region 3, form a cooling space.
In the horizontal lower pipe 1d, as the refrigerant vapor enters the vertical right pipe 1b, the internal pressure rises, and the condensed refrigerant flows through the check valve 6 into the vertical left pipe 1b. is discharged to the connecting portion side, and flows back into the pipe 1a on the left side in the vertical direction again.

小孔4の直径は、冷媒の物性(粘性、表面張力等)や、冷却装置の用途、仕様により異なるが、1-1000μmの範囲で選定され、発明者らが開発した超精密加工により穴開け加工を行うことで上述の作用を実現することが可能となる。なお、実施例では、蒸気により効率的に熱を拡散させるため、小孔4を上下2段に設けているが、小孔4の個数、配置は任意に選定することができる。さらに、細管1aの上部表面に、例えば螺旋状の開口を形成し、冷媒蒸気をこの開口から水平方向上側の管1cに噴出させるようにしてもよい。開口を長くしても、開口幅が上記の条件を満たせば、冷媒蒸気を選択的に排出することができる。小孔と比較して、開口幅/表面積を大きくすることができるので、冷媒蒸気の排出効率を向上できる場合がある。
また、垂直方向右側の管1bへの小孔5は、冷媒の循環を促進する作用を奏するが、必ずしも管径を厳密に設定する必要はなく、冷媒の材質や、冷却装置の用途、仕様によっては、水平方向上側の管1cと垂直方向右側の管1bを直結させてもよい。
また、熱源2に隣接している垂直方向左側の管1aの内部において、管内の冷媒の慣性、管内壁との流体抵抗が小孔4のそれを無視できるほど大きい場合、必ずしも逆止弁6を設ける必要はない。
The diameter of the small holes 4 varies depending on the physical properties of the refrigerant (viscosity, surface tension, etc.) and the application and specifications of the cooling device, but is selected in the range of 1-1000 μm, and is drilled by ultra-precision processing developed by the inventors. By performing processing, it is possible to realize the above-described effects. In the embodiment, the small holes 4 are provided in two stages, upper and lower, in order to efficiently diffuse heat by steam, but the number and arrangement of the small holes 4 can be selected arbitrarily. Further, a spiral opening may be formed in the upper surface of the narrow tube 1a, and the refrigerant vapor may be ejected from this opening into the horizontally upper tube 1c. Even if the opening is made longer, if the width of the opening satisfies the above conditions, the refrigerant vapor can be selectively discharged. Since the opening width/surface area can be increased compared to the small holes, the discharge efficiency of the refrigerant vapor can be improved in some cases.
In addition, the small hole 5 in the pipe 1b on the right side in the vertical direction has the effect of promoting the circulation of the refrigerant, but it is not necessary to strictly set the pipe diameter. Alternatively, the horizontal upper pipe 1c and the vertical right pipe 1b may be directly connected.
In addition, in the interior of the pipe 1a on the left side in the vertical direction adjacent to the heat source 2, if the inertia of the refrigerant in the pipe and the fluid resistance with the inner wall of the pipe are so large that those of the small holes 4 can be ignored, the check valve 6 is not necessary. No need to set.

図2は、冷却装置の上下を反転させ、底面に冷却対象の熱源2を接触させ、上面で冷却を行うボトムヒート形式の冷却装置に適用した場合を示すものである。
この場合、垂直方向右側に位置することになる管1aの下方部が受熱空間、垂直方向左側に位置することになる管1b、水平方向上方に位置することになる管1dのうち、低温領域3と熱伝達可能に接触している部分が冷却空間を構成する。
この状態で、熱源2の温度が上昇し冷却装置を稼働させると、熱源2に接触する垂直方向左側に位置する管1aにおいて、底面部で冷媒温度の急上昇に伴い突沸が発生し、冷媒の蒸気により、小孔4周辺の内部圧力が断続的に急上昇する。
FIG. 2 shows a case in which the cooling device is turned upside down, the heat source 2 to be cooled is brought into contact with the bottom surface, and the cooling device is applied to a bottom heat type cooling device in which cooling is performed on the top surface.
In this case, the lower part of the tube 1a located on the right side in the vertical direction is the heat receiving space, and the low temperature area 3 A cooling space is formed by a portion that is in heat transferable contact with the .
In this state, when the temperature of the heat source 2 rises and the cooling device is operated, in the pipe 1a located on the left side in the vertical direction in contact with the heat source 2, bumping occurs as the refrigerant temperature rises rapidly at the bottom portion, and the vapor of the refrigerant occurs. As a result, the internal pressure around the small hole 4 rises intermittently.

この内部圧力の急上昇に伴い、蒸気の多くが小孔4を通過して水平方向下側に位置する菅1c内に噴出するように設定されている。
小孔4から噴出した冷媒蒸気は、真空状態であった水平方向下側に位置する管1cを冷媒の蒸気圧で満たし、小孔5を通過して垂直方向左側に位置する管1b内に進入し、水平方向上側に位置する管1dとの接続部に向けて上昇することになる。なお、小孔5の直径を厳密に制御することで、管1cから管1bへの蒸気の移動を実現しつつ、逆方向からの液体冷媒の侵入を防ぐことができる。
With this rapid increase in internal pressure, most of the steam passes through the small holes 4 and is jetted out into the pipe 1c positioned horizontally below.
Refrigerant vapor ejected from the small hole 4 fills the pipe 1c located in the horizontal lower side, which was in a vacuum state, with the vapor pressure of the refrigerant, passes through the small hole 5, and enters the pipe 1b located on the left side in the vertical direction. Then, it rises toward the connecting portion with the pipe 1d located horizontally above. By strictly controlling the diameter of the small holes 5, it is possible to prevent the liquid refrigerant from entering from the opposite direction while realizing the movement of vapor from the pipe 1c to the pipe 1b.

垂直方向左側に位置する管1bと、水平方向上側に位置する管1dの周辺に、低温領域3に熱伝達可能に接触させれば、冷媒蒸気は順次凝縮され、水平方向下側に位置する管1cからの管内圧力上昇により、逆止弁6を介して、垂直方向右側に位置する管1aとの接続部側に排出され、再度垂直方向右側の管1aに還流し、上述の作動を繰り返すことになる。
なお、垂直方向右側に位置する管1aにおいて、冷媒の水位が常時冷媒の供給口である管1aの上側開口(管1dとの境界)よりも高く維持されるようにすれば、冷媒の循環を実現することができる。
When the pipe 1b located on the left side in the vertical direction and the pipe 1d located in the upper side in the horizontal direction are brought into heat transferable contact with the low temperature region 3, the refrigerant vapor is sequentially condensed and the pipes located in the lower side in the horizontal direction are condensed. Due to the increase in the pressure inside the pipe from 1c, it is discharged through the check valve 6 to the side of the connection with the pipe 1a located on the right side in the vertical direction, and again flows back to the pipe 1a on the right side in the vertical direction, repeating the above operation. become.
In addition, in the pipe 1a located on the right side in the vertical direction, if the water level of the refrigerant is always maintained higher than the upper opening (boundary with the pipe 1d) of the pipe 1a, which is the refrigerant supply port, the circulation of the refrigerant is prevented. can be realized.

また、以上の実施例では、4本の管を組み合わせることで冷却素子の1ユニットを形成したが、図3に示すように、円筒等の密閉空間の内部に冷媒を充填し、その上面のうち、熱源2と熱伝達可能に接触する範囲のみ第1区画壁7により細管状に区画して受熱空間とする。そして、密閉空間のうち、低温領域3と熱伝達可能に接触する他の空間を冷却空間とし、第1区画壁7の上部に、この冷却空間に向けて小孔4を形成してもよい。
図4に示すように、この変形例の上下を逆転させた場合でも、図2と同様の原理で冷媒を循環させることができる。
なお、小孔4から吐出された蒸気気泡が細管状に区画された部分を伝って出口部へ移動することを防ぐために、図4には、小孔4の上方に水平方向に延びる第2区画壁8、細管出口付近に細管軸方向平行に延びる第3区画壁9が設けられているが、小孔4の周辺に気泡が定常的に存在しなければ、第1区画壁7の高さは必要最小限でよい。
In the above embodiment, one unit of the cooling element is formed by combining four pipes, but as shown in FIG. A first partition wall 7 partitions only the area in contact with the heat source 2 so as to be able to conduct heat, and defines a heat-receiving space. Another space in the sealed space that is in contact with the low-temperature region 3 in a heat transferable manner may be used as a cooling space, and the small holes 4 may be formed in the upper portion of the first partition wall 7 toward this cooling space.
As shown in FIG. 4, even when this modification is turned upside down, the refrigerant can be circulated on the same principle as in FIG.
In order to prevent the vapor bubbles discharged from the small holes 4 from moving to the outlet part along the narrow tubular section, a second section extending horizontally above the small holes 4 is shown in FIG. A wall 8 and a third partition wall 9 extending parallel to the axial direction of the capillary tube are provided near the outlet of the capillary tube. The minimum required is fine.

以上の実施例では、1ユニットの冷却素子で説明したが、複数ユニットの冷却素子を集積化してもよい。
図5は、密封空間を断面8の字状とし、その底面中央部を熱源との接触部とし、その周辺に、部分拡大図に示すように、それぞれ直径が厳密に調整された小孔4を下部に備えた細管10の束を設けた例である。この場合、各細管10の底面部側が受熱空間を形成し、底面以外に低温領域と熱交換を行う冷却フィン11を設けた他の部分が冷却空間を形成する。
このように構成することで、ることで、図5の状態でも、図6のように直立しても、冷媒が冷媒の供給口である細管10の出口(を常時覆うよう、冷媒の量を設定すればよい。
なお、この例では、細管10の束を上下方向に覆い、細管10の出口に冷媒蒸気が付着するのを防止する隔壁12が設けられている。
In the above embodiments, one unit of the cooling element has been described, but a plurality of units of the cooling element may be integrated.
In FIG. 5, the sealed space has an 8-shaped cross section, the central portion of the bottom surface is the contact portion with the heat source, and as shown in the partial enlarged view, small holes 4 each having a strictly adjusted diameter are formed around the portion. This is an example in which a bundle of thin tubes 10 provided at the bottom is provided. In this case, the bottom side of each thin tube 10 forms a heat receiving space, and the other part provided with the cooling fins 11 for exchanging heat with the low temperature region forms a cooling space.
With this configuration, the amount of refrigerant is adjusted so that the refrigerant always covers the outlet of the thin tube 10, which is the supply port of the refrigerant, even in the state of FIG. 5 or standing upright as in FIG. You can set it.
In this example, a partition wall 12 is provided to cover the bundle of thin tubes 10 in the vertical direction and prevent refrigerant vapor from adhering to the outlet of the thin tubes 10 .

さらに、図7のように、密閉空間を、断面Tの字として、その上面の熱源接触部周辺に、それぞれ直径が厳密に調整された小孔を下部に備えた細管10)の束を設け、その他の面に低温領域と熱交換を行う冷却フィン11を設けることで、図8のように反転させても、冷却装置として機能することが可能となる。なお、この例でも、細管10の出口に冷媒蒸気が付着するのを防止する隔壁12が設けられている。
なお、図7の場合は、細管10の小孔から噴出される冷媒蒸気の圧力上昇と、細管10内の表面張力により、液相の冷媒が熱源2に向けて上方に供給されることになる。
さらに、隔壁12の形状を工夫することで、図8の状態では、落下してくる凝縮冷媒を効率的に受け、隔壁120内の冷媒液面をなるべく高くすることで細管10の出口へ継続した冷媒の供給や、水圧により冷媒を高速に熱源近くまで供給することができる。
そのほか、熱源の大きさに応じて冷却素子を放射状に結合するなど、さまざまな変形が可能である。
Furthermore, as shown in FIG. 7, the sealed space has a T-shaped cross section, and around the heat source contact part on the upper surface, a bundle of small tubes 10) having a small hole at the bottom with a strictly adjusted diameter is provided, By providing the cooling fins 11 for exchanging heat with the low-temperature region on the other surface, it is possible to function as a cooling device even when inverted as shown in FIG. Also in this example, a partition wall 12 is provided at the outlet of the thin tube 10 to prevent refrigerant vapor from adhering.
In the case of FIG. 7, the liquid-phase refrigerant is supplied upward toward the heat source 2 due to the pressure rise of the refrigerant vapor ejected from the small holes of the narrow tube 10 and the surface tension in the narrow tube 10. .
Furthermore, by devising the shape of the partition wall 12, in the state of FIG. Refrigerant can be supplied to near the heat source at high speed by the supply of refrigerant and water pressure.
In addition, various modifications are possible, such as connecting the cooling elements radially according to the size of the heat source.

また、冷却素子の向きがある程度限定され、少量冷媒で冷却器を駆動させる場合などでは、図9に示すように、細管10の長さと位置を調整することで、凝縮した冷媒を隔壁12の底部に貯留して細管10に還流させることで、冷媒を循環させることができる。 In addition, when the orientation of the cooling element is limited to some extent and the cooler is driven with a small amount of refrigerant, as shown in FIG. The refrigerant can be circulated by storing it in the thin tube 10 and returning it to the thin tube 10 .

以上説明したように、本発明によれば、熱源からの熱量により受熱空間で発生した冷媒中蒸気を冷却空間に噴出させるとともに、冷却空間で凝縮した冷媒を受熱空間に圧送することができるので、熱交換効率を向上させるとともに、受熱部と冷却部を上下に逆転させても、冷媒流を循環させることができるので、上下が逆転する機器、無重力空間を含め、冷却装置として広く採用されることが期待される。 As described above, according to the present invention, the vapor in the refrigerant generated in the heat receiving space by the amount of heat from the heat source can be ejected into the cooling space, and the refrigerant condensed in the cooling space can be pumped to the heat receiving space. In addition to improving the heat exchange efficiency, it is possible to circulate the refrigerant flow even if the heat receiving part and the cooling part are turned upside down. There is expected.

1a~1d:管
2:冷却対象の熱源
3:低温領域
4、5:小孔
6:逆止弁
7:第1区画壁
8:第2区画壁
9:第3区画壁
10:細管
11:冷却フィン
12:隔壁

1a to 1d: pipe 2: heat source to be cooled 3: low temperature region 4, 5: small hole 6: check valve 7: first partition wall 8: second partition wall 9: third partition wall 10: narrow tube 11: cooling Fin 12: Partition

Claims (4)

内部に冷媒を封入した密封空間内に区画された、熱源と熱交換可能に近接する受熱空間及び低温領域と熱交換可能に接触する冷却空間とを備え、
前記受熱空間は第1の管を有し、該第1の管の端部が前記熱源から受熱し、
前記冷却空間は第2の管を有し、前記第1の管が該第2の管よりも管径が小さく、
前記第1の管は、その内部に液相の前記冷媒が満たされ、前記端部の側面に前記受熱空間と前記冷却空間とを連通する開口を有し、該開口から前記液相の冷媒が前記冷却空間に漏れないように該開口の大きさが設定され、
前記受熱空間が前記熱源から受熱した場合に、前記液相の冷媒は、前記第1の管の前記端部で気化して蒸気を発生し、前記端部の側面に設けられた前記開口から該蒸気が前記冷却空間に噴出される、冷媒循環型の冷却装置。
Equipped with a heat receiving space adjacent to a heat source and a cooling space in contact with a low temperature region so as to be able to exchange heat, which are partitioned in a sealed space with a refrigerant enclosed therein,
The heat receiving space has a first tube, an end of the first tube receiving heat from the heat source,
the cooling space has a second tube, the first tube having a smaller diameter than the second tube;
The first pipe is filled with the liquid-phase refrigerant, and has an opening on the side surface of the end that communicates the heat-receiving space and the cooling space, and the liquid-phase refrigerant flows through the opening. The size of the opening is set so as not to leak into the cooling space,
When the heat-receiving space receives heat from the heat source, the liquid-phase refrigerant vaporizes at the end of the first pipe to generate steam, which is then released from the opening provided on the side surface of the end. A refrigerant circulation type cooling device in which steam is jetted into the cooling space.
前記密封空間は、その内部が円筒形であり、該内部を管状に区画した前記第1の管が配置されてなる、請求項1記載の冷媒循環型の冷却装置。 2. The refrigerant circulation type cooling device according to claim 1, wherein said sealed space has a cylindrical interior, and said first pipe defining said interior in a tubular shape is arranged. 前記第1の管を複数有し、
前記複数の第1の管の各々の前記端部が前記熱源から受熱するとともに、該複数の第1の管が互いに平行に配列されており、
前記複数の第1の管は、前記端部に対する他の端部を含めてその全体が前記液相の冷媒に満たされてなる、請求項1記載の冷媒循環型の冷却装置。
Having a plurality of the first tubes,
The end of each of the plurality of first tubes receives heat from the heat source, and the plurality of first tubes are arranged parallel to each other,
2. The refrigerant circulation type cooling device according to claim 1, wherein said plurality of first pipes are entirely filled with said liquid-phase refrigerant, including an end portion opposite to said end portion.
前記噴出した冷媒の蒸気が前記複数の第1の管の前記他の端部に到達するのを妨げる隔壁が設けられてなる、請求項3記載の冷媒循環型の冷却装置。 4. The refrigerant circulation type cooling device according to claim 3, further comprising a partition wall for preventing the vapor of said spouted refrigerant from reaching said other ends of said plurality of first pipes.
JP2019097540A 2019-05-24 2019-05-24 Refrigerant circulation cooling device Active JP7336130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019097540A JP7336130B2 (en) 2019-05-24 2019-05-24 Refrigerant circulation cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019097540A JP7336130B2 (en) 2019-05-24 2019-05-24 Refrigerant circulation cooling device

Publications (2)

Publication Number Publication Date
JP2020193716A JP2020193716A (en) 2020-12-03
JP7336130B2 true JP7336130B2 (en) 2023-08-31

Family

ID=73548592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019097540A Active JP7336130B2 (en) 2019-05-24 2019-05-24 Refrigerant circulation cooling device

Country Status (1)

Country Link
JP (1) JP7336130B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048979A (en) 2013-09-02 2015-03-16 富士通株式会社 Loop heat pipe
JP2015059684A (en) 2013-09-18 2015-03-30 富士通株式会社 Loop heat pipe

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08327259A (en) * 1995-06-02 1996-12-13 Fujikura Ltd Continuous thermosiphon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015048979A (en) 2013-09-02 2015-03-16 富士通株式会社 Loop heat pipe
JP2015059684A (en) 2013-09-18 2015-03-30 富士通株式会社 Loop heat pipe

Also Published As

Publication number Publication date
JP2020193716A (en) 2020-12-03

Similar Documents

Publication Publication Date Title
JP7137555B2 (en) Active/passive cooling system
TWI650522B (en) Refrigerant heat sink
US10619939B2 (en) Intermittent thermosyphon
JP6378670B2 (en) Heat exchanger
US7882890B2 (en) Thermally pumped liquid/gas heat exchanger for cooling heat-generating devices
US20080170368A1 (en) Apparatuses for Dissipating Heat from Semiconductor Devices
US10712099B2 (en) Heat pipe
JP2016525205A (en) Heat exchanger
JP2016525205A5 (en)
US20150308750A1 (en) Slug Pump Heat Pipe
JP7336130B2 (en) Refrigerant circulation cooling device
US5036908A (en) High inlet artery for thermosyphons
JP2011108685A (en) Natural circulation type boiling cooler
US3598178A (en) Heat pipe
KR100997568B1 (en) Heat exchanger using difference of inner pressures
JP4879125B2 (en) Absorption refrigerator
TWI314208B (en) Micro droplet cooling apparatus
KR100431500B1 (en) Micro cooler device
JP2016133287A (en) Loop type heat pipe
JP2005147625A (en) Loop type heat pipe
JP2017041577A (en) Cooler and cooling method
JP4986666B2 (en) Absorption refrigerator
WO2017082127A1 (en) Electronic equipment cooling device
KR20200030192A (en) Cooling device
JP2018080907A (en) Absorber and absorption heat pump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7336130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150