JP7333450B2 - Power converter and air conditioner - Google Patents

Power converter and air conditioner Download PDF

Info

Publication number
JP7333450B2
JP7333450B2 JP2022109608A JP2022109608A JP7333450B2 JP 7333450 B2 JP7333450 B2 JP 7333450B2 JP 2022109608 A JP2022109608 A JP 2022109608A JP 2022109608 A JP2022109608 A JP 2022109608A JP 7333450 B2 JP7333450 B2 JP 7333450B2
Authority
JP
Japan
Prior art keywords
current
switching element
power supply
control
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022109608A
Other languages
Japanese (ja)
Other versions
JP2022125276A (en
Inventor
浩二 月井
敦 奥山
正博 田村
建司 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Johnson Controls Air Conditioning Inc
Original Assignee
Hitachi Johnson Controls Air Conditioning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016127252A external-priority patent/JP6877898B2/en
Application filed by Hitachi Johnson Controls Air Conditioning Inc filed Critical Hitachi Johnson Controls Air Conditioning Inc
Priority to JP2022109608A priority Critical patent/JP7333450B2/en
Publication of JP2022125276A publication Critical patent/JP2022125276A/en
Application granted granted Critical
Publication of JP7333450B2 publication Critical patent/JP7333450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Rectifiers (AREA)

Description

本発明は、交流電圧を直流電圧に変換する電力変換装置に関する。
TECHNICAL FIELD The present invention relates to a power converter and the like that convert AC voltage to DC voltage.

電車、自動車、空気調和機等には、交流電圧を直流電圧に変換する電力変換装置(直流電源装置、コンバータ)が搭載されている。そして、電力変換装置から出力される直流電圧をインバータによって所定周波数の交流電圧に変換し、この交流電圧をモータ等の負荷に印加するようになっている。このような電力変換装置において、高調波電流規制に準拠して高調波を抑制し、また、電力変換効率を高めて省エネルギ化を図ることが求められている。 2. Description of the Related Art Trains, automobiles, air conditioners, and the like are equipped with a power converter (DC power supply, converter) that converts AC voltage to DC voltage. A DC voltage output from the power converter is converted into an AC voltage having a predetermined frequency by an inverter, and this AC voltage is applied to a load such as a motor. In such power converters, it is required to suppress harmonics in compliance with harmonic current regulations, and to improve power conversion efficiency to save energy.

例えば、特許文献1には、直列接続された2つのダイオードと、直列接続された2つの半導体素子と、が並列接続されてなる整流回路と、交流電源から整流回路に流れる電流の検出値の極性に同期させて半導体スイッチをスイッチングする制御部と、を備える直流電源装置について記載されている。 For example, Patent Document 1 describes a rectifier circuit in which two series-connected diodes and two series-connected semiconductor elements are connected in parallel, and the polarity of the detected value of the current flowing from the AC power supply to the rectifier circuit. and a controller that switches the semiconductor switch in synchronization with the DC power supply.

特開2014-90570号公報JP 2014-90570 A

特許文献1に記載の整流回路は、前記したように、直列接続された2つのダイオードと、直列接続された2つの半導体素子と、が並列接続された構成になっている。したがって、半導体スイッチのオン・オフに関わらず、2つのダイオードのいずれかに電流が流れる。このように2つのダイオードに電流が流れるぶん損失が大きくなるため、さらに高効率化を図る余地がある。 As described above, the rectifier circuit described in Patent Document 1 has a configuration in which two series-connected diodes and two series-connected semiconductor elements are connected in parallel. Therefore, current flows through either of the two diodes regardless of whether the semiconductor switch is on or off. Since the current flowing through the two diodes increases the loss, there is room for further improvement in efficiency.

そこで、本発明は、高効率で電力変換を行う電力変換装置を提供することを課題とする。
Then, this invention makes it a subject to provide the power converter etc. which perform power conversion with high efficiency.

前記課題を解決するために、本発明は、ブリッジ形に接続された複数のスイッチング素子を有し、入力側は交流電源に接続され、出力側は負荷に接続されるブリッジ回路と、前記交流電源と前記ブリッジ回路とを接続する配線に設けられるリアクトルと、前記ブリッジ回路の出力側に接続される平滑コンデンサと、前記ブリッジ回路及び前記平滑コンデンサを介した電流経路を流れる電流を検出する第1電流検出部と、前記平滑コンデンサを介さずに前記ブリッジ回路及び前記リアクトルを介した短絡経路を流れる短絡電流を検出する第2電流検出部と、前記複数のスイッチング素子を制御する制御部と、を備え、前記第1電流検出部は、前記電流経路に設けられる第1シャント抵抗を有し、前記第2電流検出部は、前記短絡経路に設けられる第2シャント抵抗を有し、前記第1シャント抵抗の抵抗値は、前記第2シャント抵抗の抵抗値よりも大きく、前記第2電流検出部は、前記交流電源の電圧が正の半サイクルの期間において、前記平滑コンデンサを介さずに前記リアクトルを介して流れる短絡電流を検出し、前記制御部は、前記電流経路に含まれる前記スイッチング素子のうち、前記平滑コンデンサの正極に接続されているスイッチング素子を、前記ブリッジ回路に電流が流れている期間の少なくとも一部でオン状態とし、前記電流経路に含まれないスイッチング素子をオフ状態で維持する同期整流動作を、前記第1電流検出部の検出値に基づいて実行することを特徴とする。
In order to solve the above problems, the present invention provides a bridge circuit having a plurality of switching elements connected in a bridge configuration, the input side of which is connected to an AC power supply, and the output side of which is connected to a load, and the AC power supply. and the bridge circuit; a smoothing capacitor connected to the output side of the bridge circuit; and a first current for detecting a current flowing through a current path via the bridge circuit and the smoothing capacitor. A detection unit, a second current detection unit that detects a short-circuit current flowing through a short-circuit path that passes through the bridge circuit and the reactor without passing through the smoothing capacitor, and a control unit that controls the plurality of switching elements. , the first current detection section has a first shunt resistor provided in the current path, the second current detection section has a second shunt resistor provided in the short-circuit path, and the first shunt resistor is greater than the resistance value of the second shunt resistor, and the second current detection section detects the current through the reactor, not through the smoothing capacitor, during a positive half cycle period of the voltage of the AC power supply. The control unit detects a short-circuit current flowing through the bridge circuit, and controls the switching element connected to the positive electrode of the smoothing capacitor among the switching elements included in the current path during the period when the current is flowing in the bridge circuit. A synchronous rectification operation, in which at least a part of the switching elements are turned on and the switching elements not included in the current path are kept in the off state, is performed based on the detected value of the first current detection section.

本発明によれば、高効率で電力変換を行う電力変換装置を提供できる。
ADVANTAGE OF THE INVENTION According to this invention, the power converter etc. which perform power conversion with high efficiency can be provided.

本発明の第1実施形態に係る電力変換装置の構成図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a block diagram of the power converter device which concerns on 1st Embodiment of this invention. ダイオード整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 4 is an explanatory diagram showing temporal changes in AC power supply voltage vs, circuit current is, and drive pulses for switching elements Q1 to Q4 in diode rectification control; ダイオード整流制御において、交流電源電圧vsが正の半サイクルに含まれるときの回路電流isの流れを示す説明図である。FIG. 4 is an explanatory diagram showing the flow of circuit current is when AC power supply voltage vs is included in a positive half cycle in diode rectification control; 同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 4 is an explanatory diagram showing temporal changes in AC power supply voltage vs, circuit current is, and drive pulses for switching elements Q1 to Q4 in synchronous rectification control; 同期整流制御において、交流電源電圧vsが正の半サイクルに含まれるときの電流の流れを示す説明図である。FIG. 4 is an explanatory diagram showing current flow when AC power supply voltage vs is included in a positive half cycle in synchronous rectification control; 部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 4 is an explanatory diagram showing temporal changes in AC power supply voltage vs, circuit current is, short-circuit current isp, and driving pulses for switching elements Q1 to Q4 in partial switching control; 交流電源電圧vsが正の極性の半サイクルにおいて、力率改善動作を行ったときの電流の流れを示す説明図である。FIG. 10 is an explanatory diagram showing the current flow when the power factor correction operation is performed in the positive polarity half cycle of the AC power supply voltage vs. FIG. 交流電源電圧vsが正の半サイクルにおける部分スイッチング制御の説明図である。FIG. 10 is an explanatory diagram of partial switching control in a positive half cycle of AC power supply voltage vs. FIG. 高速スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 4 is an explanatory diagram showing temporal changes in AC power supply voltage vs, circuit current is, short-circuit current isp, and driving pulses for switching elements Q1 to Q4 in high-speed switching control; 交流電源電圧vsが正の半サイクルにおいて、高速スイッチング制御でのスイッチング素子Q1,Q2のオンデューティを示す説明図である。FIG. 4 is an explanatory diagram showing on-duties of switching elements Q1 and Q2 in high-speed switching control in a positive half cycle of AC power supply voltage vs; 高速スイッチング制御における交流電源電圧vsと回路電流isとの関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between AC power supply voltage vs and circuit current is in high-speed switching control; 高速スイッチング制御において、リアクトルによる電流位相の遅れを考慮しない場合と、電流位相の遅れを考慮した場合と、におけるスイッチング素子Q2のオンデューティを示す説明図である。FIG. 8 is an explanatory diagram showing the on-duty of the switching element Q2 in high-speed switching control when the current phase delay due to a reactor is not considered and when the current phase delay is considered; (a)は部分スイッチング制御における正の半サイクルでの交流電源電圧vs及び回路電流isの説明図であり、(b)は高速スイッチング制御における正の半サイクルでの交流電源電圧vs及び回路電流isの説明図である。(a) is an explanatory diagram of the AC power supply voltage vs and the circuit current is in the positive half cycle in the partial switching control, and (b) is the AC power supply voltage vs in the positive half cycle and the circuit current is in the high-speed switching control is an explanatory diagram of . 電力変換装置の制御部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which the control part of a power converter device performs. 本発明の第2実施形態に係る電力変換装置の構成図である。It is a block diagram of the power converter device which concerns on 2nd Embodiment of this invention. 電力変換装置の制御部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which the control part of a power converter device performs. 本発明の第3実施形態に係る電力変換装置の構成図である。It is a block diagram of the power converter device which concerns on 3rd Embodiment of this invention. 電力変換装置の制御部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which the control part of a power converter device performs. 電力変換装置の制御部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which the control part of a power converter device performs. 第4実施形態に係る電力変換装置において、(a)は交流電源電圧vsが正の半サイクルのときの誤動作によって短絡電流iscが流れている状態を示す説明図であり、(b)は交流電源電圧vsが負の半サイクルのときの誤動作によって短絡電流iscが流れている状態を示す説明図である。In the power conversion device according to the fourth embodiment, (a) is an explanatory diagram showing a state in which a short-circuit current isc is flowing due to a malfunction when the AC power supply voltage vs is in the positive half cycle, and (b) is an AC power supply FIG. 4 is an explanatory diagram showing a state in which a short-circuit current isc is flowing due to a malfunction when voltage vs is in a negative half cycle; 本発明の第5実施形態に係る空気調和機が備える室内機、室外機、及びリモコンの正面図である。FIG. 11 is a front view of an indoor unit, an outdoor unit, and a remote control included in an air conditioner according to a fifth embodiment of the present invention; 空気調和機の構成図である。1 is a configuration diagram of an air conditioner; FIG. 負荷の大きさ、動作モード、及び機器の運転領域の関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between load magnitude, operation mode, and device operating range; 電力変換装置の制御部が実行する処理を示すフローチャートである。It is a flowchart which shows the process which the control part of a power converter device performs. 本発明の第1の変形例に係る電力変換装置の構成図である。It is a block diagram of the power converter device which concerns on the 1st modification of this invention. 本発明の第2の変形例に係る電力変換装置の構成図である。It is a block diagram of the power converter device which concerns on the 2nd modification of this invention. 本発明の第3の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 11 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the driving pulses for the switching elements Q1 to Q4 in synchronous rectification control in the power converter according to the third modification of the present invention; 本発明の第4の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 12 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the driving pulses for the switching elements Q1 to Q4 in synchronous rectification control in the power conversion device according to the fourth modification of the present invention; 本発明の5の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 12 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, the short-circuit current isp, and the drive pulses for the switching elements Q1 to Q4 in the partial switching control in the power converter according to the fifth modification of the present invention; . 本発明の第6の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。In the power converter according to the sixth modification of the present invention, an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, the short-circuit current isp, and the drive pulses for the switching elements Q1 to Q4 in partial switching control. be. 本発明の第7の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 20 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the driving pulses for the switching elements Q1 to Q4 in synchronous rectification control in the power converter according to the seventh modification of the present invention; 本発明の第8の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。FIG. 20 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the driving pulses for the switching elements Q1 to Q4 in synchronous rectification control in the power converter according to the eighth modification of the present invention; 本発明の第9の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。In the power converter according to the ninth modification of the present invention, an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, the short-circuit current isp, and the drive pulses for the switching elements Q1 to Q4 in partial switching control. be. 本発明の第10の変形例に係る電力変換装置において、高速スイッチング整流制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。Explanatory diagram showing temporal changes in AC power supply voltage vs, circuit current is, short-circuit current isp, and driving pulses for switching elements Q1 to Q4 in high-speed switching rectification control in a power converter according to a tenth modification of the present invention. is. 本発明の他の変形例に係る電力変換装置の制御モードの切替えに関する説明図である。FIG. 11 is an explanatory diagram relating to switching of control modes of a power conversion device according to another modification of the present invention;

≪第1実施形態≫
<電力変換装置の構成>
図1は、第1実施形態に係る電力変換装置1の構成図である。
電力変換装置1は、交流電源Gから印加される交流電源電圧Vsを直流電圧Vdに変換し、この直流電圧Vdを負荷H(インバータ、モータ等)に出力するコンバータである。電力変換装置1は、その入力側が交流電源Gに接続され、出力側が負荷Hに接続されている。
<<First embodiment>>
<Configuration of power converter>
FIG. 1 is a configuration diagram of a power converter 1 according to the first embodiment.
The power converter 1 is a converter that converts an AC power supply voltage Vs applied from an AC power supply G into a DC voltage Vd and outputs this DC voltage Vd to a load H (inverter, motor, etc.). The power conversion device 1 is connected to an AC power source G at its input side and connected to a load H at its output side.

図1に示すように、電力変換装置1は、ブリッジ回路10と、リアクトルL1と、平滑コンデンサC1と、電流検出部11と、交流電圧検出部12と、直流電圧検出部13と、負荷検出部14と、シャント抵抗SH_R1(第1シャント抵抗)と、シャント抵抗SH_R2(第2シャント抵抗)と、増幅回路A1,A2と、制御部15と、を備えている。 As shown in FIG. 1, the power conversion device 1 includes a bridge circuit 10, a reactor L1, a smoothing capacitor C1, a current detection unit 11, an AC voltage detection unit 12, a DC voltage detection unit 13, and a load detection unit. 14, a shunt resistor SH_R1 (first shunt resistor), a shunt resistor SH_R2 (second shunt resistor), amplifier circuits A1 and A2, and a control unit 15.

ブリッジ回路10は、ブリッジ形に接続されたスイッチング素子Q1~Q4を備えている。ブリッジ回路10は、その入力側が交流電源Gに接続され、出力側が負荷Hに接続されている。 The bridge circuit 10 includes switching elements Q1 to Q4 connected in a bridge configuration. The bridge circuit 10 is connected to an AC power supply G at its input side and connected to a load H at its output side.

スイッチング素子Q1~Q4は、例えば、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)であり、制御部15によってオン・オフが制御される。なお、スイッチング素子Q1~Q4としてMOSFETを用いることで、スイッチング損失を低減できるとともに、スイッチングを高速で行えるという利点がある。 The switching elements Q1 to Q4 are, for example, MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), and are controlled to be turned on/off by the controller 15 . By using MOSFETs as the switching elements Q1 to Q4, there is an advantage that switching loss can be reduced and switching can be performed at high speed.

また、スイッチング素子Q1は、その内部に寄生ダイオードD1を有している。寄生ダイオードD1は、スイッチング素子Q1のソースとドレインとの間に存在するpn接合の部分である。 Moreover, the switching element Q1 has a parasitic diode D1 therein. Parasitic diode D1 is the portion of the pn junction that exists between the source and drain of switching element Q1.

なお、スイッチング素子Q1の飽和電圧(オン状態におけるドレイン・ソース間電圧)は、寄生ダイオードD1の順方向の電圧降下よりも低いことが好ましい。これによって、寄生ダイオードD1に電流を流すよりも、スイッチング素子Q1のソース・ドレインに電流を流すほうが電圧降下が小さくなり、ひいては、導通損失を低減できるからである。わかりやすくいうと、オフ状態のスイッチング素子Q1において寄生ダイオードD1に電流を流すよりも、オン状態のスイッチング素子Q1に電流を流すほうが導通損失が小さくなるようにしている。なお、他のスイッチング素子Q2~Q4についても同様のことがいえる。 It is preferable that the saturation voltage of the switching element Q1 (the voltage between the drain and the source in the ON state) be lower than the forward voltage drop of the parasitic diode D1. This is because the voltage drop is smaller when the current flows through the source/drain of the switching element Q1 than when the current flows through the parasitic diode D1, and thus the conduction loss can be reduced. To put it simply, the conduction loss is smaller when the current flows through the switching element Q1 in the ON state than in the parasitic diode D1 in the switching element Q1 in the OFF state. The same applies to the other switching elements Q2-Q4.

図1に示すように、ブリッジ回路10は、スイッチング素子Q1,Q2が直列接続されてなる第1レグJ1と、スイッチング素子Q3,Q4が直列接続されてなる第2レグJ2と、が並列接続された構成になっている。 As shown in FIG. 1, the bridge circuit 10 includes a first leg J1 in which switching elements Q1 and Q2 are connected in series, and a second leg J2 in which switching elements Q3 and Q4 are connected in series. configuration.

第1レグJ1において、スイッチング素子Q1のソースと、スイッチング素子Q2のドレインと、が接続され、その接続点N1は、配線haを介して交流電源Gに接続されている。なお、配線haは、その一端が交流電源Gに接続され、他端が前記した接続点N1に接続されている。 In the first leg J1, the source of the switching element Q1 and the drain of the switching element Q2 are connected, and the connection point N1 is connected to the AC power supply G via the wiring ha. One end of the wiring ha is connected to the AC power supply G, and the other end is connected to the connection point N1.

第2レグJ2において、スイッチング素子Q3のソースと、スイッチング素子Q4のドレインと、が接続され、その接続点N2は、配線hbを介して交流電源Gに接続されている。なお、配線hbは、その一端が交流電源Gに接続され、他端が前記した接続点N2に接続されている。 In the second leg J2, the source of the switching element Q3 and the drain of the switching element Q4 are connected, and the connection point N2 is connected to the AC power supply G via the wiring hb. One end of the wiring hb is connected to the AC power supply G, and the other end is connected to the connection point N2.

スイッチング素子Q1のドレインと、スイッチング素子Q3のドレインと、は互いに接続され、その接続点N3は、配線hcを介して負荷Hに接続されている。なお、配線hcは、その一端が負荷Hに接続され、他端が前記した接続点N3に接続されている。 The drain of the switching element Q1 and the drain of the switching element Q3 are connected to each other, and the connection point N3 is connected to the load H via the wiring hc. The wiring hc has one end connected to the load H and the other end connected to the connection point N3.

スイッチング素子Q2のソースと、スイッチング素子Q4のソースとは、後記するシャント抵抗SH_R2を介して接続されている。また、シャント抵抗SH_R2とスイッチング素子Q2のソースとの接続点N4は、配線hdを介して負荷Hに接続されている。なお、配線hdは、その一端がスイッチング素子Q2,Q4のソースに接続され、他端が負荷Hに接続されている。 The source of the switching element Q2 and the source of the switching element Q4 are connected via a shunt resistor SH_R2, which will be described later. A connection point N4 between the shunt resistor SH_R2 and the source of the switching element Q2 is connected to the load H via the wiring hd. The wiring hd is connected to the sources of the switching elements Q2 and Q4 at one end and to the load H at the other end.

リアクトルL1は、交流電源Gから供給される電力をエネルギとして蓄え、このエネルギを放出することで昇圧や力率の改善を行うものである。リアクトルL1は、交流電源Gとブリッジ回路10とを接続する配線haに設けられている。 The reactor L1 stores electric power supplied from the AC power supply G as energy, and releases this energy to boost the voltage and improve the power factor. The reactor L<b>1 is provided on the wiring ha connecting the AC power supply G and the bridge circuit 10 .

平滑コンデンサC1は、ブリッジ回路10から印加される電圧を平滑化して直流電圧にするものであり、配線hc,hdを介してブリッジ回路10の出力側に接続されている。また、平滑コンデンサC1は、その正極が配線hcを介してスイッチング素子Q1,Q3のドレインに接続され、負極が配線hdを介してスイッチング素子Q2,Q4のソースに接続されている。 The smoothing capacitor C1 smoothes the voltage applied from the bridge circuit 10 into a DC voltage, and is connected to the output side of the bridge circuit 10 via wires hc and hd. The smoothing capacitor C1 has its positive electrode connected to the drains of the switching elements Q1 and Q3 via the wiring hc, and its negative electrode connected to the sources of the switching elements Q2 and Q4 via the wiring hd.

電流検出部11(第5電流検出部)は、ブリッジ回路10に流れる電流を実効値(平均電流)として検出するものである。電流検出部11は、例えば、カレントトランスであり、1次側・2次側のコイルを有するトランス11aを備えるとともに、トランス11aの2次側から接地側に向けて順次に接続される保護ダイオードD5、負荷抵抗R、及びコンデンサC2を備えている。
交流電圧検出部12は、交流電源Gから印加される交流電源電圧Vsを検出するものであり、配線ha,hbに接続されている。
The current detector 11 (fifth current detector) detects the current flowing through the bridge circuit 10 as an effective value (average current). The current detection unit 11 is, for example, a current transformer, and includes a transformer 11a having coils on the primary side and the secondary side, and a protection diode D5 that is sequentially connected from the secondary side of the transformer 11a toward the ground side. , a load resistor R, and a capacitor C2.
The AC voltage detector 12 detects an AC power supply voltage Vs applied from the AC power supply G, and is connected to wires ha and hb.

直流電圧検出部13は、平滑コンデンサC1の直流電圧Vdを検出するものであり、その正側が配線hcに接続され、負側が配線hdに接続されている。なお、直流電圧検出部13の検出値は、負荷Hに印加される電圧値が所定の目標値に達しているか否かの判定に用いられる。 The DC voltage detection unit 13 detects the DC voltage Vd of the smoothing capacitor C1, and has its positive side connected to the wiring hc and its negative side connected to the wiring hd. The value detected by the DC voltage detection unit 13 is used to determine whether or not the voltage value applied to the load H has reached a predetermined target value.

負荷検出部14は、負荷Hに供給される電流を検出するものであり、この負荷Hに設置されている。負荷検出部14として、例えば、シャント抵抗を用いることができる。なお、負荷Hがモータである場合、負荷検出部14によってモータの回転速度を検出し、この回転速度から電流値を推定するようにしてもよい。 The load detection unit 14 detects the current supplied to the load H, and is installed on the load H. As shown in FIG. A shunt resistor, for example, can be used as the load detector 14 . If the load H is a motor, the load detector 14 may detect the rotation speed of the motor and estimate the current value from the rotation speed.

シャント抵抗SH_R1は、平滑コンデンサC1を介した電流経路(図3、図5の破線矢印を参照)を流れる電流の瞬時値(瞬時電流)を検出するための抵抗であり、配線hdに設けられている。すなわち、シャント抵抗SH_R1は、その一端がスイッチング素子Q2のソースに接続され、他端が平滑コンデンサC1の負極に接続されている。 The shunt resistor SH_R1 is a resistor for detecting the instantaneous value (instantaneous current) of the current flowing through the current path (see the dashed arrows in FIGS. 3 and 5) via the smoothing capacitor C1, and is provided in the wiring hd. there is That is, the shunt resistor SH_R1 has one end connected to the source of the switching element Q2 and the other end connected to the negative electrode of the smoothing capacitor C1.

増幅回路A1は、シャント抵抗SH_R1の両端の電圧を増幅するオペアンプであり、シャント抵抗SH_R1の両端に接続されている。なお、平滑コンデンサC1を介した電流経路を流れる電流(回路電流is)を検出する「第1電流検出部」は、シャント抵抗SH_R1と、増幅回路A1と、を含んで構成される。 The amplifier circuit A1 is an operational amplifier that amplifies the voltage across the shunt resistor SH_R1, and is connected across the shunt resistor SH_R1. The "first current detector" that detects the current (circuit current is) flowing through the current path via the smoothing capacitor C1 includes a shunt resistor SH_R1 and an amplifier circuit A1.

図1に示すように、増幅回路A1の非反転入力端子(+)は、配線hdにおいて平滑コンデンサC1の負極と同電位の位置に接続されている。この電位を基準として、シャント抵抗SH_R1に流れる電流が検出される。また、増幅回路A1の反転入力端子(-)は、前記した接続点N4と同電位の位置に接続されている。そして、シャント抵抗SH_R1及び増幅回路A1によって、平滑コンデンサC1の負極から接続点N4に向かう電流を検出するようになっている。 As shown in FIG. 1, the non-inverting input terminal (+) of the amplifier circuit A1 is connected to the wiring hd at the same potential as the negative electrode of the smoothing capacitor C1. Using this potential as a reference, the current flowing through the shunt resistor SH_R1 is detected. Further, the inverting input terminal (-) of the amplifier circuit A1 is connected to the position of the same potential as the connection point N4. The shunt resistor SH_R1 and the amplifier circuit A1 detect the current from the negative electrode of the smoothing capacitor C1 to the connection point N4.

シャント抵抗SH_R2は、平滑コンデンサC1を介さない短絡経路(図7の破線矢印を参照)を流れる短絡電流ispを検出するための抵抗であり、前記した短絡経路に設けられている。すなわち、シャント抵抗SH_R2は、その一端がスイッチング素子Q2のソースに接続され、他端がスイッチング素子Q4のソースに接続されている。 The shunt resistor SH_R2 is a resistor for detecting the short-circuit current isp flowing through the short-circuit path (see the dashed arrow in FIG. 7) that does not pass through the smoothing capacitor C1, and is provided in the above-described short-circuit path. That is, the shunt resistor SH_R2 has one end connected to the source of the switching element Q2 and the other end connected to the source of the switching element Q4.

増幅回路A2は、シャント抵抗SH_R2の両端の電圧を増幅するオペアンプであり、シャント抵抗SH_R2の両端に接続されている。なお、交流電源Gの電圧が正の半サイクルの期間において、平滑コンデンサC1を介さずにリアクトルL1を介して流れる短絡電流isp(図7の破線矢印を参照)を検出する「第2電流検出部」は、シャント抵抗SH_R2と、増幅回路A2と、を含んで構成される。 The amplifier circuit A2 is an operational amplifier that amplifies the voltage across the shunt resistor SH_R2, and is connected across the shunt resistor SH_R2. It should be noted that during the positive half cycle period of the voltage of the AC power supply G, the "second current detection unit ” includes a shunt resistor SH_R2 and an amplifier circuit A2.

詳細については後記するが、シャント抵抗SH_R1は、主に、スイッチング素子Q1~Q4のオン・オフを切り替える制御に用いられる。他方のシャント抵抗SH_R2は、ブリッジ回路10に過電流が流れているか否かの判定に用いられる。したがって、シャント抵抗SH_R1の抵抗値は、シャント抵抗SH_R2の抵抗値よりも大きいことが好ましい。これによって、シャント抵抗SH_R1におけるSN比が十分に確保されるため、増幅回路A1からコンバータ制御部15dに出力される信号の雑音を低減できる。つまり、平滑コンデンサC1を介して流れる回路電流is(図5参照)を高精度で検出できるため、スイッチング素子Q1~Q4のオン・オフを適切に制御できる。 Although the details will be described later, the shunt resistor SH_R1 is mainly used for controlling the ON/OFF switching of the switching elements Q1 to Q4. The other shunt resistor SH_R2 is used to determine whether an overcurrent is flowing through the bridge circuit 10 or not. Therefore, the resistance value of the shunt resistor SH_R1 is preferably greater than the resistance value of the shunt resistor SH_R2. As a result, a sufficient SN ratio is ensured in the shunt resistor SH_R1, so noise in the signal output from the amplifier circuit A1 to the converter control section 15d can be reduced. That is, since the circuit current is (see FIG. 5) flowing through the smoothing capacitor C1 can be detected with high accuracy, the on/off of the switching elements Q1 to Q4 can be appropriately controlled.

図1に示すように、増幅回路A2の非反転入力端子(+)は、前記した接続点N4と同電位の位置に接続されている。この電位を基準として、シャント抵抗SH_R2に流れる電流が検出される。また、増幅回路A2の反転入力端子(-)は、スイッチング素子Q4のソースと同電位の位置に接続されている。つまり、シャント抵抗SH_R2及び増幅回路A2によって、接続点N4からスイッチング素子Q4のソースに向かう電流を検出するようになっている。 As shown in FIG. 1, the non-inverting input terminal (+) of the amplifier circuit A2 is connected to the same potential as the connection point N4. Based on this potential, the current flowing through the shunt resistor SH_R2 is detected. The inverting input terminal (-) of the amplifier circuit A2 is connected to the same potential as the source of the switching element Q4. That is, the shunt resistor SH_R2 and the amplifier circuit A2 detect the current flowing from the connection point N4 to the source of the switching element Q4.

制御部15は、例えば、マイコン(Microcomputer:図示せず)であり、ROM(Read Only Memory)に記憶されたプログラムを読み出してRAM(Random Access Memory)に展開し、CPU(Central Processing Unit)が各種処理を実行するようになっている。制御部15は、前記したように、スイッチング素子Q1~Q4のオン・オフを制御する機能を有している。 The control unit 15 is, for example, a microcomputer (not shown), reads a program stored in ROM (Read Only Memory) and expands it to RAM (Random Access Memory), and CPU (Central Processing Unit) executes various It is designed to process. The control unit 15 has the function of controlling the on/off of the switching elements Q1 to Q4, as described above.

図1に示すように、制御部15は、ゼロクロス判定部15aと、昇圧比制御部15bと、ゲイン制御部15cと、コンバータ制御部15dと、を備えている。 As shown in FIG. 1, the control section 15 includes a zero-cross determination section 15a, a step-up ratio control section 15b, a gain control section 15c, and a converter control section 15d.

ゼロクロス判定部15aは、交流電圧検出部12の検出値に基づいて、交流電源電圧Vsの正負が切り替わったか(つまり、ゼロクロスに達したか)否かを判定する機能を有している。例えば、ゼロクロス判定部15aは、交流電源電圧Vsが正の期間中にはコンバータ制御部15dに‘1’の信号を出力し、交流電源電圧Vsが負の期間中にはコンバータ制御部15dに‘0’の信号を出力する。 The zero-cross determination unit 15a has a function of determining whether or not the polarity of the AC power supply voltage Vs has been switched (that is, whether or not it has reached zero cross) based on the value detected by the AC voltage detection unit 12 . For example, the zero-cross determination unit 15a outputs a signal of '1' to the converter control unit 15d during a period when the AC power supply voltage Vs is positive, and outputs a signal of '1' to the converter control unit 15d during a period when the AC power supply voltage Vs is negative. Output a signal of 0'.

昇圧比制御部15bは、負荷検出部14の検出値に基づいて、直流電圧Vdの昇圧比を設定し、その昇圧比をゲイン制御部15c及びコンバータ制御部15dに出力する機能を有している。
ゲイン制御部15cは、電流検出部11によって検出される回路電流isの実効値と、直流電圧Vdの昇圧比と、に基づいて、電流制御ゲインを設定する機能を有している。
The step-up ratio control section 15b has a function of setting the step-up ratio of the DC voltage Vd based on the value detected by the load detection section 14 and outputting the step-up ratio to the gain control section 15c and the converter control section 15d. .
The gain control section 15c has a function of setting a current control gain based on the effective value of the circuit current is detected by the current detection section 11 and the step-up ratio of the DC voltage Vd.

コンバータ制御部15dは、電流検出部11、直流電圧検出部13、シャント抵抗SH_R1、シャント抵抗SH_R2、ゼロクロス判定部15a、昇圧比制御部15b、及びゲイン制御部15cから入力される情報に基づいて、スイッチング素子Q1~Q4のオン・オフを制御する。なお、コンバータ制御部15dが実行する処理については後記する。 Based on information input from the current detection unit 11, the DC voltage detection unit 13, the shunt resistor SH_R1, the shunt resistor SH_R2, the zero-cross determination unit 15a, the step-up ratio control unit 15b, and the gain control unit 15c, the converter control unit 15d It controls ON/OFF of the switching elements Q1 to Q4. The processing executed by converter control unit 15d will be described later.

<電力変換装置の制御モード>
次に、負荷(例えば、電流検出部11の検出値)の大きさに基づいて切り替えられる制御モードについて説明する。前記した制御モードには、「ダイオード整流制御」、「同期整流制御」、「部分スイッチング制御」、及び「高速スイッチング制御」が含まれる。
<Control mode of power converter>
Next, control modes that are switched based on the magnitude of the load (for example, the value detected by the current detection unit 11) will be described. The aforementioned control modes include "diode rectification control", "synchronous rectification control", "partial switching control" and "fast switching control".

(1.ダイオード整流制御)
ダイオード整流制御は、4つの寄生ダイオードD1~D4を用いて全波整流を行う制御モードである。ダイオード整流制御は、例えば、負荷の大きさが比較的小さいときに実行されるが、これに限定されるものではない。
(1. Diode rectification control)
Diode rectification control is a control mode that performs full-wave rectification using four parasitic diodes D1 to D4. Diode rectification control is performed, for example, when the magnitude of the load is relatively small, but is not limited to this.

図2は、ダイオード整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
なお、図2(a)は、交流電源電圧vs(瞬時値)の波形であり、図2(b)は、回路電流is(瞬時値)の波形である。図2(c)~(f)は、スイッチング素子Q1~Q4の駆動パルスである。
FIG. 2 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the driving pulses for the switching elements Q1 to Q4 in diode rectification control.
2A shows the waveform of the AC power supply voltage vs (instantaneous value), and FIG. 2B shows the waveform of the circuit current is (instantaneous value). 2(c)-(f) are drive pulses for the switching elements Q1-Q4.

図2(c)~(f)に示すように、コンバータ制御部15dは、スイッチング素子Q1~Q4の全てをオフ状態で維持することで、次に説明するように、寄生ダイオードD1~D4を介して回路電流isを流す。 As shown in FIGS. 2(c) to 2(f), the converter control unit 15d maintains all of the switching elements Q1 to Q4 in the off state, so that, as described below, the switching elements are switched through the parasitic diodes D1 to D4. to flow the circuit current is.

図3は、ダイオード整流制御において、交流電源電圧vsが正の半サイクルに含まれるときの回路電流isの流れを示す説明図である。交流電源電圧vsが正の半サイクルの期間では、図3の破線矢印で示すように、交流電源G→リアクトルL1→寄生ダイオードD1→平滑コンデンサC1→シャント抵抗SH_R1→シャント抵抗SH_R2→寄生ダイオードD4→交流電源Gの順に回路電流isが流れる。
また、交流電源電圧vsが負の半サイクルの期間では、図示はしないが、交流電源G→寄生ダイオードD3→平滑コンデンサC1→シャント抵抗SH_R1→シャント抵抗SH_R2→寄生ダイオードD2→リアクトルL1→交流電源Gの順に回路電流isが流れる。なお、回路電流isの波形は、図2(b)に示すとおりである。
FIG. 3 is an explanatory diagram showing the flow of the circuit current is when the AC power supply voltage vs is included in the positive half cycle in diode rectification control. During the half cycle period when the AC power supply voltage vs is positive, as indicated by the dashed arrow in FIG. A circuit current is flows in the order of the AC power supply G.
Also, in the period of the negative half cycle of the AC power supply voltage vs, although not shown, AC power supply G→parasitic diode D3→smoothing capacitor C1→shunt resistor SH_R1→shunt resistor SH_R2→parasitic diode D2→reactor L1→AC power supply G A circuit current is flows in this order. The waveform of the circuit current is is as shown in FIG. 2(b).

このようなダイオード整流制御を低負荷時に行うことで、スイッチング素子Q1~Q4におけるスイッチング損失を低減できる。 By performing such diode rectification control when the load is low, the switching loss in the switching elements Q1 to Q4 can be reduced.

(2.同期整流制御)
同期整流制御は、平滑コンデンサC1を介した電流経路に含まれるスイッチング素子のうち、平滑コンデンサC1の正極に接続されているスイッチング素子を、ブリッジ回路10に電流が流れている期間の少なくとも一部でオン状態とし、前記した電流経路に含まれないスイッチング素子をオフ状態で維持する制御モードである。なお、交流電源電圧vsが正の半サイクルの期間において、前記した「電流経路」は、図5の破線矢印で示す経路である。
(2. Synchronous rectification control)
In the synchronous rectification control, among the switching elements included in the current path through the smoothing capacitor C1, the switching element connected to the positive electrode of the smoothing capacitor C1 is switched at least part of the period during which the current flows through the bridge circuit 10. This is a control mode in which switching elements that are not included in the above-described current path are kept in an off state. Note that the "current path" described above during the period of the positive half cycle of the AC power supply voltage vs is the path indicated by the dashed arrow in FIG.

本実施形態では、一例として、交流電源電圧vsの極性に同期させてスイッチング素子Q2,Q4のオン・オフを切り替えるとともに(図4(d)、(f)参照)、回路電流isが流れているか否かによってスイッチング素子Q1,Q3のオン・オフを切り替えるようにしている(図4(c)、(e)参照)。なお、同期整流制御は、例えば、負荷(電流検出部11の検出値等)が比較的小さいときに実行されるが、これに限定されるものではない。 In the present embodiment, as an example, the switching elements Q2 and Q4 are switched on and off in synchronization with the polarity of the AC power supply voltage vs (see FIGS. 4(d) and (f)), and whether the circuit current is is flowing or not. The switching elements Q1 and Q3 are turned on and off depending on whether or not they are present (see FIGS. 4(c) and 4(e)). The synchronous rectification control is executed, for example, when the load (detected value of the current detector 11, etc.) is relatively small, but is not limited to this.

図4は、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
同期整流制御においてコンバータ制御部15dは、シャント抵抗SH_R1によって検出される回路電流isに同期させて、スイッチング素子Q1,Q3のオン・オフを切り替える。交流電源電圧vsが正の半サイクルの期間について説明すると(図4(a)参照)、コンバータ制御部15dは、回路電流isが流れているときには(図4(b)参照)、スイッチング素子Q1をオン状態とし(図4(c)参照)、回路電流isが流れていないときには、スイッチング素子Q1をオフ状態にする。なお、交流電源電圧vsが正の半サイクルの期間において、スイッチング素子Q3はオフ状態で維持される(図4(e)参照)。
FIG. 4 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the driving pulses for the switching elements Q1 to Q4 in synchronous rectification control.
In the synchronous rectification control, the converter control unit 15d switches ON/OFF of the switching elements Q1 and Q3 in synchronization with the circuit current is detected by the shunt resistor SH_R1. Explaining the half cycle period in which the AC power supply voltage vs is positive (see FIG. 4A), the converter control unit 15d switches the switching element Q1 to When the switch is turned on (see FIG. 4(c)) and the circuit current is is not flowing, the switching element Q1 is turned off. Note that the switching element Q3 is maintained in the OFF state during the positive half cycle period of the AC power supply voltage vs (see FIG. 4(e)).

また、コンバータ制御部15dは、交流電源電圧vsの極性の変化に同期させて、スイッチング素子Q2,Q4のオン・オフを切り替える。例えば、交流電源電圧vsが正の半サイクルの期間では(図4(a)参照)、コンバータ制御部15dは、スイッチング素子Q2をオフ状態にし(図4(d)参照)、スイッチング素子Q4をオン状態にする(図4(f)参照)。なお、交流電源電圧vsの極性は、ゼロクロス判定部15aによって判定(特定)される。 Further, the converter control unit 15d switches ON/OFF of the switching elements Q2 and Q4 in synchronization with the change in polarity of the AC power supply voltage vs. For example, during a positive half cycle period of the AC power supply voltage vs (see FIG. 4A), the converter control unit 15d turns off the switching element Q2 (see FIG. 4D) and turns on the switching element Q4. state (see FIG. 4(f)). The polarity of the AC power supply voltage vs is determined (identified) by the zero-cross determination unit 15a.

このように、スイッチング素子Q1,Q3は、回路電流isが流れているか否かによってオン・オフが切り替えられ、スイッチング素子Q2,Q4は、交流電源電圧vsの極性に同期させてオン・オフが切り替えられる。これは、次に説明するように、平滑コンデンサC1から交流電源G側への逆流電流を防ぐためである。 Thus, the switching elements Q1 and Q3 are switched on/off depending on whether or not the circuit current is is flowing, and the switching elements Q2 and Q4 are switched on/off in synchronization with the polarity of the AC power supply voltage vs. be done. This is to prevent a reverse current from flowing from the smoothing capacitor C1 to the AC power supply G side, as will be described below.

仮に、直流電圧Vdが交流電源電圧vsよりも高いときに、回路電流isが通流していない状態でスイッチング素子Q1,Q4を両方ともオン状態にすると、平滑コンデンサC1から交流電源G側に逆流電流が流れてしまう。
これに対して本実施形態では、前記した状態においてスイッチング素子Q1をオフにするため(図4(c)参照)、逆流電流が流れること防止できる。また、例えば、交流電源電圧vsが正の半サイクルではスイッチング素子Q2がオフ状態で維持されるため(図4(d)参照)、スイッチング素子Q2,Q4を介して逆流電流がループすることもない。
If the DC voltage Vd is higher than the AC power supply voltage vs and both the switching elements Q1 and Q4 are turned on while the circuit current is is not flowing, a reverse current flows from the smoothing capacitor C1 to the AC power supply G side. flows away.
In contrast, in the present embodiment, the switching element Q1 is turned off in the above-described state (see FIG. 4(c)), so that the reverse current can be prevented from flowing. In addition, for example, in the positive half cycle of the AC power supply voltage vs, since the switching element Q2 is maintained in the OFF state (see FIG. 4(d)), the reverse current does not loop through the switching elements Q2 and Q4. .

なお、交流電源電圧vsが直流電圧Vdよりも低くなった直後の所定時間dt(図4(b)参照)では、リアクトルL1のインダクタンスによって回路電流isが流れ続ける。ここで、前記した所定時間dtは、以下の(数式1)で表される。 In a predetermined time dt (see FIG. 4(b)) immediately after the AC power supply voltage vs becomes lower than the DC voltage Vd, the circuit current is continues to flow due to the inductance of the reactor L1. Here, the predetermined time dt described above is represented by the following (Formula 1).

Figure 0007333450000001
Figure 0007333450000001

本実施形態では、図4(b)、(c)、(e)に示すように、交流電源電圧vsの絶対値が平滑コンデンサC1の電圧(直流電圧Vd)よりも小さくなってからも所定時間dtは、平滑コンデンサC1の正極に接続されているスイッチング素子Q1(交流電源電圧vsが負の半サイクルでは、スイッチング素子Q3)をオン状態で維持するようにしている。これによって、所定時間dtにおいてもスイッチング素子Q1のソース・ドレインを介して回路電流isを流すことができる。したがって、寄生ダイオードD1を介して回路電流isを流す場合よりも損失が小さくなるため、高効率で電力変換を行うことができる。なお、所定時間dtは、事前の実験に基づいて計算してもよいし、また、リアルタイムで計算してもよい。 In this embodiment, as shown in FIGS. 4(b), (c), and (e), even after the absolute value of the AC power supply voltage vs becomes smaller than the voltage (DC voltage Vd) of the smoothing capacitor C1, for a predetermined time dt keeps the switching element Q1 (the switching element Q3 in the negative half cycle of the AC power supply voltage vs) connected to the positive terminal of the smoothing capacitor C1 in the ON state. As a result, the circuit current is can flow through the source/drain of the switching element Q1 even during the predetermined time dt. Therefore, since the loss is smaller than when the circuit current is is caused to flow through the parasitic diode D1, power conversion can be performed with high efficiency. Note that the predetermined time dt may be calculated based on a prior experiment, or may be calculated in real time.

図5は、同期整流制御において、交流電源電圧vsが正の半サイクルに含まれるときの電流の流れを示す説明図である。交流電源電圧Vsが正の半サイクルの期間では、図5の破線矢印で示すように、交流電源G→リアクトルL1→スイッチング素子Q1→平滑コンデンサC1→シャント抵抗SH_R1→シャント抵抗SH_R2→スイッチング素子Q4→交流電源Gの電流経路において回路電流isが流れる。このとき、スイッチング素子Q2,Q3は、オフ状態で維持される(図4(d)、(e)参照)。 FIG. 5 is an explanatory diagram showing current flow when the AC power supply voltage vs is included in the positive half cycle in synchronous rectification control. During the positive half-cycle period of the AC power supply voltage Vs, as indicated by the dashed arrow in FIG. A circuit current is flows in the current path of the AC power supply G. As shown in FIG. At this time, the switching elements Q2 and Q3 are maintained in the off state (see FIGS. 4(d) and 4(e)).

また、交流電源電圧vsが負の半サイクルの期間では、図示はしないが、交流電源G→スイッチング素子Q3→平滑コンデンサC1→シャント抵抗SH_R1→シャント抵抗SH_R2→スイッチング素子Q2→リアクトルL1→交流電源Gの電流経路において回路電流isが流れる。このとき、スイッチング素子Q1,Q4は、オフ状態で維持される(図4(c)、(f)参照)。 Also, in the period of the negative half cycle of the AC power supply voltage vs, although not shown, AC power supply G→switching element Q3→smoothing capacitor C1→shunt resistor SH_R1→shunt resistor SH_R2→switching element Q2→reactor L1→AC power supply G A circuit current is flows in the current path of . At this time, the switching elements Q1 and Q4 are maintained in the off state (see FIGS. 4(c) and 4(f)).

このように同期整流制御では、スイッチング素子Q1,Q4には積極的に電流を流し、寄生ダイオードD1,D4にはほとんど電流を流さないようにしている。これによって、高効率で電力変換を行うことができる。また、後記する部分スイッチング制御や高速スイッチング制御と比較して、同期整流制御ではスイッチングの回数が少なくて済む。したがって、適度な力率を保ちながらもスイッチング損失を低減できるため、高効率で電力変換を行うことができる。 In this way, in the synchronous rectification control, the switching elements Q1 and Q4 are positively flowed with current, while the parasitic diodes D1 and D4 are hardly flowed with current. Thereby, power conversion can be performed with high efficiency. In addition, compared to partial switching control and high-speed switching control, which will be described later, synchronous rectification control requires less switching. Therefore, it is possible to reduce the switching loss while maintaining an appropriate power factor, so that the power conversion can be performed with high efficiency.

(3.部分スイッチング制御)
部分スイッチング制御は、スイッチング素子Q1~Q4のうち、リアクトルL1に接続されている2つのスイッチング素子Q1,Q2を交互にオン・オフする動作を所定回数行う制御モードである。部分スイッチング制御は、例えば、負荷Hの定格運転中に実行されるが、これに限定されるものではない。
(3. Partial switching control)
Partial switching control is a control mode in which the two switching elements Q1 and Q2 connected to the reactor L1, among the switching elements Q1 to Q4, are alternately turned on and off a predetermined number of times. Partial switching control is performed, for example, during rated operation of load H, but is not limited to this.

図6は、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
交流電源電圧vsが正の半サイクルの期間について説明すると(図6(a)参照)、コンバータ制御部15dは、スイッチング素子Q1,Q2を所定回数・所定パルス幅で交互にオン・オフする。より詳しく説明すると、コンバータ制御部15dは、交流電源電圧vsの正・負が切り替わった直後に(図6(a)参照)、スイッチング素子Q1,Q2を交互にオン・オフする動作を所定回数行う(図6(c)、(d)参照)。また、コンバータ制御部15dは、交流電源電圧vsの極性に同期して、スイッチング素子Q3,Q4のオン・オフを制御する(図6(e)、(f)参照)。
FIG. 6 is an explanatory diagram showing temporal changes in AC power supply voltage vs, circuit current is/short-circuit current isp, and drive pulses for switching elements Q1 to Q4 in partial switching control.
In a half cycle period in which the AC power supply voltage vs is positive (see FIG. 6A), the converter control unit 15d alternately turns on and off the switching elements Q1 and Q2 a predetermined number of times with a predetermined pulse width. More specifically, the converter control unit 15d alternately turns on and off the switching elements Q1 and Q2 a predetermined number of times immediately after the positive/negative of the AC power supply voltage vs is switched (see FIG. 6(a)). (See FIGS. 6(c) and (d)). Further, the converter control unit 15d controls ON/OFF of the switching elements Q3 and Q4 in synchronization with the polarity of the AC power supply voltage vs (see FIGS. 6(e) and 6(f)).

以下では、部分スイッチング制御ついてわかりやすく説明するために、この部分スイッチング制御を「力率改善動作」と「同期整流動作」とに分けて説明する。 In the following, in order to explain the partial switching control in an easy-to-understand manner, the partial switching control will be explained by dividing it into "power factor improvement operation" and "synchronous rectification operation".

前記した「力率改善動作」とは、平滑コンデンサC1を介さずにリアクトルL1を介して短絡電流isp(図7の破線矢印を参照)が流れる短絡経路において、リアクトルL1に接続されているスイッチング素子をオン状態にすることで、力率を改善する動作である。
なお、前記した短絡経路においてリアクトルL1に接続されている「スイッチング素子」とは、交流電源電圧vsが正の半サイクルの期間ではスイッチング素子Q2であり(図7参照)、交流電源電圧vsが負の半サイクルの期間ではスイッチング素子Q1である。
The above-described "power factor improvement operation" refers to the switching element connected to the reactor L1 in the short-circuit path through which the short-circuit current isp (see the dashed arrow in FIG. 7) flows through the reactor L1 without passing through the smoothing capacitor C1. is turned on to improve the power factor.
The “switching element” connected to the reactor L1 in the short-circuit path is the switching element Q2 (see FIG. 7) during the half cycle period when the AC power supply voltage vs is positive, and the AC power supply voltage vs is negative. is the switching element Q1 during the half cycle period of .

前記した「同期整流動作」とは、平滑コンデンサC1を介した電流経路に含まれるスイッチング素子のうち、平滑コンデンサC1の正極に接続されているスイッチング素子を、ブリッジ回路10に電流が流れている期間の少なくとも一部でオン状態とし、前記した電流経路に含まれないスイッチング素子をオフ状態で維持する動作である。
なお、前記した電流経路において平滑コンデンサC1の正極に接続されている「スイッチング素子」とは、交流電源電圧vsが正の半サイクルの期間ではスイッチング素子Q1であり(図5参照)、交流電源電圧vsが負の半サイクルの期間ではスイッチング素子Q3である。
The above-mentioned "synchronous rectification operation" means that, among the switching elements included in the current path via the smoothing capacitor C1, the switching element connected to the positive electrode of the smoothing capacitor C1 is turned on in at least part of the current path, and the switching elements not included in the current path are maintained in the off state.
The "switching element" connected to the positive electrode of the smoothing capacitor C1 in the current path described above is the switching element Q1 (see FIG. 5) during the positive half cycle period of the AC power supply voltage vs. During the half cycle period when vs is negative, it is the switching element Q3.

ちなみに、前記した同期整流モード(図4、図5参照)は、「同期整流動作」を継続的に行う制御モードである。 Incidentally, the above-described synchronous rectification mode (see FIGS. 4 and 5) is a control mode in which "synchronous rectification operation" is continuously performed.

詳細については後記するが、部分スイッチング制御では、前記した「同期整流動作」と「力率改善動作」とが交互に所定回数行われる。 Although the details will be described later, in partial switching control, the above-described "synchronous rectification operation" and "power factor improvement operation" are alternately performed a predetermined number of times.

まず、「力率改善動作」について説明する。
例えば、交流電源電圧vsが正の半サイクルの期間においてコンバータ制御部15dは、スイッチング素子Q3をオフ状態で維持するとともに(図6(e)参照)、スイッチング素子Q4をオン状態で維持する(図6(f)参照)。また、コンバータ制御部15dは、ブリッジ回路10に電流が流れ始める所定の区間tfにおいて、スイッチング素子Q2をオン(図6(d)参照)、スイッチング素子Q1をオフにする(図6(c)参照)。このときに流れる短絡電流ispの経路について、図7を参照して説明する。
First, the "power factor improvement operation" will be described.
For example, during the positive half cycle period of the AC power supply voltage vs, the converter control unit 15d maintains the switching element Q3 in the OFF state (see FIG. 6(e)) and maintains the switching element Q4 in the ON state (see FIG. 6E). 6(f)). Further, the converter control unit 15d turns on the switching element Q2 (see FIG. 6(d)) and turns off the switching element Q1 (see FIG. 6(c)) in a predetermined interval tf where the current starts to flow through the bridge circuit 10. ). The path of the short-circuit current isp flowing at this time will be described with reference to FIG.

図7は、交流電源電圧vsが正の極性の半サイクルにおいて、力率改善動作を行ったときの電流の流れを示す説明図である。
交流電源電圧vsが正の極性のときに力率改善動作を行うと、図7の破線矢印で示すように、交流電源G→リアクトルL1→スイッチング素子Q2→シャント抵抗SH_R2→スイッチング素子Q4→交流電源Gの短絡経路において、短絡電流isp(力率改善電流)が流れる。このときリアクトルL1には、以下の(数式2)で表されるエネルギが蓄えられる。なお、(数式2)に示すIspは、短絡電流ispの実効値である。
FIG. 7 is an explanatory diagram showing the current flow when the power factor correction operation is performed in the positive half cycle of the AC power supply voltage vs.
When the power factor improvement operation is performed when the AC power supply voltage vs is of positive polarity, as indicated by the dashed arrow in FIG. A short-circuit current isp (power factor correction current) flows in the short-circuit path of G. At this time, the reactor L1 stores energy represented by (Formula 2) below. Note that Isp shown in (Formula 2) is the effective value of the short-circuit current isp.

Figure 0007333450000002
Figure 0007333450000002

このように短絡電流ispを流すことで、電流波形の歪みを小さくし、電流波形を正弦波に近づけることができる(図6(b)参照)。したがって、電力変換装置1の力率を改善できるとともに、高調波電流に伴う高調波を抑制できる。 By passing the short-circuit current isp in this way, the distortion of the current waveform can be reduced, and the current waveform can be approximated to a sine wave (see FIG. 6B). Therefore, the power factor of the power conversion device 1 can be improved, and harmonics accompanying the harmonic current can be suppressed.

なお、交流電源電圧vsが負の極性である期間では、図示はしないが、交流電源G→スイッチング素子Q3→スイッチング素子Q1→リアクトルL1→交流電源Gの短絡経路において、短絡電流isp(力率改善電流)が流れる。 In the period when the AC power supply voltage vs is of negative polarity, although not shown, a short-circuit current isp (power factor improvement current) flows.

次に、「同期整流動作」について説明する。
図6(d)に示す所定の区間tfにおいて「力率改善動作」を行った後、コンバータ制御部15dは、所定の区間tgにおいて「同期整流動作」を行う。すなわち、コンバータ制御部15dは、スイッチング素子Q1をオフからオンに切り替えるとともに(図6(c)参照)、スイッチング素子Q2をオンからオフに切り替える(図6(d)参照)。なお、区間tgにおいてもスイッチング素子Q3はオフ状態で維持され(図6(e)参照)、スイッチング素子Q4はオン状態で維持される(図6(f)参照)。
Next, "synchronous rectification operation" will be described.
After performing the "power factor improvement operation" in the predetermined interval tf shown in FIG. 6(d), the converter control unit 15d performs the "synchronous rectification operation" in the predetermined interval tg. That is, the converter control unit 15d switches the switching element Q1 from off to on (see FIG. 6(c)) and switches the switching element Q2 from on to off (see FIG. 6(d)). Also in the section tg, the switching element Q3 is maintained in the off state (see FIG. 6(e)), and the switching element Q4 is maintained in the on state (see FIG. 6(f)).

このようにスイッチング素子Q1~Q4が制御されることで、リアクトルL1に蓄えられたエネルギが平滑コンデンサC1に放出され、平滑コンデンサC1の直流電圧が昇圧される。なお、同期整流動作における電流経路は、前記した同期整流モードにおける電流経路(図5の破線矢印を参照)と同様である。 By controlling the switching elements Q1 to Q4 in this way, the energy stored in the reactor L1 is released to the smoothing capacitor C1, and the DC voltage of the smoothing capacitor C1 is boosted. The current path in the synchronous rectification operation is the same as the current path in the synchronous rectification mode (see the dashed arrows in FIG. 5).

部分スイッチング制御では、前記したように、「力率改善動作」と「同期整流動作」とが、交流電源電圧vsの半サイクルごとに交互に所定回数行われる。このような制御を行った後、コンバータ制御部15dは、回路電流isが流れている区間thにおいて、スイッチング素子Q1をオン状態(図6(c)参照)、スイッチング素子Q2をオフ状態で維持する(図6(d))。つまり、コンバータ制御部15dは、シャント抵抗SH_R1(第1電流検出部)の検出値に基づいて、交流電源電圧vsの絶対値が平滑コンデンサC1の電圧(直流電圧Vd)よりも小さくなってから所定時間tdは、リアクトルL1に接続されているスイッチング素子Q1をオン状態とする同期整流動作を継続する。これによって、交流電源電圧vsが直流電圧Vdよりも低くなってからも、図5に示す電流経路で回路電流isを流すことができる。したがって、寄生ダイオードD1を介して回路電流isを流す場合よりも、スイッチング素子Q1の導通損失を低減し、高効率化を図ることができる。 In the partial switching control, as described above, the "power factor correction operation" and the "synchronous rectification operation" are alternately performed a predetermined number of times every half cycle of the AC power supply voltage vs. After performing such control, the converter control unit 15d maintains the switching element Q1 in the ON state (see FIG. 6(c)) and the switching element Q2 in the OFF state during the section th in which the circuit current is is flowing. (FIG. 6(d)). That is, based on the value detected by the shunt resistor SH_R1 (first current detection unit), the converter control unit 15d detects a predetermined At time td, the synchronous rectification operation continues to turn on the switching element Q1 connected to the reactor L1. This allows the circuit current is to flow through the current path shown in FIG. 5 even after the AC power supply voltage vs becomes lower than the DC voltage Vd. Therefore, the conduction loss of the switching element Q1 can be reduced and the efficiency can be improved as compared with the case where the circuit current is is caused to flow through the parasitic diode D1.

例えば、負荷Hがモータである場合、回転速度の上昇に伴ってモータの誘起電圧が高くなり、モータが駆動しにくくなることがあるが、前記した「力率改善動作」及び「同期整流動作」を交互に行って昇圧することで、モータの回転速度の許容限度を高めることができる。 For example, if the load H is a motor, the induced voltage of the motor increases as the rotation speed increases, and the motor may become difficult to drive. are alternately performed to increase the voltage, the allowable limit of the rotational speed of the motor can be increased.

ちなみに、図6(c)に示すように、スイッチング素子Q1は、1ショット目の前の区間ta、及び、同期整流動作が継続される区間thの後の区間tbでは、オフ状態にされる。これは、前述した平滑コンデンサC1から逆流電流が流れることを防止するためである。なお、スイッチング素子Q1,Q2を交互にオン・オフする際のタイミングや回数は、適宜設定できる。 Incidentally, as shown in FIG. 6(c), the switching element Q1 is turned off in the section ta before the first shot and the section tb after the section th in which the synchronous rectification operation is continued. This is to prevent a reverse current from flowing from the aforementioned smoothing capacitor C1. The timing and the number of times when the switching elements Q1 and Q2 are alternately turned on and off can be appropriately set.

次に、部分スイッチング制御におけるスイッチング素子Q1~Q4の駆動パルスの設定について、さらに詳しく説明する。 Next, setting of drive pulses for switching elements Q1 to Q4 in partial switching control will be described in more detail.

図8は、交流電源電圧vsが正の半サイクルにおける部分スイッチング制御の説明図である。
なお、図8(a)~(f)の横軸は、時間である。図8(a)は、正の半サイクルにおける交流電源電圧vsである。図8(b)は、回路電流is、短絡電流isp、及び正弦波状の理想電流である。図8(c)、(d)(f)は、スイッチング素子Q2,Q4,Q1の駆動パルスである。図8の「理想電流」に示すように、正弦波状の回路電流isが交流電源電圧vsに対して同相で流れることが理想的である。この理想電流は、例えば、電流検出部11(図7参照)の検出値と、ゼロクロス判定部15a(図7参照)の判定結果と、に基づいて、ゲイン制御部15c(図7参照)によって求められる。
FIG. 8 is an explanatory diagram of partial switching control in a half cycle in which the AC power supply voltage vs is positive.
Note that the horizontal axis in FIGS. 8A to 8F is time. FIG. 8(a) is the AC source voltage vs in the positive half cycle. FIG. 8(b) shows the circuit current is, the short-circuit current isp, and the sinusoidal ideal current. 8(c), (d) and (f) are drive pulses for the switching elements Q2, Q4 and Q1. As shown in "ideal current" in FIG. 8, ideally, a sinusoidal circuit current is flows in phase with the AC power supply voltage vs. This ideal current is obtained by the gain control unit 15c (see FIG. 7) based on, for example, the detection value of the current detection unit 11 (see FIG. 7) and the determination result of the zero cross determination unit 15a (see FIG. 7). be done.

例えば、理想電流上の点P1(図8(b)参照)に関して、この点P1での傾きをdi(P1)/dtとおく。回路電流isがゼロの状態から、スイッチング素子Q2を時間ton1_Q2に亘ってオンする力率改善動作を行ったときの短絡電流ispの傾きをdi(ton1_Q2)/dtとおく。また、その後に時間toff1_Q2に亘ってオフして同期整流動作を行ったときの回路電流isの傾きをdi(toff1_Q2)/dtとおく。ここで、傾きdi(ton1_Q2)/dtと、傾きdi(toff1_Q2)/dtとの平均値が、点P1における傾きdi(P1)/dtと等しくなるようにスイッチング素子Q1,Q2のオン・オフが制御される。 For example, regarding the point P1 (see FIG. 8B) on the ideal current, let di(P1)/dt be the slope at this point P1. Let di(ton1_Q2)/dt be the slope of the short-circuit current isp when the power factor improvement operation is performed to turn on the switching element Q2 over time ton1_Q2 from the state where the circuit current is is zero. Further, let di(toff1_Q2)/dt be the slope of the circuit current is when the synchronous rectification operation is performed by turning off over time toff1_Q2. Here, the switching elements Q1 and Q2 are turned on/off so that the average value of the slope di(ton1_Q2)/dt and the slope di(toff1_Q2)/dt becomes equal to the slope di(P1)/dt at the point P1. controlled.

また、点P1と同様に、点P2での電流の傾きをdi(P2)/dtとおく。そして、スイッチング素子Q2を時間ton2_Q2に亘ってオンする力率改善動作を行ったときの短絡電流ispの傾きをdi(ton2_Q2)/dtとおく。また、その後に時間toff2_Q2に亘ってスイッチング素子Q2をオフして同期整流動作を行ったときの回路電流isの傾きをdi(toff2_Q2)/dtとおく。点P1の場合と同様に、傾きdi(ton2_Q2)/dtと、傾きdi(toff2_Q2)/dtと、の平均値が、点P2における傾きdi(P2)/dtと等しくなるようにスイッチング素子Q1,Q2のオン・オフが制御される。交流電源電圧vsが正の半周期において、このような処理が所定回数繰り返される。なお、スイッチング素子Q2のスイッチング回数が多いほど、回路電流isを理想的な正弦波状の波形に近づけることができるが、スイッチング損失を考慮してスイッチング回数を設定することが望ましい。 Similarly to the point P1, the slope of the current at the point P2 is di(P2)/dt. Let di(ton2_Q2)/dt be the slope of the short-circuit current isp when the power factor improvement operation is performed to turn on the switching element Q2 for the time ton2_Q2. Further, let di(toff2_Q2)/dt be the slope of the circuit current is when the switching element Q2 is turned off over the time toff2_Q2 to perform the synchronous rectification operation. As in the case of the point P1, the switching elements Q1 and ON/OFF of Q2 is controlled. Such processing is repeated a predetermined number of times in a half cycle in which the AC power supply voltage vs is positive. As the number of switching times of the switching element Q2 increases, the circuit current is can be brought closer to an ideal sinusoidal waveform, but it is desirable to set the number of switching times in consideration of switching loss.

なお、交流電源電圧vsが負の極性の半サイクルについても、前記と同様にしてスイッチング素子Q1,Q2が制御される。 The switching elements Q1 and Q2 are controlled in the same manner as described above even in the half cycle in which the AC power supply voltage vs is of negative polarity.

(4.高速スイッチング制御)
高速スイッチング制御は、スイッチング素子Q~Q4のうち、リアクトルL1に接続されている2つのスイッチング素子Q1,Q2を交互にオン・オフする動作を所定周期で繰り返す制御モードである。言い換えると、高速スイッチング制御は、前記した同期整流動作と力率改善動作とを所定周期で交互に繰り返す制御モードである。高速スイッチング制御は、例えば、負荷(電流検出部11の検出値等)が比較的大きい高負荷時に実行されるが、これに限定されるものではない。
(4. High-speed switching control)
The high-speed switching control is a control mode in which the two switching elements Q1 and Q2 connected to the reactor L1 among the switching elements Q to Q4 are alternately turned on and off at predetermined intervals. In other words, the high-speed switching control is a control mode in which the synchronous rectification operation and the power factor improvement operation are alternately repeated at predetermined intervals. High-speed switching control is performed, for example, when the load (detected value of the current detection unit 11, etc.) is relatively large, but is not limited to this.

図9は、高速スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
高速スイッチング制御では、部分スイッチング制御で説明した「力率改善動作」と「同期整流動作」とが所定周期で交互に繰り返される。
FIG. 9 is an explanatory diagram showing temporal changes in AC power supply voltage vs, circuit current is/short-circuit current isp, and drive pulses for switching elements Q1 to Q4 in high-speed switching control.
In the high-speed switching control, the "power factor improvement operation" and the "synchronous rectification operation" described in the partial switching control are alternately repeated at a predetermined cycle.

力率改善動作について、交流電源電圧vs(図9(a)参照)の正の半サイクルを例に説明すると、コンバータ制御部15dは、所定の区間tkにおいてスイッチング素子Q2をオン状態(図9(d)参照)、スイッチング素子Q1をオフ状態にする(図9(c)参照)。また、コンバータ制御部15dは、交流電源電圧vsが正の半サイクルにおいて、スイッチング素子Q3をオフ状態(図9(e)参照)、スイッチング素子Q4をオン状態で維持する(図9(f)参照)。これによって、リアクトルL1を介して短絡電流isp(図7参照)が流れるため、力率を改善できるとともに、高調波を抑制できる。 The power factor improvement operation will be described using the positive half cycle of the AC power supply voltage vs (see FIG. 9A) as an example. Converter control unit 15d turns on switching element Q2 ( d)), and the switching element Q1 is turned off (see FIG. 9(c)). Further, converter control unit 15d maintains switching element Q3 in the off state (see FIG. 9(e)) and switching element Q4 in the on state (see FIG. 9(f)) in the positive half cycle of AC power supply voltage vs. ). As a result, the short-circuit current isp (see FIG. 7) flows through the reactor L1, so that the power factor can be improved and harmonics can be suppressed.

次に、同期整流動作について、交流電源電圧vs(図9(a)参照)の正の半サイクルを例に説明すると、コンバータ制御部15dは、例えば、前記した区間tkの後の区間tmにおいて、スイッチング素子Q1をオン状態、スイッチング素子Q2をオフ状態にする。これによって、リアクトルL1に蓄えられたエネルギが平滑コンデンサC1に放出されるため、平滑コンデンサC1の直流電圧Vdが昇圧される。また、寄生ダイオードD1を介して回路電流isを流す場合と比べて導通損失が低減されるため、電力変換を高効率で行うことができる。なお、同期整流動作時における電流経路は、図5と同様である。 Next, the synchronous rectification operation will be described using the positive half cycle of the AC power supply voltage vs (see FIG. 9A) as an example. The switching element Q1 is turned on, and the switching element Q2 is turned off. As a result, the energy stored in the reactor L1 is released to the smoothing capacitor C1, so that the DC voltage Vd of the smoothing capacitor C1 is boosted. Moreover, since the conduction loss is reduced compared to the case where the circuit current is is caused to flow through the parasitic diode D1, power conversion can be performed with high efficiency. The current path during synchronous rectification operation is the same as in FIG.

また、交流電源電圧vsが負の半サイクルにおいても、同様にして、スイッチング素子Q1,Q2が交互にオン・オフされる(図9(c)、(d)参照)。また、交流電源電圧vsの極性に同期して、スイッチング素子Q3がオン状態(図9(e)参照)、スイッチング素子Q4がオフ状態にされる(図9(f)参照)。なお、スイッチング素子Q1,Q2のオンデューティは、回路電流isを正弦波に近づけるように適宜設定される。 Similarly, the switching elements Q1 and Q2 are alternately turned on and off during the negative half cycle of the AC power supply voltage vs (see FIGS. 9(c) and 9(d)). In synchronization with the polarity of the AC power supply voltage vs, the switching element Q3 is turned on (see FIG. 9(e)) and the switching element Q4 is turned off (see FIG. 9(f)). The on-duties of the switching elements Q1 and Q2 are appropriately set so that the circuit current is approaches a sine wave.

また、交流電源電圧vsの正の半サイクルの初期において、交流電源電圧vsが直流電圧Vdよりも低い区間tj(図9(c)参照)では、逆流電流を防止するためにスイッチング素子Q1がオフ状態で維持される。
また、交流電源電圧vsが直流電圧Vdを下回ってから所定時間dtが経過するまでは、スイッチング素子Q1,Q2のスイッチングが継続される(図9(c)、(d))。これによって寄生ダイオードD1,D2に流れる電流を抑制し、高効率で電力変換を行うことができる。そして、前記した所定時間dtが経過した後の区間tnでは、逆流電流が流れないように、スイッチング素子Q1がオフ状態にされる(図9(c)参照)。
In addition, at the beginning of the positive half cycle of the AC power supply voltage vs, in the section tj (see FIG. 9(c)) where the AC power supply voltage vs is lower than the DC voltage Vd, the switching element Q1 is turned off to prevent backflow current. maintained in condition.
Further, the switching of the switching elements Q1 and Q2 continues until the predetermined time dt elapses after the AC power supply voltage vs drops below the DC voltage Vd (FIGS. 9(c) and 9(d)). As a result, the current flowing through the parasitic diodes D1 and D2 can be suppressed, and power conversion can be performed with high efficiency. Then, in the section tn after the predetermined time dt has passed, the switching element Q1 is turned off so that the reverse current does not flow (see FIG. 9(c)).

なお、高負荷時には比較的大きな回路電流isが流れるため、それに伴って高調波が発生しやすくなる。本実施形態では、高負荷時に高速スイッチング制御を行うことで、回路電流isを正弦波に近づけるようにしている。これによって、高調波を抑制できるとともに、力率を改善できる。 Note that a relatively large circuit current is flows when the load is high, so that harmonics are likely to occur accordingly. In this embodiment, high-speed switching control is performed at high load to bring the circuit current is closer to a sine wave. As a result, harmonics can be suppressed and the power factor can be improved.

以下では、部分スイッチング制御と、高速スイッチング制御と、を含めて「スイッチング制御」という。この「スイッチング制御」は、スイッチング素子Q1~Q4のうち、リアクトルL1に接続されている2つのスイッチング素子Q1,Q2を交互にオン・オフする制御である。 Hereinafter, partial switching control and high-speed switching control are collectively referred to as "switching control". This "switching control" is control for alternately turning on and off two switching elements Q1 and Q2 connected to the reactor L1 among the switching elements Q1 to Q4.

次に、部分スイッチング制御及び高速スイッチング制御におけるデューティの設定について説明する。
電力変換装置1における回路電流is(瞬時値)は、以下の(数式3)で表される。ここで、Vsは交流電源電圧vsの実効値であり、Kpは電流制御ゲインであり、Vdは直流電圧であり、ωは角周波数である。
Next, duty setting in partial switching control and high-speed switching control will be described.
The circuit current is (instantaneous value) in the power conversion device 1 is represented by (Equation 3) below. where Vs is the effective value of the AC power supply voltage vs, Kp is the current control gain, Vd is the DC voltage, and ω is the angular frequency.

Figure 0007333450000003
Figure 0007333450000003

上記の(数式3)を整理すると、以下の(数式4)になる。 By arranging the above (Formula 3), the following (Formula 4) is obtained.

Figure 0007333450000004
Figure 0007333450000004

また、回路電流is(瞬時値)と、回路電流Is(実効値)と、の関係は、以下の(数式5)で表される。前記したように、回路電流is(瞬時値)はシャント抵抗SH_R1によって検出され、回路電流Is(実効値)は電流検出部11によって検出される。 Also, the relationship between the circuit current is (instantaneous value) and the circuit current Is (rms value) is represented by (Equation 5) below. As described above, the circuit current is (instantaneous value) is detected by the shunt resistor SH_R1, and the circuit current Is (rms value) is detected by the current detector 11. FIG.

Figure 0007333450000005
Figure 0007333450000005

(数式4)を変形して(数式5)に代入すると、電流制御ゲインKpは、以下の(数式6)で表される。なお、aは昇圧比である。 By transforming (Formula 4) and substituting it into (Formula 5), the current control gain Kp is represented by (Formula 6) below. Note that a is the step-up ratio.

Figure 0007333450000006
Figure 0007333450000006

ここで、(数式6)から、昇圧比aの逆数を右辺に移項すると、以下の(数式7)の関係が成り立つ。 Here, from (Equation 6), transposing the reciprocal of the step-up ratio a to the right side yields the following relationship (Equation 7).

Figure 0007333450000007
Figure 0007333450000007

また、交流電源電圧vsが正の半サイクルにおいて、スイッチング素子Q2のオンデューティd(通流率)は、以下の(数式8)で表される。なお、交流電源電圧vsが負の半サイクルにおけるスイッチング素子Q1のオンデューティdについても同様である。 In addition, in a half cycle in which the AC power supply voltage vs is positive, the on-duty d (duty ratio) of the switching element Q2 is represented by the following (Equation 8). The same applies to the on-duty d of the switching element Q1 in the negative half cycle of the AC power supply voltage vs.

Figure 0007333450000008
Figure 0007333450000008

以上より、(数式7)に示したKp・Isを制御することで、直流電圧Vdを交流電源電圧Vs(実効値)のa倍に昇圧できる。そのときのスイッチング素子Q2(又は、スイッチング素子Q1)のオンデューティdは、(数式8)で与えられる。
なお、昇圧比aは、負荷検出部14によって検出される負荷に基づき、昇圧比制御部15b(図7参照)によって設定される。例えば、負荷が大きいほど、昇圧比aも大きな値に設定される。
As described above, by controlling Kp·Is shown in (Equation 7), the DC voltage Vd can be boosted to a times the AC power supply voltage Vs (effective value). The on-duty d of the switching element Q2 (or switching element Q1) at that time is given by (Equation 8).
The boost ratio a is set by the boost ratio controller 15b (see FIG. 7) based on the load detected by the load detector . For example, the higher the load, the higher the step-up ratio a is set.

図10は、交流電源電圧vsが正の半サイクルにおいて、高速スイッチング制御でのスイッチング素子Q1,Q2のオンデューティを示す説明図である。
なお、図10の横軸は、交流電源電圧vsが正の半サイクルにおける時間(正の半サイクルの開始時からの経過時間)であり、縦軸は、スイッチング素子Q1,Q2のオンデューティd_Q1,d_Q2である。
FIG. 10 is an explanatory diagram showing the on-duty of the switching elements Q1 and Q2 in high-speed switching control in a positive half cycle of the AC power supply voltage vs.
Note that the horizontal axis of FIG. 10 represents the time in the positive half cycle of the AC power supply voltage vs (the elapsed time from the start of the positive half cycle), and the vertical axis represents the on-duties d_Q1 and d_Q1 of the switching elements Q1 and Q2. d_Q2.

また、図10の破線は、デッドタイムdtxを考慮しない場合のスイッチング素子Q1のオンデューティd_Q1である。実線は、デッドタイムdtxを考慮した場合のスイッチング素子Q1のオンデューティd_Q1である。二点鎖線は、スイッチング素子Q2のオンデューティd_Q2である。 Also, the dashed line in FIG. 10 is the on-duty d_Q1 of the switching element Q1 when the dead time dtx is not considered. A solid line is the on-duty d_Q1 of the switching element Q1 when the dead time dtx is considered. A two-dot chain line is the on-duty d_Q2 of the switching element Q2.

破線で示すスイッチング素子Q1のオンデューティd_Q1は、例えば、交流電源電圧Vsに比例するように設定されている。二点鎖線で示すスイッチング素子Q2のオンデューティd_Q2は、1.0からスイッチング素子Q1のオンデューティd_Q1を減算した値として設定される。 The on-duty d_Q1 of the switching element Q1 indicated by the dashed line is set, for example, to be proportional to the AC power supply voltage Vs. The on-duty d_Q2 of the switching element Q2 indicated by the two-dot chain line is set as a value obtained by subtracting the on-duty d_Q1 of the switching element Q1 from 1.0.

(数式8)で説明したように、回路電流isが大きいほど、スイッチング素子Q2のオンデューティd_Q2は小さな値に設定され、スイッチング素子Q1のオンデューティd_Q1は大きな値に設定される。言い換えると、同期整流動作でオンされるスイッチング素子Q1のオンデューティd_Q1は、力率改善動作でオンされるスイッチング素子Q2のオンデューティd_Q2に対して逆特性になっている。 As described in (Equation 8), the larger the circuit current is, the smaller the on-duty d_Q2 of the switching element Q2 is set, and the larger the on-duty d_Q1 of the switching element Q1 is set. In other words, the on-duty d_Q1 of the switching element Q1 that is turned on by the synchronous rectification operation has an opposite characteristic to the on-duty d_Q2 of the switching element Q2 that is turned on by the power factor improvement operation.

なお、ブリッジ回路10における上下短絡を回避するために、図10の実線で示すように、デッドタイムdtxを考慮した制御を行うことが望ましい。所定のデッドタイムdtx(図示せず)を付与すると、スイッチング素子Q1のオンデューティd_Q1は、このデッドタイムdts分だけ小さくなる。 In order to avoid a short circuit between the upper and lower sides of the bridge circuit 10, it is desirable to perform control in consideration of the dead time dtx, as indicated by the solid line in FIG. When a predetermined dead time dtx (not shown) is given, the on-duty d_Q1 of the switching element Q1 is reduced by this dead time dts.

図11は、高速スイッチング制御における交流電源電圧vsと回路電流isとの関係を示す説明図である。
図11の横軸は、交流電源電圧vsの正の半サイクルが開始された時点からの経過時間(時間)であり、縦軸は、交流電源電圧vs(瞬時値)及び回路電流is(瞬時値)である。
FIG. 11 is an explanatory diagram showing the relationship between the AC power supply voltage vs and the circuit current is in high-speed switching control.
The horizontal axis of FIG. 11 is the elapsed time (time) from the start of the positive half cycle of the AC power supply voltage vs, and the vertical axis is the AC power supply voltage vs (instantaneous value) and the circuit current is (instantaneous value ).

図11に示すように、高速スイッチング制御を行うことで、交流電源電圧vs及び回路電流isが正弦波状の波形になっており、また、交流電源電圧vsと回路電流isとが同相になっている。つまり、高速スイッチング制御を行うことで、力率が改善されていることがわかる。このような正弦波状の回路電流isを流すために、スイッチング素子Q2のオンデューティd_Q2は、以下の(数式9)で設定される。また、スイッチング素子Q1のオンデューティd_Q1は、以下の(数式10)で設定される。 As shown in FIG. 11, by performing high-speed switching control, the AC power supply voltage vs and the circuit current is have sinusoidal waveforms, and the AC power supply voltage vs and the circuit current is are in phase. . In other words, it can be seen that the power factor is improved by performing high-speed switching control. In order to flow such a sinusoidal circuit current is, the on-duty d_Q2 of the switching element Q2 is set by the following (Equation 9). Also, the on-duty d_Q1 of the switching element Q1 is set by the following (Equation 10).

Figure 0007333450000009
Figure 0007333450000009

図12は、高速スイッチング制御において、リアクトルL1による電流位相の遅れ分を考慮しない場合と、電流位相の遅れ分を考慮した場合と、におけるスイッチング素子Q2のオンデューティd_Q2を示す説明図である。
図12の横軸は、交流電源電圧vsの正の半サイクルが開始された時点からの経過時間(時間)であり、縦軸は、高速スイッチング制御におけるスイッチング素子Q2のオンデューティである。
FIG. 12 is an explanatory diagram showing the on-duty d_Q2 of the switching element Q2 when the current phase delay due to the reactor L1 is not considered and when the current phase delay is considered in high-speed switching control.
The horizontal axis of FIG. 12 is the elapsed time (time) from the start of the positive half cycle of the AC power supply voltage vs, and the vertical axis is the on-duty of the switching element Q2 in high-speed switching control.

また、実線は、リアクトルL1による電流位相の遅れを考慮しない場合のスイッチング素子Q2のオンデューティである。破線は、リアクトルL1による電流位相の遅れを考慮した場合のスイッチング素子Q2のオンデューティである。図12の破線で示すように、スイッチング素子Q2のオンデューティを設定することで、リアクトルL1のインダクタンスが大きい場合であっても、正弦波状の回路電流isを流すことができる。 The solid line is the on-duty of the switching element Q2 when the current phase delay due to the reactor L1 is not considered. A dashed line represents the on-duty of the switching element Q2 when considering the current phase delay due to the reactor L1. As indicated by the dashed line in FIG. 12, by setting the on-duty of the switching element Q2, even if the inductance of the reactor L1 is large, the sinusoidal circuit current is can be flowed.

<制御モードの切替えについて>
コンバータ制御部15d(図1参照)は、例えば、負荷が比較的小さい低負荷領域では同期整流制御を行い、定格運転領域では部分スイッチング制御を行い、負荷が比較的大きい高負荷領域では高速スイッチング制御を行う。なお、負荷が非常に小さいときにダイオード整流制御を行ってもよいし、また、ダイオード整流を行わないようにしてもよい。
<Regarding control mode switching>
The converter control unit 15d (see FIG. 1) performs, for example, synchronous rectification control in a low load region where the load is relatively small, partial switching control in the rated operation region, and high speed switching control in the high load region where the load is relatively large. I do. Diode rectification control may be performed when the load is very small, or diode rectification may not be performed.

図13(a)は、部分スイッチング制御における正の半サイクルでの交流電源電圧vs及び回路電流isの説明図である。なお、図13(a)に示すピーク値is1は、部分スイッチング制御における回路電流isのピーク値である。 FIG. 13(a) is an explanatory diagram of the AC power supply voltage vs and the circuit current is in the positive half cycle in the partial switching control. The peak value is1 shown in FIG. 13(a) is the peak value of the circuit current is in the partial switching control.

図13(b)は、高速スイッチング制御における正の半サイクルでの交流電源電圧vs及び回路電流isの説明図である。
なお、図13(b)に示すピーク値is2は、高速スイッチング制御における回路電流isのピーク値である。図13(b)に示すように、高速スイッチング制御における回路電流isのピーク値is2は、部分スイッチング制御における回路電流isのピーク値is2よりも小さくなっている。
FIG. 13(b) is an explanatory diagram of the AC power supply voltage vs and the circuit current is in the positive half cycle in high-speed switching control.
The peak value is2 shown in FIG. 13(b) is the peak value of the circuit current is in high-speed switching control. As shown in FIG. 13B, the peak value is2 of the circuit current is in the high-speed switching control is smaller than the peak value is2 of the circuit current is in the partial switching control.

仮に、前記したピーク値is1,is2が略同一となるように制御すると、部分スイッチング制御よりも高速スイッチング制御のほうが力率が高いため、高速スイッチング制御において直流電圧Vdが昇圧されすぎてしまう。これに対して本実施形態では、ピーク値is1>ピーク値is2となるようにスイッチング素子Q1,Q2のオンデューティが調整される。つまり、コンバータ制御部15dは、部分スイッチング制御及び高速スイッチング制御の一方から他方に切り替える際、平滑コンデンサC1の直流電圧Vdの変動を抑制するように、スイッチング素子Q1,Q2のオンデューティを調整する。これによって、部分スイッチング制御及び高速スイッチング制御の一方から他方に移行する際、直流電圧Vdの変動を抑制できる。 If the peak values is1 and is2 are controlled to be approximately the same, the power factor is higher in the high-speed switching control than in the partial switching control, so the DC voltage Vd is excessively boosted in the high-speed switching control. On the other hand, in the present embodiment, the on-duties of the switching elements Q1 and Q2 are adjusted so that the peak value is1>the peak value is2. That is, when switching from one of the partial switching control and the high-speed switching control to the other, converter control unit 15d adjusts the on-duty of switching elements Q1 and Q2 so as to suppress fluctuations in DC voltage Vd of smoothing capacitor C1. As a result, fluctuations in the DC voltage Vd can be suppressed when shifting from one of the partial switching control and the high-speed switching control to the other.

また、コンバータ制御部15dは、交流電源電圧vsのゼロクロス(正・負の切り替わり)のタイミングで、制御モードの切替えを行うことが好ましい。例えば、コンバータ制御部15dは、交流電源電圧vsのゼロクロスのタイミングで、部分スイッチング制御から高速スイッチング制御に切り替える。これによって、制御モードの切替時に、制御が不安定になったり、直流電圧Vdが変動したりすることを抑制できる。 Further, the converter control unit 15d preferably switches the control mode at the timing of zero crossing (switching between positive and negative) of the AC power supply voltage vs. For example, the converter control unit 15d switches from partial switching control to high-speed switching control at the timing of zero crossing of the AC power supply voltage vs. This can prevent the control from becoming unstable and the DC voltage Vd from fluctuating when the control mode is switched.

<電流の検出値に基づくスイッチング>
次に、前記した同期整流制御、部分スイッチング制御、及び高速スイッチング制御における制御部15の処理について説明する。
<Switching based on current detection value>
Next, the processing of the control unit 15 in the synchronous rectification control, partial switching control, and high-speed switching control will be described.

図14は、電力変換装置1の制御部15が実行する処理を示すフローチャートである(適宜、図1を参照)。
なお、図14の「START」において制御部15は、電流検出部11によって検出される回路電流isの大きさに基づいて、同期整流制御、部分スイッチング制御、及び高速スイッチング制御のいずれかを実行しているものとする。
FIG. 14 is a flowchart showing processing executed by the control unit 15 of the power conversion device 1 (see FIG. 1 as appropriate).
In "START" of FIG. 14, the control unit 15 executes any one of synchronous rectification control, partial switching control, and high-speed switching control based on the magnitude of the circuit current is detected by the current detection unit 11. shall be

ステップS101において制御部15は、現時点で同期整流動作を実行しているか否かを判定する。例えば、「同期整流制御」では、前記したように、同期整流動作が継続的に行われる(図4参照)。したがって、図14の「START」時において「同期整流制御」が行われている場合には、ステップS101の判定結果が常に「Yes」になる。 In step S101, the control unit 15 determines whether or not the synchronous rectification operation is currently being performed. For example, in the "synchronous rectification control", as described above, the synchronous rectification operation is continuously performed (see FIG. 4). Therefore, when "synchronous rectification control" is being performed at "START" in FIG. 14, the determination result of step S101 is always "Yes".

また、「部分スイッチング制御」や「高速スイッチング制御」では、前記したように、力率改善動作と同期整流動作とが交互に繰り返される。したがって、図14の「START」において「部分スイッチング制御」又は「高速スイッチング制御」が行われている場合、力率改善動作中にはステップS101の判定結果が「No」になり、同期整流動作中にはステップS101の判定結果が「Yes」になる。
ステップS101において現時点で同期整流動作を実行している場合(S101:Yes)、制御部15の処理はステップS102に進む。
Further, in the "partial switching control" and the "high-speed switching control", as described above, the power factor improvement operation and the synchronous rectification operation are alternately repeated. Therefore, when "partial switching control" or "high-speed switching control" is being performed at "START" in FIG. , the determination result of step S101 becomes "Yes".
If the synchronous rectification operation is currently being performed in step S101 (S101: Yes), the process of the control unit 15 proceeds to step S102.

ステップS102において制御部15は、シャント抵抗SH_R1に流れている電流(図5の破線矢印で示す回路電流is)の検出値I1を読み込む。 In step S102, the control unit 15 reads the detected value I1 of the current (circuit current is indicated by the dashed arrow in FIG. 5) flowing through the shunt resistor SH_R1.

ステップS103において制御部15は、ステップS102で読み込んだ検出値I1が所定閾値I以上であるか否かを判定する。この所定閾値Iは、平滑コンデンサC1を介した回路電流isが過大であるか否かの判定基準となる閾値である。ステップS103において検出値I1が所定閾値I未満である場合(S103:No)、制御部15の処理はステップS104に進む。 At step S103, the control unit 15 determines whether or not the detection value I1 read at step S102 is equal to or greater than a predetermined threshold value IA . This predetermined threshold value IA is a threshold value that serves as a criterion for determining whether or not the circuit current is through the smoothing capacitor C1 is excessive. If the detected value I1 is less than the predetermined threshold value IA in step S103 (S103: No), the process of the control unit 15 proceeds to step S104.

ステップS104において制御部15は、ステップS102で読み込んだ検出値I1に基づいて、スイッチング素子Q1~Q4を制御する。例えば、制御部15は、交流電源電圧vsが正の半サイクルにおいて回路電流isが流れ続けている間は、リアクトルL1に接続されたスイッチング素子Q1をオン状態にする(図4(b)、(c)参照)。これによって、前記したように、寄生ダイオードD1ではなくスイッチング素子Q1のソース・ドレインを介して回路電流isが流れるため、高効率で電力変換を行うことができる。 At step S104, the control unit 15 controls the switching elements Q1 to Q4 based on the detected value I1 read at step S102. For example, while the circuit current is continues to flow in the positive half cycle of the AC power supply voltage vs, the control unit 15 turns on the switching element Q1 connected to the reactor L1 (FIG. 4(b), ( c) see). Thereby, as described above, the circuit current is flows through the source/drain of the switching element Q1 instead of the parasitic diode D1, so that power conversion can be performed with high efficiency.

なお、交流電源電圧vsが正の半サイクルにおいて、回路電流is(図4(b)参照)が流れ続けている期間の少なくとも一部でスイッチング素子Q1をオン状態にするようにしてもよい。交流電源電圧vsが負の半サイクルについても同様である。また、前記した制御は、同期整流制御(図4参照)のみではなく、部分スイッチング制御(図6参照)や高速スイッチング制御(図9参照)にも適用できる。
ステップS104の処理を行った後、制御部15の処理は「START」に戻る(RETURN)。
In the positive half cycle of the AC power supply voltage vs, the switching element Q1 may be turned on during at least part of the period during which the circuit current is (see FIG. 4B) continues to flow. The same is true for half cycles in which the AC power supply voltage vs is negative. Moreover, the control described above can be applied not only to synchronous rectification control (see FIG. 4), but also to partial switching control (see FIG. 6) and high-speed switching control (see FIG. 9).
After performing the process of step S104, the process of the control unit 15 returns to "START" (RETURN).

また、ステップS103において検出値Iが所定閾値I以上である場合(S103:Yes)、制御部15の処理はステップS105に進む。
ステップS105において制御部15は、ブリッジ回路10に過電流が流れていると判定する。つまり、制御部15は、平滑コンデンサC1を介した電流経路(図5の破線矢印を参照)に過大な回路電流isが流れていると判定する。
If the detected value I is equal to or greater than the predetermined threshold value IA in step S103 (S103: Yes), the process of the control unit 15 proceeds to step S105.
In step S<b>105 , the control unit 15 determines that an overcurrent is flowing through the bridge circuit 10 . That is, the control unit 15 determines that an excessive circuit current is is flowing in the current path (see the dashed arrow in FIG. 5) via the smoothing capacitor C1.

ちなみに、同期整流動作では、交流電源電圧vsが正の半サイクル(図5参照)であっても、負の半サイクル(図示せず)であっても、回路電流isは平滑コンデンサC1の負極からシャント抵抗SH_R1に向けて流れる。したがって、交流電源電圧vsが正・負の半サイクルのいずれであっても、そのときに流れている回路電流isをシャント抵抗SH_R1を用いて検出できる。 Incidentally, in the synchronous rectification operation, whether the AC power supply voltage vs is in a positive half cycle (see FIG. 5) or in a negative half cycle (not shown), the circuit current is flows from the negative electrode of the smoothing capacitor C1. It flows towards the shunt resistor SH_R1. Therefore, regardless of whether the AC power supply voltage vs is in a positive half cycle or a negative half cycle, the circuit current is flowing at that time can be detected using the shunt resistor SH_R1.

ステップS106において制御部15は、電力変換装置1や負荷Hを保護するための保護制御を実行する。制御部15は、例えば、負荷Hへの出力電流を減少させるか、又は、負荷Hを停止させる。これによって、ブリッジ回路10に過電流が流れることを防止できる。ステップS106の処理を行った後、制御部15の処理は「START」に戻る(RETURN)。 In step S<b>106 , the control unit 15 executes protection control for protecting the power converter 1 and the load H. The control unit 15 reduces the output current to the load H or stops the load H, for example. This prevents overcurrent from flowing through the bridge circuit 10 . After performing the process of step S106, the process of the control unit 15 returns to "START" (RETURN).

また、ステップS101において現時点で同期整流動作を実行していない場合(S101:No)、制御部15の処理はステップS107に進む。つまり、現時点で力率改善動作を実行している場合、制御部15の処理はステップS107に進む。 Moreover, when the synchronous rectification operation is not being performed at the present time in step S101 (S101:No), the process of the control part 15 progresses to step S107. In other words, if the power factor improving operation is currently being executed, the process of the control unit 15 proceeds to step S107.

ステップS107において制御部15は、現時点での交流電源電圧vsの極性が正であるか否かを、ゼロクロス判定部15aによって判定する。現時点での交流電源電圧vsの極性が正である場合(S107:Yes)、制御部15の処理はステップS108に進む。一方、現時点での交流電源電圧vsの極性が負である場合(S107:No)、制御部15の処理は「START」に戻る(RETURN)。 In step S107, the control unit 15 determines whether or not the current polarity of the AC power supply voltage vs is positive using the zero-cross determination unit 15a. If the current polarity of the AC power supply voltage vs is positive (S107: Yes), the process of the control unit 15 proceeds to step S108. On the other hand, if the current polarity of the AC power supply voltage vs is negative (S107: No), the process of the control unit 15 returns to "START" (RETURN).

ステップS108において制御部15は、シャント抵抗SH_R2に流れている電流(図7の破線矢印で示す短絡電流isp)の検出値I2を読み込む。
ステップS109において制御部15は、ステップS108で読み込んだ検出値I2が所定閾値I以上であるか否かを判定する。この所定閾値Iは、短絡電流ispが過大であるか否かの判定基準となる閾値である。
In step S108, the controller 15 reads the detected value I2 of the current (short-circuit current isp indicated by the dashed arrow in FIG. 7) flowing through the shunt resistor SH_R2.
In step S109, the control unit 15 determines whether or not the detection value I2 read in step S108 is equal to or greater than a predetermined threshold value IB . This predetermined threshold value IB is a threshold value that serves as a criterion for determining whether or not the short-circuit current isp is excessive.

ステップS109において検出値I2が所定閾値I以上である場合(S109:Yes)、制御部15の処理はステップS105に進む。
ステップS105において制御部15は、ブリッジ回路10に過電流が流れていると判定する。つまり、制御部15は、交流電源電圧vsの正の半サイクルにおいて、リアクトルL1を介した短絡経路(図7の破線矢印を参照)に過大な短絡電流ispが流れていると判定する。
If the detected value I2 is equal to or greater than the predetermined threshold value IB in step S109 (S109: Yes), the process of the control unit 15 proceeds to step S105.
In step S<b>105 , the control unit 15 determines that an overcurrent is flowing through the bridge circuit 10 . That is, the control unit 15 determines that an excessive short-circuit current isp is flowing in the short-circuit path (see the dashed arrow in FIG. 7) via the reactor L1 in the positive half cycle of the AC power supply voltage vs.

ステップS106において制御部15は、前記した保護制御を実行する。これによって、力率改善動作中に保護制御を開始できる。例えば、図14の「START」の時点で、同期整流動作と力率改善動作とを交互に行う高速スイッチング制御を行っている場合において、力率改善動作中に過大な短絡電流isp(図7参照)が流れたときには、その瞬間に(つまり、同期整流動作に切り替わるよりも早く)保護制御を開始できる。このように早いタイミングで過電流を抑えることができるため、電力変換装置1の信頼性を高めることができる。 In step S106, the control unit 15 executes the protection control described above. This allows protective control to be initiated during power factor correction operation. For example, at the time of "START" in FIG. 14, when performing high-speed switching control in which synchronous rectification operation and power factor improvement operation are alternately performed, an excessive short-circuit current isp (see FIG. 7) is generated during power factor improvement operation. ) flows, protection control can be started at that moment (that is, earlier than switching to synchronous rectification operation). Since the overcurrent can be suppressed at such an early timing, the reliability of the power converter 1 can be improved.

また、ステップS109において検出値I2が所定閾値I未満である場合(S109:No)、制御部15の処理は「START」に戻る(RETURN)。このようにして、図14に示す一連の処理が繰り返される。 Further, when the detected value I2 is less than the predetermined threshold value IB in step S109 (S109: No), the process of the control unit 15 returns to "START" (RETURN). In this manner, a series of processes shown in FIG. 14 are repeated.

<効果>
本実施形態よれば、低負荷時には同期整流制御を行うことで、スイッチング素子Q1~Q4に積極的に電流を流すようにしている。これによって、寄生ダイオードD1~D4での損失を抑制し、電力変換を高効率で行うことができる。
<effect>
According to the present embodiment, synchronous rectification control is performed when the load is low, so that a current is actively caused to flow through the switching elements Q1 to Q4. As a result, losses in the parasitic diodes D1 to D4 can be suppressed, and power conversion can be performed with high efficiency.

また、定格運転時には部分スイッチング制御が行われ、スイッチング素子Q1,Q2が所定回数、交互にスイッチングされる。これによって、昇圧、力率の改善、及び高調波の抑制を行うことができる。また、高速スイッチング制御と比べてスイッチング回数が少ないため、スイッチング損失を低減できる。 During rated operation, partial switching control is performed, and the switching elements Q1 and Q2 are alternately switched a predetermined number of times. This makes it possible to boost the voltage, improve the power factor, and suppress harmonics. In addition, switching loss can be reduced because the number of times of switching is smaller than in high-speed switching control.

また、高負荷時には高速スイッチング制御を行って、スイッチング素子Q1,Q2を所定周期で交互にスイッチングするようにしている。これによって、昇圧、力率の改善、及び高調波の抑制を行うことができる。高速スイッチング制御では、前記したように、回路電流isが正弦波状になるため(図9(b)参照)、特に力率の改善や高調波の抑制に効果がある。 Also, when the load is high, high-speed switching control is performed to alternately switch the switching elements Q1 and Q2 at a predetermined cycle. This makes it possible to boost the voltage, improve the power factor, and suppress harmonics. In high-speed switching control, as described above, the circuit current is becomes sinusoidal (see FIG. 9(b)), which is particularly effective in improving the power factor and suppressing harmonics.

また、シャント抵抗SH_R1を流れる電流の検出値I1に基づいてスイッチング素子Q1~Q4を制御することで、前記したように、高効率で電力変換を行うことができる。
さらに、同期整流動作中に過大な回路電流is(図5参照)が流れている場合や(S103:Yes)、力率改善動作中に過大な短絡電流isp(図7参照)が流れている場合(S109:Yes)、保護制御が実行される(S106)。これによって、電力変換装置1の信頼性を高めることができる。
Also, by controlling the switching elements Q1 to Q4 based on the detected value I1 of the current flowing through the shunt resistor SH_R1, power conversion can be performed with high efficiency as described above.
Furthermore, when excessive circuit current is (see FIG. 5) is flowing during synchronous rectification operation (S103: Yes), or when excessive short-circuit current isp (see FIG. 7) is flowing during power factor improvement operation (S109: Yes), protection control is executed (S106). Thereby, the reliability of the power converter 1 can be improved.

≪第2実施形態≫
第2実施形態は、スイッチング素子Q2(図15参照)を介して接続点N1(図15参照)に向かう短絡電流ispを検出するシャント抵抗SH_R3(図15参照)を設けている点が、第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Second embodiment>>
The second embodiment is different from the first embodiment in that a shunt resistor SH_R3 (see FIG. 15) is provided to detect the short-circuit current isp flowing to the connection point N1 (see FIG. 15) through the switching element Q2 (see FIG. 15). It differs from the embodiment. Others are the same as those of the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.

<電力変換装置の構成>
図15は、第2実施形態に係る電力変換装置1Aの構成図である。
図15に示すように、電力変換装置1Aは、第1実施形態で説明した構成(図1参照)に加えて、シャント抵抗SH_R3(第3シャント抵抗)を備えている。このシャント抵抗SH_R3は、その一端がスイッチング素子Q2のソースに接続され、他端が、シャント抵抗SH_R1,SH_R2の接続点N4に接続されている。
<Configuration of power converter>
FIG. 15 is a configuration diagram of a power converter 1A according to the second embodiment.
As shown in FIG. 15, the power converter 1A includes a shunt resistor SH_R3 (third shunt resistor) in addition to the configuration described in the first embodiment (see FIG. 1). The shunt resistor SH_R3 has one end connected to the source of the switching element Q2 and the other end connected to a connection point N4 between the shunt resistors SH_R1 and SH_R2.

また、図15では図示を省略したが、シャント抵抗SH_R3の両端に接続され、このシャント抵抗SH_R3に流れる短絡電流ispの値をコンバータ制御部15dに出力する増幅回路が設置されている。そして、前記した増幅回路及びシャント抵抗SH_R3によって、接続点N4から接続点N1に向かう短絡電流ispを検出するようになっている。 Although not shown in FIG. 15, an amplifier circuit is provided that is connected to both ends of the shunt resistor SH_R3 and outputs the value of the short-circuit current isp flowing through the shunt resistor SH_R3 to the converter control section 15d. The short-circuit current isp flowing from the connection point N4 to the connection point N1 is detected by the amplifier circuit and the shunt resistor SH_R3.

なお、交流電源電圧vsが負の半サイクルの期間において、平滑コンデンサC1を介さずに、平滑コンデンサC1の負極側に接続されたスイッチング素子Q2,Q4、及びリアクトルL1を介して流れる短絡電流ispを検出する「第3電流検出部」は、シャント抵抗SH_R3と、前記した増幅回路と、を含んで構成される。 In the period of the negative half cycle of the AC power supply voltage vs, the short-circuit current isp flowing through the switching elements Q2 and Q4 connected to the negative electrode side of the smoothing capacitor C1 and the reactor L1 without passing through the smoothing capacitor C1 is The "third current detection unit" for detection includes the shunt resistor SH_R3 and the amplifier circuit described above.

また、図15に示すシャント抵抗SH_R1(第1シャント抵抗)の抵抗値は、シャント抵抗SH_R3(第3シャント抵抗)の抵抗値よりも大きいことが好ましい。これによって、シャント抵抗SH_R1におけるSN比を十分に確保し、回路電流is(瞬時値)を高精度で検出できるからである。 Moreover, the resistance value of the shunt resistor SH_R1 (first shunt resistor) shown in FIG. 15 is preferably larger than the resistance value of the shunt resistor SH_R3 (third shunt resistor). This is because the SN ratio in the shunt resistor SH_R1 is sufficiently ensured, and the circuit current is (instantaneous value) can be detected with high accuracy.

<制御部が実行する処理>
図16は、電力変換装置1Aの制御部15が実行する処理を示すフローチャートである(適宜、図15を参照)。なお、図16に示すステップS101~S109については、第1実施形態(図14参照)と同様であるから、説明を省略する。
ステップS101において同期整流動作を実行しておらず、前記した力率改善動作を実行している場合において(S101:No)、現時点での交流電源電圧vsが負であるとき(S107:No)、制御部15の処理はステップS201に進む。
<Processing executed by the control unit>
FIG. 16 is a flowchart showing the process executed by the control unit 15 of the power converter 1A (see FIG. 15 as appropriate). Note that steps S101 to S109 shown in FIG. 16 are the same as those in the first embodiment (see FIG. 14), so description thereof will be omitted.
When the synchronous rectification operation is not executed in step S101 and the power factor improvement operation is executed (S101: No), when the current AC power supply voltage vs is negative (S107: No), The processing of the control unit 15 proceeds to step S201.

ステップS201において制御部15は、シャント抵抗SH_R3に流れている電流(図15の破線矢印で示す短絡電流isp)の検出値I3を読み込む。 In step S201, the control unit 15 reads the detected value I3 of the current (short-circuit current isp indicated by the dashed arrow in FIG. 15) flowing through the shunt resistor SH_R3.

ステップS202において制御部15は、ステップS201で読み込んだ検出値I3が所定閾値I以上であるか否かを判定する。この所定閾値Iは、制御部15が誤動作しているか否かの判定基準となる閾値である。 In step S202, the control unit 15 determines whether or not the detection value I3 read in step S201 is equal to or greater than a predetermined threshold IC . This predetermined threshold IC is a threshold that serves as a criterion for determining whether or not the controller 15 is malfunctioning.

例えば、交流電源電圧vsが負の半サイクルで力率改善動作を行う場合において、本来ならばスイッチング素子Q1,Q3がオンされるべきところを(図5(c)、(e)参照)、誤ってスイッチング素子Q2,Q4がオンされると、図15の破線矢印で示す経路に短絡電流ispが流れる。この短絡電流ispが流れているか否か(つまり、制御部15が誤動作しているか否か)を判定するために、シャント抵抗SH_R3が設けられている。 For example, when the AC power supply voltage vs performs the power factor improvement operation in the negative half cycle, the switching elements Q1 and Q3 should be turned on (see FIGS. 5(c) and 5(e)). When the switching elements Q2 and Q4 are turned on, the short-circuit current isp flows through the path indicated by the dashed arrow in FIG. A shunt resistor SH_R3 is provided to determine whether or not the short-circuit current isp is flowing (that is, whether or not the controller 15 is malfunctioning).

ステップS202において検出値I3が所定閾値I以上である場合(S202:Yes)、制御部15の処理はステップS203に進む。一方、検出値I3が所定閾値I未満である場合(S202:No)、制御部15の処理は「START」に戻る(RETURN)。
ステップS203において制御部15は、誤動作が生じていると判定する。つまり、制御部は、自身によるスイッチング素子Q1~Q4のオン・オフに誤りがあると判定する。
If the detected value I3 is equal to or greater than the predetermined threshold IC in step S202 (S202: Yes), the process of the control unit 15 proceeds to step S203. On the other hand, when the detected value I3 is less than the predetermined threshold IC (S202: No), the process of the control unit 15 returns to "START" (RETURN).
In step S203, the control unit 15 determines that malfunction has occurred. That is, the control unit determines that there is an error in turning on/off the switching elements Q1 to Q4 by itself.

ステップS204において制御部15は、保護制御を実行する。例えば、制御部15は、負荷Hへの出力電流を減少させるか、又は、負荷Hを停止させる。これによって、誤ったスイッチングが継続されることを防止し、電力変換装置1や負荷Hを保護できる。
ステップS204の処理を行った後、制御部15の処理は「START」に戻る(RETURN)。
In step S204, the control unit 15 executes protection control. For example, the control unit 15 reduces the output current to the load H or stops the load H. This prevents continuation of erroneous switching and protects the power converter 1 and the load H.
After performing the process of step S204, the process of the control unit 15 returns to "START" (RETURN).

<効果>
本実施形態によれば、シャント抵抗SH_R3に流れている電流の検出値I3に基づき、スイッチング素子Q1~Q4のオン・オフに誤動作が生じていると判定された場合には(S202:Yes、S203)、保護制御が実行される(S204)。これによって、誤ったスイッチングが継続されることを防止できるため、第1実施形態よりも電力変換装置1Aの信頼性を第1実施形態よりもさらに高めることができる。
<effect>
According to the present embodiment, when it is determined that there is a malfunction in turning on/off the switching elements Q1 to Q4 based on the detected value I3 of the current flowing through the shunt resistor SH_R3 (S202: Yes, S203 ), protection control is executed (S204). As a result, continuation of erroneous switching can be prevented, so that the reliability of the power conversion device 1A can be further improved as compared with the first embodiment.

≪第3実施形態≫
第3実施形態は、力率改善動作を行っている場合において、交流電源電圧vsが負の半サイクルのときに流れる短絡電流ispを検出する短絡電流検出部31(図17参照)を設けている点が、第2実施形態とは異なっている。なお、その他については第2実施形態と同様である。したがって、第2実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Third Embodiment>>
The third embodiment is provided with a short-circuit current detector 31 (see FIG. 17) that detects the short-circuit current isp that flows when the AC power supply voltage vs is in the negative half cycle when the power factor improving operation is performed. The point is different from the second embodiment. In addition, it is the same as that of 2nd Embodiment about others. Therefore, the parts different from the second embodiment will be explained, and the explanation of overlapping parts will be omitted.

<電力変換装置の構成>
図17は、第3実施形態に係る電力変換装置1Bの構成図である。
図17に示すように、電力変換装置1Bは、第2実施形態で説明した構成(図15参照)に加えて、短絡電流検出部31(第4電流検出部)を備えている。この短絡電流検出部31は、交流電源電圧vsが負の半サイクルの期間において、平滑コンデンサC1を介さずに、平滑コンデンサC1の正極側に接続されたスイッチング素子Q1,Q3、及びリアクトルL1を介して流れる短絡電流ispを検出する機能を有している。
<Configuration of power converter>
FIG. 17 is a configuration diagram of a power conversion device 1B according to the third embodiment.
As shown in FIG. 17, the power converter 1B includes a short-circuit current detector 31 (fourth current detector) in addition to the configuration described in the second embodiment (see FIG. 15). This short-circuit current detection unit 31 is detected not through the smoothing capacitor C1 but through the switching elements Q1 and Q3 connected to the positive electrode side of the smoothing capacitor C1 and the reactor L1 during the negative half cycle period of the AC power supply voltage vs. It has the function of detecting the short-circuit current isp flowing through the

図17に示すように、短絡電流検出部31は、シャント抵抗SH_R4,SH_R5と、発光ダイオードD6と、ダイオードD7と、フォトトランジスタQ5と、を備えている。
シャント抵抗SH_R5は、配線hcに設けられ、その一端がスイッチング素子Q1のドレインに接続され、他端がスイッチング素子Q3のドレインに接続されている。
As shown in FIG. 17, the short circuit current detector 31 includes shunt resistors SH_R4 and SH_R5, a light emitting diode D6, a diode D7, and a phototransistor Q5.
The shunt resistor SH_R5 is provided on the wiring hc, one end of which is connected to the drain of the switching element Q1, and the other end of which is connected to the drain of the switching element Q3.

互いに直列接続されたシャント抵抗SH_R4及び発光ダイオードD6は、図17に示すように、シャント抵抗SH_R5に並列接続されている。そして、破線矢印で示すように、スイッチング素子Q3、シャント抵抗SH_R4、発光ダイオードD5、及びスイッチング素子Q1を順次に介して短絡電流ispが流れると、それに伴って発光ダイオードD6が発光するようになっている。なお、発光ダイオードD6には、保護用のダイオードD7が逆並列に接続されている。
フォトトランジスタQ5は、発光ダイオードD6から受光した光を電気信号に変換し、この電気信号をコンバータ制御部15dに出力する素子である。
The shunt resistor SH_R4 and the light emitting diode D6, which are connected in series with each other, are connected in parallel to the shunt resistor SH_R5 as shown in FIG. As indicated by the dashed arrow, when the short-circuit current isp sequentially flows through the switching element Q3, the shunt resistor SH_R4, the light emitting diode D5, and the switching element Q1, the light emitting diode D6 emits light accordingly. there is A protection diode D7 is connected in antiparallel to the light emitting diode D6.
The phototransistor Q5 is an element that converts the light received from the light emitting diode D6 into an electric signal and outputs this electric signal to the converter control section 15d.

<制御部が実行する処理>
図18A,図18Bは、電力変換装置1Bの制御部15が実行する処理を示すフローチャートである(適宜、図17を参照)。
なお、図18A,図18Bに示すステップS101~S109については第1実施形態(図14参照)と同様であり、ステップS201~S204については第2実施形態(図16参照)と同様であるから、説明を省略する。
<Processing executed by the control unit>
18A and 18B are flowcharts showing the processing executed by the control unit 15 of the power converter 1B (see FIG. 17 as appropriate).
Note that steps S101 to S109 shown in FIGS. 18A and 18B are the same as in the first embodiment (see FIG. 14), and steps S201 to S204 are the same as in the second embodiment (see FIG. 16). Description is omitted.

図18AのステップS101において同期整流動作を実行しておらず、前記した力率改善動作を実行している場合において(S101:No)、交流電源電圧vsの極性が負である場合(S201:No)、制御部15の処理は、図18BのステップS301に進む。 When the synchronous rectification operation is not performed in step S101 of FIG. 18A and the power factor improvement operation described above is performed (S101: No), the polarity of the AC power supply voltage vs is negative (S201: No ), the process of the control unit 15 proceeds to step S301 in FIG. 18B.

ステップS301において制御部15は、シャント抵抗SH_R4に流れている電流(図17の破線矢印で示す短絡電流isp)の検出値I4を読み込む。
ステップS302において制御部15は、ステップS301で読み込んだ検出値I4が所定閾値I以上であるか否かを判定する。この所定閾値Iは、短絡電流ispが過大であるか否かの判定基準となる閾値である。
In step S301, the control unit 15 reads the detected value I4 of the current (short-circuit current isp indicated by the dashed arrow in FIG. 17) flowing through the shunt resistor SH_R4.
At step S302, the control unit 15 determines whether or not the detection value I4 read at step S301 is equal to or greater than a predetermined threshold ID . This predetermined threshold ID is a threshold that serves as a criterion for determining whether or not the short-circuit current isp is excessive.

ステップS302において検出値I4が所定閾値I以上である場合(S302:Yes)、制御部15の処理はステップS303に進む。
ステップS303において制御部15は、ブリッジ回路10に過電流が流れていると判定する。つまり、制御部15は、交流電源電圧vsの負の半サイクルにおいて、リアクトルL1を介した短絡経路(図7の破線矢印を参照)に過大な短絡電流ispが流れていると判定する。
If the detected value I4 is equal to or greater than the predetermined threshold ID in step S302 (S302: Yes), the process of the control unit 15 proceeds to step S303.
In step S<b>303 , the control unit 15 determines that overcurrent is flowing through the bridge circuit 10 . That is, the control unit 15 determines that an excessive short-circuit current isp is flowing in the short-circuit path (see the dashed arrow in FIG. 7) via the reactor L1 in the negative half cycle of the AC power supply voltage vs.

ステップS304において制御部15は、保護制御を実行する。例えば、制御部15は、負荷Hへの出力電流を減少させるか、又は、負荷Hを停止させる。これによって、ブリッジ回路10に過電流が流れることを防止できる。つまり、交流電源電圧vsが負の半サイクルの期間での力率改善動作中に過電流が流れたときには、ステップS301~S304の処理によって、その瞬間に(つまり、同期整流動作に切り替わるよりも早く)保護制御を開始できる。したがって、早いタイミングで過電流を抑えることができるため、電力変換装置1の信頼性を高めることができる。 In step S304, the control unit 15 executes protection control. For example, the control unit 15 reduces the output current to the load H or stops the load H. This prevents overcurrent from flowing through the bridge circuit 10 . In other words, when an overcurrent flows during the power factor improvement operation in the negative half cycle period of the AC power supply voltage vs, the processing of steps S301 to S304 immediately (that is, earlier than switching to the synchronous rectification operation) ) can initiate protection control. Therefore, since the overcurrent can be suppressed at an early timing, the reliability of the power conversion device 1 can be improved.

ちなみに、交流電源電圧vsが正の半サイクルの期間での力率改善動作中に過電流が流れたか否かは、第1実施形態で説明したように、ステップS109(図18A参照)の処理で判定される。 Incidentally, as described in the first embodiment, whether or not an overcurrent has flowed during the positive half cycle period of the AC power supply voltage vs is determined by the processing of step S109 (see FIG. 18A). be judged.

ステップS304の処理を行った後、制御部15の処理は、図18Aの「START」に戻る(図18Aの「RETURN」)。また、図18BのステップS302において検出値I4が所定閾値I未満である場合(S302:No)、制御部15の処理はステップS201に進む。なお、ステップS201~S201の処理は、第2実施形態で説明したとおりである。 After performing the process of step S304, the process of the control unit 15 returns to "START" in FIG. 18A ("RETURN" in FIG. 18A). If the detection value I4 is less than the predetermined threshold ID in step S302 of FIG. 18B (S302: No), the process of the control unit 15 proceeds to step S201. Note that the processing of steps S201 to S201 is as described in the second embodiment.

<効果>
本実施形態によれば、交流電源電圧vsが負の半サイクルの期間での力率改善動作中に過電流が流れたときには(S302:Yes、S303)、次の同期整流動作に切り替わる前に保護制御を開始できる(S304)。これによって、電力変換装置1Bの信頼性を第2実施形態よりもさらに高めることができる。
<effect>
According to this embodiment, when an overcurrent flows during the power factor improvement operation in the negative half cycle period of the AC power supply voltage vs (S302: Yes, S303), protection is provided before switching to the next synchronous rectification operation. Control can start (S304). Thereby, the reliability of the power conversion device 1B can be further improved as compared with the second embodiment.

≪第4実施形態≫
第4実施形態は、シャント抵抗SH_R1を流れる電流の検出値に基づいて、スイッチング素子Q1~Q4のオン・オフに誤りがあるか否かを判定する点が第1実施形態とは異なっている。なお、その他については第1実施形態と同様である。したがって、第1実施形態とは異なる部分について説明し、重複する部分については説明を省略する。
<<Fourth Embodiment>>
The fourth embodiment differs from the first embodiment in that it is determined whether there is an error in turning on/off the switching elements Q1 to Q4 based on the detected value of the current flowing through the shunt resistor SH_R1. Others are the same as those of the first embodiment. Therefore, the portions different from the first embodiment will be described, and the description of the overlapping portions will be omitted.

図19(a)は、第4実施形態に係る電力変換装置1Cにおいて、交流電源電圧vsが正の半サイクルのときの誤動作によって短絡電流iscが流れている状態を示す説明図である。
電力変換装置1Cは、シャント抵抗SH_R1を用いて、平滑コンデンサC1の負極から接続点N4に向かう電流を検出するとともに、これとは逆向きの電流も検出できるようになっている。第1実施形態(図1参照)で説明した構成に、前記した逆向きの電流を検出するための増幅回路(図示せず)が追加することで、シャント抵抗SH_R1を介した双方向の電流検出が可能になる。
FIG. 19(a) is an explanatory diagram showing a state in which a short-circuit current isc is flowing due to a malfunction in the power conversion device 1C according to the fourth embodiment when the AC power supply voltage vs is in the positive half cycle.
The power converter 1C uses the shunt resistor SH_R1 to detect the current flowing from the negative electrode of the smoothing capacitor C1 to the connection point N4, and can also detect the current flowing in the opposite direction. By adding an amplifier circuit (not shown) for detecting the reverse current to the configuration described in the first embodiment (see FIG. 1), bidirectional current detection via the shunt resistor SH_R1 becomes possible.

例えば、交流電源電圧vsが正の半サイクルの期間での力率改善動作中に、誤ってスイッチング素子Q1がオン状態になると、図19(a)に示す短絡電流iscが流れる。このような短絡電流iscがシャント抵抗SH_R1に流れた場合、制御部15は、負荷Hへの出力電流を減少させるか、又は、負荷Hを停止させる保護制御を行う。これによって、誤ったスイッチングが継続されることを防止できる。 For example, if the switching element Q1 is erroneously turned on during the power factor improvement operation during the positive half cycle period of the AC power supply voltage vs, the short-circuit current isc shown in FIG. 19(a) flows. When such a short-circuit current isc flows through the shunt resistor SH_R1, the control unit 15 reduces the output current to the load H or performs protective control to stop the load H. This prevents continued erroneous switching.

図19(b)は、交流電源電圧vsが負の半サイクルのときの誤動作によって短絡電流iscが流れている状態を示す説明図である。
例えば、交流電源電圧vsが負の半サイクルで力率改善動作中に、誤ってスイッチング素子Q1がオン状態になると、図19(b)に示す短絡電流iscが流れる。このような場合でも、前記した保護制御を行うことで、誤ったスイッチングが継続されることを防止できる。
FIG. 19(b) is an explanatory diagram showing a state in which a short-circuit current isc is flowing due to a malfunction when the AC power supply voltage vs is in the negative half cycle.
For example, if the switching element Q1 is erroneously turned on while the AC power supply voltage vs is in the negative half cycle and the power factor is being improved, the short-circuit current isc shown in FIG. 19(b) flows. Even in such a case, the continuation of erroneous switching can be prevented by performing the protection control described above.

≪第5実施形態≫
第5実施形態は、電流検出部11の検出値Iと所定の閾値I,Iとの大小を比較し、その比較結果に基づいて制御モードを切り替える点が、第1実施形態とは異なっている。また、第5実施形態では、電力変換装置1の負荷Hが、空気調和機W(図21参照)の圧縮機41のモータ41aである点が、第1実施形態とは異なっている。なお、その他の構成(図1に示す電力変換装置1の構成や、各制御モードの内容)については、第1実施形態と同様である。したがって、第1実施形態と異なる部分について説明し、重複する部分については説明を省略する。
<<Fifth Embodiment>>
The fifth embodiment differs from the first embodiment in that the detection value I of the current detection unit 11 is compared with predetermined threshold values I E and I F and the control mode is switched based on the comparison result. ing. Further, the fifth embodiment differs from the first embodiment in that the load H of the power converter 1 is the motor 41a of the compressor 41 of the air conditioner W (see FIG. 21). Other configurations (the configuration of the power converter 1 shown in FIG. 1 and the contents of each control mode) are the same as in the first embodiment. Therefore, the parts different from the first embodiment will be explained, and the explanation of the overlapping parts will be omitted.

<空気調和機の構成>
図20は、第5実施形態に係る空気調和機Wが備える室内機U1、室外機U2、及びリモコンReの正面図である。
空気調和機Wは、冷媒回路4(図21参照)において周知のヒートポンプサイクルで冷媒を循環させることによって、空調(冷房運転、暖房運転、除湿運転等)を行う機器である。図20に示すように、空気調和機Wは、室内機U1と、室外機U2と、リモコンReと、を備えている。
<Configuration of air conditioner>
FIG. 20 is a front view of the indoor unit U1, the outdoor unit U2, and the remote controller Re included in the air conditioner W according to the fifth embodiment.
The air conditioner W is a device that performs air conditioning (cooling operation, heating operation, dehumidifying operation, etc.) by circulating a refrigerant in a well-known heat pump cycle in a refrigerant circuit 4 (see FIG. 21). As shown in FIG. 20, the air conditioner W includes an indoor unit U1, an outdoor unit U2, and a remote controller Re.

室内機U1は、次に説明する室内熱交換器44(図21参照)、室内ファンF2等を備えている。
室外機U2は、次に説明する圧縮機41(図21参照)、室外熱交換器42、膨張弁43、室外ファンF1等を備えている。
なお、室内機U1と室外機U2とは、冷媒が通流する配管kを介して接続されるとともに、図示はしないが、通信線を介して接続されている。
リモコンReは、室内機U1との間で所定の信号(運転/停止指令、設定温度の変更、タイマの設定、運転モードの変更等)を送受信するものである。
The indoor unit U1 includes an indoor heat exchanger 44 (see FIG. 21), an indoor fan F2, and the like, which will be described below.
The outdoor unit U2 includes a compressor 41 (see FIG. 21), an outdoor heat exchanger 42, an expansion valve 43, an outdoor fan F1, and the like, which will be described below.
The indoor unit U1 and the outdoor unit U2 are connected via a pipe k through which a refrigerant flows, and are also connected via a communication line (not shown).
The remote controller Re transmits and receives predetermined signals (start/stop commands, temperature setting changes, timer settings, operation mode changes, etc.) to and from the indoor unit U1.

図21は、空気調和機Wの構成図である。
図21に示すように、空気調和機Wは、電力変換装置1と、インバータ2と、冷媒回路4と、を備えている。なお、電力変換装置1の構成については、第1実施形態(図1参照)で説明したとおりである。
FIG. 21 is a configuration diagram of the air conditioner W. As shown in FIG.
As shown in FIG. 21, the air conditioner W includes a power conversion device 1, an inverter 2, and a refrigerant circuit 4. The configuration of the power converter 1 is as described in the first embodiment (see FIG. 1).

インバータ2は、電力変換装置1から印加される直流電圧を、例えば、PWM制御(Pulse Width Modulation)に基づいて交流電圧に変換する電力変換器である。
冷媒回路4は、圧縮機41と、室外熱交換器42と、膨張弁43と、室内熱交換器44と、が配管kを介して環状に順次接続された構成になっている。
The inverter 2 is a power converter that converts a DC voltage applied from the power converter 1 into an AC voltage based on, for example, PWM control (Pulse Width Modulation).
The refrigerant circuit 4 has a configuration in which a compressor 41, an outdoor heat exchanger 42, an expansion valve 43, and an indoor heat exchanger 44 are sequentially connected in an annular manner via a pipe k.

圧縮機41は、モータ41aの駆動によって冷媒を圧縮する機器である。なお、モータ41aは、インバータ2から印加される交流電圧によって駆動する。 The compressor 41 is a device that compresses refrigerant by driving a motor 41a. Note that the motor 41 a is driven by an AC voltage applied from the inverter 2 .

室外熱交換器42は、室外ファンF1から送り込まれる室内空気と、冷媒と、の熱交換が行われる熱交換器である。
膨張弁43は、室外熱交換器42又は室内熱交換器44から流れ込む冷媒を膨張させて減圧する減圧器である。
The outdoor heat exchanger 42 is a heat exchanger that exchanges heat between the indoor air sent from the outdoor fan F1 and the refrigerant.
The expansion valve 43 is a decompressor that expands and decompresses the refrigerant flowing from the outdoor heat exchanger 42 or the indoor heat exchanger 44 .

室内熱交換器44は、室内ファンF2から送り込まれる室内空気と、冷媒と、の熱交換が行われる熱交換器である。
そして、圧縮機41、室外熱交換器42、膨張弁43、及び室内熱交換器44が配管kを介して環状に順次接続されてなる冷媒回路4においてヒートポンプサイクルで冷媒を循環させるようになっている。
The indoor heat exchanger 44 is a heat exchanger that exchanges heat between the indoor air sent from the indoor fan F2 and the refrigerant.
Refrigerant is circulated in a heat pump cycle in a refrigerant circuit 4 in which a compressor 41, an outdoor heat exchanger 42, an expansion valve 43, and an indoor heat exchanger 44 are sequentially connected in a circular manner via a pipe k. there is

なお、空気調和機Wは、冷房用であってもよいし、また、暖房用であってもよい。また、冷房時と暖房時とで冷媒の流れる向きを切り替える四方弁(図示せず)を設けてもよい。
次に、電力変換装置1が備える電流検出部11(図1参照)の検出値(負荷)に基づいて、電力変換装置1の制御モードを切り替える処理について説明する。
The air conditioner W may be for cooling or for heating. A four-way valve (not shown) may be provided to switch the direction of refrigerant flow between cooling and heating.
Next, processing for switching the control mode of the power conversion device 1 based on the detection value (load) of the current detection unit 11 (see FIG. 1) included in the power conversion device 1 will be described.

図22は、負荷の大きさ、動作モード、及び機器の運転領域の関係を示す説明図である。
図22に示す「中間運転領域」は、負荷(つまり、電流検出部11の検出値:図1参照)が比較的小さい領域である。本実施形態では、負荷の大きさが閾値I未満である場合に「同期整流制御」を行うことで、電力変換装置1の高効率化を図るようにしている。
FIG. 22 is an explanatory diagram showing the relationship between the magnitude of the load, the operation mode, and the operating range of the equipment.
The "intermediate operating region" shown in FIG. 22 is a region where the load (that is, the detected value of the current detector 11: see FIG. 1) is relatively small. In this embodiment, when the size of the load is less than the threshold value IE , "synchronous rectification control" is performed to improve the efficiency of the power converter 1 .

図22に示す「定格運転領域」は、前記した「中間運転領域」よりも負荷が大きく、圧縮機41のモータ41a(つまり、図1に示す負荷H)を定格運転できる領域である。本実施形態では、負荷の大きさが閾値I以上かつ閾値I未満である場合に「部分スイッチング制御」を行うことで、昇圧、力率の改善、及び高調波の抑制を行うようにしている。 The "rated operating range" shown in FIG. 22 is a range in which the load is larger than that of the "intermediate operating range" and the motor 41a of the compressor 41 (that is, the load H shown in FIG. 1) can be operated at rated speed. In this embodiment, when the magnitude of the load is greater than or equal to the threshold IE and less than the threshold IF , "partial switching control" is performed to boost voltage, improve the power factor, and suppress harmonics. there is

図22に示す「高負荷領域」は、負荷の大きさが比較的大きい領域である。例えば、外気温が非常に低いときに暖房運転を行う場合や、外気温が非常に高いときに冷房運転を行う場合の運転領域が「高負荷領域」に相当する。本実施形態では、負荷の大きさが閾値I以上である場合に「高速スイッチング制御」を行うことで、昇圧、力率の改善、及び高調波の抑制を行うようにしている。なお、閾値I,Iの大きさは、事前の実験やシミュレーションに基づいて適宜設定される。 The "high load area" shown in FIG. 22 is an area where the magnitude of the load is relatively large. For example, the operating range in which the heating operation is performed when the outside air temperature is extremely low or the cooling operation is performed when the outside air temperature is extremely high corresponds to the "high load area". In this embodiment, when the magnitude of the load is equal to or greater than the threshold IF , "high-speed switching control" is performed to boost the voltage, improve the power factor, and suppress harmonics. Note that the magnitudes of the thresholds I E and I F are appropriately set based on prior experiments and simulations.

<電力変換装置の動作>
図23は、電力変換装置1の制御部15が実行する処理を示すフローチャートである(適宜、図1を参照)。なお、図23の「START」時において、モータ41a(図21参照)が駆動しているものとする。
ステップS401において制御部15は、電流検出部11の検出値I(負荷)を読み込む。
<Operation of power converter>
FIG. 23 is a flow chart showing processing executed by the control unit 15 of the power conversion device 1 (see FIG. 1 as appropriate). It is assumed that the motor 41a (see FIG. 21) is driven at "START" in FIG.
In step S<b>401 , the control unit 15 reads the detection value I (load) of the current detection unit 11 .

ステップS402において制御部15は、ステップS401で読み込んだ検出値Iが閾値I(第1閾値)未満であるか否かを判定する。つまり、制御部15は、電流の検出値Iが「中間運転領域」(図22参照)に含まれるか否かを判定する。 In step S402, the control unit 15 determines whether or not the detection value I read in step S401 is less than the threshold value IE (first threshold value). That is, the control unit 15 determines whether or not the current detection value I is included in the "intermediate operating region" (see FIG. 22).

電流の検出値Iが閾値I未満である場合(S402:Yes)、制御部15の処理はステップS403に進む。
ステップS403において制御部15は、同期整流制御を実行する。このように中間運転領域において同期整流制御を行うことで、第1実施形態で説明したように、電力変換を高効率で行うことができる。
If the current detection value I is less than the threshold IE (S402: Yes), the process of the control unit 15 proceeds to step S403.
In step S403, the control unit 15 executes synchronous rectification control. By performing synchronous rectification control in the intermediate operation region in this way, power conversion can be performed with high efficiency, as described in the first embodiment.

また、ステップS402において電流の検出値Iが閾値I以上である場合(S402:No)、制御部15の処理はステップS404に進む。
ステップS404において制御部15は、電流検出部11の検出値Iが閾値I(第2閾値)未満であるか否かを判定する。つまり、制御部15は、電流の検出値Iが「定格運転領域」(図22参照)に含まれるか否かを判定する。ちなみに、前記した閾値Iは、閾値Iよりも大きな値である(図22参照)。
If the current detection value I is equal to or greater than the threshold value IE in step S402 (S402: No), the process of the control unit 15 proceeds to step S404.
In step S404, the control unit 15 determines whether or not the detection value I of the current detection unit 11 is less than the threshold value I F (second threshold value). That is, the control unit 15 determines whether or not the current detection value I is included in the "rated operating range" (see FIG. 22). Incidentally, the above-mentioned threshold IF is a value larger than the threshold IE (see FIG. 22).

電流の検出値Iが閾値I未満である場合(S404:Yes)、制御部15の処理はステップS405に進む。
ステップS405において制御部15は、部分スイッチング制御を実行する。このように定格運転領域において部分スイッチング制御を行うことで、第1実施形態で説明したように、昇圧、力率の改善、及び高調波の抑制を行うことができる。
If the current detection value I is less than the threshold value IF (S404: Yes), the process of the control unit 15 proceeds to step S405.
In step S405, the control unit 15 executes partial switching control. By performing partial switching control in the rated operation region in this way, it is possible to boost the voltage, improve the power factor, and suppress harmonics as described in the first embodiment.

また、ステップS404において電流検出部11の検出値Iが閾値I以上である場合(S404:No)、制御部15の処理はステップS406に進む。
ステップS406において制御部15は、高速スイッチング制御を実行する。これによって、高負荷運転領域で大きな回路電流isが流れたとしても、力率を改善できるとともに、高調波を抑制できる。
ステップS403,S405,S406のいずれかの処理を行った後、制御部15の処理は「START」に戻る(RETURN)。
Further, when the detection value I of the current detection unit 11 is equal to or greater than the threshold value IF in step S404 (S404: No), the processing of the control unit 15 proceeds to step S406.
In step S406, the control unit 15 executes high-speed switching control. As a result, even if a large circuit current is flows in the high-load operation region, the power factor can be improved and harmonics can be suppressed.
After performing any one of steps S403, S405 and S406, the process of the control unit 15 returns to "START" (RETURN).

なお、電流の検出値Iが非常に小さい場合に、第1実施形態で説明したダイオード整流制御(図2,3参照)を行うようにしてもよい。 When the current detection value I is very small, the diode rectification control (see FIGS. 2 and 3) described in the first embodiment may be performed.

<効果>
本実施形態によれば、負荷の大きさに応じて制御モードを切り替えることで、電力変換装置1の高効率化を図るとともに、高調波を抑制できる。このような電力変換装置1を備えることで、エネルギ効率(つまり、APF:Annual Performance Factor)が高く、省エネ化を図った空気調和機Wを提供できる。
<effect>
According to this embodiment, by switching the control mode according to the magnitude of the load, it is possible to improve the efficiency of the power converter 1 and suppress harmonics. By providing such a power conversion device 1, it is possible to provide an air conditioner W with high energy efficiency (APF: Annual Performance Factor) and energy saving.

≪変形例≫
以上、本発明に係る電力変換装置1等について各実施形態により説明したが、本発明はこれらの記載に限定されるものではなく、種々の変更を行うことができる。
<<Modification>>
Although the power converter 1 and the like according to the present invention have been described above according to each embodiment, the present invention is not limited to these descriptions, and various modifications can be made.

≪第1の変形例≫
図24は、第1の変形例に係る電力変換装置1Dの構成図である。
図24に示す電力変換装置1Dは、第1実施形態で説明した電力変換装置1(図1参照)にリアクトルL2を追加した構成になっている。リアクトルL2は、接続点N2と交流電源Gとを接続する配線hbに設けられている。このようにリアクトルL2を設けることで、第1実施形態で説明した「力率改善動作」に伴うノイズを低減できる。
<<First Modification>>
FIG. 24 is a configuration diagram of a power conversion device 1D according to a first modification.
A power converter 1D shown in FIG. 24 has a configuration in which a reactor L2 is added to the power converter 1 (see FIG. 1) described in the first embodiment. The reactor L2 is provided on the wiring hb that connects the connection point N2 and the AC power supply G. As shown in FIG. By providing the reactor L2 in this manner, noise associated with the "power factor improvement operation" described in the first embodiment can be reduced.

≪第2の変形例≫
図25は、第2の変形例に係る電力変換装置1Eの構成図である。
図25に示す電力変換装置1Eは、接続点N1を介してリアクトルL1に接続されるスイッチング素子Q1,Q2として、MOSFETではなく、IGBT(Insulated-Gate-Bipolar-Transistor)を用いている点が、第1実施形態(図1参照)とは異なっている。このようにスイッチング素子Q1,Q2としてIGBTを用いても、第1実施形態と同様の効果が奏される。なお、スイッチング素子Q1,Q2として、FRD(Fast-Recovery-Diode)を用いてもよい。
<<Second modification>>
FIG. 25 is a configuration diagram of a power conversion device 1E according to a second modification.
The power conversion device 1E shown in FIG. 25 uses IGBTs (Insulated-Gate-Bipolar-Transistors) instead of MOSFETs as the switching elements Q1 and Q2 connected to the reactor L1 via the connection point N1. It differs from the first embodiment (see FIG. 1). Even if IGBTs are used as the switching elements Q1 and Q2 in this way, the same effect as in the first embodiment can be obtained. Note that FRDs (Fast-Recovery-Diodes) may be used as the switching elements Q1 and Q2.

その他、スイッチング素子Q1~Q4として、オン抵抗の小さいスーパージャンクションMOSFET(SJMOSFET)を用いてもよい。特に、逆回復時間(time of reverse recovery:trr)が比較的短い高速trrタイプのものを用いることが好ましい。前記した「逆回復時間」とは、逆回復電流が流れる時間であり、「逆回復電流」とは、寄生ダイオードD1~D4に印加される電圧が順方向電圧から逆方向電圧に切り替わった瞬間に流れる電流である。例えば、逆回復時間が300nsec以下のSJMOSFETをスイッチング素子Q1~Q4として用いることで損失を低減し、さらなる高効率化を図ることができる。
また、スイッチング素子Q1~Q4として、オン抵抗が0.1Ω以下のものを用いることが好ましい。これによって、スイッチング素子Q1~Q4における導通損失を低減できる。
In addition, super junction MOSFETs (SJMOSFETs) with low on-resistance may be used as the switching elements Q1 to Q4. In particular, it is preferable to use a high-speed trr type having a relatively short time of reverse recovery (trr). The "reverse recovery time" mentioned above is the time during which the reverse recovery current flows, and the "reverse recovery current" is the moment when the voltage applied to the parasitic diodes D1 to D4 switches from the forward voltage to the reverse voltage. is the current that flows. For example, by using SJMOSFETs with a reverse recovery time of 300 nsec or less as the switching elements Q1 to Q4, loss can be reduced and efficiency can be further improved.
Moreover, it is preferable to use switching elements Q1 to Q4 having an on-resistance of 0.1Ω or less. As a result, conduction loss in switching elements Q1-Q4 can be reduced.

また、スイッチング素子Q1,Q2の逆回復時間は、スイッチング素子Q3,Q4よりも短いことが好ましい。前記したように、同期整流制御、部分スイッチング制御、高速スイッチングでは、スイッチング素子Q1,Q2のオン・オフが、交流電源電圧vsの半サイクルごとに所定回数行われる。したがって、スイッチング素子Q1,Q2として逆回復時間の短いものを用いることで、逆回復電流が流れる時間が短くなるため、スイッチング損失を低減できる。ちなみに、スイッチング素子Q3,Q4については、オン・オフする頻度がスイッチング素子Q1,Q2に比べて少ないため、逆回復時間が比較的長い安価な素子を用いても効率にそれほど影響はない。 Also, the reverse recovery time of the switching elements Q1, Q2 is preferably shorter than that of the switching elements Q3, Q4. As described above, in synchronous rectification control, partial switching control, and high-speed switching, the switching elements Q1 and Q2 are turned on and off a predetermined number of times per half cycle of the AC power supply voltage vs. Therefore, by using the switching elements Q1 and Q2 having a short reverse recovery time, the time during which the reverse recovery current flows is shortened, so that the switching loss can be reduced. Incidentally, since the switching elements Q3 and Q4 are turned on and off less frequently than the switching elements Q1 and Q2, the efficiency is not so affected even if an inexpensive element having a relatively long reverse recovery time is used.

また、スイッチング素子Q1~Q4として、例えば、SiC(Silicon Carbide)-MOSFETやGaN(Gallium nitride)を用いてもよい。これによって、電力変換装置1のエネルギ損失をさらに低減し、高効率化を図ることができる。 Also, for example, SiC (Silicon Carbide)-MOSFET or GaN (Gallium nitride) may be used as the switching elements Q1 to Q4. As a result, the energy loss of the power conversion device 1 can be further reduced, and the efficiency can be improved.

≪第3の変形例≫
図26は、第3の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図26に示す変形例では、同期整流制御においてスイッチング素子Q2,Q4(図26(d)、(f)参照)をオン状態にする期間が、第1実施形態(図4(d)、(f)参照)よりも短くなっている。例えば、図26に示す変形例では、交流電源電圧vsが正の半サイクルでは、その一部の区間(回路電流isが流れている期間の一部)でスイッチング素子Q4をオン状態にしている。なお、正の回路電流isが流れている期間の一部でスイッチング素子Q4がオフ状態であっても、寄生ダイオードD4を介して電流が流れるため、同期整流制御に支障が生じることはない。
<<Third modification>>
FIG. 26 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the drive pulses for the switching elements Q1 to Q4 in synchronous rectification control in the power converter according to the third modification.
In the modification shown in FIG. 26, the period in which the switching elements Q2 and Q4 (see FIGS. 26(d) and (f)) are turned on in the synchronous rectification control is the same as that of the first embodiment (FIGS. 4(d) and (f)). ) is shorter than ). For example, in the modification shown in FIG. 26, the switching element Q4 is turned on in a part of the period (a part of the period during which the circuit current is flows) in the positive half cycle of the AC power supply voltage vs. Note that even if the switching element Q4 is in an off state during a part of the period in which the positive circuit current is is flowing, the current flows through the parasitic diode D4, so that the synchronous rectification control is not hindered.

≪第4の変形例≫
図27は、第4の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図27に示す変形例では、同期整流制御においてスイッチング素子Q1,Q3(図27(c)、(e)参照)をオン状態にする期間が、第1実施形態(図4(c)、(e)参照)よりも短くなっている。このようにスイッチング素子Q1,Q3を制御しても、同期整流制御を適切に行うことができる。
<<Fourth Modification>>
FIG. 27 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the drive pulses for the switching elements Q1 to Q4 in synchronous rectification control in the power converter according to the fourth modification.
In the modification shown in FIG. 27, the period in which the switching elements Q1 and Q3 (see FIGS. 27(c) and (e)) are turned on in synchronous rectification control is the same as that of the first embodiment (FIGS. 4(c) and (e)). ) is shorter than ). Even if the switching elements Q1 and Q3 are controlled in this manner, synchronous rectification control can be appropriately performed.

なお、同期整流制御において、交流電源電圧vsの極性に同期させてスイッチング素子Q3,Q4をオン・オフする処理に代えて、回路電流isが流れているか否かに応じてスイッチング素子Q3,Q4をオン・オフするようにしてもよい。 In the synchronous rectification control, instead of turning on/off the switching elements Q3 and Q4 in synchronization with the polarity of the AC power supply voltage vs. It may be turned on/off.

≪第5の変形例≫
図28は、第5の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図28に示す変形例では、部分スイッチング制御においてスイッチング素子Q3,Q4(図28(e)、(f)参照)をオン状態にする期間が、第1実施形態(図6(e)、(f)参照)よりも短くなっている。例えば、交流電源電圧vsが正の半サイクルでは、回路電流isが流れている期間の一部でスイッチング素子Q4をオン状態にしている。このようにスイッチング素子Q3,Q4を制御しても、部分スイッチング制御を適切に行うことができる。
<<Fifth Modification>>
FIG. 28 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, the short-circuit current isp, and the drive pulses for the switching elements Q1 to Q4 in the partial switching control in the power converter according to the fifth modification. is.
In the modification shown in FIG. 28, the period during which the switching elements Q3 and Q4 (see FIGS. 28(e) and (f)) are turned on in the partial switching control is the same as that of the first embodiment (FIGS. 6(e) and (f)). ) is shorter than ). For example, in a half cycle in which the AC power supply voltage vs is positive, the switching element Q4 is turned on during part of the period during which the circuit current is is flowing. By controlling the switching elements Q3 and Q4 in this manner, partial switching control can be performed appropriately.

≪第6の変形例≫
図29は、第6の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図29に示す変形例では、部分スイッチング制御においてスイッチング素子Q1,Q2(図29(c)、(d)参照)をオン状態にする期間が、第1実施形態(図6(c)、(d)参照)よりも短くなっている。例えば、交流電源電圧vsが正の半サイクルでは、回路電流が流れている期間の一部でスイッチング素子Q1をオン状態にしている。このようにスイッチング素子Q1,Q2を制御しても、部分スイッチング制御を適切に行うことができる。
<<Sixth modification>>
FIG. 29 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, the short-circuit current isp, and the drive pulses for the switching elements Q1 to Q4 in the partial switching control in the power converter according to the sixth modification. is.
In the modification shown in FIG. 29, the period in which the switching elements Q1 and Q2 (see FIGS. 29(c) and (d)) are turned on in the partial switching control is the same as that of the first embodiment (FIGS. 6(c) and (d)). ) is shorter than ). For example, in a half cycle in which the AC power supply voltage vs is positive, the switching element Q1 is turned on during part of the period in which the circuit current flows. Even if the switching elements Q1 and Q2 are controlled in this manner, partial switching control can be performed appropriately.

≪第7の変形例≫
図30は、第7の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図30に示す変形例は、同期整流制御の実行中、スイッチング素子Q1,Q3(図30(c)、(e)参照)がオフ状態で維持されている点が、第1実施形態(図4(c)、(e)参照)とは異なっている。例えば、交流電源電圧vsが正の半サイクルにおいてスイッチング素子Q1がオフ状態で維持されても、寄生ダイオードD1を介して回路電流isが流れるため、同期整流制御に支障が生じることはない。
<<Seventh Modification>>
FIG. 30 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the drive pulses for the switching elements Q1 to Q4 in synchronous rectification control in the power converter according to the seventh modification.
The modification shown in FIG. 30 differs from the first embodiment (FIG. 4) in that the switching elements Q1 and Q3 (see FIGS. (c), (e) reference) is different. For example, even if the switching element Q1 is maintained in the OFF state during the positive half cycle of the AC power supply voltage vs, the circuit current is flows through the parasitic diode D1, so that the synchronous rectification control is not hindered.

≪第8の変形例≫
図31は、第8の変形例に係る電力変換装置において、同期整流制御における交流電源電圧vs、回路電流is、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図31に示す変形例は、同期整流制御の実行中、スイッチング素子Q2,Q4はオフ状態で維持され(図31(d)、(f)参照)、スイッチング素子Q1,Q3は交流電源電圧vsに同期してオン・オフされている点が(図31(c)、(e)参照)、第1実施形態(図4(c)~(f)参照)とは異なっている。このようにスイッチング素子Q1~Q4を制御しても、同期整流制御を適切に行うことができる。
<<Eighth modification>>
FIG. 31 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, and the drive pulses for the switching elements Q1 to Q4 in synchronous rectification control in the power converter according to the eighth modification.
In the modification shown in FIG. 31, the switching elements Q2 and Q4 are maintained in the OFF state during execution of synchronous rectification control (see FIGS. It differs from the first embodiment (see FIGS. 4C to 4F) in that they are turned on and off synchronously (see FIGS. 31C and 31E). Even if the switching elements Q1 to Q4 are controlled in this manner, synchronous rectification control can be performed appropriately.

なお、同期整流制御において、ブリッジ回路10に回路電流isが流れている期間のうち、交流電源電圧vsの絶対値|vs|が平滑コンデンサC1の電圧(直流電圧Vd)よりも小さい期間では、この平滑コンデンサC1の正極に接続されているスイッチング素子Q1,Q3をオフ状態にしてもよい。これによって、ブリッジ回路10を介して逆流電流が流れることを防止できる。 In the synchronous rectification control, during the period in which the circuit current is is flowing through the bridge circuit 10, during the period in which the absolute value |vs| The switching elements Q1 and Q3 connected to the positive electrode of the smoothing capacitor C1 may be turned off. Thereby, it is possible to prevent a reverse current from flowing through the bridge circuit 10 .

また、スイッチング制御(部分スイッチング制御、高速スイッチング制御)を行う場合において、リアクトルL1を介して短絡電流ispが流れる短絡経路(例えば、図7の破線矢印を参照)に含まれるスイッチング素子のうち、リアクトルL1に接続されているスイッチング素子を、交流電源電圧vsの絶対値|vs|が平滑コンデンサC1の電圧よりも小さい期間ではオフ状態にするようにしてもよい。これによって、ブリッジ回路10に逆流電流が流れることを防止できる。 Further, when performing switching control (partial switching control, high-speed switching control), the reactor The switching element connected to L1 may be turned off during a period in which the absolute value |vs| of the AC power supply voltage vs is smaller than the voltage of the smoothing capacitor C1. Thereby, it is possible to prevent a reverse current from flowing through the bridge circuit 10 .

≪第9の変形例≫
図32は、第9の変形例に係る電力変換装置において、部分スイッチング制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図32に示す変形例は、部分スイッチング制御において、交流電源電圧vsが正の半サイクルではスイッチング素子Q1がオフ状態で維持され(図32(c)参照)、交流電源電圧vsが負の半サイクルではスイッチング素子Q2がオフ状態で維持される点が(図32(d)参照)、第1実施形態(図6(c)、(d)参照)とは異なっている。このようにしても、例えば、交流電源電圧vsが正の半サイクルでは寄生ダイオードD1を介して回路電流isが流れるため、部分スイッチング制御を適切に行うことができる。
<<Ninth Modification>>
FIG. 32 is an explanatory diagram showing temporal changes in the AC power supply voltage vs, the circuit current is, the short-circuit current isp, and the driving pulses for the switching elements Q1 to Q4 in the partial switching control in the power converter according to the ninth modification. is.
In the modification shown in FIG. 32, in the partial switching control, the switching element Q1 is maintained in the OFF state in the positive half cycle of the AC power supply voltage vs (see FIG. 32(c)), and in the negative half cycle of the AC power supply voltage vs. In this embodiment, the switching element Q2 is kept off (see FIG. 32(d)), which is different from the first embodiment (see FIGS. 6(c) and 6(d)). Even in this way, for example, in the positive half cycle of the AC power supply voltage vs, the circuit current is flows through the parasitic diode D1, so partial switching control can be appropriately performed.

≪第10の変形例≫
図33は、第10の変形例に係る電力変換装置において、高速スイッチング整流制御における交流電源電圧vs、回路電流is・短絡電流isp、及びスイッチング素子Q1~Q4の駆動パルスの時間的変化を示す説明図である。
図33に示す変形例は、高速スイッチング制御において、交流電源電圧vsが正の半サイクルではスイッチング素子Q1がオフ状態で維持され(図33(c)参照)、交流電源電圧vsが負の半サイクルではスイッチング素子Q2がオフ状態で維持される点が(図33(d)参照)、第1実施形態(図9(c)、(d)参照)とは異なっている。このようにしても、高速スイッチング制御を適切に行うことができる。
<<Tenth Modification>>
FIG. 33 is an explanation showing temporal changes in the AC power supply voltage vs, the circuit current is, the short-circuit current isp, and the driving pulses of the switching elements Q1 to Q4 in the high-speed switching rectification control in the power conversion device according to the tenth modification. It is a diagram.
In the modification shown in FIG. 33, in high-speed switching control, the switching element Q1 is maintained in the OFF state in the positive half cycle of the AC power supply voltage vs (see FIG. 33(c)), and in the negative half cycle of the AC power supply voltage vs. This differs from the first embodiment (see FIGS. 9C and 9D) in that the switching element Q2 is maintained in the OFF state (see FIG. 33D). Even in this manner, high-speed switching control can be performed appropriately.

その他、例えば、交流電源電圧vsが正の極性の場合、スイッチング素子Q1,Q3,Q4をオフ状態で維持し、スイッチング素子Q2によって高速スイッチングを行うようにしてもよい(交流電源電圧vsが負の極性の場合も同様)。このように制御しても、力率を改善できるとともに、高調波を抑制できる。 In addition, for example, when the AC power supply voltage vs has a positive polarity, the switching elements Q1, Q3, and Q4 may be maintained in an OFF state, and high-speed switching may be performed by the switching element Q2 (when the AC power supply voltage vs is negative). (same for polarity). Even with such control, the power factor can be improved and harmonics can be suppressed.

≪他の変形例≫
図34は、他の変形例に係る電力変換装置の制御モードの切替えに関する説明図である。
図34に示す「同期整流」は、同期整流モードを意味している。また、「同期整流+部分SW」は、部分スイッチング制御に、前記した同期整流動作が含まれる(つまり、力率改善動作と同期整流動作とを交互に行う)ことを意味している。「同期整流+高速SW」とは、高速スイッチング制御に同期整流動作が含まれることを意味している。
<<Other Modifications>>
FIG. 34 is an explanatory diagram regarding switching of the control mode of the power converter according to another modification.
"Synchronous rectification" shown in FIG. 34 means synchronous rectification mode. "Synchronous rectification + partial SW" means that partial switching control includes the above-described synchronous rectification operation (that is, the power factor improvement operation and the synchronous rectification operation are alternately performed). "Synchronous rectification + high-speed SW" means that synchronous rectification operation is included in high-speed switching control.

また、「ダイオード整流+部分SW」とは、部分スイッチング制御にダイオード整流動作が含まれることを意味している。前記した「ダイオード整流動作」とは、寄生ダイオードD1等を介して回路電流isを流す動作である。つまり、「ダイオード整流+部分SW」とは、力率改善動作とダイオード整流動作とを交互に行うことで、部分スイッチング制御を行うことを意味している。「ダイオード整流+高速SW」とは、高速スイッチング制御にダイオード整流動作が含まれることを意味している。 Also, "diode rectification + partial SW" means that the partial switching control includes the diode rectification operation. The "diode rectification operation" mentioned above is an operation of causing the circuit current is to flow through the parasitic diode D1 and the like. In other words, "diode rectification + partial SW" means performing partial switching control by alternately performing the power factor improvement operation and the diode rectification operation. "Diode rectification + high-speed SW" means that diode rectification operation is included in high-speed switching control.

例えば、制御方法X1に示すように、負荷(例えば、電流検出部11の検出値)が閾値I以上である場合には、同期整流動作を含む部分スイッチング制御を行い、負荷が閾値I未満である場合には、同期整流制御を行うようにしてもよい。 For example, as shown in the control method X1, when the load (for example, the value detected by the current detection unit 11) is equal to or higher than the threshold IE , partial switching control including synchronous rectification operation is performed so that the load is less than the threshold IE . , synchronous rectification control may be performed.

また、例えば、制御方法X2で示すように、負荷が閾値I以上である場合には、同期整流動作を含む高速スイッチング制御を行い、負荷が閾値I未満である場合には、同期整流制御を行うようにしてもよい。 Further, for example, as indicated by the control method X2, when the load is equal to or greater than the threshold IE , high-speed switching control including synchronous rectification operation is performed, and when the load is less than the threshold IE , synchronous rectification control is performed. may be performed.

図34に示す制御方法X3は、第5実施形態で説明した制御方法(図22、図23参照)と同一である。
また、例えば、制御方法X4に示すように、負荷が閾値I以上である場合には、ダイオード整流動作を含む部分スイッチング制御を行い、負荷が閾値I未満である場合には、同期整流制御を行うようにしてもよい。このようにダイオード整流動作を行うことで、交流電源電圧vsの半サイクルにおいて、オン状態にするスイッチング素子が1つで済むため、制御の簡略化を図ることができる。
The control method X3 shown in FIG. 34 is the same as the control method (see FIGS. 22 and 23) described in the fifth embodiment.
Further, for example, as shown in the control method X4, when the load is equal to or greater than the threshold IE , partial switching control including diode rectification operation is performed, and when the load is less than the threshold IE , synchronous rectification control is performed. may be performed. By performing the diode rectification operation in this manner, only one switching element is turned on in the half cycle of the AC power supply voltage vs, so control can be simplified.

図34に示す他の制御方法X5~X8については説明を省略するが、効率・高調波の抑制・昇圧等を考慮して、制御方法を適宜設定すればよい。例えば、高効率化、高調波電流の抑制、及び昇圧が主目的である場合には、制御方法X1~X3のいずれかを選択すればよい。また、高効率化は主目的でなく、高調波電流の抑制及び昇圧が主目的である場合には、制御方法X4~X6を選択すればよい。 Description of the other control methods X5 to X8 shown in FIG. 34 is omitted, but the control method may be appropriately set in consideration of efficiency, suppression of harmonics, boosting, and the like. For example, if the main purpose is to improve efficiency, suppress harmonic current, and boost voltage, one of the control methods X1 to X3 may be selected. If the main purpose is not to increase the efficiency but to suppress and boost the harmonic current, the control methods X4 to X6 may be selected.

また、各実施形態では、電流検出部11(図1参照)の検出値に基づいて制御モードを切り替える場合について説明したが、これに限らない。すなわち、配線ha,hb(図1参照)に流れる電流と正の相関を有する「負荷」を、負荷検出部14(図1参照)によって検出し、この「負荷」の大きさに基づいて制御モードを切り替えるようにしてもよい。例えば、直流電圧検出部13の検出値(出力電圧)に基づいて、制御モードを切り替えるようにしてもよい。なお、負荷が大きくなるにつれて出力電圧も大きくなるため、複数の閾値によって分けられる負荷領域と出力電圧との関係は、図22と同様になる。 Also, in each embodiment, the case where the control mode is switched based on the detection value of the current detection unit 11 (see FIG. 1) has been described, but the present invention is not limited to this. That is, the load detector 14 (see FIG. 1) detects a "load" having a positive correlation with the current flowing through the wirings ha and hb (see FIG. 1), and the control mode is determined based on the magnitude of this "load". may be switched. For example, the control mode may be switched based on the detection value (output voltage) of the DC voltage detection section 13 . Since the output voltage increases as the load increases, the relationship between the load regions divided by a plurality of thresholds and the output voltage is the same as in FIG.

また、平滑コンデンサC1(図1参照)の出力側に接続されるインバータ2(図21参照)の電流値や、このインバータ2に接続されるモータ41a(図21参照)の回転速度、モータ41aの変調率に基づいて、制御モードを切り替えるようにしてもよい。前記した「変調率」とは、インバータ2の直流電圧に対するモータ41aの印加電圧(線間電圧)の実効値の比である。なお、負荷が大きくなるにつれてインバータ2に流れる電流(モータ41aの回転速度、変調率)も大きくなる。したがって、複数の閾値によって分けられる負荷領域と、インバータ2に流れる電流(モータ41aの回転速度、変調率)との関係は、図22と同様になる。 Also, the current value of the inverter 2 (see FIG. 21) connected to the output side of the smoothing capacitor C1 (see FIG. 1), the rotational speed of the motor 41a (see FIG. 21) connected to this inverter 2, the speed of the motor 41a The control mode may be switched based on the modulation rate. The “modulation factor” mentioned above is the ratio of the effective value of the voltage (line voltage) applied to the motor 41 a to the DC voltage of the inverter 2 . Note that as the load increases, the current flowing through the inverter 2 (the rotation speed of the motor 41a and the modulation rate) also increases. Therefore, the relationship between the load regions divided by a plurality of thresholds and the current flowing through the inverter 2 (rotational speed of the motor 41a, modulation factor) is the same as in FIG.

また、各実施形態では、シャント抵抗SH_R1(図1参照)によって回路電流isを検出する構成について説明したが、これに限らない。例えば、シャント抵抗SH_R1に代えて、高速の電流トランスを用いてもよい。 Also, in each embodiment, the configuration in which the circuit current is is detected by the shunt resistor SH_R1 (see FIG. 1) has been described, but the configuration is not limited to this. For example, a high-speed current transformer may be used instead of the shunt resistor SH_R1.

また、第1実施形態では、シャント抵抗SH_R1の抵抗値が、シャント抵抗SH_R2の抵抗値よりも大きい場合について説明し、第2実施形態では、シャント抵抗SH_R1の抵抗値が、シャント抵抗SH_R2,SH_R3の抵抗値よりも大きい場合について説明したが、抵抗値の大小関係はこれに限定されない。すなわち、電力変換装置1の使用条件等に応じて、シャント抵抗SH_R1,SH_R2,SH_R3等の抵抗値を適宜設定すればよい。 Also, in the first embodiment, the case where the resistance value of the shunt resistor SH_R1 is greater than the resistance value of the shunt resistor SH_R2 will be described. Although the case of being larger than the resistance value has been described, the magnitude relationship of the resistance value is not limited to this. That is, the resistance values of the shunt resistors SH_R1, SH_R2, SH_R3, etc. may be appropriately set according to the usage conditions of the power converter 1 and the like.

また、第1実施形態では、電力変換装置1(図1参照)がシャント抵抗SH_R1,SH_R2を備える構成について説明したが、過電流の有無を検出するためのシャント抵抗SH_R2を省略してもよい。
また、第2実施形態では、電力変換装置1A(図15参照)がシャント抵抗SH_R1,SH_R2,SH_R3を備える構成について説明したが、シャント抵抗SH_R2,SH_R3の一方を省略してもよい。
また、第3実施形態では、電力変換装置1B(図17参照)がシャント抵抗SH_R1,SH_R2,SH_R3,SH_R4,SH_R5を備える構成について説明したが、これに限らない。すなわち、シャント抵抗SH_R2,SH_R3,SH_R4,SH_R5のうち一つ又は複数を適宜省略してもよい。
Also, in the first embodiment, the power conversion device 1 (see FIG. 1) has the shunt resistors SH_R1 and SH_R2, but the shunt resistor SH_R2 for detecting the presence or absence of overcurrent may be omitted.
Also, in the second embodiment, the configuration in which the power conversion device 1A (see FIG. 15) includes the shunt resistors SH_R1, SH_R2, and SH_R3 has been described, but one of the shunt resistors SH_R2 and SH_R3 may be omitted.
Moreover, although 3rd Embodiment demonstrated the structure which the power converter device 1B (refer FIG. 17) is provided with shunt resistance SH_R1, SH_R2, SH_R3, SH_R4, SH_R5, it does not restrict to this. That is, one or more of the shunt resistors SH_R2, SH_R3, SH_R4 and SH_R5 may be omitted as appropriate.

また、スイッチング素子Q1~Q4に、それぞれ、整流ダイオード(図示せず)を逆並列に接続してもよい。
また、各実施形態では、電力変換装置1が2レベルのコンバータである構成について説明したが、例えば、3レベルや5レベルのコンバータにも適用できる。
また、各実施形態では、負荷の大きさに応じて制御モードを切り替える処理について説明したが、電力変換装置1の用途や仕様によっては、負荷の大きさに関わらず、所定の制御モード(例えば、部分スイッチング制御)を実行するようにしてもよい。
Also, rectifying diodes (not shown) may be connected in anti-parallel to the switching elements Q1 to Q4, respectively.
Further, in each embodiment, the configuration in which the power conversion device 1 is a two-level converter has been described, but it can also be applied to a three-level or five-level converter, for example.
Further, in each embodiment, the process of switching the control mode according to the size of the load has been described. partial switching control) may be executed.

また、各実施形態や変形例は、適宜組み合わせることができる。例えば、制御方法X1~X8(図34参照)のいずれかを用いて電力変換を行うことで、第5実施形態で説明した圧縮機41(図21参照)のモータ41aを駆動するようにしてもよい。 In addition, each embodiment and modifications can be combined as appropriate. For example, by performing power conversion using any of the control methods X1 to X8 (see FIG. 34), even if the motor 41a of the compressor 41 (see FIG. 21) described in the fifth embodiment is driven, good.

また、第5実施形態では、電力変換装置1が空気調和機W(図21参照)に搭載される場合について説明したが、これに限らない。例えば、電車、自動車、冷蔵庫、給湯機、洗濯機、乗り物、バッテリへの充電設備等に電力変換装置1を搭載してもよい。 Moreover, in the fifth embodiment, the case where the power conversion device 1 is mounted on the air conditioner W (see FIG. 21) has been described, but the present invention is not limited to this. For example, the power conversion device 1 may be installed in trains, automobiles, refrigerators, water heaters, washing machines, vehicles, battery charging facilities, and the like.

また、前記した各構成、機能、処理部、処理手段などは、それらの一部又は全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報を、メモリ、ハードディスクなどの記録装置、又は、フラッシュメモリカード、DVD(Digital Versatile Disk)等の記録媒体に記録してもよい。 Further, each configuration, function, processing unit, processing means, etc. described above may be implemented partially or entirely by hardware such as an integrated circuit. Each of the above configurations, functions, etc. may be realized by software by a processor interpreting and executing a program for realizing each function. Information such as programs, tables, and files that implement each function may be recorded in a recording device such as a memory or hard disk, or a recording medium such as a flash memory card or DVD (Digital Versatile Disk).

また、各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、ほとんど全ての構成が相互に接続されていると考えてもよい。 In addition, in each embodiment, the control lines and information lines indicate those considered necessary for explanation, and not all the control lines and information lines are necessarily indicated on the product. In fact, it may be considered that almost all configurations are interconnected.

1,1A,1B,1C,1D,1E 電力変換装置
10 ブリッジ回路
L1 リアクトル
C1 平滑コンデンサ
Q1,Q2,Q3,Q4 スイッチング素子
D1,D2,D3,D4 寄生ダイオード
J1 第1レグ
J2 第2レグ
11 電流検出部(第5電流検出部)
12 交流電圧検出部
13 直流電圧検出部
14 負荷検出部
15 制御部
G 交流電源
H 負荷
ha 配線
SH_R1 シャント抵抗(第1電流検出部、第1シャント抵抗)
A1 増幅回路(第1電流検出部)
SH_R2 シャント抵抗(第2電流検出部、第2シャント抵抗)
A2 増幅回路(第2電流検出部)
SH_R3 シャント抵抗(第3電流検出部、第3シャント抵抗)
31 短絡電流検出部(第4電流検出部)
SH_R4,SH_R5 シャント抵抗(第4電流検出部)
D6 発光ダイオード(第4電流検出部)
D7 ダイオード(第4電流検出部)
Q5 フォトトランジスタ(第4電流検出部)
W 空気調和機
2 インバータ
4 冷媒回路
41 圧縮機
41a モータ
42 室外熱交換器
43 膨張弁
44 室内熱交換器
k 配管
1, 1A, 1B, 1C, 1D, 1E power converter 10 bridge circuit L1 reactor C1 smoothing capacitor Q1, Q2, Q3, Q4 switching element D1, D2, D3, D4 parasitic diode J1 first leg J2 second leg 11 current Detection unit (fifth current detection unit)
12 AC voltage detection unit 13 DC voltage detection unit 14 Load detection unit 15 Control unit G AC power supply H Load ha Wiring SH_R1 Shunt resistor (first current detection unit, first shunt resistor)
A1 amplifier circuit (first current detector)
SH_R2 shunt resistor (second current detector, second shunt resistor)
A2 amplifier circuit (second current detector)
SH_R3 shunt resistor (third current detector, third shunt resistor)
31 short-circuit current detector (fourth current detector)
SH_R4, SH_R5 shunt resistance (fourth current detector)
D6 light-emitting diode (fourth current detector)
D7 diode (fourth current detector)
Q5 phototransistor (fourth current detector)
W Air conditioner 2 Inverter 4 Refrigerant circuit 41 Compressor 41a Motor 42 Outdoor heat exchanger 43 Expansion valve 44 Indoor heat exchanger k Piping

Claims (7)

ブリッジ形に接続された複数のスイッチング素子を有し、入力側は交流電源に接続され、出力側は負荷に接続されるブリッジ回路と、
前記交流電源と前記ブリッジ回路とを接続する配線に設けられるリアクトルと、
前記ブリッジ回路の出力側に接続される平滑コンデンサと、
前記ブリッジ回路及び前記平滑コンデンサを介した電流経路を流れる電流を検出する第1電流検出部と、
前記平滑コンデンサを介さずに前記ブリッジ回路及び前記リアクトルを介した短絡経路を流れる短絡電流を検出する第2電流検出部と、
前記複数のスイッチング素子を制御する制御部と、を備え、
前記第1電流検出部は、前記電流経路に設けられる第1シャント抵抗を有し、
前記第2電流検出部は、前記短絡経路に設けられる第2シャント抵抗を有し、
前記第1シャント抵抗の抵抗値は、前記第2シャント抵抗の抵抗値よりも大きく、
前記第2電流検出部は、前記交流電源の電圧が正の半サイクルの期間において、前記平滑コンデンサを介さずに前記リアクトルを介して流れる短絡電流を検出し、
前記制御部は、前記電流経路に含まれる前記スイッチング素子のうち、前記平滑コンデンサの正極に接続されているスイッチング素子を、前記ブリッジ回路に電流が流れている期間の少なくとも一部でオン状態とし、前記電流経路に含まれないスイッチング素子をオフ状態で維持する同期整流動作を、前記第1電流検出部の検出値に基づいて実行するこ
を特徴とする電力変換装置。
a bridge circuit having a plurality of switching elements connected in a bridge configuration, the input side of which is connected to an AC power supply, and the output side of which is connected to a load;
a reactor provided in a wiring that connects the AC power supply and the bridge circuit;
a smoothing capacitor connected to the output side of the bridge circuit;
a first current detection unit that detects a current flowing through a current path via the bridge circuit and the smoothing capacitor;
a second current detection unit that detects a short-circuit current flowing through a short-circuit path via the bridge circuit and the reactor without passing through the smoothing capacitor;
A control unit that controls the plurality of switching elements,
The first current detection unit has a first shunt resistor provided in the current path,
The second current detection unit has a second shunt resistor provided in the short-circuit path,
The resistance value of the first shunt resistor is greater than the resistance value of the second shunt resistor,
The second current detection unit detects a short-circuit current flowing through the reactor without passing through the smoothing capacitor during a positive half cycle period of the voltage of the AC power supply,
The control unit turns on the switching element connected to the positive electrode of the smoothing capacitor among the switching elements included in the current path during at least part of a period in which the current flows through the bridge circuit, A power converter, wherein a synchronous rectification operation that maintains a switching element not included in the current path in an OFF state is performed based on a detection value of the first current detection unit.
前記ブリッジ回路は、前記複数のスイッチング素子として、第1スイッチング素子、第2スイッチング素子、第3スイッチング素子、及び第4スイッチング素子を有し、The bridge circuit has a first switching element, a second switching element, a third switching element, and a fourth switching element as the plurality of switching elements,
前記第1スイッチング素子及び前記第2スイッチング素子が直列接続されてなる第1レグと、前記第3スイッチング素子及び前記第4スイッチング素子が直列接続されてなる第2レグと、が並列接続されており、A first leg in which the first switching element and the second switching element are connected in series, and a second leg in which the third switching element and the fourth switching element are connected in series are connected in parallel. ,
前記第2スイッチング素子と、前記第4スイッチング素子とは、前記第2シャント抵抗を介して接続されていることThe second switching element and the fourth switching element are connected via the second shunt resistor.
を特徴とする請求項1に記載の電力変換装置。The power converter according to claim 1, characterized by:
前記配線は、その一端が前記交流電源に接続され、他端が前記第1スイッチング素子と前記第2スイッチング素子との接続点に接続されていることThe wiring has one end connected to the AC power supply and the other end connected to a connection point between the first switching element and the second switching element.
を特徴とする請求項2に記載の電力変換装置。The power converter according to claim 2, characterized by:
前記制御部は、The control unit
前記複数のスイッチング素子のうち、前記短絡経路において、前記リアクトルに接続されているスイッチング素子をオン状態にすることで力率を改善する力率改善動作を実行し、Execute a power factor improvement operation for improving the power factor by turning on a switching element connected to the reactor in the short-circuit path among the plurality of switching elements,
前記交流電源の電圧が正の半サイクルの期間での前記力率改善動作の実行中、前記第2電流検出部の検出値に基づいて、前記ブリッジ回路に過電流が流れていると判定した場合、前記負荷への出力電流を減少させるか、又は、前記負荷を停止させることWhen it is determined that overcurrent is flowing in the bridge circuit based on the detection value of the second current detection unit during the execution of the power factor improvement operation in the positive half cycle period of the voltage of the AC power supply. , reducing the output current to the load or stopping the load
を特徴とする請求項1に記載の電力変換装置。The power converter according to claim 1, characterized by:
前記交流電源の電圧が負の半サイクルの期間において、前記平滑コンデンサを介さずに、前記平滑コンデンサの負極側に接続された前記スイッチング素子、及び前記リアクトルを介して流れる短絡電流を検出する第3電流検出部を備え、a third detecting a short-circuit current flowing through the switching element connected to the negative electrode side of the smoothing capacitor and the reactor, not through the smoothing capacitor, during a period of a negative half cycle of the voltage of the AC power supply; Equipped with a current detector,
前記第3電流検出部は、前記平滑コンデンサの負極側に接続された前記スイッチング素子、及び前記リアクトルを介した経路に設けられる第3シャント抵抗を有し、The third current detection unit has a third shunt resistor provided in a path through the switching element connected to the negative electrode side of the smoothing capacitor and the reactor,
前記第1シャント抵抗の抵抗値は、前記第3シャント抵抗の抵抗値よりも大きいことThe resistance value of the first shunt resistor is greater than the resistance value of the third shunt resistor
を特徴とする請求項1に記載の電力変換装置。The power converter according to claim 1, characterized by:
前記制御部は、The control unit
前記複数のスイッチング素子のうち、前記短絡経路において、前記リアクトルに接続されているスイッチング素子をオン状態にすることで力率を改善する力率改善動作を実行し、Execute a power factor improvement operation for improving the power factor by turning on a switching element connected to the reactor in the short-circuit path among the plurality of switching elements,
前記交流電源の電圧が負の半サイクルの期間での前記力率改善動作の実行中、前記第3電流検出部の検出値が所定閾値以上である場合、前記複数のスイッチング素子のオン・オフに誤りがあると判定し、前記負荷への出力電流を減少させるか、又は、前記負荷を停止させることWhen the detected value of the third current detection unit is equal to or greater than a predetermined threshold value during the execution of the power factor improvement operation during the negative half cycle period of the voltage of the AC power supply, the plurality of switching elements are turned on and off. determining that there is an error and reducing the output current to the load or stopping the load;
を特徴とする請求項5に記載の電力変換装置。The power converter according to claim 5, characterized by:
請求項1から請求項6のいずれか一項に記載の電力変換装置と、A power converter according to any one of claims 1 to 6;
前記電力変換装置から印加される直流電圧を交流電圧に変換するインバータと、an inverter that converts a DC voltage applied from the power conversion device to an AC voltage;
前記インバータから印加される交流電圧で駆動するモータと、を備えるとともに、and a motor driven by the AC voltage applied from the inverter,
前記モータによって駆動する圧縮機と、室外熱交換器と、膨張弁と、室内熱交換器と、a compressor driven by the motor, an outdoor heat exchanger, an expansion valve, an indoor heat exchanger,
が配管を介して環状に順次接続されてなる冷媒回路を備えることprovided with a refrigerant circuit in which are sequentially connected in a circular fashion via piping
を特徴とする空気調和機。An air conditioner characterized by:
JP2022109608A 2016-06-28 2022-07-07 Power converter and air conditioner Active JP7333450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022109608A JP7333450B2 (en) 2016-06-28 2022-07-07 Power converter and air conditioner

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016127252A JP6877898B2 (en) 2016-06-28 2016-06-28 Power converter and air conditioner equipped with it
JP2021074762A JP7104209B2 (en) 2016-06-28 2021-04-27 Power converter and air conditioner equipped with it
JP2022109608A JP7333450B2 (en) 2016-06-28 2022-07-07 Power converter and air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021074762A Division JP7104209B2 (en) 2016-06-28 2021-04-27 Power converter and air conditioner equipped with it

Publications (2)

Publication Number Publication Date
JP2022125276A JP2022125276A (en) 2022-08-26
JP7333450B2 true JP7333450B2 (en) 2023-08-24

Family

ID=87888364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022109608A Active JP7333450B2 (en) 2016-06-28 2022-07-07 Power converter and air conditioner

Country Status (1)

Country Link
JP (1) JP7333450B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189114A (en) 2008-02-05 2009-08-20 Panasonic Corp Direct-current power supply device
JP2015208109A (en) 2014-04-21 2015-11-19 日立アプライアンス株式会社 Dc power supply device and air conditioner using the same
JP2015211488A (en) 2014-04-24 2015-11-24 日立アプライアンス株式会社 Booster circuit and air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009033814A (en) * 2007-07-25 2009-02-12 Panasonic Corp Dc power supply device
JP5743995B2 (en) * 2012-10-30 2015-07-01 三菱電機株式会社 DC power supply device, refrigeration cycle device, air conditioner and refrigerator
JP2015061322A (en) * 2013-09-17 2015-03-30 株式会社日本自動車部品総合研究所 Power conversion device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009189114A (en) 2008-02-05 2009-08-20 Panasonic Corp Direct-current power supply device
JP2015208109A (en) 2014-04-21 2015-11-19 日立アプライアンス株式会社 Dc power supply device and air conditioner using the same
JP2015211488A (en) 2014-04-24 2015-11-24 日立アプライアンス株式会社 Booster circuit and air conditioner

Also Published As

Publication number Publication date
JP2022125276A (en) 2022-08-26

Similar Documents

Publication Publication Date Title
JP7104209B2 (en) Power converter and air conditioner equipped with it
CN109874379B (en) Power conversion device and air conditioner
CN107546991B (en) Power conversion device and air conditioner provided with power conversion device
JP6478881B2 (en) DC power supply and air conditioner
TWI664802B (en) Power conversion device and refrigerating and air-conditioning equipment
JP6798802B2 (en) DC power supply and air conditioner
JP6671126B2 (en) DC power supply and air conditioner
JP6431413B2 (en) Power conversion device, air conditioner equipped with the same, and power conversion method
JP6416690B2 (en) DC power supply and air conditioner
JP2017055475A (en) Dc power supply unit and air conditioner
JPWO2019082246A1 (en) DC power supply and air conditioner
JP7333450B2 (en) Power converter and air conditioner
JP6906077B2 (en) DC power supply and air conditioner
KR20140096627A (en) Power converting apparatus and air conditioner having the same
JP6955077B2 (en) DC power supply and air conditioner
JP6982254B2 (en) Power converter and air conditioner
JP7238186B2 (en) Power conversion device and air conditioner provided with the same
JP6884254B2 (en) Power converter and air conditioner
JP6876386B2 (en) DC power supply and air conditioner
JP7359925B2 (en) DC power supplies and air conditioners
AU2013270449B2 (en) Converter circuit and motor drive control apparatus, air-conditioner, refrigerator, and induction heating cooker provided with the circuit
JP7313231B2 (en) DC power supply, motor drive and air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220803

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7333450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150