JP7333261B2 - 熱量計 - Google Patents

熱量計 Download PDF

Info

Publication number
JP7333261B2
JP7333261B2 JP2019231344A JP2019231344A JP7333261B2 JP 7333261 B2 JP7333261 B2 JP 7333261B2 JP 2019231344 A JP2019231344 A JP 2019231344A JP 2019231344 A JP2019231344 A JP 2019231344A JP 7333261 B2 JP7333261 B2 JP 7333261B2
Authority
JP
Japan
Prior art keywords
calorific value
usage time
temperature rise
calorimeter
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019231344A
Other languages
English (en)
Other versions
JP2021099269A (ja
Inventor
尚史 小澤
辰行 奥野
良春 名川
辰志 南
香那子 倉橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Energy System Corp
Tokyo Gas Co Ltd
Original Assignee
Yazaki Energy System Corp
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Energy System Corp, Tokyo Gas Co Ltd filed Critical Yazaki Energy System Corp
Priority to JP2019231344A priority Critical patent/JP7333261B2/ja
Publication of JP2021099269A publication Critical patent/JP2021099269A/ja
Application granted granted Critical
Publication of JP7333261B2 publication Critical patent/JP7333261B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

本発明は、熱量計に関する。
従来、測定対象となる燃料ガスが流れる管材と、管材の内側に塗布された触媒と、触媒が設けられる管材上の部位を加熱するコイルと、当該加熱部位における温度に応じた信号を出力する温度測定部とを備えた熱量計が開示されている(例えば特許文献1参照)。この熱量計は、コイルによる加熱環境下において触媒を利用して燃料ガスを燃焼させ、燃焼時における温度上昇に基づいて発熱量を算出する。
特開2017-75882号公報
しかし、特許文献1に記載の熱量計は、温度上昇により触媒のシンタリングが進み、触媒が劣化して温度上昇幅ΔTが低下することから、発熱量の算出精度が低下してしまう。
本発明はこのような従来の課題を解決するためになされたものであり、その発明の目的とするところは、発熱量の算出精度を向上させることができる熱量計を提供することにある。
本発明の熱量計は、燃料ガスを燃焼させたときの温度上昇に基づいて発熱量を求めるためのものである。熱量計は、燃焼機能部と発熱量算出部とを備えている。燃焼機能部は、前端から後端に向けて測定対象となる燃料ガスが流れる管材と、管材の中空部を埋めるように管材の内側に設けられ燃料ガスを燃焼させるための触媒が担持された多孔質体と、触媒を加熱する発熱源と、発熱源によって加熱された触媒と燃料ガスとの反応による温度上昇に応じた信号を出力すると共に管材の後端側から挿入状態とされ先端が多孔質体の略中心部に位置したシース熱電対とを備えている。発熱量算出部は、燃焼機能部の累積使用時間を計測し、予め求められている累積使用時間と補正量との関係を示すデータと、計測した累積使用時間とから累積使用時間に応じた補正量を求める。さらに、発熱量算出部は、当該補正量をシース熱電対からの信号に基づく温度上昇幅に対して加算して発熱量を算出する。
この熱量計によれば、温度測定部からの信号に基づく温度上昇幅に対して燃焼機能部の累積使用時間に応じた補正量を加算して発熱量を算出する。このため、累積使用により低下する温度上昇幅に対して補正値が加算されることとなり、発熱量の算出精度を向上させることができる。
本発明によれば、発熱量の算出精度を向上させることができる熱量計を提供することができる。
本発明の実施形態に係る熱量計を含む計測システムを示すブロック図である。 図1に示した熱量計の構成を示す構成図である。 図2に示した構成の一部拡大図である。 温度上昇幅の低下を示すグラフである。 補正された温度上昇幅を示すグラフである。
以下、本発明を好適な実施形態に沿って説明する。なお、本発明は以下に示す実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において適宜変更可能である。また、以下に示す実施形態においては、一部構成の図示や説明を省略している箇所があるが、省略された技術の詳細については、以下に説明する内容と矛盾点が発生しない範囲内において、適宜公知又は周知の技術が適用されていることはいうまでもない。
図1は、本発明の実施形態に係る熱量計を含む計測システムを示すブロック図である。図1に示す計測システム1は、ガス混合装置10と、熱量計20とを備え、ガス混合装置10による可燃ガスと空気との混合によって得られた混合ガスを燃料ガスとして熱量計20に供給し、熱量計20にて燃料ガスを燃焼させて発熱量を測定するものである。
このような計測システム1においてガス混合装置10は、第1~第3配管11~13と、第1及び第2流量計14a,14bと、第1及び第2バルブ15a,15bと、混合器16とを備えている。
第1配管11は、上流側のレギュレーターR1と混合器16とを接続する配管であって、レギュレーターR1を介して流れてくる可燃ガスを混合器16まで導くものである。第1流量計14aは、第1配管11上に設けられ、第1配管11を流れる可燃ガスの流量を計測するものである。第1バルブ15aは、第1配管11の第1流量計14aの下流側に設けられたニードルバルブである。
第2配管12は、上流側のレギュレーターR2と混合器16とを接続する配管であって、レギュレーターR2を介して流れてくる空気を混合器16まで導くものである。第2流量計14bは、第2配管12上に設けられ、第2配管12を流れる空気の流量を計測するものである。第2バルブ15bは、第2配管12の第2流量計14bの下流側に設けられたニードルバルブである。
混合器16は、第1及び第2配管11,12を通じて流れてくる可燃ガスと空気とを混合するものである。第3配管13は、混合器16による混合によって得られた混合ガスを、燃料ガスとして熱量計20に供給するための配管である。
図2は、図1に示した熱量計20の構成を示す構成図であり、図3は、図2に示した構成の一部拡大図である。図2に示すように、熱量計20は、燃料ガスを燃焼させたときの温度変化に基づいて発熱量を求めるものであり、燃焼機能部21と、定電圧源22と、データロガー23と、演算装置(発熱量算出部)24とを備えている。
燃焼機能部21は、ガス混合装置10からの燃料ガスを、定電圧源22からの電圧を利用して燃焼させるものであり、図2及び図3に示すように、管材25、多孔質体26、ヒータ(発熱源)27、及びシース熱電対(温度測定部)28を備えている。
管材25は、測定対象となる燃料ガスが流れる配管であり、図1に示した第3配管13が接続されている。管材25は、例えばセラミック管(材質はアルミナ)により構成されている。なお、管材25は、セラミックに限らず、ヒータ27の加熱に耐え得る素材であれば、他の素材であってもよい。
多孔質体26は、内部に多数の気孔を有する構造体であり、本実施形態では金属材料(例えばステンレス)によって形成されて金属多孔質体となっている。また、多孔質体26は、燃料ガスを燃焼させるために、パラジウムや白金等の触媒26aを担持している。触媒26aは、ディップコーティング等の手法により、ペースト状にされたうえで含浸させられることにより多孔質体26に担持されている。
このような多孔質体26は、管材25の内側のうち後端側(燃焼ガスの流れ方向における下流側)に設けられている。本実施形態において多孔質体26は、外周形状が管材25の内周形状と概ね対応しており、管材25の中空部を埋めるように管材25内に配置されている。
ヒータ27は、管材25内に配置された多孔質体26を加熱するものである。ヒータ27は、管材25の外周面25bのうち多孔質体26が設けられる位置と対向して取り付けられている。ヒータ27は、定電圧源22から電圧が印加されて発熱し、管材25及び多孔質体26を所定の温度(例えば400℃)に加熱する。
シース熱電対28は、多孔質体26の温度に応じた信号を出力するものである。シース熱電対28は、保護管であるシース内に熱電対素線を納め、絶縁物で充填密封して一体化したものであり、ゼーベック効果を利用して温度を測定する。シース熱電対28は、管材25の後端側から管材25内に挿入されて、先端が多孔質体26の略中心部まで挿入されている。なお、本実施形態においてはシース熱電対28を用いているが、これに限らず、他の温度計測機器を用いてもよい。
ここで、ヒータ27により多孔質体26が昇温されており、多孔質体26(管材25内)に燃料ガスが供給された場合、多孔質体26において燃料ガスが燃焼する。このとき、多孔質体26の温度は上昇することとなる。シース熱電対28は、このような温度に応じた信号を出力することとなる。
データロガー23は、シース熱電対28から出力される信号、すなわち、多孔質体26の温度を記録するものである。演算装置24は、例えば例えばPC(Personal Computer)によって構成され、データロガー23の記録内容に基づいて燃焼機能部21に供給された燃料ガスの発熱量を演算するものである。この演算装置24は、例えば温度上昇幅ΔTと発熱量との相関を示すデータを記憶しており、この相関データに基づいて発熱量を算出する。なお、演算装置24は、発熱量を演算するにあたり、第1流量計14a及び第2流量計14bの計測値も入力する。
さらに熱量計20は保護容器29を備えている。保護容器29は、管材25の後端側を収納する断熱性の筐体である。この保護容器29は、例えば風の影響によりシース熱電対28による検出温度が変動してしまう事態を防止している。
ここで、上記のような熱量計20は、図3に示すように、温度上昇により触媒26aのシンタリングが進み、触媒26aが劣化した結果、温度上昇幅ΔTが低下することから、発熱量の算出精度が低下してしまう。
図4は、温度上昇幅ΔTの低下を示すグラフである。なお、図4に示す例においては触媒26aにパラジウムが用いられている。
図4に示すように、或る燃料ガスが管材25に導入された場合において、燃焼機能部21が未使用(累積使用時間がゼロ)である場合の温度上昇幅ΔTは約90℃である。しかし、この温度上昇幅ΔTは、燃焼機能部21の累積使用時間が大きくなるに従って低下していく傾向があり、具体的に累積使用時間が100hrで約75℃となり、200hrで約70℃となり、300hrで約68℃となり、400hrで約66℃となってしまう。
ここで、本件発明者らは、この温度上昇幅ΔTの低下の一因として、触媒活性とは無関係である、ベース温度の低下が存在することを見出した。ベース温度が低下してしまうと、連続計測ではその計測時点でのベース温度が測定できず、燃焼時の温度しか測定できないため、温度上昇幅ΔTの算出時には例えば初期のベース温度が利用され、結果として、温度上昇幅ΔTが小さく算出されてしまう(低下してしまう)。表1は、累積使用時間によるベース温度の変化を示す表である。
Figure 0007333261000001
表1に示すように、パラジウムを触媒26aとする燃焼機能部21について、開始時(すなわち累積使用時間0hr)においては、ベース温度が399.08℃であるが、終了時(すなわち累積使用時間413hr)においては、ベース温度が388.08℃まで低下してしまう。
そこで、本実施形態に係る演算装置24は、シース熱電対28からの信号に基づく温度上昇幅ΔTに対して、燃焼機能部21の累積使用時間が長くなるに従って大きな値となる補正量を加算して発熱量を算出する機能を備えている。
具体的に演算装置24は、T(0)を初期のベース温度とし、T(t)を任意の累積使用時間t1時点のベース温度とし、現時点の累積使用時間をtとした場合、補正量を
Figure 0007333261000002

なる式から算出する。ここで、例えば累積使用時間t1を例えば413hrとした場合、上記表1との関係から式(1)は11×t/413となる。よって、演算装置24は、例えば累積使用時間が400hrである場合、補正量を約10.7℃(11×400/413)と算出する。
具体的には補正がない場合において累積使用時間が400hrであるとき、初期からの温度変化量(温度上昇幅ΔTの低下)は-28.6℃となってしまい、劣化により初期と比べて30.6%ΔTが低下しているように見えてしまう。これに対して、上記式(1)により、触媒活性の低下とは無関係な温度変化量に相当する補正量を加算することで、初期からの温度変化量(温度上昇幅ΔTの低下)は-17.9℃(19.2%)と、劣化に相当する温度低下を正しく算出できる。このように、或る累積使用時間tのときのベース温度を上手く推測し、そのベース温度を基に温度上昇幅ΔTを算出すると、誤差が少なく熱量算出できる。よって、熱量計算値として、低めに算出される値を、より正しい値に補正できる。
なお、図4に示すように、温度上昇幅ΔTの低下は累積使用時間の増加に応じて略比例的となっている。このため、補正量については上記式(1)の比例式(一次式)によって算出することができるが、特に一次式に限らず、二次以上の式によって算出されてもよい。
図5は、補正された温度上昇幅ΔTを示すグラフである。なお、図5に示すグラフは図4に示したものと同じ条件での温度上昇幅ΔT(補正済み)を示している。図5に示すように、補正された温度上昇幅ΔTは少なくとも75℃程度を維持している。このため、ベース温度の低下による見かけ上の温度上昇幅ΔTの低下が補正され、実際の温度上昇幅ΔTに近い値が算出されており、発熱量の算出精度を向上させることができる。
さらに、本件発明者らは、温度上昇幅ΔTの低下の一因として触媒劣化による触媒活性の低下が存在することを見出した。触媒活性が低下すると、燃焼時に温度が上昇し難くなって、燃焼時温度の低下を招く。このため、本実施形態に係る演算装置24は、累積使用時間に対する燃焼時温度の低下量のデータを記憶しており、この累積使用時間に応じた低下量を補正量として加算することとなる。これによっても、温度上昇幅ΔTの低下を考慮して発熱量が算出され、発熱量の算出精度を向上させることができる。
次に、本実施形態に係る熱量計20の動作を説明する。
まず、データロガー23は、燃料ガスが供給されていない時点でシース熱電対28からの信号に基づいてベース温度(すなわちヒータ27によって加熱される多孔質体26の温度)を記録する。次いで、ガス混合装置10による可燃ガスと空気との混合によって得られた燃料ガスが熱量計20に供給される。
燃料ガスは、管材25内の多孔質体26まで至り触媒26aと反応する。触媒26aとの反応によって多孔質体26は温度上昇する。データロガー23は、シース熱電対28からの信号に基づいて、このような上昇した温度を記録する。
ここで、演算装置24は、燃焼機能部21について累積使用時間を計測しており、現在の累積使用時間に基づいて補正量(ベース温度の低下に基づく補正量、及び、触媒活性の低下に基づく補正量)を算出する。次に、演算装置24は、上昇後の温度からベース温度を差し引くと共に補正量を加算して、補正された温度上昇幅ΔTを算出する。次いで、演算装置24は、補正された温度上昇幅ΔTと予め記憶される相関データとに基づいて発熱量を算出する。
このようにして、本実施形態に係る熱量計20によれば、シース熱電対28からの信号に基づく温度上昇幅ΔTに対して燃焼機能部21の累積使用時間が長くなるに従って大きな値となる補正量を加算して発熱量を算出する。このため、累積使用時間が長くなるほど進行するベース温度の低下や触媒26aのシンタリングによる触媒活性低下に応じた補正値を加算することとなり、発熱量の算出精度を向上させることができる。
また、本件発明者らは触媒26aの劣化とは無関係にベース温度が低下し、これが温度上昇幅ΔTの低下の一因となっていることを見出した。そこで、演算装置24が現時点の累積使用時間に基づく現時点のベース温度の低下量を加味した補正量を加算することで、発熱量の算出精度を向上させることができる。
また、本件発明者らは触媒26aのシンタリングの進行に応じて触媒活性が低下し、これが温度上昇幅ΔTの低下の一因となっていることを見出した。そこで、演算装置24が現時点の累積使用時間に基づく触媒活性の低下による燃焼時温度の低下を加味した補正量を加算することで、発熱量の算出精度を向上させることができる。
以上、実施形態に基づき本発明を説明したが、本発明は上記実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲で、変更を加えてもよい。
例えば、本実施形態において熱量計20は保護容器29を備えているが、特にこれに限らず、備えない構成であってもよい。また、本実施形態において触媒26aは多孔質体26に担持されているが、これに限らず、単に触媒26aのみが管材25の内周面に設けられていてもよい。加えて、多孔質体26は管材25の後端側を塞ぐように設けられているが、これに限らず、中央部開口を有するなど塞ぐように設けられていなくともよい。さらに、多孔質体26(触媒26a)は管材25の後端側に限らず、管材25の長手方向中央あたりに設けられていてもよい。
さらに、本実施形態においてはヒータ27を発熱源として説明したが、これに限らず、可能であれば特定部位を加熱する熱風等を送り込む手段などであってもよい。加えて、ヒータ27は、管材25を加熱することで間接的に触媒26aを加熱するものであるが、これに限らず、触媒26a(多孔質体26)を直接加熱するように配置されていてもよい。
加えて、本実施形態に係る演算装置24は温度上昇幅ΔTに対して、燃焼機能部21の累積使用時間が長くなるに従って大きな値となる補正量を加算して発熱量を算出するが、補正量は累積使用時間が長くなるに従って大きな値となるものでなくともよい。例えば、管材25の素材の問題等により、例えば累積使用時間が或る時間に達したときに過渡的に大きな温度上昇幅ΔTが得られる等の事情がある場合には、その累積使用時間に達したときの補正量は小さくされてもよい。また、例えば特定の触媒26aを使用した場合に、或る累積使用時間以上では温度上昇幅ΔTについて低下が殆ど見られなくなる等の事情がある場合には、その累積使用時間以上においては補正量が一定値とされてもよい。すなわち、補正量は累積使用時間が長くなるに従って大きな値となるものに限らず、種々の事情等を考慮して、累積使用時間に応じて定められたものであってもよい。
1 :計測システム
10 :ガス混合装置
11 :第1配管
12 :第2配管
13 :第3配管
14a :第1流量計
14b :第2流量計
15a :第1バルブ
15b :第2バルブ
16 :混合器
20 :熱量計
21 :燃焼機能部
22 :定電圧源
23 :データロガー
24 :演算装置(発熱量算出部)
25 :管材
25b :外周面
26 :多孔質体
26a :触媒
27 :ヒータ(発熱源)
28 :シース熱電対(温度測定部)
29 :保護容器
ΔT :温度上昇幅
R1,R2:レギュレーター

Claims (3)

  1. 燃料ガスを燃焼させたときの温度上昇に基づいて発熱量を求めるための熱量計であって、
    前端から後端に向けて測定対象となる燃料ガスが流れる管材と、前記管材の中空部を埋めるように前記管材の内側に設けられ燃料ガスを燃焼させるための触媒が担持された多孔質体と、前記触媒を加熱する発熱源と、前記発熱源によって加熱された前記触媒と燃料ガスとの反応による温度上昇に応じた信号を出力すると共に前記管材の後端側から挿入状態とされ先端が前記多孔質体の略中心部に位置したシース熱電対と、を備えた燃焼機能部と、
    前記シース熱電対からの信号に基づく温度上昇幅から発熱量を算出する発熱量算出部と、を備え、
    前記発熱量算出部は、前記燃焼機能部の累積使用時間を計測し、予め求められている累積使用時間と補正量との関係を示すデータと、計測した累積使用時間とから累積使用時間に応じた補正量を求め、当該補正量を前記シース熱電対からの信号に基づく温度上昇幅に対して加算して発熱量を算出する
    ことを特徴とする熱量計。
  2. 前記発熱量算出部は、現時点の累積使用時間に基づく現時点のベース温度の低下量を加味した前記補正量を加算する
    ことを特徴とする請求項1に記載の熱量計。
  3. 前記発熱量算出部は、現時点の累積使用時間に基づく触媒活性の低下による燃焼時温度の低下を加味した前記補正量を加算する
    ことを特徴とする請求項1又は請求項2のいずれかに記載の熱量計。
JP2019231344A 2019-12-23 2019-12-23 熱量計 Active JP7333261B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019231344A JP7333261B2 (ja) 2019-12-23 2019-12-23 熱量計

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231344A JP7333261B2 (ja) 2019-12-23 2019-12-23 熱量計

Publications (2)

Publication Number Publication Date
JP2021099269A JP2021099269A (ja) 2021-07-01
JP7333261B2 true JP7333261B2 (ja) 2023-08-24

Family

ID=76541051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231344A Active JP7333261B2 (ja) 2019-12-23 2019-12-23 熱量計

Country Status (1)

Country Link
JP (1) JP7333261B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114046908B (zh) * 2021-10-28 2024-08-30 清研华科新能源研究院(南京)有限公司 一种实时测量锂电池热失控放热量的方法及其装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333426A (ja) 2001-05-07 2002-11-22 Matsushita Electric Ind Co Ltd ガスセンサ
JP2004044600A (ja) 2003-08-22 2004-02-12 Ngk Spark Plug Co Ltd ガス濃度センサの使用方法及びガス濃度センサの制御装置
JP2005201648A (ja) 2004-01-13 2005-07-28 Tokyo Gas Co Ltd 発熱量算出装置及びその方法、並びに発熱量測定システム
JP2007231818A (ja) 2006-02-28 2007-09-13 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JP2012128149A (ja) 2010-12-15 2012-07-05 Sony Corp 表示装置
JP2014235082A (ja) 2013-06-03 2014-12-15 矢崎エナジーシステム株式会社 ガス警報装置
JP2015087165A (ja) 2013-10-29 2015-05-07 東京瓦斯株式会社 熱量計及び熱量計測方法
JP2017075882A (ja) 2015-10-16 2017-04-20 矢崎エナジーシステム株式会社 熱量計
JP2017201246A (ja) 2016-05-02 2017-11-09 トヨタ自動車株式会社 窒素酸化物センサ
JP2019070365A (ja) 2017-10-11 2019-05-09 トヨタ自動車株式会社 温度推定モジュールおよび内燃機関の制御装置
JP2019528463A (ja) 2016-08-18 2019-10-10 ネバダ・ナノテック・システムズ・インコーポレイテッド 物質の少なくとも1つの特性を決定するためのシステムおよび方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002333426A (ja) 2001-05-07 2002-11-22 Matsushita Electric Ind Co Ltd ガスセンサ
JP2004044600A (ja) 2003-08-22 2004-02-12 Ngk Spark Plug Co Ltd ガス濃度センサの使用方法及びガス濃度センサの制御装置
JP2005201648A (ja) 2004-01-13 2005-07-28 Tokyo Gas Co Ltd 発熱量算出装置及びその方法、並びに発熱量測定システム
JP2007231818A (ja) 2006-02-28 2007-09-13 Nissan Motor Co Ltd 内燃機関の燃料供給装置
JP2012128149A (ja) 2010-12-15 2012-07-05 Sony Corp 表示装置
JP2014235082A (ja) 2013-06-03 2014-12-15 矢崎エナジーシステム株式会社 ガス警報装置
JP2015087165A (ja) 2013-10-29 2015-05-07 東京瓦斯株式会社 熱量計及び熱量計測方法
JP2017075882A (ja) 2015-10-16 2017-04-20 矢崎エナジーシステム株式会社 熱量計
JP2017201246A (ja) 2016-05-02 2017-11-09 トヨタ自動車株式会社 窒素酸化物センサ
JP2019528463A (ja) 2016-08-18 2019-10-10 ネバダ・ナノテック・システムズ・インコーポレイテッド 物質の少なくとも1つの特性を決定するためのシステムおよび方法
JP2019070365A (ja) 2017-10-11 2019-05-09 トヨタ自動車株式会社 温度推定モジュールおよび内燃機関の制御装置

Also Published As

Publication number Publication date
JP2021099269A (ja) 2021-07-01

Similar Documents

Publication Publication Date Title
US10934921B2 (en) Heater element as sensor for temperature control in transient systems
EP0624242B1 (en) Fluid mass flowmeter
JP7333261B2 (ja) 熱量計
JP2010169657A (ja) 質量流量計及びマスフローコントローラ
US9671266B2 (en) Method for thermally determining mass flow of a gaseous medium and thermal mass flow meter
EP3502687B1 (en) Determination of gas parameters
US12092502B2 (en) Non-invasive thermometer
EP3153854B1 (en) Determination of volumetric flow rate of a gas in a gas flow
JP2022525074A (ja) ガスバーナ用の改良された温度センサ及び該温度センサとバーナとからなるアセンブリ
Dale et al. High precision calorimetry to determine the enthalpy of combustion of methane
CN114424035A (zh) 非侵入式温度计
JPS61500806A (ja) 定温発熱量測定装置
JP6765798B2 (ja) 熱量計
WO2013175664A1 (ja) ボイラの蒸気圧力計測装置およびボイラの蒸気量計測装置
JP2020060471A (ja) 熱量計
JP6097197B2 (ja) 熱量計及び熱量計測方法
JP6166149B2 (ja) 熱量計及び熱量計測方法
JP2020160077A (ja) 熱量計
KR200450290Y1 (ko) 엔진 배기가스 온도 감지소자
KR101979290B1 (ko) 천연가스 열량계 및 이를 이용한 열량 측정 방법
JP2023030921A (ja) 熱量計
JP7461833B2 (ja) 熱量計
JP2011133369A (ja) 水素濃度測定装置
KR100702144B1 (ko) 보일러 소비연료량의 자동 처리장치 및 그 방법
JP2023155667A (ja) 熱量計

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230814

R150 Certificate of patent or registration of utility model

Ref document number: 7333261

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150