JP7332413B2 - Low temperature thermal conductivity measuring device - Google Patents

Low temperature thermal conductivity measuring device Download PDF

Info

Publication number
JP7332413B2
JP7332413B2 JP2019177327A JP2019177327A JP7332413B2 JP 7332413 B2 JP7332413 B2 JP 7332413B2 JP 2019177327 A JP2019177327 A JP 2019177327A JP 2019177327 A JP2019177327 A JP 2019177327A JP 7332413 B2 JP7332413 B2 JP 7332413B2
Authority
JP
Japan
Prior art keywords
cooling
heat
airtight container
plate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019177327A
Other languages
Japanese (ja)
Other versions
JP2021056036A (en
Inventor
和昭 下野
幸雄 中川
良浩 山中
洋一郎 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75273073&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7332413(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019177327A priority Critical patent/JP7332413B2/en
Publication of JP2021056036A publication Critical patent/JP2021056036A/en
Priority to JP2023130495A priority patent/JP7470851B2/en
Application granted granted Critical
Publication of JP7332413B2 publication Critical patent/JP7332413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、加熱板の両面側に一対の被測定物平板を配置し、前記一対の被測定物平板の更に両外側夫々に一対の冷却板を配置し、前記一対の被測定物平板夫々の表裏両面部の温度を測定して、与えた熱量と前記表裏両面部の計測温度差に基づいて被測定物平板の熱伝導率を算出するGHP法測定装置を、断熱性気密容器の内側に収容し、前記冷却板を0℃以下の低温に冷却する冷却手段を前記断熱性気密容器内に設けてある低温熱伝導率測定装置に関する。 According to the present invention, a pair of flat plates to be measured are arranged on both sides of a heating plate, and a pair of cooling plates are arranged on both outer sides of the pair of flat plates to be measured. A GHP method measuring device for measuring the temperature of both the front and back sides and calculating the thermal conductivity of the flat plate to be measured based on the amount of heat applied and the measured temperature difference between the front and back sides is housed inside the adiabatic airtight container. and a low-temperature thermal conductivity measuring apparatus in which a cooling means for cooling the cooling plate to a low temperature of 0° C. or less is provided in the heat-insulating airtight container.

前記GHP法測定装置はJIS A 1412-1の測定法で定められているもので、詳しくは、支持フレームに加熱板、一対の冷却板を夫々板厚方向に移動自在に上から吊り下げ支持し、加熱板と冷却板との間夫々に被測定物平板を挟み込み、加熱板を中心にして一対の被測定物平板及び一対の冷却板を、互いに近接移動させて接触させる押し付け装置を、板厚方向の両外側に一対設けて構成してある。 The GHP method measurement apparatus is defined by the measurement method of JIS A 1412-1. Specifically, a heating plate and a pair of cooling plates are suspended from above on a support frame so as to be movable in the plate thickness direction. , a pressing device in which a flat plate to be measured is sandwiched between a heating plate and a cooling plate, and a pair of flat plates to be measured and a pair of cooling plates are brought into contact with each other by moving the pair of flat plates to be measured and the pair of cooling plates, centering on the heating plate. A pair is provided on both outer sides of the direction.

従来、前記低温熱伝導率測定装置では、前記冷却板を冷却する冷却手段として、例えば、液体窒素や液体ヘリウムを直接利用、あるいは気化させて断熱性気密容器内の雰囲気温度を低下させ、その雰囲気温度によって前記冷却板を冷却する装置に構成してあった(例えば、非特許文献1参照)。 Conventionally, in the low-temperature thermal conductivity measuring apparatus, as a cooling means for cooling the cooling plate, for example, liquid nitrogen or liquid helium is directly used or vaporized to lower the ambient temperature in the heat insulating airtight container, and the atmosphere It was configured in a device for cooling the cooling plate according to the temperature (see, for example, Non-Patent Document 1).

建材試験情報12 ‘89「GHP法による低音域における熱伝導率測定」Building material test information 12 '89 "Thermal conductivity measurement in the low range by GHP method"

上述した従来の低温熱伝導率測定装置では、断熱性気密容器内の雰囲気温度を液体窒素を蒸発させた低温ガスでは、液体窒素の沸点以下の温度に低下させることは困難であり、例えば、-180℃以下の極低温域での伝導率測定は、困難であった。
そこで、図5に示すように、液体ヘリウム(LHe)を気化させて真空断熱容器で形成された断熱性気密容器5内の雰囲気温度を、約-268℃以下の極低温領域まで低下させる装置が考えられているが、液体ヘリウムの気化によって断熱性気密容器5内の雰囲気温度を低下させるためには、液体ヘリウムを大量に消費しなければならず、しかも、液体ヘリウムは非常に気化しやすくその補給や保管のための手間が非常に多くかかり、その上多額の費用が掛かるという問題があった(尚、図面中5は断熱性気密容器、31は液体ヘリウムの貯留容器、4はGHP法測定装置を収容する測定部、33は断熱性気密容器の上部を開放してGHP法測定装置を取り出しできるようにするための断熱材を設けた開閉蓋部である)。
In the above-described conventional low-temperature thermal conductivity measuring apparatus, it is difficult to lower the ambient temperature in the heat-insulating airtight container to a temperature below the boiling point of liquid nitrogen with a low-temperature gas obtained by evaporating liquid nitrogen. It was difficult to measure the conductivity at cryogenic temperatures below 180°C.
Therefore, as shown in FIG. 5, there is an apparatus for vaporizing liquid helium (LHe) to lower the ambient temperature in a heat-insulating airtight container 5 formed of a vacuum heat-insulating container to a cryogenic region of about −268° C. or lower. However, in order to lower the atmospheric temperature in the heat-insulating airtight container 5 by evaporating liquid helium, a large amount of liquid helium must be consumed. There was a problem that it took a lot of time and effort for replenishment and storage, and moreover it cost a lot of money. A measurement unit containing the apparatus, 33, is an opening/closing lid provided with a heat insulating material for opening the upper portion of the heat-insulating airtight container so that the GHP method measuring apparatus can be taken out).

従って、本発明の目的は、上記問題点を解消し、液体窒素やヘリウムの消費を抑制してGHP法測定装置の冷却板を冷却できる低温熱伝導率測定装置を提供するところにある。 SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide a low-temperature thermal conductivity measuring apparatus which solves the above problems and which can cool the cooling plate of the GHP method measuring apparatus while suppressing the consumption of liquid nitrogen or helium.

本発明の第1の特徴構成は、加熱板の両面側に一対の被測定物平板を配置し、前記一対の被測定物平板の更に両外側夫々に一対の冷却板を配置し、前記一対の被測定物平板夫々の表裏両面部の温度を測定して、与えた熱量と前記表裏両面部の計測温度差に基づいて被測定物平板の熱伝導率を算出するGHP法測定装置を、断熱性気密容器の内側に収容し、前記冷却板を0℃以下の低温に冷却する冷却手段を前記断熱性気密容器内に設けてある低温熱伝導率測定装置であって、前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置の前記冷却板を冷却する機械式冷凍機を設け、前記機械式冷凍機の放冷部から熱伝導部材を介して前記冷却板に直接熱接触させたところにある。 In a first characteristic configuration of the present invention, a pair of flat plates to be measured are arranged on both sides of a heating plate, a pair of cooling plates are arranged on both outer sides of the pair of flat plates to be measured, and the pair of A GHP method measuring device for measuring the temperature of both the front and back surfaces of each flat plate to be measured and calculating the thermal conductivity of the flat plate to be measured based on the amount of heat given and the difference in temperature measured between the front and back surfaces is considered to be heat insulating. A low-temperature thermal conductivity measuring device, which is housed inside an airtight container and provided in the heat insulating airtight container for cooling the cooling plate to a low temperature of 0° C. or less, wherein the cooling means comprises the cooling means. a mechanical refrigerator for cooling the cooling plate of the GHP method measurement device in the inner space of the heat insulating airtight container, and the cooling plate is cooled from the cooling part of the mechanical refrigerator through a heat conducting member is in direct thermal contact with

本発明の第1の特徴構成によれば、前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置の前記冷却板を冷却する機械式冷凍機を設け、前記機械式冷凍機の放冷部から熱伝導部材を介して前記冷却板に直接熱接触させてあることにより、液体窒素やヘリウムの消費を抑制して、GHP測定装置の冷却板を簡単に冷却できる。 According to the first characteristic configuration of the present invention, the cooling means is provided with a mechanical refrigerator for cooling the cooling plate of the GHP method measurement apparatus in the inner space of the heat insulating airtight container, Direct thermal contact of the cold plate of the mechanical refrigerator via a heat conduction member suppresses the consumption of liquid nitrogen or helium, and allows the cold plate of the GHP measuring device to be easily cooled. can.

本発明の第2の特徴構成は、前記機械式冷凍機を前記冷却板の下方に配置すると共に、前記機械式冷凍機の放冷部と前記冷却板とを前記熱伝導部材として第1金属製熱伝導部材を介して直接熱接触可能に構成したところにある。 According to a second characteristic configuration of the present invention, the mechanical refrigerator is arranged below the cooling plate, and the cooling portion of the mechanical refrigerator and the cooling plate are used as the heat conducting member and are made of a first metal. The point is that direct thermal contact is possible via a heat conducting member.

本発明の第2の特徴構成によれば、前記機械式冷凍機を前記冷却板の下方に配置することにより、冷却板を備えたGHP法測定装置の断熱性気密容器内への組み付けを容易に行え、また、前記機械式冷凍機の放冷部と前記冷却板とを第1金属製熱伝導部材によって直接熱接触させられ、そのために、機械式冷凍機の放冷部からの冷熱は、第1金属製熱伝導部材を介して冷却板に熱損失少なく効率よく伝熱される。 According to the second characteristic configuration of the present invention, by arranging the mechanical refrigerator below the cooling plate, the GHP method measurement device equipped with the cooling plate can be easily assembled into the heat insulating airtight container. In addition, the cooling part of the mechanical refrigerator and the cooling plate are brought into direct thermal contact with each other by the first metal heat-conducting member, so that cold heat from the cooling part of the mechanical refrigerator is 1. Heat is efficiently transferred to the cooling plate through the metal heat-conducting member with little heat loss.

本発明の第3の特徴構成は、前記冷却板の上部と前記放冷部とを直接熱接触させる前記熱伝導部材として第1金属製補助熱伝導部材を設けたところにある。 A third characteristic configuration of the present invention resides in that a first metal auxiliary heat conduction member is provided as the heat conduction member for bringing the upper portion of the cooling plate and the cooling portion into direct thermal contact.

本発明の第3の特徴構成によれば、冷却板の上部は下部からの熱伝導の遅れや伝熱途中での熱損失により冷却度が低下するのを、第1金属製補助熱伝導部材を介して放冷部からの冷熱を、冷却板の上部に直接伝熱させることができ、冷却板を上から下までより均一に冷却しやすくなる。
従って、被測定物平板の熱伝導率の測定精度を向上させることができる。
According to the third characteristic configuration of the present invention, the cooling degree of the upper part of the cooling plate is lowered due to the delay of heat conduction from the lower part and the heat loss during heat transfer. Cold heat from the cooling portion can be directly transferred to the upper portion of the cooling plate through the cooling plate, making it easier to uniformly cool the cooling plate from top to bottom.
Therefore, it is possible to improve the measurement accuracy of the thermal conductivity of the flat plate of the object to be measured.

本発明の第4の特徴構成は、前記機械式冷凍機を前記冷却板の上方に配置して、前記機械式冷凍機の放冷部と前記冷却板の上端部とを熱接触させる前記熱伝導部材として第2金属製熱伝導部材を設けたところにある。 In a fourth characteristic configuration of the present invention, the mechanical refrigerator is arranged above the cooling plate, and the heat conduction section is arranged such that the cooling portion of the mechanical refrigerator and the upper end portion of the cooling plate are in thermal contact with each other. A second metal heat-conducting member is provided as a member.

本発明の第4の特徴構成によれば、機械式冷凍機を前記冷却板の上方に配置して、前記機械式冷凍機の放冷部と前記冷却板の上端部とを熱接触させる前記熱伝導部材として第2金属製熱伝導部材を設けることにより、機械式冷凍機により冷却板の上部から第2金属製熱伝導部材を介して直接伝熱して冷却でき、冷却板を上部から下部にかけてより均一な温度に冷却して、熱伝導率の測定精度を向上させることができる。 According to the fourth characteristic configuration of the present invention, the mechanical refrigerator is arranged above the cooling plate, and the heat dissipating portion of the mechanical refrigerator is brought into thermal contact with the upper end of the cooling plate. By providing the second metal heat-conducting member as a heat-conducting member, it is possible to directly transfer heat from the upper part of the cooling plate through the second metal heat-conducting member to cool the mechanical refrigerator, and the cooling plate is more heated from the upper part to the lower part. Cooling to a uniform temperature can improve the accuracy of thermal conductivity measurement.

本発明の第5の特徴構成は、前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置を囲繞する金属製気密容器を設け、前記金属製気密容器を熱伝導により冷却する機械式冷凍機を設け、前記熱伝導部材として前記金属製気密容器と前記冷却板とを直接熱接触させる第1金属製熱伝導部材を設けたところにある。 A fifth characteristic configuration of the present invention is that the cooling means is configured by providing a metal airtight container surrounding the GHP method measurement apparatus in the inner space of the heat insulating airtight container, and the metal airtight container A mechanical refrigerator for cooling by heat conduction is provided, and a first metal heat conduction member is provided as the heat conduction member for bringing the metal airtight container and the cooling plate into direct thermal contact.

本発明の第5の特徴構成によれば、断熱性気密容器の内側空間内で前記GHP法測定装置を囲繞する金属製気密容器を設け、前記金属製気密容器を熱伝導により冷却する機械式冷凍機を設け、前記熱伝導部材として前記金属製気密容器と前記冷却板とを直接熱接触させる第1金属製熱伝導部材を設けることにより、冷却板は、第1金属製熱伝導部材によって直接冷却され、より低温に下げやすくできる。
その上、GHP法測定装置を囲繞する金属製気密容器によって、例えば、断熱性気密容器と金属製気密容器との間の空間を真空にして外部からの熱の侵入を遮断しながら、金属製気密容器の内部空間に熱交換用冷媒ガスを充填すれば、その冷媒ガスを介してGHP法測定装置の冷却板を効率よく冷却できる。
さらに、金属製気密容器の内部空間を真空状態にしたり、任意の圧力でガス(窒素、酸素、ヘリウム、アルゴン、水素等)充填状態にして、各種雰囲気中における精度の高い熱伝導率の測定を可能とできる。
According to the fifth characteristic configuration of the present invention, a metal airtight container is provided to surround the GHP method measurement apparatus in the inner space of the heat insulating airtight container, and the metal airtight container is cooled by heat conduction. The cooling plate is directly cooled by the first metal heat-conducting member by providing a first metal heat-conducting member as the heat-conducting member that directly thermally contacts the metal airtight container and the cooling plate. and can be lowered to a lower temperature more easily.
In addition, the metal airtight container surrounding the GHP method measurement device can be evacuated, for example, by evacuating the space between the adiabatic airtight container and the metal airtight container to block heat from entering from the outside. If the internal space of the container is filled with a heat exchange refrigerant gas, the cooling plate of the GHP measurement apparatus can be efficiently cooled through the refrigerant gas.
In addition, the internal space of the metal airtight container can be evacuated or filled with gas (nitrogen, oxygen, helium, argon, hydrogen, etc.) at any pressure to measure thermal conductivity with high accuracy in various atmospheres. possible and possible.

本発明の第6の特徴構成は、前記機械式冷凍機の放冷部を前記金属製気密容器の下面に接当させて取り付け、前記金属製気密容器の底板と前記冷却板の上部とを直接熱接触させる第1金属製補助熱伝導部材を設けたところにある。 In a sixth characteristic configuration of the present invention, the cooling part of the mechanical refrigerator is attached in contact with the lower surface of the metal airtight container, and the bottom plate of the metal airtight container and the upper part of the cooling plate are directly connected. A first metallic auxiliary heat conducting member is provided for thermal contact.

本発明の第6の特徴構成によれば、機械式冷凍機は金属製気密容器の下面を直接冷却すると同時に第1金属製熱伝導部材により冷却板が下部より冷却され、また、冷却板の上部は、第1金属製補助熱伝導部材を介して冷却され、結局、冷却板を上下略均一に冷却することができる。 According to the sixth characteristic configuration of the present invention, the mechanical refrigerator directly cools the lower surface of the metal airtight container, and at the same time, the cooling plate is cooled from the lower part by the first metal heat-conducting member, and the upper part of the cooling plate is cooled via the first metallic auxiliary heat-conducting member, and as a result, the cooling plate can be cooled substantially uniformly from top to bottom.

本発明の第7の特徴構成は、前記機械式冷凍機の放冷部を前記金属製気密容器の天井板部に接当させて取り付けたところにある。 A seventh characteristic configuration of the present invention resides in that the cooling part of the mechanical refrigerator is mounted in contact with the ceiling plate part of the metal airtight container.

本発明の第7の特徴構成によれば、金属製気密容器は、その天井板部が優先的に冷却され、そのために、金属製気密容器の上部内部空間に、下部よりも温度の高い内部雰囲気ガスがたまった場合でも、その内部雰囲気ガスは優先的に冷却された金属製気密容器の上部壁で冷却され、冷却板をより均一に冷却できるようになり、その結果、低温熱伝導率測定装置の測定精度を上げることができる。 According to the seventh characteristic configuration of the present invention, the metal airtight container is preferentially cooled at the ceiling plate portion, so that the upper internal space of the metal airtight container has an internal atmosphere having a higher temperature than the lower part. Even if the gas accumulates, the internal atmospheric gas is cooled by the preferentially cooled metal airtight upper wall, allowing the cooling plate to be cooled more uniformly, resulting in a low-temperature thermal conductivity measuring device. can improve the measurement accuracy of

本発明の縦断正面図である。It is a longitudinal front view of the present invention. 要部(GHP法測定装置)の正面図である。It is a front view of the principal part (GHP method measuring device). 本発明の横断平面図である。1 is a cross-sectional plan view of the present invention; FIG. (a)は第1金属製熱伝導部材で、(b)は第1底板、(c)は第1底板に第1金属製熱伝導部材を立設させて取り付けた平面図である。(a) is a first metal heat conduction member, (b) is a first bottom plate, and (c) is a plan view in which the first metal heat conduction member is erected and attached to the first bottom plate. 従来例の縦断正面図である。It is a longitudinal front view of a conventional example. 別実施形態の縦断正面図である。It is a longitudinal front view of another embodiment. 別実施形態の縦断正面図である。It is a longitudinal front view of another embodiment. 別実施形態の縦断正面図である。It is a longitudinal front view of another embodiment. 別実施形態の縦断正面図である。It is a longitudinal front view of another embodiment. 別実施形態の縦断正面図である。It is a longitudinal front view of another embodiment. 別実施形態の縦断正面図である。It is a longitudinal front view of another embodiment.

以下に本発明の実施の形態を図面に基づいて説明する。
図1~図4に示すように、加熱板1の両面側に一対の被測定物平板2を配置し、一対の被測定物平板2の更に両外側夫々に一対の冷却板3を配置し、一対の被測定物平板2夫々の表裏両面部の温度を測定して、表裏両面部の計測温度差に基づいて被測定物平板2の熱伝導率を算出するGHP法測定装置4を、断熱性気密容器5の内側に収容し、冷却板3を0℃以下の低温に冷却する冷却手段を断熱性気密容器5内に設けてある。
An embodiment of the present invention will be described below with reference to the drawings.
As shown in FIGS. 1 to 4, a pair of flat plates 2 to be measured are arranged on both sides of a heating plate 1, and a pair of cooling plates 3 are arranged on both outer sides of the pair of flat plates 2 to be measured, The GHP method measuring device 4 for measuring the temperature of the front and back surfaces of each of the pair of flat plates 2 to be measured and calculating the thermal conductivity of the flat plate 2 to be measured based on the measured temperature difference between the front and back surfaces is used as a heat insulator. A cooling means for cooling the cooling plate 3 to a low temperature of 0° C. or below is provided in the heat-insulating airtight container 5 .

〔第1実施形態〕
前記冷却手段を構成するのに、断熱性気密容器5の内側空間内でGHP法測定装置4を囲繞する金属製気密容器6を設け、金属製気密容器6を熱伝導により冷却する冷凍機7を設け、金属製気密容器6と冷却板3とを直接熱接触させる第1金属製熱伝導部材8を設けてある。
[First Embodiment]
In order to constitute the cooling means, a metal airtight container 6 is provided to surround the GHP method measurement device 4 in the inner space of the heat insulating airtight container 5, and a refrigerator 7 is provided to cool the metal airtight container 6 by heat conduction. A first metal heat-conducting member 8 is provided to bring the metal airtight container 6 and the cooling plate 3 into direct thermal contact.

前記冷凍機7による冷却は、液体空気の沸点以下の極低温と称される温度で、特に液体ヘリウム(約―268℃)以下の領域まで冷却できるように、例えば、GM冷凍機(Gifford-McMahonサイクルを使った冷凍機)を使用する。 Cooling by the refrigerator 7 is performed at a temperature called a cryogenic temperature below the boiling point of liquid air, particularly to a region below liquid helium (approximately -268°C). A refrigerator using a cycle) is used.

図1~図4に示すように、前記GHP法測定装置4は、支持フレーム15に加熱板1、一対の冷却板3を夫々板厚方向に移動自在に上から吊り下げ支持し、加熱板1と一対の冷却板3夫々の間に被測定物平板2を挟んで、加熱板1を中心にして一対の被測定物平板2及び一対の冷却板3を、互いに近接移動させて接触させる押し付け装置16を、板厚方向の両外側に一対設けて構成してある。
支持フレーム15の接地部15Aは、10ミリ厚の銅製の第1底板17に取り付けてあり(図4(b)、図2)、その第1底板17に対して銅製の3ミリ厚のアンカー板(第1金属製熱伝導部材8)を立設取り付けするように設け(図4(c))、アンカー板には、冷却板3との連結部19(ボルト挿通孔)を上部に設けると共に、下端部8Aに第1底板17と連結可能なボルト挿通用の長孔20が冷却板3の移動方向に沿って設けてあり、その長孔20に対応してボルト挿通孔21が、第1底板17に複数設けてある(図4(a)、(b)、(c))。
As shown in FIGS. 1 to 4, the GHP method measuring apparatus 4 supports a heating plate 1 and a pair of cooling plates 3 on a support frame 15 so as to be movable in the plate thickness direction. and a pair of cooling plates 3, and the pair of flat plates 2 to be measured and the pair of cooling plates 3 are brought into close contact with each other with the heating plate 1 as the center. 16 are provided on both outer sides in the plate thickness direction.
The grounding portion 15A of the support frame 15 is attached to the first bottom plate 17 made of copper with a thickness of 10 mm (FIGS. 4B and 2), and an anchor plate made of copper with a thickness of 3 mm is attached to the first bottom plate 17. The (first metal heat conduction member 8) is provided so as to be vertically mounted (FIG. 4(c)), and the anchor plate is provided with a connection portion 19 (bolt insertion hole) with the cooling plate 3 at the top, A long hole 20 for bolt insertion that can be connected to the first bottom plate 17 is provided in the lower end portion 8A along the movement direction of the cooling plate 3, and a bolt insertion hole 21 corresponding to the long hole 20 is provided on the first bottom plate. 17 (FIGS. 4A, 4B, and 4C).

図1に示すように、第1底板17を容器底板24にボルトにより固定し、容器底板24に対して、その上面部には、GHP法測定装置4を囲繞する第1カバー部22を取り付けて、容器底板24と第1カバー部22とで内部を気密にできる前記金属製気密容器6を構成してある。
容器底板24の下面部には、GM冷凍機をその2段冷却部23A(第2の放冷部23で2段膨張室が内部に設けてある)が接当する状態に取り付けてある。
従って、GM冷凍機からの冷熱は、冷凍機7の放冷部23から金属製気密容器6及び第1金属製熱伝導部材8を介して、冷却板3に直接伝熱される。
As shown in FIG. 1, the first bottom plate 17 is fixed to the container bottom plate 24 with bolts, and the top surface of the container bottom plate 24 is attached with the first cover portion 22 surrounding the GHP method measuring apparatus 4. , the container bottom plate 24 and the first cover portion 22 constitute the metal airtight container 6 whose interior can be airtight.
A GM refrigerator is attached to the lower surface of the container bottom plate 24 so as to be in contact with its two-stage cooling section 23A (the second cooling section 23 having a two-stage expansion chamber provided therein).
Therefore, the cold heat from the GM refrigerator is directly transferred from the cooling section 23 of the refrigerator 7 to the cooling plate 3 via the metal airtight container 6 and the first metal heat-conducting member 8 .

図1に示すように、金属製気密容器6を更に囲繞する輻射シールド容器25を設け、その輻射シールド容器25下部の第2底板26には、GM冷凍機の1段冷却部23B(第1の放冷部23で1段膨張室が内部に設けてある)が接触する状態に貫通させて連結してある。
従って、輻射シールド容器25も1段冷却部23Bから熱伝導により冷却される。
前記金属製気密容器6及び、輻射シールド容器25の外側は、輻射断熱のための、例えば、ポリイミドフィルムにアルミを蒸着したシートを積層したスーパーインシュレーションと呼ばれるシールド層部材27で、それらの全周を覆ってある。
As shown in FIG. 1, a radiation shield container 25 is provided to further surround the metal airtight container 6, and a second bottom plate 26 below the radiation shield container 25 is provided with a first-stage cooling section 23B (first cooling unit) of the GM refrigerator. The first-stage expansion chamber of the cooling section 23 is provided in the interior thereof) is penetrated and connected so as to be in contact with each other.
Accordingly, the radiation shield container 25 is also cooled by heat conduction from the first-stage cooling section 23B.
The outer side of the metal airtight container 6 and the radiation shield container 25 is a shield layer member 27 called super insulation, which is made by laminating a sheet of aluminum vapor-deposited on a polyimide film, for heat insulation from radiation. is covered.

前記金属製気密容器6、輻射シールド容器25を更に囲繞するアルミ製の外槽気密容器28を設けてある。
輻射シールド容器25、及び、外槽気密容器28によって、GHP法測定装置4を内側に収容する断熱性気密容器5を構成してある。
尚、外槽気密容器28の内部の第1空間S1及び輻射シールド容器25の内部の第2空間S2は、熱伝導率測定時には真空ポンプで減圧して真空断熱状態にすることで、外部からの熱の導入が極力抑えられ、且つ、冷凍能力を上げられる。
An aluminum outer airtight container 28 is provided to further surround the metal airtight container 6 and the radiation shield container 25 .
The radiation shield container 25 and the outer airtight container 28 constitute a heat-insulating airtight container 5 in which the GHP method measuring device 4 is accommodated.
The first space S1 inside the outer tank airtight container 28 and the second space S2 inside the radiation shielding container 25 are decompressed by a vacuum pump and placed in a vacuum insulation state at the time of thermal conductivity measurement. The introduction of heat is suppressed as much as possible, and the refrigerating capacity can be increased.

前記金属製気密容器6は、その内部空間を真空状態にしたり、又は、特定のガスを充填してその充填ガスを介して冷却板3を冷却する冷媒冷却装置としたり、充填ガス雰囲気における熱伝導率の測定もできる。
尚、金属製気密容器6の内部空間に、熱交換作用を有する特定のガスを充填した場合は、放冷部23からの冷熱が、その充填ガスの凝固点以上の温度であれば、その充填ガスが熱交換ガスとして働いて、冷却板3に冷熱が伝わり、より冷却効率が上がる効果がある。
The metal airtight container 6 can be used as a refrigerant cooling device that evacuates its internal space, is filled with a specific gas and cools the cooling plate 3 via the filled gas, or heat conduction in the filled gas atmosphere. Rates can also be measured.
In addition, when the internal space of the metal airtight container 6 is filled with a specific gas having a heat exchange action, if the temperature of the cold heat from the cooling section 23 is equal to or higher than the freezing point of the filling gas, the filling gas acts as a heat exchange gas, cold heat is transmitted to the cooling plate 3, and there is an effect of further increasing the cooling efficiency.

また、前記断熱性気密容器5は、前述の実施形態においては、外槽気密容器28の内部及び輻射シールド容器25の内部空間を減圧して真空断熱状態にしてあるが、GHP法測定装置による熱伝導率を測定するについて、外槽気密容器28の結露、氷結が問題にならない低温域において測定する場合は、常圧で断熱材を内装した断熱容器であってもよい。
ただし、冷凍機7の放冷部23の冷却能力を上げる必要のある場合、冷凍機7の周囲は、真空断熱などにより断熱能力を高く上げる必要がある。
In the above-described embodiment, the heat-insulating airtight container 5 is vacuum-insulated by depressurizing the inside of the outer tank airtight container 28 and the inner space of the radiation shield container 25. When the conductivity is measured in a low-temperature region where dew condensation and freezing of the outer airtight container 28 do not pose a problem, the container may be an insulated container containing a heat insulating material under normal pressure.
However, when it is necessary to increase the cooling capacity of the cooling section 23 of the refrigerator 7, the surroundings of the refrigerator 7 need to be highly heat-insulated by vacuum insulation or the like.

〔第2実施形態〕
前記冷却手段として、冷凍機7により冷却板3を冷却するのに、金属製気密容器6の第1底板17と冷却板3とを熱伝導可能に連結する第1金属製熱伝導部材8を設ける以外に、図6に示すように、第1底板17と冷却板3の上部とを直接熱接触させる8本の銅製のワイヤー(例えば、径1ミリの銅線が20本束ねてある)から成る第1金属製補助熱伝導部材29を設けてある。これにより、冷却板3の上部も効率よく冷却され、極低温領域での熱伝導率の測定が可能になる。
[Second embodiment]
As the cooling means, the cooling plate 3 is cooled by the refrigerator 7, and a first metal heat-conducting member 8 is provided for connecting the cooling plate 3 to the first bottom plate 17 of the metal airtight container 6 so that heat can be conducted. In addition, as shown in FIG. 6, it consists of 8 copper wires (for example, 20 copper wires with a diameter of 1 mm are bundled) that directly thermally contact the first bottom plate 17 and the upper part of the cooling plate 3. A first metallic auxiliary heat conducting member 29 is provided. As a result, the upper portion of the cooling plate 3 is also efficiently cooled, making it possible to measure thermal conductivity in a cryogenic region.

〔第3実施形態〕
第1実施形態及び第2実施形態のように、冷凍機7の放冷部23を、金属製気密容器6の下面に接当させて取り付ける以外に、図7に示すように、金属製気密容器6の天井板部18に接当させて取り付けてあってもよい。尚、GHP法測定装置4は、金属製気密容器6の底板に載置固定されている。
[Third Embodiment]
As shown in FIG. 6 may be attached in contact with the ceiling plate portion 18. The GHP method measurement device 4 is placed and fixed on the bottom plate of the metal airtight container 6 .

〔第4実施形態〕
図8に示すように、第1空間S1と第2空間S2を、真空断熱空間にして断熱性気密容器5の内側に、GHP法測定装置4を囲繞する金属製気密容器6を設けて、冷凍機7の放冷部23からの冷熱を直接冷却板3に熱伝導するように、冷凍機7を冷却板3の上方に配置して、冷凍機7の放冷部23と冷却板3の上端部とを直接熱接触する第2金属製熱伝導部材35を設けてあってもよい。
[Fourth Embodiment]
As shown in FIG. 8, the first space S1 and the second space S2 are vacuum-insulated spaces, and inside the heat-insulating airtight container 5, a metal airtight container 6 surrounding the GHP method measurement device 4 is provided, and the freezer is frozen. The refrigerator 7 is arranged above the cooling plate 3 so that the cold heat from the cooling part 23 of the refrigerator 7 is directly conducted to the cooling plate 3, and the upper end of the cooling part 23 of the refrigerator 7 and the cooling plate 3 is arranged. A second metal heat conducting member 35 may be provided in direct thermal contact with the portion.

〔第5実施形態〕
図9に示すように、GHP法測定装置4を囲繞する図1に示すような金属製気密容器6を設けずに、冷凍機7の放冷部23からの冷熱を直接冷却板3に熱伝導するように、例えば、前述の銅製のアンカー板のような第1金属製熱伝導部材8を、放冷部23と連結した第1底板17(GHP法測定装置4の支持フレーム15の接地部15Aを取り付ける)と冷却板3の下部とに亘って連結してもよい。
尚、GHP法測定装置4は、真空層を設けた断熱性気密容器5の内側に収容されている。
[Fifth Embodiment]
As shown in FIG. 9, the cold heat from the cooling part 23 of the refrigerator 7 is directly conducted to the cooling plate 3 without providing the metal airtight container 6 as shown in FIG. For example, the first metal heat-conducting member 8 such as the above-mentioned copper anchor plate is connected to the first bottom plate 17 (the grounding portion 15A of the support frame 15 of the GHP measurement device 4) connected to the cooling portion 23. ) and the lower part of the cooling plate 3 .
The GHP method measuring device 4 is accommodated inside a heat-insulating airtight container 5 provided with a vacuum layer.

また、図9と同様に、金属製気密容器6を設けない装置で、第1金属製熱伝導部材以外に、前記銅製のワイヤーと同等の第1金属製補助熱伝導部材29を、第1底板17と冷却板3の上部とに亘って連結してあってもよい。 As in FIG. 9, in the apparatus without the metal airtight container 6, in addition to the first metal heat conduction member, a first metal auxiliary heat conduction member 29 equivalent to the copper wire is provided on the first bottom plate. 17 and the upper part of the cooling plate 3 may be connected.

〔その他の実施形態〕
以下にその他の実施の形態を説明する。
なお、以下の他の実施形態において、上記実施形態と同様の部材には同一の符号を附してある。
〈1〉 GHP法測定装置4を囲繞する金属製気密容器6は、冷凍機7により直接冷却されるように構成されているが、冷却板3に対する冷却は、金属製熱伝導部材を設けずに、金属製気密容器6に充填する熱交換作用を有するガスにより冷却する(間接冷却)ものでもよい。
〈2〉 前記GM冷凍機に代えて、他の機械式冷凍機(例えばパルスチューブ冷凍機等)が使用できる。
〈3〉 第1金属製熱伝導部材8、第1金属製補助熱伝導部材29は、熱伝導の良いものであれば銅以外の例えば、アルミニウム等の他の金属から成るものでもよく、それらの形態も板状やワイヤー以外の形状でもよい。
〈4〉 断熱性気密容器5の内側で、図10に示すように、GHP法測定装置4に冷凍機7を取り付け、且つ、冷凍機7の放冷部23から、第2金属製熱伝導部材35を介して直接冷却板3に冷熱を熱伝導するようにして、断熱性気密容器5の内部空間に従来のように液体窒素や液体ヘリウムを気化させる貯留容器31を設けて、雰囲気温度を低下させるようにして、冷凍機7との併用する装置であってもよく、この場合、従来装置よりも、液体窒素やヘリウムの使用量を減量できる利点が期待でき、また、併用により運用できる時間が延び、寒剤継ぎ足しの手間が少なくなる等の利点も期待できる。
〈5〉 図11に示すように、外槽気密容器28と金属製気密容器6の間の第1空間S1を、真空断熱空間に形成した断熱性気密容器5の内側にGHP法測定装置4を設けてあってもよい。尚、この場合、冷凍機は、単段の冷凍機を設ければよい。また、2段のGM冷凍機で図1における容器25がないパターンでもよい。
[Other embodiments]
Other embodiments will be described below.
In addition, in other embodiments below, the same reference numerals are given to the same members as in the above embodiment.
<1> The metal airtight container 6 surrounding the GHP method measurement device 4 is configured to be directly cooled by the refrigerator 7, but the cooling plate 3 is cooled without providing a metal heat-conducting member. , cooling (indirect cooling) by a gas having a heat exchanging action filled in the metal airtight container 6 may be used.
<2> Instead of the GM refrigerator, other mechanical refrigerators (for example, pulse tube refrigerators, etc.) can be used.
<3> The first metal heat-conducting member 8 and the first metal auxiliary heat-conducting member 29 may be made of metal other than copper, such as aluminum, as long as it has good heat conductivity. The shape may also be a plate shape or a shape other than a wire.
<4> Inside the heat-insulating airtight container 5, as shown in FIG. A storage container 31 for evaporating liquid nitrogen or liquid helium is provided in the internal space of the adiabatic airtight container 5 in such a manner that cold heat is directly conducted to the cooling plate 3 via 35 to lower the ambient temperature. In this case, the advantage of being able to reduce the amount of liquid nitrogen or helium used can be expected compared to the conventional device, and the combined use can increase the operating time. Advantages such as longer extension and less labor for replenishing cryogen can be expected.
<5> As shown in FIG. 11, the first space S1 between the outer tank airtight container 28 and the metal airtight container 6 is formed in a vacuum insulation space, and the GHP method measurement device 4 is placed inside the heat insulating airtight container 5. may be provided. In this case, a single-stage refrigerator may be provided as the refrigerator. Also, a pattern without the container 25 in FIG. 1 may be used in a two-stage GM refrigerator.

尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。 As described above, reference numerals are used for convenience of comparison with the drawings, but such entries do not limit the present invention to the configurations shown in the attached drawings. Moreover, it is a matter of course that the present invention can be embodied in various modes without departing from the gist of the present invention.

1 加熱板
2 被測定物平板
3 冷却板
4 GHP法測定装置
5 断熱性気密容器
6 金属製気密容器
7 機械式冷凍機
8 第1金属製熱伝導部材
23 放冷部
29 第1金属製補助熱伝導部材
35 第2金属製熱伝導部材
REFERENCE SIGNS LIST 1 heating plate 2 flat plate of object to be measured 3 cooling plate 4 GHP method measuring device 5 heat insulating airtight container 6 metal airtight container 7 mechanical refrigerator 8 first metal heat conducting member 23 cooling part 29 first metal auxiliary heat Conductive member 35 Second metal thermally conductive member

Claims (7)

加熱板の両面側に一対の被測定物平板を配置し、
前記一対の被測定物平板の更に両外側夫々に一対の冷却板を配置し、
前記一対の被測定物平板夫々の表裏両面部の温度を測定して、与えた熱量と前記表裏両面部の計測温度差に基づいて被測定物平板の熱伝導率を算出するGHP法測定装置を、断熱性気密容器の内側に収容し、前記冷却板を0℃以下の低温に冷却する冷却手段を前記断熱性気密容器内に設けてある低温熱伝導率測定装置であって、
前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置の前記冷却板を冷却する機械式冷凍機を設け、前記機械式冷凍機の放冷部から熱伝導部材を介して前記冷却板に直接熱接触させてある低温熱伝導率測定装置。
Place a pair of flat plates to be measured on both sides of the heating plate,
Disposing a pair of cooling plates on both outer sides of the pair of flat plates of the object to be measured,
A GHP measuring device for measuring the temperature of both the front and back surfaces of each of the pair of flat plates to be measured, and calculating the thermal conductivity of the flat plate to be measured based on the amount of heat given and the difference in temperature measured between the front and back surfaces. , a low-temperature thermal conductivity measuring device that is housed inside an adiabatic airtight container and provided in the adiabatic airtight container with cooling means for cooling the cooling plate to a low temperature of 0 ° C. or less,
The cooling means is provided with a mechanical refrigerator for cooling the cooling plate of the GHP method measurement apparatus in the inner space of the heat insulating airtight container, and heat is transferred from the cooling part of the mechanical refrigerator. A low-temperature thermal conductivity measuring device in direct thermal contact with the cooling plate via a member.
前記機械式冷凍機を前記冷却板の下方に配置すると共に、前記機械式冷凍機の放冷部と前記冷却板とを前記熱伝導部材として第1金属製熱伝導部材を介して直接熱接触可能に構成してある請求項1に記載の低温熱伝導率測定装置。 The mechanical refrigerator is arranged below the cooling plate, and the cooling plate and the cooling part of the mechanical refrigerator can be directly thermally contacted with each other as the heat conducting member through a first metallic heat conducting member. 2. The low-temperature thermal conductivity measuring device according to claim 1, wherein 前記冷却板の上部と前記放冷部とを直接熱接触させる前記熱伝導部材として第1金属製補助熱伝導部材を設けてある請求項2に記載の低温熱伝導率測定装置。 3. The low-temperature thermal conductivity measuring device according to claim 2, wherein a first metallic auxiliary heat-conducting member is provided as said heat-conducting member for bringing the upper portion of said cooling plate and said cooling portion into direct thermal contact. 前記機械式冷凍機を前記冷却板の上方に配置して、前記機械式冷凍機の放冷部と前記冷却板の上端部とを熱接触させる前記熱伝導部材として第2金属製熱伝導部材を設けてある請求項1に記載の低温熱伝導率測定装置。 The mechanical refrigerator is arranged above the cooling plate, and a second metal heat-conducting member is provided as the heat-conducting member for thermally contacting the cooling part of the mechanical refrigerator and the upper end of the cooling plate. 2. The low-temperature thermal conductivity measuring device according to claim 1, further comprising: 前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置を囲繞する金属製気密容器を設け、
前記金属製気密容器を熱伝導により冷却する機械式冷凍機を設け、
前記熱伝導部材として前記金属製気密容器と前記冷却板とを直接熱接触させる第1金属製熱伝導部材を設けてある請求項1に記載の低温熱伝導率測定装置。
A metal airtight container surrounding the GHP method measurement device in the inner space of the heat insulating airtight container is provided to constitute the cooling means,
A mechanical refrigerator is provided for cooling the metal airtight container by heat conduction,
2. The low-temperature thermal conductivity measuring device according to claim 1, wherein a first metal heat-conducting member is provided as said heat-conducting member for directly thermally contacting said metal airtight container and said cooling plate.
前記機械式冷凍機の放冷部を前記金属製気密容器の下面に接当させて取り付け、前記金属製気密容器の底板と前記冷却板の上部とを直接熱接触させる第1金属製補助熱伝導部材を設けてある請求項5に記載の低温熱伝導率測定装置。 A first metal auxiliary heat conduction device in which the cooling part of the mechanical refrigerator is attached in contact with the lower surface of the metal airtight container, and the bottom plate of the metal airtight container and the upper part of the cooling plate are in direct thermal contact. 6. The low-temperature thermal conductivity measuring device according to claim 5, further comprising a member. 前記機械式冷凍機の放冷部を前記金属製気密容器の天井板部に接当させて取り付けてある請求項5に記載の低温熱伝導率測定装置。 6. The low-temperature thermal conductivity measuring device according to claim 5, wherein the cooling part of the mechanical refrigerator is mounted in contact with the ceiling plate part of the metal airtight container.
JP2019177327A 2019-09-27 2019-09-27 Low temperature thermal conductivity measuring device Active JP7332413B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019177327A JP7332413B2 (en) 2019-09-27 2019-09-27 Low temperature thermal conductivity measuring device
JP2023130495A JP7470851B2 (en) 2019-09-27 2023-08-09 Low-temperature thermal conductivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177327A JP7332413B2 (en) 2019-09-27 2019-09-27 Low temperature thermal conductivity measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023130495A Division JP7470851B2 (en) 2019-09-27 2023-08-09 Low-temperature thermal conductivity measuring device

Publications (2)

Publication Number Publication Date
JP2021056036A JP2021056036A (en) 2021-04-08
JP7332413B2 true JP7332413B2 (en) 2023-08-23

Family

ID=75273073

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019177327A Active JP7332413B2 (en) 2019-09-27 2019-09-27 Low temperature thermal conductivity measuring device
JP2023130495A Active JP7470851B2 (en) 2019-09-27 2023-08-09 Low-temperature thermal conductivity measuring device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023130495A Active JP7470851B2 (en) 2019-09-27 2023-08-09 Low-temperature thermal conductivity measuring device

Country Status (1)

Country Link
JP (2) JP7332413B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4317604A1 (en) 2021-03-29 2024-02-07 Sumitomo Construction Machinery Co., Ltd. Excavator
CN113340940B (en) * 2021-06-28 2022-07-12 江苏省建筑工程质量检测中心有限公司 Thermal detection method and detection device for integrated concrete combined external wall panel
CN115266814B (en) * 2022-06-21 2023-06-27 安徽万瑞冷电科技有限公司 Low-temperature thermal conductivity measuring device and measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356573A (en) 2003-05-30 2004-12-16 Institute Of Physical & Chemical Research Beam current meter
JP2011102768A (en) 2009-11-11 2011-05-26 Canon Inc Measuring method of heat characteristic

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2614062B2 (en) * 1987-12-25 1997-05-28 財団法人建材試験センター Thermal conductivity measuring device based on the direct plate method
JP3303490B2 (en) * 1993-12-22 2002-07-22 日産自動車株式会社 Car accessory box structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356573A (en) 2003-05-30 2004-12-16 Institute Of Physical & Chemical Research Beam current meter
JP2011102768A (en) 2009-11-11 2011-05-26 Canon Inc Measuring method of heat characteristic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
町田清、上園正義,"GHP法による低温域における熱伝導率測定",建材試験情報,日本,建材試験センター,1989年12月01日,Vol.25,No.12,pp.6-10

Also Published As

Publication number Publication date
JP2023138763A (en) 2023-10-02
JP2021056036A (en) 2021-04-08
JP7470851B2 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
JP7470851B2 (en) Low-temperature thermal conductivity measuring device
JP3996935B2 (en) Cryostat structure
US10203068B2 (en) Method and device for precooling a cryostat
US20070051115A1 (en) Cryostat configuration with cryocooler and gas gap heat transfer device
TWI395916B (en) Refrigerator
JPWO2004055452A1 (en) Refrigerator mounting method and apparatus
JP5972368B2 (en) Cooling container
EP2085720B1 (en) Cryogenic container with built-in refrigerator
JP2015117778A (en) Vacuum heat insulation pipe and vacuum heat insulation transfer tube
CN114136046A (en) Vehicle-mounted efficient heat-insulation Stirling deep low-temperature refrigerator
JPH06249902A (en) Superconducting-critical-current measuring apparatus
JP5030064B2 (en) Cryogenic refrigerator
JP3881675B2 (en) Multistage refrigerator
JP6172979B2 (en) Superconducting device
Chang et al. Development of a thermal switch for faster cool-down by two-stage cryocooler
JP2014173755A (en) Cryogenic temperature cooling apparatus and liquid level adjustment mechanism
KR102639944B1 (en) Apparatus for testing liquefied hydrogen valve
Duband et al. Socool: A 300 K-0.3 K pulse tube/sorption cooler
JPS63207958A (en) Freezer
JP2977809B1 (en) Refrigeration equipment
JPH0633855B2 (en) Liquid helium storage equipment
JP2008267635A (en) Cryogenic cooling equipment and method
JPH1030855A (en) Magnetic refrigerator
JP2005030646A (en) Ultra-low temperature freezer
JPS63289974A (en) Cryostat

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R150 Certificate of patent or registration of utility model

Ref document number: 7332413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150