JP2015117778A - Vacuum heat insulation pipe and vacuum heat insulation transfer tube - Google Patents

Vacuum heat insulation pipe and vacuum heat insulation transfer tube Download PDF

Info

Publication number
JP2015117778A
JP2015117778A JP2013261901A JP2013261901A JP2015117778A JP 2015117778 A JP2015117778 A JP 2015117778A JP 2013261901 A JP2013261901 A JP 2013261901A JP 2013261901 A JP2013261901 A JP 2013261901A JP 2015117778 A JP2015117778 A JP 2015117778A
Authority
JP
Japan
Prior art keywords
vacuum
tube
heat insulation
pipe
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013261901A
Other languages
Japanese (ja)
Inventor
佐保典英
Norihide Saho
小野瑞絵
Mizue Ono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013261901A priority Critical patent/JP2015117778A/en
Publication of JP2015117778A publication Critical patent/JP2015117778A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent vacuum heat insulation performance from being reduced and provide superior vacuum heat insulation performance of a cryogenic refrigerant transfer pipe even in the case that a refrigerant transfer pipe is mechanically contacted with an outer pipe of a normal temperature heat insulation pipe due to a thermal deformation of cryogenic refrigerant transfer pipe or the like at a vacuum heat insulation transfer tube and in the case that releasing of residual gas from a stacked heat insulation material wound around the refrigerant transfer pipe causes vacuum in a refrigerant transfer pipe installing space to be reduced.SOLUTION: A heat insulation pipe constituting the outermost layer of a vacuum heat insulation transfer tube is constituted by a double vacuum hermetic sealed heat insulation pipe storing vacuum space in hermetic sealed state, connecting bayonets are arranged at both ends of the vacuum hermetic sealed heat insulation pipe so as to enable several vacuum hermetic sealed heat insulation pipes to be connected in series. Even in the case that a cryogenic temperature refrigerant transfer tube is contacted with an inside part of the vacuum hermetic sealed heat insulation pipe or vacuum in a transfer tube installing space is reduced, it is heat insulated by the vacuum hermetic sealed space between the inner tube and the outer tube of the vacuum hermetic sealed heat insulation pipe against a normal temperature part so as to reduce an amount of heat intrusion for the transfer tube.

Description

本発明は、真空断熱されたトランスファーチューブに係り、特に、被冷却体を内蔵する断熱容器と、前記被冷却体を冷却する冷媒を供給もしくは供給、回収する寒冷発生手段を内蔵した冷却装置とを、前記冷媒を移送するトランスファーチューブで連通する低温冷却装置において、大気からの熱侵入量を小さくして、例えば低温の液化ガスや高圧、低温のヘリウムガス等の低温冷媒を移送することにより、被冷却体を低温に良好に冷却できる真空断熱性能が優れた真空断熱トランスファーチューブとして好適なものである。 The present invention relates to a vacuum-insulated transfer tube, and in particular, a heat-insulating container containing a body to be cooled, and a cooling device having a built-in cold generating means for supplying, supplying, and recovering a refrigerant for cooling the body to be cooled. In a low-temperature cooling device that communicates with a transfer tube that transfers the refrigerant, the amount of heat intrusion from the atmosphere is reduced and, for example, a low-temperature refrigerant such as a low-temperature liquefied gas or high-pressure or low-temperature helium gas is transferred. It is suitable as a vacuum heat insulating transfer tube excellent in vacuum heat insulating performance that can cool a cooling body to a low temperature.

従来の大型超電導加速器空洞を有する超電導加速装置では、被冷却体である空洞を液体ヘリウムで冷却し、空洞を内蔵する液体ヘリウム槽への輻射熱の侵入をおさえるために液体窒素で冷却される熱シールド板が設置されており、その構造が特許公開公報2000−294399(特許文献1)に開示されている。 In conventional superconducting accelerators with large superconducting accelerator cavities, the cavity to be cooled is cooled with liquid helium, and the heat shield is cooled with liquid nitrogen to suppress the penetration of radiant heat into the liquid helium tank containing the cavity. The board is installed and the structure is disclosed by patent publication 2000-294399 (patent document 1).

液体窒素や液体ヘリウムや高圧低温ヘリウムガス等の冷媒は、超電導加速装置から離れて設置された液化装置や貯蔵タンクから、真空断熱されたトランスファーチューブで移送されて供給、回収されており、冷却システムの構成が特許公開公報2003−004350(特許文献2)に、トランスファーチューブの構造が特許公開公報2007−321875(特許文献3)に開示されている。 Refrigerants such as liquid nitrogen, liquid helium, and high-pressure low-temperature helium gas are supplied and recovered from a liquefier or storage tank installed away from the superconducting accelerator by a transfer tube that is insulated from the vacuum. Is disclosed in Patent Publication No. 2003-004350 (Patent Document 2), and the structure of a transfer tube is disclosed in Patent Publication No. 2007-321875 (Patent Document 3).

また、超電導生体磁気計測装置では、被冷却体である計測用の超電導SQUID素子等を液体ヘリウム温度で冷却され、その冷却システムとして、離れて設置されたヘリウム液化冷凍機で生産された液体ヘリウムが、生体磁気計測部に真空断熱されたフレキシブルトランスファーチューブで移送され、蒸発したヘリウムガスを回収するシステムが特許公開公報1999−063697(特許文献4)に開示されている。 In the superconducting biomagnetic measuring device, the superconducting SQUID element for measurement, which is the object to be cooled, is cooled at the liquid helium temperature, and the liquid helium produced by the helium liquefaction refrigerator installed remotely is used as the cooling system. JP-A-1999-063697 (Patent Document 4) discloses a system for recovering helium gas that has been transferred to a biomagnetic measuring section by a vacuum-insulated flexible transfer tube and evaporated.

特許公開公報2000−294399Patent Publication 2000-294399 特許公開公報2003−004350Patent Publication No. 2003-004350 特許公開公報2007−321875Patent publication 2007-321875 特許公開公報1999−063697Patent Publication No. 1999-063697

しかしながら、特許文献2、特許文献3および特許文献4のトランスファーチューブでは、冷媒である液体ヘリウムや液体窒素や低温の高圧ヘリウムガス等を移送する極低温内管が配置される真空断熱空間と、大気とを隔離する外管は、1重の金属の直管や金属のベローズ管で構成されており、極低温内管が熱収縮等で外管と接触する場合、極低温内管に常温の外管から多量の熱が侵入し、内管で移送される液体ヘリウムや液体窒素が内管内で蒸発したり、また、低温の高圧ヘリウムガスの温度が上昇し、移送先の被冷却体を良好に冷却できなくなる問題があった。 However, in the transfer tubes of Patent Document 2, Patent Document 3 and Patent Document 4, a vacuum heat insulating space in which a cryogenic inner tube for transferring liquid helium, liquid nitrogen, low-temperature high-pressure helium gas or the like as a refrigerant is disposed, and the atmosphere The outer tube is made up of a single metal straight tube or metal bellows tube. When the cryogenic inner tube comes into contact with the outer tube due to heat shrinkage, etc. A large amount of heat enters from the tube, and the liquid helium and liquid nitrogen transferred in the inner tube evaporate in the inner tube, and the temperature of the low-temperature high-pressure helium gas rises, so that the object to be cooled is improved. There was a problem that could not be cooled.

また、地震等の災害発生時に、内管やトランスファーチューブ接続部に亀裂が生じ、内管を配置している真空空間の真空が破かされた場合、急速に熱侵入量が増加し、被冷却体の冷却機能が停止し危険な状態が生じる問題があった。 Also, when a disaster such as an earthquake occurs, if the inner tube or transfer tube connection cracks and the vacuum in the vacuum space where the inner tube is located is broken, the amount of heat penetration increases rapidly and the cooling target There was a problem that the cooling function of the body stopped and a dangerous state occurred.

また、特許文献2、特許文献3および特許文献4のトランスファーチューブでは、外管と極低温内管が一体的に製作され、トランスファーチューブ両端部において、被冷却体側の配管や液化冷凍装置や貯蔵タンク側に連結される構造であり、トランスファーチューブの外管や内管の一部に真空漏れや冷却運転時の変形による接触等の不具合があった場合、トランスファーチューブ全体を取り外し、全体を分解して補修しなければならず、補修に長時間を要し、補修コストが増加する課題となる問題があった。 Moreover, in the transfer tube of patent document 2, patent document 3, and patent document 4, an outer tube and a cryogenic inner tube are manufactured integrally, and piping, a liquefaction refrigeration apparatus, and a storage tank on the cooled object side are provided at both ends of the transfer tube. If there is a malfunction such as a vacuum leak or contact due to deformation during cooling operation on the outer tube or part of the inner tube of the transfer tube, remove the entire transfer tube and disassemble the entire tube. There was a problem that had to be repaired, requiring a long time to repair, and increasing the repair cost.

また、特許文献2、特許文献3および特許文献4のトランスファーチューブでは、極低温内管の周りにプラスチック薄膜にアルミニュウム等を蒸着した輻射熱防止用の積層断熱材を巻付けて熱侵入量を低減する構造が一般的であるが、この場合、長期間の運転中に積層断熱材から残留ガスが真空層内に放出されて真空が劣化し、真空断熱性能が低下して極低温内管に常温の外管から多量の熱が侵入し、内管を移送される液体ヘリウムや液体窒素が内管内で蒸発し、また、低温の高圧ヘリウムガスの温度が上昇し、移送先の被冷却体を良好に冷却できなくなる問題があった。 Moreover, in the transfer tube of patent document 2, patent document 3, and patent document 4, the laminated heat insulating material for radiation heat prevention which vapor-deposited aluminum etc. on the plastic thin film is wound around a cryogenic inner tube, and heat penetration amount is reduced. The structure is general, but in this case, the residual gas is released from the laminated heat insulating material into the vacuum layer during long-term operation, the vacuum deteriorates, the vacuum heat insulating performance is reduced, and the cryogenic inner tube is cooled to room temperature. A large amount of heat enters from the outer tube, and liquid helium and liquid nitrogen transferred through the inner tube evaporate in the inner tube. Also, the temperature of the low-temperature high-pressure helium gas rises, and the object to be cooled is improved. There was a problem that could not be cooled.

放出ガスを防ぐために積層断熱材を使用しない場合は、輻射熱の熱侵入量増加による断熱性能が低下して、極低温内管に常温の外管から多量の熱が侵入し、内管を移送される液体ヘリウムや液体窒素が内管内で蒸発し、また、低温の高圧ヘリウムガスの温度が上昇し、移送先の被冷却体を良好に冷却できなくなる問題があった。 If laminated insulation is not used to prevent emitted gas, the heat insulation performance is reduced due to the increased amount of radiant heat penetration, and a large amount of heat enters the cryogenic inner tube from the outer tube at room temperature, and the inner tube is transferred. Liquid helium or liquid nitrogen evaporates in the inner tube, and the temperature of the low-temperature high-pressure helium gas rises, so that there is a problem that it becomes impossible to cool the object to be cooled at the transfer destination.

本発明の目的は、極低温内管の熱変形等により常温外管と極低温内管とが機械的接触した場合や、内管の周りに巻付けた積層断熱材からの残留ガス放出や液体ヘリウム等の冷媒の漏れで、内管設置真空空間の真空が劣化した場合においても、真空断熱性能の低下を防止することにより、真空断熱性能が優れ、さらにトランスファーチューブの補修コストを低減でき、地震発生時に、より安全な真空断熱トランスファーチューブを提供することにある。 The object of the present invention is that when a normal temperature outer tube and a cryogenic inner tube are in mechanical contact due to thermal deformation or the like of the cryogenic inner tube, residual gas discharge or liquid from a laminated heat insulating material wound around the inner tube Even when the vacuum in the inner tube installation vacuum space deteriorates due to the leakage of refrigerant such as helium, preventing the vacuum insulation performance from deteriorating provides excellent vacuum insulation performance and further reduces transfer tube repair costs. It is to provide a safer vacuum insulated transfer tube when it occurs.

前述の目的を達成するために、本発明は外管を、真空空間を密封内蔵する真空密封断熱管で構成し、長尺の場合は複数の真空密封断熱管を連結して真空断熱トランスファーチューブを構成したものである。 In order to achieve the above-mentioned object, the present invention comprises an outer tube constituted by a vacuum sealed heat insulating tube that seals and incorporates a vacuum space, and in the case of a long length, a plurality of vacuum sealed heat insulating tubes are connected to form a vacuum heat insulating transfer tube. It is composed.

上記の課題を解決するために、請求項1に記載の真空断熱管および真空断熱トランスファーチューブは、真空空間を密封内蔵する真空密封断熱管を、径が異なる外側に配置する金属製の常温外側直管と、内側に配置する金属製の内側内管を同心的に二重に配置して構成し、また両端部に連結用のバイオネットを設け、常温外側直管と内側内管の間を高温で真空ベーキングされた後に、真空排気口を密封手段で真空密封したことを特徴としている。 In order to solve the above-mentioned problems, the vacuum heat insulating tube and the vacuum heat insulating transfer tube according to claim 1 are made of a metal room-temperature outside straight tube in which a vacuum sealed heat insulating tube containing a vacuum space is hermetically placed outside. A pipe and a metal inner inner pipe placed inside are concentrically arranged in double, and a bayonet for connection is provided at both ends, and the temperature between the normal temperature outer straight pipe and the inner inner pipe is high. After the vacuum baking, the vacuum exhaust port is vacuum-sealed by a sealing means.

本真空断熱トランスファーチューブによれば、前記内側内管内に配置する極低温内管が前記内側内管壁に接触しても、前記内側内管と常温外側直管とは密封真空空間で真空断熱されているので、常温外側直管から極低温内管への熱侵入量は小さく、接触による断熱性能の低下を防止した真空断熱トランスファーチューブが提供可能となる。また、複数本の真空密封断熱管を連結して長尺の真空断熱トランスファーチューブを構成できるので、逆に分解も容易であり、極低温内管に不具合があった場合においても、容易に短期間に低コストで補修が可能となる効果がある。 According to the present vacuum heat insulating transfer tube, even if a cryogenic inner tube arranged in the inner inner tube contacts the inner inner tube wall, the inner inner tube and the room temperature outer straight tube are vacuum insulated in a sealed vacuum space. Therefore, the amount of heat penetration from the normal temperature outer straight pipe into the cryogenic inner pipe is small, and it is possible to provide a vacuum heat insulating transfer tube that prevents a decrease in heat insulating performance due to contact. In addition, since a long vacuum heat insulation transfer tube can be configured by connecting multiple vacuum sealed heat insulation tubes, conversely it is easy to disassemble and even if there is a problem with the cryogenic inner tube, it can be easily done in a short period of time. In addition, there is an effect that repair is possible at low cost.

請求項2に記載の真空断熱トランスファーチューブは、真空空間を密封内蔵する真空密封断熱管を、外側の金属製の常温外側直管と、少なくとも一部を変形吸収用金属ベロー管で連結した内側内管で構成し、両端部を連結用のバイオネットを設け、常温外側直管と内側内管の間を高温でベーキングされた後に真空排気口を密封手段で密封されたことを特徴としている。 The vacuum heat-insulating transfer tube according to claim 2, wherein a vacuum-sealed heat-insulating tube having a vacuum space sealed therein is connected to an outside metal room temperature outside straight tube and at least partly connected by a deformation-absorbing metal bellows tube. It is composed of a tube, provided with a connecting bionet at both ends, and baked at a high temperature between the normal temperature outer straight tube and the inner inner tube, and then the vacuum exhaust port is sealed with a sealing means.

本真空断熱トランスファーチューブによれば、内側内管が極低温内管との接触等で冷却され熱収縮した場合において、長尺方向の熱変形を金属ベローの変位吸収機能で吸収し、熱収縮変形等による内側内管壁の機械的破断による冷媒の漏れで密封真空空間の真空が劣化することを防止し、これにより断熱性能低下を防止した真空断熱トランスファーチューブが提供可能となる。 According to this vacuum heat insulating transfer tube, when the inner inner tube is cooled by thermal contact with the cryogenic inner tube, etc., heat deformation in the longitudinal direction is absorbed by the metal bellows displacement absorption function, and heat shrink deformation Thus, it is possible to provide a vacuum heat insulating transfer tube that prevents the vacuum in the sealed vacuum space from being deteriorated due to the leakage of the refrigerant due to mechanical breakage of the inner inner tube wall due to the above, thereby preventing the heat insulating performance from being deteriorated.

請求項3に記載の真空断熱トランスファーチューブは、真空空間を密封内蔵する真空密封断熱管を、常温の外側の金属ベロー外管と、内側の金属ベロー内管で構成し、両端部を連結用のバイオネットを設け、前記金属ベロー内管の外周部にアウトガスをほとんど放出し無いガラス等のセラミック細線束で構成したスペーサを螺旋状に巻付け、金属ベロー外管と金属ベロー内管の間を高温でベーキングした後に真空排気口を密封手段で密封したことを特徴とし、請求項4に記載の真空断熱トランスファーチューブは、前記真空密封断熱管の両端部にバイオネットを配置し、請求項5に記載の真空断熱トランスファーチューブは、真空断熱トランスファーチューブの両端部に隔壁を設け、隔離空間を真空断熱空間とすることを特徴としている。 The vacuum heat insulating transfer tube according to claim 3 is configured such that a vacuum sealed heat insulating tube that seals and contains a vacuum space is composed of an outer metal bellows outer tube and an inner metal bellows inner tube at room temperature, and both ends are connected. A bayonet is provided, and a spacer made of a fine wire bundle of glass or the like that emits almost no outgas is spirally wound around the outer periphery of the metal bellows inner tube, and a high temperature is generated between the metal bellows outer tube and the metal bellows inner tube. The vacuum exhaust port is sealed with a sealing means after being baked in the vacuum insulation transfer tube according to claim 4, wherein a bayonet is disposed at both ends of the vacuum seal insulation tube. The vacuum heat insulating transfer tube is characterized in that partition walls are provided at both ends of the vacuum heat insulating transfer tube and the isolation space is a vacuum heat insulating space.

本真空断熱トランスファーチューブによれば、真空密封断熱管を可撓性に優れたベロー管で構成できるので、トランスファーチューブを3次元的に湾曲させて配置する場合等で、極低温内管が金属ベロー内管壁に接触する場合においても、接触圧力を低減させることで断熱性能低下を防止、長尺で、安全な真空断熱トランスファーチューブが提供可能となる。 According to the present vacuum heat insulating transfer tube, the vacuum sealed heat insulating tube can be constituted by a bellows tube having excellent flexibility, so that the cryogenic inner tube is made of a metal bellows when the transfer tube is curved three-dimensionally. Even when contacting the inner tube wall, it is possible to provide a long and safe vacuum heat insulating transfer tube by reducing the contact pressure to prevent a decrease in heat insulating performance.

本発明によれば、真空空間を密封した常温の真空密封断熱管の内側内管の内部に極低温内管を配置できるので、極低温内管が熱変形等によって真空密封断熱管と機械的接触した場合や、極低温内管に巻付けた積層断熱材からの残留ガスが放出する場合や、極低温内管を補修する場合や地震等で極低温内管が破断した場合においても、真空断熱性能の低下を防止し真空断熱性能が優れ、補修コストを低減でき、安全な真空断熱トランスファーチューブを提供することができる。 According to the present invention, since the cryogenic inner tube can be disposed inside the inner tube of the room temperature vacuum sealed insulation tube that seals the vacuum space, the cryogenic inner tube is in mechanical contact with the vacuum sealed insulation tube due to thermal deformation or the like. Vacuum insulation even when the residual gas is released from the laminated insulation wrapped around the cryogenic inner tube, when the cryogenic inner tube is repaired, or when the cryogenic inner tube breaks due to an earthquake, etc. It is possible to provide a safe vacuum insulation transfer tube that prevents deterioration in performance, has excellent vacuum insulation performance, and can reduce repair costs.

本発明の第1実施例の真空断熱トランスファーチューブを使用した冷却システムを示す構成図である。It is a block diagram which shows the cooling system using the vacuum heat insulation transfer tube of 1st Example of this invention. 図1の真空断熱トランスファーチューブを構成する真空密封断熱管の断面図である。It is sectional drawing of the vacuum-sealed heat insulation pipe | tube which comprises the vacuum heat insulation transfer tube of FIG. 図1の真空断熱トランスファーチューブ同士の連結部の真空断熱トランスファーチューブの断面図である。It is sectional drawing of the vacuum heat insulation transfer tube of the connection part of the vacuum heat insulation transfer tubes of FIG. 図3のX-X断面図である。It is XX sectional drawing of FIG. 本発明の第2実施例の真空断熱トランスファーチューブにおける可撓性を有する真空密封断熱管の断面図である。It is sectional drawing of the vacuum-sealed heat insulation pipe | tube which has flexibility in the vacuum heat insulation transfer tube of 2nd Example of this invention.

以下、本発明の複数の実施例について図を用いて説明する。各実施例の図における同一符号は同一物または相当物を示す。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent.

[実施例1] [Example 1]

本発明の第1実施例の真空断熱トランスファーチューブについて、図1から図4を参照しながら、さらに具体的に説明する。図1は本発明の第1実施例の真空断熱トランスファーチューブを用いた冷却システムの構成図、図2は図1の冷却システムを構成する真空断熱トランスファーチューブの構成品である真空密封断熱管の断面図、図3は真空断熱トランスファーチューブ同士の連結部の断面図、図4は図3のX―X矢視図である真空断熱トランスファーチューブ断面図を示す。 The vacuum heat insulating transfer tube according to the first embodiment of the present invention will be described more specifically with reference to FIGS. FIG. 1 is a block diagram of a cooling system using a vacuum heat insulating transfer tube according to a first embodiment of the present invention, and FIG. 2 is a cross section of a vacuum sealed heat insulating tube which is a component of the vacuum heat insulating transfer tube constituting the cooling system of FIG. FIG. 3 is a cross-sectional view of the connecting portion between the vacuum heat-insulating transfer tubes, and FIG. 4 is a cross-sectional view of the vacuum heat-insulating transfer tube as viewed from the direction of arrows XX in FIG.

本実施例の真空断熱トランスファーチューブを用いた冷却システム1は、超電導空洞や超電導磁石等の被冷却体2の冷却システムとして用いられるものである。この冷却システムは、従来技術の問題点の解決を図りつつ、装置の断熱性能の向上、安全性、補修の低コスト化を図ったものであり、以下の構成品で構成されている。 The cooling system 1 using the vacuum heat-insulating transfer tube of the present embodiment is used as a cooling system for an object to be cooled 2 such as a superconducting cavity or a superconducting magnet. This cooling system is intended to improve the heat insulation performance of the apparatus, reduce the cost of repair and repair, while solving the problems of the prior art, and includes the following components.

被冷却体2を冷却する冷却装置3は、図1に示すように、被冷却体2を内蔵する例えばステンレス鋼製の液体ヘリウム容器4と、液体ヘリウム容器4への熱侵入を防止する例えばステンレス鋼製の真空容器5と、さらに輻射熱による熱侵入を防止するため、真空空間6内に設置された熱伝導率が高い銅やアルミニュウム製の熱シールド板7と、真空容器5内を真空排気する真空ポンプ8および真空配管9と真空弁10、熱シールド板7を液体窒素で冷却する熱交換器11と液体窒素を供給する例えばステンレス鋼製の液体窒素供給管12と、冷却後の窒素ガスを大気に排気する窒素ガス排気管13と、被冷却体2を冷却保持する液体ヘリウム14、液体ヘリウムを供給する例えばステンレス鋼製の液体ヘリウム供給管15、蒸発したヘリウムガスを回収する例えばステンレス鋼製のヘリウムガス回収管16と、トランスファーチューブの接続フランジ17で構成される。 As shown in FIG. 1, a cooling device 3 that cools the object to be cooled 2 includes a liquid helium container 4 made of, for example, stainless steel that contains the object to be cooled 2, and stainless steel that prevents heat from entering the liquid helium container 4. In order to prevent heat intrusion due to radiant heat from the steel vacuum vessel 5, the heat shield plate 7 made of copper or aluminum having a high thermal conductivity installed in the vacuum space 6 and the vacuum vessel 5 are evacuated. The vacuum pump 8, the vacuum pipe 9, the vacuum valve 10, the heat exchanger 11 for cooling the heat shield plate 7 with liquid nitrogen, the liquid nitrogen supply pipe 12 for supplying liquid nitrogen, for example, and the nitrogen gas after cooling Nitrogen gas exhaust pipe 13 for exhausting to the atmosphere, liquid helium 14 for cooling and holding the object 2 to be cooled, liquid helium supply pipe 15 for supplying liquid helium, for example, stainless steel, evaporated helium And helium gas recovery pipe 16 made of stainless steel, for example to collect the scan, and a connecting flange 17 of the transfer tube.

真空断熱トランスファーチューブ18は、図1、図2、図3および図4に示すように、真空密封断熱管19を、外側の金属製の常温外側外管20と、一部に例えばステンレス鋼製の金属ベロー管21を連結した内側内管22で構成し、両端部を例えばステンレス鋼製の連結用の雄型バイオネット23、雌型バイオネット24を設け、接合部を冶金的に一体化し常温外側外管20と内側内管22の間を高温でベーキングした後に密封した密封真空空間25と、取付フランジ26と、2個の真空密封断熱管19を相互に連結する連結フランジ27、連結部で大気と隔離するOリング28で構成されている。 As shown in FIG. 1, FIG. 2, FIG. 3 and FIG. 4, the vacuum heat insulating transfer tube 18 includes a vacuum sealed heat insulating tube 19 and an outside metal room temperature outer outer tube 20 and a part made of, for example, stainless steel. It is composed of an inner inner tube 22 to which a metal bellows tube 21 is connected, and a male bayonet 23 and a female bayonet 24 made of stainless steel, for example, are provided at both ends, and the joint is metallurgically integrated to the outside at room temperature. A sealed vacuum space 25 sealed after the outer tube 20 and the inner inner tube 22 are baked at a high temperature, a mounting flange 26, a connecting flange 27 that connects the two vacuum-sealed heat-insulating tubes 19 to each other, and the connection portion is an atmosphere. And an O-ring 28 for isolating.

真空密封断熱管19の内側内管22の内部には、液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12が配置され、内部の空間29は、真空容器5の真空空間6に連通され、また、連結フランジ27は真空配管30により真空弁31を介して真空ポンプ8に連結され、空間29を真空空間6と並行して真空排気し、空間29が真空断熱される。 A liquid helium supply pipe 15, a helium gas recovery pipe 16 and a liquid nitrogen supply pipe 12 are arranged inside the inner inner pipe 22 of the vacuum sealed heat insulation pipe 19, and the internal space 29 is formed in the vacuum space 6 of the vacuum vessel 5. The connection flange 27 is connected to the vacuum pump 8 through a vacuum valve 31 by a vacuum pipe 30 to evacuate the space 29 in parallel with the vacuum space 6, and the space 29 is thermally insulated.

真空密封断熱管19は、冷媒供給装置32の接続フランジ33と連結され、液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12は、冷媒供給装置32内に真空断熱して配置された寒冷発生手段である液体ヘリウムタンク(図示せず)や液体ヘリウム液化機や、液体窒素タンク(図示せず)に接続され、良好な液体ヘリウムや液体窒素の供給と、蒸発ヘリウムガスの回収、再液化を行う構成である。 The vacuum sealed heat insulation pipe 19 is connected to the connection flange 33 of the refrigerant supply device 32, and the liquid helium supply pipe 15, the helium gas recovery pipe 16, and the liquid nitrogen supply pipe 12 are disposed in the refrigerant supply apparatus 32 with vacuum insulation. It is connected to a liquid helium tank (not shown), a liquid helium liquefier, or a liquid nitrogen tank (not shown), which is a cold generating means, and a good supply of liquid helium and liquid nitrogen and recovery of evaporated helium gas, It is the structure which performs reliquefaction.

図2により真空密封断熱管19の構造をさらに詳しく示すと、両端部の金属ベロー管21を連結した内側内管22の接続部には、内側内管22が軸方向にスライド可能な状態で支持する支持管34を設け、支持管34の端部は、接続フランジ26に冶金的に気密一体化されている。 When the structure of the vacuum-sealed heat insulating tube 19 is shown in more detail in FIG. 2, the inner inner tube 22 is supported in a state in which the inner inner tube 22 is slidable in the axial direction at the connecting portion of the inner inner tube 22 connected to the metal bellows tubes 21 at both ends. A support tube 34 is provided, and an end portion of the support tube 34 is metallurgically integrated with the connection flange 26 in a metallurgical manner.

常温外側外管20の外周部には密封真空空間25に連通した真空排気ノズル35が冶金的に気密一体化され、メクラフランジ36が高温真空ベーキング装置(図示せず)を使用して例えば温度が400〜1000℃で行う真空ベーキング終了工程時に真空状態において、真空封じ切り手段である例えば銀ベースの真空用貴金属ろう材等の冶金接合材37で冶金的に密封する構造で密封され、常温状態で密封真空空間25が形成される。密封真空空間25には、ゼオライト等のセラミック製のガス吸着剤38が取り付けられ、長期間にわたって密封真空空間の微少なアウトガスを吸着して真空劣化を防止し、断熱性能を担保する。 A vacuum exhaust nozzle 35 communicating with the sealed vacuum space 25 is integrated in a metallurgical and airtight manner on the outer peripheral portion of the normal temperature outer outer tube 20, and the mechula flange 36 is heated at a temperature of, for example, a high temperature vacuum baking apparatus (not shown). In a vacuum state at the end of the vacuum baking performed at 400 to 1000 ° C., in a vacuum state, it is sealed with a structure that is metallurgically sealed with a metallurgical bonding material 37 such as a silver-based precious metal brazing material for vacuum, which is a vacuum sealing means, A sealed vacuum space 25 is formed. A gas adsorbent 38 made of ceramic such as zeolite is attached to the sealed vacuum space 25, and a minute outgas in the sealed vacuum space is adsorbed over a long period of time to prevent vacuum deterioration and ensure heat insulation performance.

接続フランジ26には、ボルト穴39やOリング溝40があり、真空密封断熱管19をOリング28で気密連結できる構成である。真空密封断熱管19の長さは1本当たり例えば10mの長尺となる。 The connection flange 26 has a bolt hole 39 and an O-ring groove 40, and the vacuum-sealed heat insulating tube 19 can be hermetically connected by an O-ring 28. The length of the vacuum-sealed heat insulating tube 19 is, for example, 10 m long per piece.

いっぽう、Oリング28を介して連結フランジ27および締結ボルト41で連結された真空密封断熱管19内に配置される、液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12は、両端部のフランジ42に冶金的に気密一体化された金属ベロー管で構成され、それぞれの冷媒が流動する冷媒の温度で生じる熱変形をベロー部で吸収する。 On the other hand, the liquid helium supply pipe 15, the helium gas recovery pipe 16, and the liquid nitrogen supply pipe 12 disposed in the vacuum sealed heat insulation pipe 19 connected by the connection flange 27 and the fastening bolt 41 via the O-ring 28 have both ends. It is composed of a metal bellows tube that is metallurgically and airtightly integrated with the flange 42 of the part, and the bellows part absorbs thermal deformation caused by the temperature of the refrigerant in which each refrigerant flows.

前記金属ベロー管内を移送される冷媒の圧力が高い場合の伸びは、金属ベロー管の両端部のフランジ42に、冶金的にもしくは機械的に一体化された可撓性を有する金属ブレード43で拘束され大きな変形は生じない。金属ブレード43の外周部には積層断熱材44が巻きつけられ輻射熱の侵入を防止する。また、積層断熱材44の外周部には、プラスチック製のスペーサ45が螺旋状に巻きつけられている。 The elongation when the pressure of the refrigerant transferred through the metal bellows pipe is high is restrained by a flexible metal blade 43 that is metallurgically or mechanically integrated with the flanges 42 at both ends of the metal bellows pipe. And no major deformation occurs. A laminated heat insulating material 44 is wound around the outer peripheral portion of the metal blade 43 to prevent intrusion of radiant heat. A plastic spacer 45 is spirally wound around the outer peripheral portion of the laminated heat insulating material 44.

フランジ42には接続直管46が冶金的に気密一体化され、その接続部において接続直管46に冶金気密的に一体化された接続雄継手47と、シール駒48を介して雌継手49で締付けられ気密的に一体化され接続締結される。気密的に締結された接続直管46はプラスチック製のスペーサ50で両端を雄バイオネット23の内側で支持される。スペーサ50には通気孔51が設けられている。 A connecting straight pipe 46 is metallurgically and integrally integrated with the flange 42, and a connecting male joint 47 that is metallurgically and airtightly integrated with the connecting straight pipe 46 at a connecting portion thereof, and a female joint 49 via a seal piece 48. It is tightened and hermetically integrated and connected and fastened. The connecting straight pipe 46 that is airtightly fastened is supported by plastic spacers 50 at both ends inside the male bayonet 23. The spacer 50 is provided with a vent hole 51.

本実施例の真空断熱トランスファーチューブ18では、断熱された密封真空空間を有する真空密封断熱管19を気密連結されて構成した内側空間29を、真空ポンプ8で真空排気して断熱真空空間とし、その空間内に冷媒を輸送する液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12を配置する構造により、極低温の液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12が熱変形等で真空密封断熱管19の内側内管22に強く接触する場合においても、内側内管22と常温の常温外側外管20とは密封真空空間25で断熱され、かつ内側内管22は熱伝導率が小さな例えばステンレス鋼やチタニュウム鋼で製作されているので、接触部が低温に冷却されても常温外側外管20との温度差が大きくなり、伝導による熱侵入量はわずかな量に抑えられので、真空断熱トランスファーチューブ18の断熱性能の劣化を防止できる効果が生まれる。 In the vacuum heat insulating transfer tube 18 of the present embodiment, an inner space 29 configured by hermetically connecting a vacuum sealed heat insulating tube 19 having a heat sealed vacuum space is evacuated by a vacuum pump 8 to form a heat insulating vacuum space. Due to the structure in which the liquid helium supply pipe 15, the helium gas recovery pipe 16 and the liquid nitrogen supply pipe 12 for transporting the refrigerant into the space are arranged, the cryogenic liquid helium supply pipe 15, the helium gas recovery pipe 16 and the liquid nitrogen supply pipe 12 are provided. Is strongly in contact with the inner inner tube 22 of the vacuum sealed heat insulating tube 19 due to thermal deformation or the like, the inner inner tube 22 and the normal temperature outer outer tube 20 are insulated by the sealed vacuum space 25 and the inner inner tube 22. Is made of, for example, stainless steel or titanium steel having a low thermal conductivity, so that even if the contact portion is cooled to a low temperature, the temperature difference from the outside outer tube 20 at room temperature is large. No longer, amount of inserted heat by conduction than is suppressed to a small amount, born effect of preventing the deterioration of the insulating performance of the vacuum heat insulating transfer tube 18.

また、本実施例の真空断熱トランスファーチューブ18では、冷媒の供給が開始され装置全体の予冷段階では、装置内の真空圧力が高く、真空空間6および真空空間29の真空断熱性能が低下する工程が生じ、装置が大型化するとその予冷期間が数日におよぶ場合あるが、真空断熱トランスファーチューブ18においては、真空密封断熱管19を有しているので、常温外側外管20とは真空断熱されており、極低温の液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12内を流動する冷媒の蒸発を防止でき、真空断熱トランスファーチューブ18の断熱性能の劣化を防止できるので、冷媒を効率よく供給でき冷却装置3の予冷を短時間で終了することができる効果が生じる。 Further, in the vacuum heat insulating transfer tube 18 of the present embodiment, in the precooling stage of the entire apparatus after the supply of the refrigerant is started, there is a process in which the vacuum pressure in the apparatus is high and the vacuum heat insulating performance of the vacuum space 6 and the vacuum space 29 is lowered. As a result, when the apparatus is enlarged, the precooling period may take several days. However, since the vacuum heat insulating transfer tube 18 has a vacuum sealed heat insulating tube 19, it is vacuum insulated from the room temperature outer outer tube 20. The cryogenic liquid helium supply pipe 15, the helium gas recovery pipe 16 and the liquid nitrogen supply pipe 12 can be prevented from evaporating, and the heat insulation performance of the vacuum heat insulation transfer tube 18 can be prevented from being deteriorated. It is possible to supply efficiently and the effect that the pre-cooling of the cooling device 3 can be completed in a short time is produced.

また、本実施例の真空断熱トランスファーチューブ18では、先に極低温の液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12を接続雄継手47と、シール駒48を介して雌継手49で連結し、真空漏れ検出装置(図示せず)を使用して接続部に漏れが無いことを確認した後に、真空密封断熱管19を挿入し連結フランジ27で連結しながら長尺の真空断熱トランスファーチューブ18を製作、設置できるので、極低温の液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12の連結部を溶接等で冶金一体的に連結する必要が無く、製作、設置コストが低い真空断熱トランスファーチューブ18を提供でき、また、さらには製作後に前記接続部に冷媒漏れ等のトラブルが生じた場合、製作時の逆工程で前記接続部のシール駒48および雌継手49の交換等による補修を容易に行えるので、補修コストを低減できる効果がある。 Further, in the vacuum heat insulating transfer tube 18 of the present embodiment, the cryogenic liquid helium supply pipe 15, helium gas recovery pipe 16 and liquid nitrogen supply pipe 12 are first connected to the male joint 47 and the female piece through the seal piece 48. 49, and using a vacuum leak detector (not shown) to confirm that there is no leak in the connection portion, insert a vacuum-sealed heat insulating tube 19 and connect it with the connecting flange 27 to make a long vacuum insulation. Since the transfer tube 18 can be manufactured and installed, it is not necessary to connect the connecting parts of the cryogenic liquid helium supply pipe 15, the helium gas recovery pipe 16 and the liquid nitrogen supply pipe 12 by metallurgy integrally by welding or the like. The vacuum heat insulating transfer tube 18 can be provided at a low cost. Further, when troubles such as refrigerant leakage occur in the connection part after production, The so repaired by replacement of the connection portion of the sealing piece 48 and the female joint 49 easily in the process, there is an effect of reducing the repair cost.

また、地震発生時等の異常状態の場合に、薄肉管で強度が弱い極低温の液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12自身の管壁に亀裂が発生したり、もしくは連結部の継手が緩み連結部から冷媒が漏れ出した場合においても、複数の連結された真空密封断熱管19において、単独に断熱できる密封真空空間を担保できるので、漏れ出た大量の冷媒の突沸的蒸発が防止でき、真空断熱トランスファーチューブ18の破裂を防止できる安全な真空断熱トランスファーチューブ18を提供できる効果がある。 Further, in the case of an abnormal state such as an earthquake occurrence, cracks occur in the walls of the cryogenic liquid helium supply pipe 15, the helium gas recovery pipe 16 and the liquid nitrogen supply pipe 12 themselves, which are thin-walled and weak in strength. Alternatively, even when the joint of the connecting portion is loosened and the refrigerant leaks from the connecting portion, the plurality of connected vacuum sealed heat insulating pipes 19 can secure a sealed vacuum space that can be insulated independently, so that a large amount of the leaked refrigerant There is an effect that it is possible to provide a safe vacuum insulation transfer tube 18 that can prevent sudden evaporation and prevent the vacuum insulation transfer tube 18 from bursting.

[実施例2] [Example 2]

次に、本発明の第2実施例について図5を用いて説明する。図5は本発明の第2実施例の真空断熱トランスファーチューブにおける可撓性を有する真空密封断熱管の断面図である。 Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 5 is a cross-sectional view of a flexible vacuum sealed heat insulating tube in the vacuum heat insulating transfer tube of the second embodiment of the present invention.

この第2実施例は、真空空間を密封内蔵するフレキシブル真空密封断熱管60を、例えばステンレス鋼製の外側の金属ベロー管製の常温外側ベロー外管52と、金属ベロー管の内側ベロー内管53で構成し、両管の間に耐高熱性を有し熱伝導率が小さな材質で製作されたスペーサ54を配置した点で第1実施例と相違するものであり、その他の点については第1実施例と基本的には同一である。 In this second embodiment, a flexible vacuum-sealed heat insulating tube 60 that seals and incorporates a vacuum space includes a room temperature outer bellows outer tube 52 made of, for example, a stainless steel outer metal bellows tube, and an inner bellows inner tube 53 of a metal bellows tube. The second embodiment is different from the first embodiment in that a spacer 54 made of a material having high heat resistance and low thermal conductivity is disposed between both pipes. This is basically the same as the embodiment.

図5において、常温外側ベロー外管52の両端部は、接続フランジ26に冶金的に気密一体化された保持サポート管55の鍔56および保持サポート管57の鍔58に冶金的に気密一体化されており、外周部は例えばステンレス鋼製の金属繊維のブレード59が設けられている。 In FIG. 5, both ends of the normal temperature outer bellows outer pipe 52 are metallurgically and airtightly integrated with the flange 56 of the holding support pipe 55 and the flange 58 of the holding support pipe 57 that are metallurgically and airtightly integrated with the connection flange 26. The outer peripheral portion is provided with a blade 59 of a metal fiber made of, for example, stainless steel.

また、例えばステンレス鋼製の金属ベロー管の内側ベロー内管53の両端部は、接続フランジ26に冶金的に気密一体化された雄型バイオネット23および雌型バイオネット24に冶金的に気密一体化されている。 For example, both ends of the inner bellows inner pipe 53 of a metal bellows pipe made of stainless steel are metallurgically and airtightly integrated with the male bayonet 23 and the female bayonet 24 that are metallurgically and airtightly integrated with the connection flange 26. It has become.

前記内側ベロー内管53の外周部にアウトガスがほとんど無く、熱伝導率が小さなガラス等のセラミック細線束で構成したスペーサ54を螺旋状に巻付けている。 A spacer 54 made of a bundle of ceramic thin wires such as glass having almost no outgas and having low thermal conductivity is wound around the outer periphery of the inner bellows inner tube 53 in a spiral shape.

密封真空空間25には、ゼオライト等のセラミック製等のリング状のガス吸着剤61が取り付けられ、長期間にわたって密封真空空間の微少なアウトガスを吸着して真空劣化を防止し、断熱性能を担保している。 A ring-shaped gas adsorbent 61 made of ceramic such as zeolite is attached to the sealed vacuum space 25, and a minute outgas in the sealed vacuum space is adsorbed over a long period of time to prevent vacuum deterioration and ensure heat insulation performance. ing.

この第2実施例のフレキシブル真空密封断熱管60を図2の真空密封断熱管19の代わりに用いた図1の真空断熱トランスファーチューブ18では、真空断熱トランスファーチューブ18の可撓性が優れるので、液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12の熱変形に伴う真空密封断熱管19への機械的接触が生じる場合、その接触反力に対してフレキシブル真空密封断熱管60が容易に変形し、接触圧力が低減される。 In the vacuum heat insulating transfer tube 18 of FIG. 1 in which the flexible vacuum sealed heat insulating tube 60 of the second embodiment is used instead of the vacuum sealed heat insulating tube 19 of FIG. 2, the vacuum heat insulating transfer tube 18 is excellent in flexibility. When mechanical contact with the vacuum sealed heat insulating tube 19 occurs due to thermal deformation of the helium supply tube 15, helium gas recovery tube 16, and liquid nitrogen supply tube 12, the flexible vacuum sealed heat insulating tube 60 is easy for the contact reaction force. The contact pressure is reduced.

このため、接触部において液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12への接触部からの熱伝導による熱侵入量がさらに低減され、真空断熱トランスファーチューブ18の断熱性能の劣化を防止できる効果が生まれる。 For this reason, the amount of heat intrusion due to heat conduction from the contact portion to the liquid helium supply pipe 15, helium gas recovery pipe 16 and liquid nitrogen supply pipe 12 is further reduced in the contact portion, and the heat insulation performance of the vacuum heat insulation transfer tube 18 is deteriorated. The effect which can prevent is born.

さらには、液体ヘリウム供給管15、ヘリウムガス回収管16および液体窒素供給管12と金属ベロー管の外内管53と熱接触部からより高温の両端部までの熱伝熱距離は、内側ベロー内管53がベロー管であるためさらに長くなり、更に熱侵入量が低減し、真空断熱トランスファーチューブ18の断熱性能の劣化をさらに防止できる効果が生じる。 Furthermore, the heat heat transfer distance from the liquid helium supply pipe 15, the helium gas recovery pipe 16, the liquid nitrogen supply pipe 12, the outer / inner pipe 53 of the metal bellows pipe, and the heat contact portion to both ends at higher temperatures is the inner bellows. Since the tube 53 is a bellows tube, the tube 53 becomes longer, further reduces the amount of heat penetration, and produces an effect of further preventing deterioration of the heat insulation performance of the vacuum heat insulation transfer tube 18.

以上の実施例では、冷却システムの被冷却体が超電導空洞や超電導磁石である場合について説明したが、被冷却体が超電導バルク体や、磁気計測装置のSQUID素子、低温コンピュータの電子素子、低温NMR受信・照射用のコイル素子や、冷媒移送管中に長尺に渡って配置された超電導送電線の超電導線であっても同様の作用、効果を生じる。 In the above embodiments, the case where the object to be cooled of the cooling system is a superconducting cavity or a superconducting magnet has been described. However, the object to be cooled is a superconducting bulk body, a SQUID element of a magnetic measuring device, an electronic element of a low temperature computer, a low temperature NMR. Similar actions and effects are produced even with a coil element for reception / irradiation and a superconducting wire of a superconducting power transmission line arranged in a long length in a refrigerant transfer pipe.

また、以上の実施例では、複数の冷媒移送管を同一の真空断熱トランスファーチューブ内に配置した場合について説明したが、冷媒輸移送管を個々の真空断熱トランスファーチューブ内に配置して冷却システムを構成しても同様な効果が生じる。 In the above embodiments, the case where a plurality of refrigerant transfer pipes are arranged in the same vacuum heat insulation transfer tube has been described. However, the refrigerant transport pipe is arranged in each vacuum heat insulation transfer tube to constitute a cooling system. However, the same effect occurs.

また、以上の実施例では、冷媒が液化ガスである場合について説明したが、冷媒が冷凍機で冷却された低温の高圧のヘリウムガスである場合においても、同様の作用、効果を生じる。 In the above-described embodiments, the case where the refrigerant is a liquefied gas has been described. However, the same operation and effect can be obtained when the refrigerant is a low-temperature high-pressure helium gas cooled by a refrigerator.

また、以上の実施例では、冷媒移送管を真空密封断熱管19内に配置し、配置空間29を冷却装置内の真空断熱空間6に連通した場合について説明したが、真空密封断熱管19両端部において、配置空間29を単独に真空排気し、配置空間29を真空密封断熱管外と隔離する隔壁を設け、冷媒移送管を、前記隔壁に貫通させ貫通部を気密的に一体化し、配置空間29を単独に真空排気できる真空断熱トランスファーチューブにおいても、地震等の非常時に冷媒移送管から冷媒が漏れた場合においても、同様の作用、効果を生じる。 In the above embodiment, the case where the refrigerant transfer pipe is arranged in the vacuum-sealed heat insulating pipe 19 and the arrangement space 29 is communicated with the vacuum heat-insulating space 6 in the cooling device has been described. In this case, the arrangement space 29 is evacuated independently, a partition wall is provided that isolates the arrangement space 29 from the outside of the vacuum-sealed heat insulating tube, a refrigerant transfer pipe is passed through the partition wall, and the penetrating portion is hermetically integrated. Even in the case of a vacuum heat-insulating transfer tube that can be evacuated independently, even if the refrigerant leaks from the refrigerant transfer tube in an emergency such as an earthquake, the same action and effect are produced.

また、以上の実施例では、真空密封断熱管の両端に断熱連結用の雄型バイオネットおよび雌型バイオネット配置した場合について説明したが、両端に同じ雄型バイオネット同志、もしくは同じ雌型バイオネット同志を配置した場合においても冷却装置3や冷媒供給装置32の真空空間と隔離されているので、冷却装置3や冷媒供給装置32の断熱性能が劣化しない同様の作用、効果を生じる。 Further, in the above embodiment, the case where the male and female bayonets for heat insulation connection are arranged at both ends of the vacuum-sealed heat insulating tube has been described. However, the same male bayonet or the same female bionet is disposed at both ends. Even when the nets are arranged, since they are isolated from the vacuum space of the cooling device 3 and the refrigerant supply device 32, the same operation and effect that the heat insulating performance of the cooling device 3 and the refrigerant supply device 32 is not deteriorated are produced.

また、以上の実施例では、真空密封断熱管の密封真空空間を高温ベーキングした後、密封して形成する場合について説明したが、温度約120℃の中温で数ヶ月間連続真空排気した後に密封して密封真空空間を形成した場合においても同様の作用、効果を生じる。 In the above embodiment, the case where the sealed vacuum space of the vacuum sealed insulation tube is formed after being baked at a high temperature and then sealed is described. However, after the vacuum is continuously evacuated for several months at a medium temperature of about 120 ° C., the sealed space is sealed. Even when a sealed vacuum space is formed, the same action and effect are produced.

また、以上の実施例では、真空封じ切り手段として、メクラフランジ36を冶金的に冶金接合材37で密封する構造で密封する構造について説明したが、代わりに金属製の真空バルブを真空排気ノズル35に接続し、高温状態で機械的に締め切って封じ切る構造においても真空密封断熱管19を構成でき、同様の作用、効果を生じる。 Further, in the above-described embodiment, the structure in which the Mekura flange 36 is hermetically sealed with the metallurgical bonding material 37 as the vacuum sealing means has been described. Instead, a metal vacuum valve is used as the vacuum exhaust nozzle 35. The vacuum-sealed heat insulating tube 19 can be configured even in a structure that is mechanically closed and sealed in a high temperature state, and the same operation and effect are produced.

1…冷却システム、2…被冷却体、3…冷却装置、4…液体ヘリウム容器、5…真空容器、6…真空空間、7…熱シールド板、12…液体窒素供給管、14…液体ヘリウム、15…液体ヘリウム供給管、19…真空密封断熱管、20…常温外側外管、21…金属ベロー管、22…内側内管、25…密封真空空間、32…冷媒供給装置、35…真空排気ノズル、36…メクラフランジ、37…冶金接合材、38…ガス吸着剤、52…常温外側ベロー外管、53…内側ベロー内管、54…スペーサ、60…フレキシブル真空密封断熱管 DESCRIPTION OF SYMBOLS 1 ... Cooling system, 2 ... Cooling object, 3 ... Cooling device, 4 ... Liquid helium container, 5 ... Vacuum container, 6 ... Vacuum space, 7 ... Heat shield board, 12 ... Liquid nitrogen supply pipe, 14 ... Liquid helium, DESCRIPTION OF SYMBOLS 15 ... Liquid helium supply pipe | tube, 19 ... Vacuum sealed heat insulation pipe | tube, 20 ... Room temperature outer side outer pipe, 21 ... Metal bellows pipe | tube, 22 ... Inner inner pipe | tube, 25 ... Sealed vacuum space, 32 ... Refrigerant supply apparatus, 35 ... Vacuum exhaust nozzle , 36 ... Mekura flange, 37 ... Metallurgical bonding material, 38 ... Gas adsorbent, 52 ... Normal temperature outer bellows outer pipe, 53 ... Inner bellows inner pipe, 54 ... Spacer, 60 ... Flexible vacuum sealed heat insulating pipe

Claims (5)

冷媒が流動する移送管を配置する第1の空間と、
大気空間と隔離した真空管を有し、
前記真空管の内側に前記第1の空間を負圧状態に保持形成する真空断熱トランスファーチューブにおいて、
前記真空管を、径が異なる外管と内管を同心状の2重管で構成し、
前記内管の内側に前記第1の空間を形成し、
前記外管と前記内管の間に前記第1の空間と隔離された負圧の第2の空間を形成する真空断熱管とした
ことを特徴とする真空断熱管および真空断熱トランスファーチューブ。
A first space in which a transfer pipe through which the refrigerant flows is disposed;
Having a vacuum tube isolated from the atmospheric space,
In a vacuum heat insulating transfer tube that forms and holds the first space in a negative pressure state inside the vacuum tube,
The vacuum tube comprises an outer tube and an inner tube having different diameters as a concentric double tube,
Forming the first space inside the inner tube;
A vacuum heat insulating tube and a vacuum heat insulating transfer tube, characterized in that a vacuum heat insulating tube is formed between the outer tube and the inner tube to form a negative pressure second space isolated from the first space.
請求項1に記載の真空断熱管および真空断熱トランスファーチューブにおいて、少なくとも前記内管の一部を金属ベロー管で構成したしたことを特徴とする真空断熱管および真空断熱トランスファーチューブ。 2. The vacuum heat insulation tube and the vacuum heat insulation transfer tube according to claim 1, wherein at least a part of the inner tube is constituted by a metal bellows tube. 請求項1および請求項2に記載の真空断熱管および真空断熱トランスファーチューブにおいて、前記外管および内管の少なくとも1部を金属ベロー管で構成し、両金属ベロー間に前記第2の空間を形成したことを特徴とする真空断熱管および真空断熱トランスファーチューブ。 3. The vacuum heat insulating tube and the vacuum heat insulating transfer tube according to claim 1 and 2, wherein at least a part of the outer tube and the inner tube is formed of a metal bellows, and the second space is formed between the metal bellows. A vacuum heat insulating tube and a vacuum heat insulating transfer tube characterized by the above. 請求項1、請求項2および請求項3に記載の真空断熱管および真空断熱トランスファーチューブにおいて、前記真空断熱管の両端部を断熱連結用のバイオネットで構成したことを特徴とする真空断熱管および真空断熱トランスファーチューブ。 The vacuum heat insulating tube and the vacuum heat insulating transfer tube according to claim 1, 2 and 3, wherein both ends of the vacuum heat insulating tube are constituted by a heat insulating connection bayonet, and Vacuum insulated transfer tube. 請求項1、請求項2、請求項3および請求項4に記載の真空断熱管および真空断熱トランスファーチューブにおいて、前記真空断熱トランスファーチューブ単独で、前記第1の空間を大気空間と隔離された負圧空間としたことを特徴とする真空断熱管および真空断熱トランスファーチューブ。 The vacuum heat insulation tube and the vacuum heat insulation transfer tube according to claim 1, claim 2, claim 3, and claim 4, wherein the vacuum insulation heat transfer tube alone is used to isolate the first space from the atmospheric space. A vacuum heat insulating tube and a vacuum heat insulating transfer tube characterized by being a space.
JP2013261901A 2013-12-19 2013-12-19 Vacuum heat insulation pipe and vacuum heat insulation transfer tube Pending JP2015117778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013261901A JP2015117778A (en) 2013-12-19 2013-12-19 Vacuum heat insulation pipe and vacuum heat insulation transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013261901A JP2015117778A (en) 2013-12-19 2013-12-19 Vacuum heat insulation pipe and vacuum heat insulation transfer tube

Publications (1)

Publication Number Publication Date
JP2015117778A true JP2015117778A (en) 2015-06-25

Family

ID=53530680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013261901A Pending JP2015117778A (en) 2013-12-19 2013-12-19 Vacuum heat insulation pipe and vacuum heat insulation transfer tube

Country Status (1)

Country Link
JP (1) JP2015117778A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890985B1 (en) * 2016-07-19 2018-08-23 한국기초과학지원연구원 A pipe vacuum feedthrough and a vacuum processing device comprising thereof
WO2019003458A1 (en) * 2017-06-27 2019-01-03 栗田工業株式会社 Vacuum degree retaining sheet
CN110107756A (en) * 2019-05-31 2019-08-09 中铁第四勘察设计院集团有限公司 Connector and pipe connecting structure
KR20200124783A (en) * 2019-04-23 2020-11-04 이덕재 Oxygen line compensator for fuel cell system of submarine
CN112359345A (en) * 2020-10-22 2021-02-12 江苏永鼎光纤科技有限公司 Air inlet device of in-pipe gas phase deposition equipment
CN114370557A (en) * 2022-02-07 2022-04-19 北京航天雷特机电工程有限公司 Sandwich vacuum heat-insulating pipe

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101890985B1 (en) * 2016-07-19 2018-08-23 한국기초과학지원연구원 A pipe vacuum feedthrough and a vacuum processing device comprising thereof
WO2019003458A1 (en) * 2017-06-27 2019-01-03 栗田工業株式会社 Vacuum degree retaining sheet
KR20200124783A (en) * 2019-04-23 2020-11-04 이덕재 Oxygen line compensator for fuel cell system of submarine
KR102186612B1 (en) * 2019-04-23 2020-12-07 이덕재 Oxygen line compensator for fuel cell system of submarine
CN110107756A (en) * 2019-05-31 2019-08-09 中铁第四勘察设计院集团有限公司 Connector and pipe connecting structure
CN112359345A (en) * 2020-10-22 2021-02-12 江苏永鼎光纤科技有限公司 Air inlet device of in-pipe gas phase deposition equipment
CN114370557A (en) * 2022-02-07 2022-04-19 北京航天雷特机电工程有限公司 Sandwich vacuum heat-insulating pipe

Similar Documents

Publication Publication Date Title
JP2015117778A (en) Vacuum heat insulation pipe and vacuum heat insulation transfer tube
JP2961619B2 (en) Cryostat with cooling means
CA2646292A1 (en) Cryogenic aerogel insulation system
JP7470851B2 (en) Low-temperature thermal conductivity measuring device
US9841228B2 (en) System and method for liquefying a fluid and storing the liquefied fluid
US7140190B2 (en) Refrigerator and neck tube arrangement for cryostatic vessel
JP2014052133A (en) Bayonet coupler for cryogenic fluid
US20090188260A1 (en) Cryogenic container with built-in refrigerator
Alessandria et al. The 4 K outer cryostat for the CUORE experiment: Construction and quality control
CN110285316B (en) High vacuum multi-layer heat insulation container with inner container having convex object on outer surface
JP6440922B1 (en) Superconducting magnet
JPH0429376B2 (en)
CN114017507B (en) Vacuum low-temperature valve for liquid helium and liquid hydrogen
JP6588264B2 (en) Cryogenic refrigerant supply system
JP6172979B2 (en) Superconducting device
JP2014059022A (en) Heat insulation support spacer in vacuum heat insulation low temperature equipment
JP2006093723A (en) Superconducting magnet device
JP2014037932A (en) Flexible heat insulation transfer pipe and flexible low temperature cooling device
CN107542642A (en) Heavy caliber self-shileding refrigerator cryopump
US11749435B2 (en) Pre-cooling and removing ice build-up from cryogenic cooling arrangements
KR102639944B1 (en) Apparatus for testing liquefied hydrogen valve
CN216692499U (en) High vacuum type integral adsorption type heat insulation double-wall pipe
JPS63207958A (en) Freezer
JP2008267635A (en) Cryogenic cooling equipment and method
JPH0723828B2 (en) Low temperature heat transfer flexible tube