JP2614062B2 - Thermal conductivity measuring device based on the direct plate method - Google Patents

Thermal conductivity measuring device based on the direct plate method

Info

Publication number
JP2614062B2
JP2614062B2 JP32902887A JP32902887A JP2614062B2 JP 2614062 B2 JP2614062 B2 JP 2614062B2 JP 32902887 A JP32902887 A JP 32902887A JP 32902887 A JP32902887 A JP 32902887A JP 2614062 B2 JP2614062 B2 JP 2614062B2
Authority
JP
Japan
Prior art keywords
plate
temperature
hot plate
main
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32902887A
Other languages
Japanese (ja)
Other versions
JPH01169346A (en
Inventor
清 町田
正義 上園
奉幸 勝野
武 青島
幸三 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EKO Instruments Co Ltd
Original Assignee
EKO Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EKO Instruments Co Ltd filed Critical EKO Instruments Co Ltd
Priority to JP32902887A priority Critical patent/JP2614062B2/en
Publication of JPH01169346A publication Critical patent/JPH01169346A/en
Application granted granted Critical
Publication of JP2614062B2 publication Critical patent/JP2614062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は平板直接法に依る熱伝導率測定装置に於いて
試料一枚法、試料二枚法の両測定方法が共に可能な熱伝
導率測定装置に係る。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal conductivity measuring apparatus based on a direct plate method, and a thermal conductivity measuring apparatus capable of performing both a one-sample method and a two-sample method. According to.

発明の背景 絶対法に依る断熱材の熱伝導率測定法の一つとして平
板直接法〔JIS A1413 Guarded Hotplate法、即ちGHP
法〕が規定されている。この方法は熱的、幾何学的に同
一な試料を二枚必要とし、この試料の加工、特に平面を
出す加工が非常に難しいにも拘らず、世界各国の工業規
格はこの二枚法に基づいたものが多い。
BACKGROUND OF THE INVENTION As one method of measuring the thermal conductivity of thermal insulation using the absolute method, a direct plate method (JIS A1413 Guarded Hotplate method, GHP
Law] is stipulated. Although this method requires two thermally and geometrically identical specimens, and the processing of this specimen, especially the processing to produce a flat surface, is extremely difficult, industrial standards around the world are based on this two-plate method. There are many things.

これに対し試料を一枚のみ使用する一枚法と称する測
定法もある。この測定法は温度制御点を一点多く必要と
し、誤差の要因がそれだけ多く絶対法という見地から見
て好ましくはないがこの測定法を規格として要求してい
る国もある。従ってこのような要求にも対処するため
に、1つの同一の試料について一枚法用の測定装置、二
枚法用の測定装置とは別々の装置を用意しておかなけれ
ばならなかった。
On the other hand, there is a measurement method called a one-sheet method using only one sample. Although this measurement method requires one more temperature control point, which is not preferable from the viewpoint of an absolute method because of many error factors, some countries require this measurement method as a standard. Therefore, in order to cope with such a demand, it is necessary to prepare a measuring device for the one-sheet method and a measuring device for the two-sheet method for one and the same sample.

従来型の説明 従来の一枚法用の装置の主熱板Hと保護熱板G1は、保
護熱板G2と、第1図(a)のように断熱材Aをはさみ柱
Xにより支持され構造的に3者は一体化されていた。従
って主熱板Hと保護熱板G2との間の間隔を変えて、その
間に任意の厚さの試料を出し入れするといったことは出
来なかった。このため二枚法による測定に転用すること
は不可能であった。
The main heating plate H and the protective thermal plate G 1 of a conventional type description conventional apparatus for one method, the protective thermal plate G 2, the heat insulating material A scissors pillar X as in the first diagram (a) a support As a result, the three persons were structurally integrated. Thus by changing the spacing between the protective thermal plate G 2 main hot plate H, it could not be such and out of samples of any thickness therebetween. For this reason, it was impossible to divert the measurement to the two-sheet method.

一方、従来の二枚法用の装置の主熱板Hは電力一定で
制御されており温度一定の制御ではなかった。この装置
を使って一枚法測定に転用するには、主熱板Hの上側に
断熱材をおき、この断熱材の上の低温板C2(これは一枚
法の保護熱板G2に相当する)と主熱板Hとの間の温度差
が0になるよう低温板C2の温度を制御しなければならな
い。さらに保護熱板G1も主熱板Hとの温度差が0となる
ように制御する必要がある。主熱板Hが電力一定の制御
であるため定常状態に達するまで主熱板Hの温度が一定
でなく、しかも、主熱板Hと保護熱板G2は厚い断熱材を
はさみ離れているため保護熱板G2の制御は制御系として
不安定で実用的でなかった。
On the other hand, the main heating plate H of the conventional apparatus for the two-sheet method is controlled at a constant power and not at a constant temperature. In order to divert to the single-plate method using this device, place a heat insulator above the main hot plate H, and place the low-temperature plate C 2 on this heat insulator (this is used as the protective hot plate G 2 for the single-plate method). corresponding) and the temperature difference between the main heat plate H must control the temperature of the cold plate C 2 so as to be 0. Further temperature difference also between the main heating plate H protective thermal plate G 1 is should be controlled to be zero. Since the main hot plate H is controlled at a constant power, the temperature of the main hot plate H is not constant until it reaches a steady state, and the main hot plate H and the protective hot plate G 2 are separated from each other by a thick heat insulating material. control of the protective thermal plate G 2 is not unstable and practical as a control system.

更に、熱伝導率の測定精度に関しては、従来の一枚法
では断熱材Aを補強し主熱板Hと保護熱板G1を支えてい
る柱Xを伝わる熱による燃量計測の誤差が大きかった。
また二枚法の場合の主熱板Hとこれを取り囲む機械的、
熱的保護熱板G1との間の隙間を数ケ所で埋める連接部Y
がありこの部分を流れる熱の量を少なくするために間接
部Yと一体化した構造である主熱板Hと保護熱板G1の構
成材料として、どうしても熱伝導率の低い金属を使わざ
るを得なかった。ところがGHP装置の主熱板H及び保護
熱板G1はこれらの表面の温度が均一であるほど測定の精
度が向上するため、使用する金属は可能な限り高い熱伝
導率の材料が望ましいが、上記の熱的、機械的保護のた
め熱伝導率の低いステンレス等が使用されてきた。この
ために特に二枚法の装置で一枚法の測定を行う場合には
精度を上げるため主熱板Hと保護熱板G2の間の温度差を
測定し補正する必要があった。いずれの測定の場合も主
熱板H上の数ケ所の温度がランダムにばらついていると
いう事は主熱板Hを代表する温度が定まらず致命的な欠
陥であった。
Furthermore, with regard to the measurement accuracy of the thermal conductivity, the error of the retarding amount measurement by heat transmitted pillars X supporting the main heat plate H and the protective thermal plate G 1 reinforced insulation A is larger than the conventional one method Was.
In addition, the main heating plate H and the mechanical surrounding the main heating plate in the case of the two-sheet method,
Articulation Y to fill the gap between the thermal protection hot plate G 1 by the number Kesho
The main heating plate H and the material of the protective thermal plate G 1 is a structure integrated with the indirect section Y for There are to reduce the amount of heat flowing through this portion, forcing just use a low thermal conductivity metal I didn't get it. However, since the main heating plate H and a protective thermal plate G 1 of the GHP apparatus for improving the accuracy of the measurement as the temperature of these surfaces is uniform, but the material of the metal as possible high thermal conductivity to be used is desired, Stainless steel or the like having a low thermal conductivity has been used for the above thermal and mechanical protection. This was necessary to the temperature difference measured correction between the main heating plate H and the protective thermal plate G 2 to increase the accuracy particularly when the measurement of one method in the apparatus of two methods for. In any of the measurements, the fact that the temperature at several locations on the main hot plate H fluctuated randomly was a fatal defect because the temperature representative of the main hot plate H was not determined.

発明の目的 平板直接法を用いて試料の熱伝導率を測定するにあた
り、一枚法、二枚法毎に装置取り替える必要のないよう
出来るだけ構成を単純化し共通部分を多くして、1台の
装置で一枚法と二枚法とが転用測定出来る装置を提供す
ることにある。
Object of the Invention In measuring the thermal conductivity of a sample using the direct plate method, the configuration is simplified as much as possible so that there is no need to replace the apparatus for each one-plate method or two-plate method, and the number of common parts is increased. It is an object of the present invention to provide an apparatus that can perform diversion measurement between a single-sheet method and a two-sheet method.

目的達成のための手段 一枚法を実施している場合から二枚法へ代える時は、
一枚法実施に用いた主熱板H上に積層されていた断熱材
Aを試料S2に取り替えるだけであり、又、二枚法を実施
している場合から一枚法実施へ代える時は、主熱板H上
に積層されていた試料S2を断熱材Aに取り替え、主熱板
Hと保護熱板G1に熱伝導性のよい金属材料を採用し、主
熱板Hを任意の一定温度に制御する機能及び低温板C2
温度を主熱板Hのそれと同一に制御できる機能を備える
ことにより達成する。
Means for Achieving the Object When changing from the one-sheet method to the two-sheet method,
Merely replacing the thermal insulation material A which has been laminated to the main heat board H which were used in the one method to the sample S 2, also when replacing the case to have performed two methods to one method implementation The sample S 2 laminated on the main heating plate H is replaced with a heat insulating material A, and a metal material having good heat conductivity is adopted for the main heating plate H and the protection heating plate G 1 , and the main heating plate H can be arbitrarily selected. achieved by providing the same function can be controlled to the same temperature of the main hot plate H functions and low-temperature plate C 2 is controlled to a constant temperature.

本装置の実施の説明 第1図(a)及び(b)は、夫々本発明装置実施例も
説明する図であって、(a)は一枚法による従来の測定
法を実施している場合を示している。従来の一枚法測定
法においては、主熱板Hと保護熱板G1は断熱材Aと貫通
する数本の柱Xにより、保護熱板G2と構造的に一体化さ
れていた。この柱Xは強度を持たせるため、金属又はこ
れに近い材質で熱伝導率も高いため、主熱板Hと保護熱
板G2間の熱移動を高める原因となっていた。
1 (a) and 1 (b) are diagrams for explaining an embodiment of the apparatus of the present invention, respectively, wherein (a) shows a case where a conventional measuring method by the one-sheet method is performed. Is shown. In conventional single method measurement, mainly hot plate H and the protective thermal plate G 1 by several pillars X penetrating the heat insulating material A, was a protective thermal plate G 2 are structurally integrated. The column X is for imparting strength, for high thermal conductivity metal or a material close to, has been a cause of increasing the heat transfer between the protective thermal plate G 2 and the main hot plate H.

本発明においては、一体化構造を廃し主熱板H、断熱
板A、保護熱板G2を分離独立した構造とした。この結
果、主熱板Hと保護熱板G2の間の熱移動を最少に押さえ
測定精度の向上につなげることができた。
In the present invention, an integrated structure to the waste main heat plate H, and a heat insulating plate A, spun protective thermal plate G 2 structure. As a result, the heat transfer between the main heating plate H and the protective thermal plate G 2 could be lead to the improvement of measurement accuracy pressing minimized.

これを僅かに改変、即ち第1図(a)に於ける保護熱
板G2及び断熱材Aとを夫々低温板C2及び試料S2とに取り
替え、二枚法による測定法を実施している場合を(b)
に示す。この場合、保護熱板G2と低温板C2は同材質・同
構造である必要がある。
Slightly modifying this, namely replacing the first diagram (a) in at protecting hot plate G 2 and the heat insulating material A in the respective cold plate C 2 and the sample S 2, and perform a measurement method by two methods (B)
Shown in In this case, the protective thermal plate G 2 and the cold plate C 2 needs to be made of the same material, same structure.

先ず、本図を利用して試料の熱伝導率の測定原理につ
いて説明する。
First, the principle of measuring the thermal conductivity of a sample will be described with reference to FIG.

一枚法による測定の場合には1枚の試料S1を、二枚法
の場合には2枚の試料S1、S2をそれぞれ第1図(a)、
(b)のように積層固定する。主熱板Hの周囲には保護
熱板G1が設けられ一枚法の場合には更に断熱材Aをはさ
み保護熱板G2が置かれている。一枚法、二枚法の各場合
とも装置の上下端の冷却源W及びこれに接する断熱材
A′は、低温板C1、C2、主熱板H及び保護熱板G1、G2
発生した熱を吸収し、装置外部に運ぶ機能をもつ。これ
らの冷却源W及び断熱材A′は比較的低い温度、例えば
100℃程度で動作するGHP法実施装置では省略される。一
枚法の場合、主熱板H及び保護熱板G1、G2を同一温度に
保った状態では主熱板Hで発生した熱は全て低温板C1
流れる。この場合、主熱板Hと保護熱板G1、G2は熱電対
TH、増巾器AMP、温度制御器CON、及び保護熱板用電源PG
で構成される2組の温度コントローラーを介し同一温度
に保たれる。二枚法の場合、主熱板H及び保護熱板G1
同一温度に保った状態では主熱板で発生した熱の半分が
低温板C1に流れ、残りの半分の熱はもう一方の低温板C2
に流れる。この場合、主熱板Hと保護熱板G1は熱電対T
H、増巾器AMP、温度制御器CON、及び保護熱板用電源PG
で構成される1組の温度コントローラーを介し同一温度
に保たれる。
In the case of the single-sheet method, one sample S 1 was used, and in the case of the two-sheet method, two samples S 1 and S 2 were used.
Laminate and fix as shown in FIG. Further insulation A scissors protective thermal plate G 2 are located in the case where the protective thermal plate G 1 is around the main hot plate H is one method provided. In each of the one-sheet method and the two-sheet method, the cooling source W at the upper and lower ends of the apparatus and the heat insulating material A 'in contact with the cooling source W are composed of the low-temperature plates C 1 and C 2 , the main hot plate H and the protective hot plates G 1 and G 2. Has the function of absorbing the heat generated by the device and transferring it to the outside of the device. These cooling sources W and insulation A 'are at relatively low temperatures, e.g.
It is omitted in the GHP method operation device operating at about 100 ° C. In the case of the one-sheet method, when the main hot plate H and the protective hot plates G 1 and G 2 are kept at the same temperature, all the heat generated in the main hot plate H flows to the low-temperature plate C 1 . In this case, the main hot plate H and the protective hot plates G 1 and G 2 are thermocouples.
TH, amplifier AMP, temperature controller CON, and power supply PG for protective hot plate
Are maintained at the same temperature via two sets of temperature controllers. For two methods, half of the heat generated in the main heat plate while keeping the main hot plate H and a protective thermal plate G 1 at the same temperature flows to the cold plate C 1, the other half heat the other Cold plate C 2
Flows to In this case, the main hot plate H and the protective hot plate G 1
H, amplifier AMP, temperature controller CON, and power supply PG for protective hot plate
Are maintained at the same temperature via a set of temperature controllers consisting of

このような状態で一枚法の場合には試料S1内の各部の
温度が時間内に変化しない定常状態において試料S1を通
過する熱流、試料S1の両面間の温度差及び試料S1の厚さ
より試料S1の熱伝導率を求める。一方二枚法の場合には
試料S1、S2内の各部の温度が時間的に変化しない定常状
態において試料S1、S2を通過する熱流の平均値、試料
S1、S2の各々の両面間の温度差の平均値及び試料S1、S2
の各々の厚さの平均値より試料S1、S2の熱伝導率の平均
値を求める。ここで試料を通過する熱流の値は主熱板H
のヒーターに投入した電力から求められる。試料一枚
法、二枚法の各場合の熱伝導率の算出は次式による。
Heat flow through the sample S 1 in the steady state temperature of each part of the sample S 1 is not changed in time in the case of a single process in this state, the temperature difference between the two sides of the sample S 1 and the sample S 1 determining the thermal conductivity of the sample S 1 than the thickness of the. Whereas the average value of the heat flow through the sample S 1, S 2 in the steady state temperature of each part of the sample S 1, S 2 does not change temporally when the two methods, the sample
S 1, the average value and the sample S 1 of the temperature difference between both surfaces of each of S 2, S 2
The average value of the thermal conductivity of the samples S 1 and S 2 is determined from the average value of the respective thicknesses. Here, the value of the heat flow passing through the sample is the main hot plate H
Is obtained from the electric power supplied to the heater. The calculation of the thermal conductivity in each of the single-sheet method and the two-sheet method is based on the following equation.

一枚法の場合 二枚法の場合 ここで、 λ:試料の熱伝導率(W/m℃) Q:主熱板への供給電力(W) l:試料の厚さ(m) A:主熱板の面積(m2) θh:主熱板の温度(℃) θc:低温板の温度(℃) である。Single-sheet method In the case of the two-sheet method Here, λ: thermal conductivity of the sample (W / m ° C) Q: power supplied to the main hot plate (W) l: sample thickness (m) A: area of the main hot plate (m 2 ) θh: Temperature of main hot plate (° C) θc: Temperature of low-temperature plate (° C).

次に実施例について説明する。第1図(a)に示す一
枚法による測定の場合は保護熱板G2の温度を主熱板Hの
それと等しくなるように精度よく制御する必要があるた
め、主熱板H及び保護熱板G2のそれぞれに埋設した制御
用熱電対THを直列に接続することにより、制御用の熱電
堆を構成し、この熱電堆の出力を低ノイズ且つ高倍率の
増幅器AMPへの入力とし、増幅器AMPからの増幅された信
号をさらにPID方式の温度制御器CONに入力する。温度制
御器CONからの調節された出力信号は保護熱板用電源PG
へ入力される。この保護熱板用電源PGから、保護熱板G2
内部の電熱線へ最適な電力が供給されることにより主熱
板Hと保護熱板G2の温度差は常に0となり、主熱板Hか
ら保護熱板G2への熱流を実質的に0(完全断熱)とす
る。保護熱板G1の制御は一枚法、二枚法の各場合とも上
述の一枚法における保護熱板G2の制御と同様に行われ
る。
Next, examples will be described. For the case of measurement by a single method shown in FIG. 1 (a) that must be controlled accurately to be equal to that of the protective thermal plate G 2 a temperature of the main hot plate H, the main hot plate H and a protective heat A control thermocouple TH embedded in each of the plates G 2 is connected in series to form a control thermopile, and the output of the thermopile is used as an input to a low noise and high magnification amplifier AMP, and The amplified signal from the AMP is further input to a PID type temperature controller CON. The regulated output signal from the temperature controller CON is the power supply PG for the protective hot plate.
Is input to From this protective hot plate power supply PG, the protective hot plate G 2
Substantially zero heat flow always 0 is a temperature difference of the protective main hot plate H hot plate G 2 by the optimum power to the interior of the heating wire is supplied from the main heating plate H to protect the heating plate G 2 (Complete insulation). One method is control of the protective thermal plate G 1, in each case of the two methods is same as the control of the protective thermal plate G 2 in one method described above.

一枚法から二枚法に変更する手順。 Procedure to change from single sheet method to double sheet method.

第1図(a)に示す断熱材Aを外し代りに試料S2
セットする。
It sets the sample S 2 instead remove the heat insulating material A shown in FIG. 1 (a).

保護熱板G2の温度を主熱板Hの温度と同一温度に制
御する温度コントローラをOFFにする。即ち第1図
(b)に示す構成とする。
Turns OFF the temperature controller for controlling the temperature of the protective thermal plate G 2 to a temperature the same temperature of the main hot plate H. That is, the configuration shown in FIG.

主熱板Hの温度をある一定温度に設定する。 The temperature of the main heating plate H is set to a certain constant temperature.

低温板C1及びC2の温度を主熱板Hの設定温度より低
いある一定温度に各々設定する。
The temperatures of the low-temperature plates C 1 and C 2 are set to certain constant temperatures lower than the set temperature of the main hot plate H, respectively.

測定をスタートし定常状態を待つ。保護熱板G1は主
熱板Hの温度と同一になるように自動的に制御される。
Start measurement and wait for steady state. Protection hot plate G 1 is automatically controlled to be equal to the temperature of Shunetsuban H.

二枚法から一枚法に変更する手順 第1図(b)に示す試料S2を外し代りに断熱材Aを
セットする。
Set insulation A instead remove the sample S 2 shown in FIG. 1 To change the one method from two methods (b).

第1図(b)に示す低温板C2に予め組込まれている
熱電対THの端子に温度コントローラを接続しこの低温板
C2の温度を主熱板Hの温度と同一温度に制御する。二枚
法においては低温板C1及びC2は同一材質で同一構造であ
る必要がある。従って、これを一枚法として使用すると
きは一枚法の保護熱板G2は低温板C2と同じ構造・材質で
構成される。即ち低温板C2を第1図(a)に示すように
保護熱板G2として働かせる。
Figure 1 (b) connecting the temperature controller to the terminals of the thermocouple TH which are incorporated in advance in the low-temperature plate C 2 shown in cold plate
Controlling the temperature of the C 2 to a temperature the same temperature of the main hot plate H. In two methods cold plates C 1 and C 2 must be the same structure of the same material. Accordingly, the protection hot plate G 2 a piece method when using this as one method consists of the same structure and material as the low-temperature plate C 2. That work as a protective thermal plate G 2 as shown the cold plate C 2 in FIG. 1 (a).

主熱板の温度をある一定温度に設定する。 Set the temperature of the main hot plate to a certain temperature.

低温板C1の温度を主熱板Hの設定温度より低いある
一定温度に設定する。
Setting the temperature of the cold plate C 1 at a constant temperature in lower than the set temperature of the main hot plate H.

測定をスタートし定常状態を待つ。保護熱板G1は主
熱板Hの温度と同一になるように自動的に制御される。
Start measurement and wait for steady state. Protection hot plate G 1 is automatically controlled to be equal to the temperature of Shunetsuban H.

本発明装置の為には従来型測定装置を次の2点のみ僅
かに改変する必要がある。
For the device of the present invention, it is necessary to slightly modify the conventional measuring device only in the following two points.

第1点である主熱板Hと保護熱板G1とより成る層の改
変構造を第2図に上面図、第3図(a)にその側面断面
図、第3図(b)に第3図(a)の円b部の詳細を示
す。保護熱板G1の内周にリングOを設け、このリングO
にあけた3ヶ所の水平方向のネジ穴にセラミック(熱伝
導率は低い)製のビスBを捩じ込むことにより、円板状
主熱板Hの側面に設けたV溝とリングOとを接続し、次
にこのリングOに保護熱板G1をリング固定用ビスJで止
めることにより主熱板Hと保護熱板G1を一体化するもの
である。なお、主熱板Hと保護熱板G1を一体化したもの
を、ここでは加熱板と呼ぶ。
The modified structure of more comprising a layer mainly hot plate H is the first point and the protective thermal plate G 1 top view in Figure 2, a side cross-sectional view in FIG. 3 (a), first in FIG. 3 (b) 3 shows details of a circle b portion in FIG. Ring O is provided on the inner periphery of the protective thermal plate G 1, the ring O
Screws B made of ceramic (having a low thermal conductivity) are screwed into three screw holes in the horizontal direction, and the V-groove provided on the side surface of the disk-shaped main heating plate H and the ring O are screwed. connect is then intended to integrate the main heating plate H and the protective thermal plate G 1 by stopping the protective thermal plate G 1 in the ring O ring fixing screw J. Incidentally, those integrated with the main heating plate H a protective thermal plate G 1, referred to herein as the heating plate.

さらに保護熱板G1とリングOが重なる部分の保護熱板
G1にビス穴をあけ、この穴に平行度調節用ビスKを下か
ら捩じ込むことにより主熱板Hと保護熱板G1とが平行か
つ同一平面内に入るように調整する。このことは試料の
一方の面が主熱板H及び保護熱板G1の全面に均一に接触
するための必要条件である。
Further protective thermal plate G 1 and protective thermal plate of the ring O overlap portion
It drilled screw holes in G 1, a main heating plate H and a protective thermal plate G 1 is adjusted to fall parallel and in the same plane by screwing from below the parallelism adjusting screws K in the hole. This is a necessary condition for one surface of the sample to uniformly contact the entire surface of the main hot plate H and the protective hot plate G1.

このような構成に依れば断熱材Aの層乃至は試料S2
層とが簡単に交換出来るにも拘らずよく密着し一枚法に
よる測定結果と二枚法による測定結果との差の減少に寄
与する。
According to the structure of the difference between the measured result of the layer or the heat insulating material A is adhered well despite a layer of the sample S 2 can be easily replaced measurement result by one method and two methods Contribute to reduction.

次に、第2点として温度制御系に関しては、主熱板の
制御様態として、電力一定制御と及び温度一定制御の両
制御方法が共に可能な系とし、一枚法及び二枚法両方に
おける主熱板Hの温度制御に適用する。さらに二枚法用
の低温板C2は本来の二枚法用の低温板C2としての機能の
他に、主熱板との温度差が0となるように制御可能な一
枚法用の保護熱板G2としても機能するようにした。即
ち、低温板C2と保護熱板G2は材質・構造共同じでなけれ
ばならない。
Next, as a second point, with regard to the temperature control system, the control mode of the main hot plate is a system capable of controlling both the constant power control and the constant temperature control. This is applied to the temperature control of the hot plate H. Further cold plate C 2 for two methods other functions as a low-temperature plate C 2 of the original for the two methods, the temperature difference between the main heat plate for single method control as possible so that 0 and also functions as a protective thermal plate G 2. That is, the low-temperature plate C 2 and the protective thermal plate G 2 is must be the same both material and structure.

効 果 本発明による効果は次の通りである。Effects The effects of the present invention are as follows.

1.一枚法、二枚法の両測定方法が共に可能な装置が実現
された。
1. A device that can perform both the single-sheet method and the two-sheet method has been realized.

2.測定精度が向上した。2. Measurement accuracy has been improved.

3.迅速な測定を可能にした。このことは測定の開始時に
温度一定モードでスタートし、定常状態に達するまでの
時間、即ち測定時間を短くし、定常状態では電力一定モ
ードに切換えて高精度の測定を維持することにより可能
となった。
3. Enables quick measurement. This can be achieved by starting in the constant temperature mode at the start of measurement, shortening the time required to reach the steady state, that is, shortening the measurement time, and switching to the constant power mode in the steady state to maintain high precision measurement. Was.

これらの事項を順を追って説明すると以下のようにな
る。先の目的及び目的達成のための手段で記したように
主熱板Hを熱伝導率の低い3本のセラミック製のビスで
支持する方式としたため、主熱板H及び保護熱板G1を銅
等の熱伝導率の高い金属製にすることが可能となり主熱
板H及び保護熱板G1上の温度分布が大巾に改善された。
このことと主熱板Hを任意の一定温度に制御可能とした
こと及び二枚法の場合の上側の低温板C2の温度を主熱板
Hの温度と同一に制御可能な温度制御系を備えたことの
3点により一枚法、二枚法の両方法の兼用性が実現され
た。
These items will be described in order as follows. Since the main hot plate H is supported by three ceramic screws having low thermal conductivity as described in the above-mentioned purpose and the means for achieving the purpose, the main hot plate H and the protective hot plate G 1 are supported. a high thermal conductivity can be a metal and become main heat plate H and the temperature distribution on the protective thermal plate G 1 such as copper is improved by a large margin.
In addition, a temperature control system capable of controlling the main hot plate H to an arbitrary constant temperature and a temperature control system capable of controlling the temperature of the upper low-temperature plate C 2 to be the same as the temperature of the main hot plate H in the case of the two-sheet method. With the three points of the provision, the versatility of both the one-sheet method and the two-sheet method was realized.

次に測定精度に関しては主熱板Hの支持構造が3点の
セラミックビスによる支持方式を採用したため主熱板H
と保護熱板G1間の伝導による熱移動が大巾に軽減され、
迅速な測定を可能にした理由は以下の通りである。二枚
法による測定の場合は従来電力一定モードで測定を行な
っていたが、この電力一定モードと測定開始時に主熱板
Hの温度を任意の一定温度に設定する温度一定モードの
両モードが共に可能な構造とし、測定開始時に温度一定
モードがスタートし温度が定常状態に達した後、瞬時に
電力一定モードに切換える。一枚法による測定の場合も
二枚法の場合と同様に温度一定モードでスタートし定常
状態において電力一定モードに切換える。従って、本発
明においては、一枚法、二枚法によらずに、測定開始時
は温度一定制御で開始され、測定時は電力一定制御によ
ることとなる。以上の方法により一枚法、二枚法共に従
来の電力一定モードでの測定精度を維持し、しかも測定
時間は大巾に短縮された。
Next, regarding the measurement accuracy, the main hot plate H is supported by three points of ceramic screws.
Heat transfer by conduction between the protective thermal plate G 1 and is reduced by a large margin,
The reason for enabling quick measurement is as follows. In the case of the measurement by the two-sheet method, measurement was conventionally performed in the constant power mode. However, both the constant power mode and the constant temperature mode in which the temperature of the main heating plate H is set to an arbitrary constant temperature at the start of the measurement are both used. A constant temperature mode is started at the start of measurement, and after the temperature reaches a steady state, the mode is instantaneously switched to the constant power mode. In the case of measurement by the single-sheet method, similarly to the case of the two-sheet method, the operation is started in the constant temperature mode, and is switched to the constant power mode in the steady state. Therefore, in the present invention, regardless of the one-sheet method or the two-sheet method, the measurement is started by constant temperature control at the start of measurement, and is performed by constant power control at the time of measurement. By the above method, the measurement accuracy in the conventional constant power mode is maintained in both the single-sheet method and the two-sheet method, and the measurement time is greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)及び(b)は夫々本発明の原理を説明する
図であって、(a)は一枚法による測定法を実施してい
る場合を示し、第1図(a)に於ける断熱材Aを試料S2
に取り替え、二枚法による測定法を実施している場合を
(b)に示す。 第2図は本発明実施のための改変部を示し、第1図に於
ける主熱板Hとこれを取囲む保護熱板G1との部分のみを
表わす上面図、第3図(a)は第2図の側面断面を表わ
し第3図(b)は第3図(a)に於ける円(b)部分の
拡大図である。 H:主熱板、G1:保護熱板 G2:保護熱板、C1:低温板 C2:低温板、S1:試料 S2:試料、A:断熱材 A′:断熱材、W:冷却源 AMP:増幅器、CON:温度制御器 PG:保護熱板用電源、F:放熱器 POM:ポンプ、T:タンク O:リング、B:セラミック製ビス J:リング固定用ビス、K:平行度調節用ビス
FIGS. 1 (a) and 1 (b) are diagrams for explaining the principle of the present invention. FIG. 1 (a) shows a case where a single-sheet measurement method is performed, and FIG. Insulation material A in sample S 2
(B) shows the case where the measurement method by the two-sheet method is performed. FIG. 2 shows a modified portion for carrying out the present invention, and is a top view showing only a portion of the main hot plate H and the protective hot plate G1 surrounding the main hot plate in FIG. 1, and FIG. 3 shows a side cross section of FIG. 2, and FIG. 3 (b) is an enlarged view of a circle (b) portion in FIG. 3 (a). H: main hot plate, G 1: protective thermal plate G 2: protect the hot plate, C 1: cold plate C 2: cold plates, S 1: Sample S 2: Sample, A: heat insulating material A ': heat insulating material, W : Cooling source AMP: Amplifier, CON: Temperature controller PG: Power supply for protection hot plate, F: Heat sink POM: Pump, T: Tank O: Ring, B: Ceramic screw J: Ring fixing screw, K: Parallel Screw for adjusting the degree

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青島 武 東京都日野市百草999 百草団地273― 504 (72)発明者 中村 幸三 東京都中野区南台2―51―9 静風荘 102 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Takeshi Aoshima 999 Hyakusa housing complex, 999 Hyakusa, Hino-shi, Tokyo (72) Kozo Nakamura 2-51-9 Minamidai, Nakano-ku, Tokyo Seifuso 102

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも、主熱板と保護熱板を一体的に
固定した加熱板と、低温板とを備え、これら加熱板と低
温板の間に挟まれた試料に加熱板が与えた熱量と、主熱
板と低温板の間の温度差とに基づいて、前記試料の熱伝
達率を測定する平板直接法に用いるための熱伝導率測定
装置において、該測定装置は、 保護熱板(G2)と、断熱材(A)と、主熱板(H)と保
護熱板(G1)を一体的に固定した加熱板と、試料(S1
と、低温板(C1)をこの順序で積層することによって構
成されており、前記保護熱板(G2)は低温板としても使
用できるよう低温板(C2)と同構造・同材質とされてお
り、前記主熱板(H)と前記保護熱板(G1)は前記保護
熱板(G1)の内周から水平にのびる熱伝導率の低い材料
から成る接続手段(B)によって連結されており、前記
測定装置は、更に、前記主熱板(H)を任意の一定温度
に制御する手段と、前記低温板(G2)としても使用され
る前記保護熱板(G2)の温度を前記主熱板(H)の温度
と同一に制御する手段を備え、これにより、前記測定装
置を、一枚法測定実施の際には、前記断熱材(A)をそ
のまま使用し、二枚法測定実施の際には、前記断熱材
(A)の代わりに試料(S2)を積層することとして、一
枚法測定と二枚法測定に兼用できるようにしたことを特
徴とする装置。
At least a heating plate in which a main heating plate and a protection heating plate are integrally fixed, and a low-temperature plate, wherein the amount of heat applied by the heating plate to a sample sandwiched between the heating plate and the low-temperature plate, A thermal conductivity measuring device for use in a direct plate method for measuring a heat transfer coefficient of the sample based on a temperature difference between a main hot plate and a low temperature plate, wherein the measuring device includes a protective hot plate (G 2 ) A heat insulating material (A), a heating plate in which a main heating plate (H) and a protection heating plate (G 1 ) are integrally fixed, and a sample (S 1 )
And the low-temperature plate (C 1 ) are laminated in this order, and the protective hot plate (G 2 ) has the same structure and the same material as the low-temperature plate (C 2 ) so that it can be used as a low-temperature plate. The main hot plate (H) and the protective hot plate (G 1 ) are connected by connecting means (B) made of a material having a low thermal conductivity and extending horizontally from the inner periphery of the protective hot plate (G 1 ). are connected, the measuring device is further the main hot plate and means for controlling the (H) at an arbitrary constant temperature, said cold plate (G 2) the protective hot plate which is also used as a (G 2) Means for controlling the temperature of the main heating plate (H) to be the same as the temperature of the main heating plate (H). during two methods measure implementation, as laminating a sample (S 2) in place of the heat insulating material (a), and measuring one method two Device being characterized in that to allow shared law measurement.
【請求項2】請求項1記載の熱伝導率測定装置におい
て、前記主熱板(H)、断熱板(A)、保護熱板(G2
を分離独立した構造とした装置。
2. The thermal conductivity measuring device according to claim 1, wherein said main hot plate (H), heat insulating plate (A), and protective hot plate (G 2 ).
A device with a separate and independent structure.
【請求項3】請求項1記載の熱伝導率測定装置におい
て、前記保護熱板(G1)の内周にリング(O)を設け、
該リング(O)に前記接続手段(B)の一端を水平方向
に捩じ込み、且つ、接続手段(B)の他端を前記主熱板
(G)に接続することによって、前記主熱板(G)と前
記保護熱板(G1)を連結し、前記保護熱板(G1)を貫通
して垂直方向に捩じ込まれたビス(K)によって前記リ
ング(O)と前記保護熱板(G1)とが互いに垂直方向に
押し下げ若しくは押し上げることができるようにして、
前記保護熱板(G1)と前記主熱板(H)が同一平面内に
入るようにした装置。
3. The thermal conductivity measuring device according to claim 1, wherein a ring (O) is provided on an inner periphery of the protective hot plate (G 1 ).
By screwing one end of the connection means (B) into the ring (O) in the horizontal direction and connecting the other end of the connection means (B) to the main heat plate (G), (G) and the protective hot plate (G 1 ) are connected to each other, and the ring (O) and the protective heat plate are screwed by screws (K) that are vertically screwed through the protective hot plate (G 1 ). So that the plate (G 1 ) can be pushed down or pushed up vertically
An apparatus in which the protective hot plate (G 1 ) and the main hot plate (H) are in the same plane.
【請求項4】請求項1若しくは3記載の熱伝導率測定装
置において、前記接続手段(B)はセラミック製ビスで
ある装置。
4. The thermal conductivity measuring device according to claim 1, wherein said connecting means (B) is a ceramic screw.
JP32902887A 1987-12-25 1987-12-25 Thermal conductivity measuring device based on the direct plate method Expired - Fee Related JP2614062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32902887A JP2614062B2 (en) 1987-12-25 1987-12-25 Thermal conductivity measuring device based on the direct plate method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32902887A JP2614062B2 (en) 1987-12-25 1987-12-25 Thermal conductivity measuring device based on the direct plate method

Publications (2)

Publication Number Publication Date
JPH01169346A JPH01169346A (en) 1989-07-04
JP2614062B2 true JP2614062B2 (en) 1997-05-28

Family

ID=18216793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32902887A Expired - Fee Related JP2614062B2 (en) 1987-12-25 1987-12-25 Thermal conductivity measuring device based on the direct plate method

Country Status (1)

Country Link
JP (1) JP2614062B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0885387A1 (en) * 1996-03-08 1998-12-23 Holometrix, Inc. Heat flow meter instruments
JP2007232479A (en) * 2006-02-28 2007-09-13 Sii Nanotechnology Inc Thermal analyzer
KR20200144381A (en) * 2019-06-18 2020-12-29 주식회사 엘지화학 Apparatus and Method for Measuring Thermal Conductivity of Battery Cell
JP7332413B2 (en) * 2019-09-27 2023-08-23 明星工業株式会社 Low temperature thermal conductivity measuring device
US11137362B2 (en) 2019-12-10 2021-10-05 Covestro Llc Method for assessing the long-term thermal resistance of closed-cell thermal insulating foams at multiple mean temperatures
CN113376207A (en) * 2021-06-07 2021-09-10 长安大学 Over-and-under type coefficient of heat conductivity test instrument of constant temperature basin

Also Published As

Publication number Publication date
JPH01169346A (en) 1989-07-04

Similar Documents

Publication Publication Date Title
US5940784A (en) Heat flow meter instruments
US3267728A (en) Dynamic automatically controlled calorimeter and melting point device
KR0145027B1 (en) Measuring thermal conductivity and apparatus therefor
JP3444252B2 (en) Thermal conductivity detector
CA2597405A1 (en) Differential scanning calorimeter (dsc) with temperature controlled furnace
RU169620U1 (en) DEVICE FOR DETERMINING THE COMPLEX OF THERMAL PHYSICAL CHARACTERISTICS OF MATERIALS
JP2614062B2 (en) Thermal conductivity measuring device based on the direct plate method
CN109900738A (en) Device and method based on high power laser heating material
WO2013140917A1 (en) Liquid chromatographic analysis device and temperature control method for same
US3203290A (en) Microtomes
Maglić et al. The apparatus for thermal diffusivity measurement by the laser pulse method
CN108890118B (en) Back auxiliary heating device for titanium and titanium alloy friction stir welding
JP2005227010A (en) Heat conductivity measuring instrument and heat conductivity measuring method
CN109392201A (en) A kind of multistage controllable heating stage apparatus and method for heating and controlling
JP2018500536A (en) Gas chromatography (GC) column heater control using multiple temperature sensors
JPH09179078A (en) Optical delay device
JP2000305632A (en) Temperature control system for peltier element
Absi et al. Thermal response of two-layer systems:: Numerical simulation and experimental validation
JPH11218480A (en) Method and apparatus for thermal shock test of ceramic sintered compact
CN107831072A (en) A kind of miniature target heater and its application method that loading experiment is moved for laser
Singh et al. Design and development of a multipurpose portable heating setup for 45S5 bioglass and other ceramic samples
JP2787647B2 (en) Method and apparatus for measuring thermal conductivity
Thomas et al. Transient thermal response of a guarded-hot-plate apparatus for operation over an extended temperature range
JPH0718826B2 (en) Thermal conductivity measurement method
JP2009023192A (en) Mounting structure of heater

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees