JP2787647B2 - Method and apparatus for measuring thermal conductivity - Google Patents

Method and apparatus for measuring thermal conductivity

Info

Publication number
JP2787647B2
JP2787647B2 JP25247693A JP25247693A JP2787647B2 JP 2787647 B2 JP2787647 B2 JP 2787647B2 JP 25247693 A JP25247693 A JP 25247693A JP 25247693 A JP25247693 A JP 25247693A JP 2787647 B2 JP2787647 B2 JP 2787647B2
Authority
JP
Japan
Prior art keywords
temperature
heating
thermal conductivity
heat
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25247693A
Other languages
Japanese (ja)
Other versions
JPH0783864A (en
Inventor
嘉夫 反町
睦 永井
一雄 井上
一郎 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP25247693A priority Critical patent/JP2787647B2/en
Publication of JPH0783864A publication Critical patent/JPH0783864A/en
Application granted granted Critical
Publication of JP2787647B2 publication Critical patent/JP2787647B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は熱伝導率の測定方法及
び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring thermal conductivity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
熱伝導率の測定方法としてレーザフラッシュ法(JIS
R1611)が多く用いられている。この方法は、試
料の片面に一定波長のレーザ光を照射して試料を瞬間的
に加熱し、そして試料の他方の面の温度上昇より熱拡散
率を求めて、これより熱伝導率を算出するものである。
2. Description of the Related Art
Laser flash method (JIS
R1611) are often used. In this method, one side of the sample is irradiated with a laser beam of a certain wavelength to instantaneously heat the sample, and the thermal diffusivity is obtained from the temperature rise of the other side of the sample, and the thermal conductivity is calculated from this. Things.

【0003】具体的には、試料の比重をρ,熱拡散率を
α(cm2/秒),比熱をCp(J/g℃)として、次
式 熱伝導率=ρ×α×Cp×100 にて熱伝導率を求めるものである。
[0003] Specifically, assuming that the specific gravity of a sample is ρ, the thermal diffusivity is α (cm 2 / sec), and the specific heat is Cp (J / g ° C), the following equation: Thermal conductivity = ρ × α × Cp × 100 Is used to determine the thermal conductivity.

【0004】しかしながらこの方法にて熱伝導率を求め
る場合、先ず試料の比熱Cpを知ることが必要であり、
そしてこの比熱Cpの測定値は一般に大きくばらついた
ものとなり、このため同方法にて求められた熱伝導率の
値は、比熱Cp測定値の際のバラツキの他に他の誤差要
因も加わって信頼性の乏しいものであるのが実情であっ
た。
However, when determining the thermal conductivity by this method, it is necessary to first know the specific heat Cp of the sample.
The measured value of the specific heat Cp generally varies greatly. Therefore, the value of the thermal conductivity obtained by the same method is not reliable because of the variation in the measured specific heat Cp and other error factors. The fact was that they were poor.

【0005】他方、図4(A)に示しているようにヒー
タ100により試料102を加熱して、ヒートシンク1
04に向かう熱流を生ぜしめ、試料102のH点(高温
点)とC点(低温点)との間の温度差Th−Tcを求め
て、次式 P=KS(Th−Tc)/L(またはP/S=K(Th
−Tc)/L) により熱伝導率Kを求める方法も知られている。但し式
中Pはヒータ100で発生した熱量,Sは試料の断面
積,LはH点とC点との間の距離を表わす。
[0005] On the other hand, as shown in FIG.
04, a temperature difference Th-Tc between the point H (high temperature point) and the point C (low temperature point) of the sample 102 is obtained, and the following equation P = KS (Th-Tc) / L ( Or P / S = K (Th
-Tc) / L) is also known as a method of determining the thermal conductivity K. Here, P represents the amount of heat generated by the heater 100, S represents the cross-sectional area of the sample, and L represents the distance between the point H and the point C.

【0006】しかしながらこの方法の場合、Th,Tc
の温度を測定するための熱電対やヒータ線を通じての熱
伝導,空気を通じての熱伝導や対流,高温で本質的に起
こる放射等に起因する熱量ロスが生じるのを避け得ず、
これにより比較的大きな誤差が生じる問題がある。
However, in the case of this method, Th, Tc
Unavoidable loss of heat due to heat conduction through thermocouples and heater wires, heat conduction and convection through air, and radiation that occurs essentially at high temperatures.
This causes a problem that a relatively large error occurs.

【0007】これを改良するため、図4(B)に示すよ
うな方法も提案されている。この方法はガーデッドホッ
トプレート法といわれるものであって、その特徴はガー
ドヒータ112にて主ヒータ108を覆うようにし、以
て主ヒータ108からの熱量ロスを少なく抑えるように
したものである。
To improve this, a method as shown in FIG. 4B has been proposed. This method is called a guarded hot plate method, and its feature is that the main heater 108 is covered by the guard heater 112, so that loss of heat from the main heater 108 is reduced.

【0008】具体的に説明すれば、図中106は円板状
の試料、108は発熱線110を有する主ヒータ、11
2は発熱線114を有するガードヒータで主ヒータ10
8を覆うように配置されている。これら主ヒータ108
とガードヒータ112との間には所定の間隙116が形
成されている。尚118はヒートシンクである。
More specifically, in the figure, reference numeral 106 denotes a disk-shaped sample; 108, a main heater having a heating wire 110;
2 is a guard heater having a heating wire 114 and a main heater 10
8 are arranged so as to cover them. These main heaters 108
A predetermined gap 116 is formed between the heater and the guard heater 112. Reference numeral 118 denotes a heat sink.

【0009】この方法は、ガードヒータ112の温度を
主ヒータ108の温度と同じとし、以て主ヒータ108
から試料106に供されることなく失われる熱量をでき
るだけ少なくするようにしたもので、これにより熱伝導
率Kの測定誤差を小さく抑えることが可能である。
In this method, the temperature of the guard heater 112 is set to be the same as the temperature of the main heater 108, so that the main heater 108
Therefore, the amount of heat that is lost without being supplied to the sample 106 is reduced as much as possible, whereby the measurement error of the thermal conductivity K can be reduced.

【0010】しかしながらこの方法にあっても熱量ロス
の生じるのを避けられず、従ってこれに起因する測定誤
差は避け得ないものである。尤も同方法においてTh−
Tcの温度差を大きくとれば誤差を小さくすることが可
能であるが、Th−Tcを大きくとると熱伝導率測定の
ときの温度が不明確となる問題が生ずる。
However, even with this method, it is inevitable that a calorific value loss occurs, and therefore, a measurement error caused by this loss cannot be avoided. However, in the same method, Th-
If the temperature difference of Tc is made large, the error can be made small. However, if Th-Tc is made large, there arises a problem that the temperature at the time of measuring the thermal conductivity becomes unclear.

【0011】物質の熱伝導率は、図5のAで示すスライ
ドガラスのように温度に対する依存性が殆ど無いものも
存在するが、一般には同図中Bで示すシリコンゴムのよ
うに温度によって熱伝導率が変化するのが通例で、上述
のようにTh−Tcをあまり大きくとると、熱伝導率を
測定してもそれが何度での値であるのか不明確となって
しまう。
Although the thermal conductivity of a substance has almost no dependence on temperature, such as a slide glass shown in FIG. 5A, there is generally a thermal conductivity depending on the temperature, such as silicon rubber shown in B in FIG. Usually, the conductivity changes. If Th-Tc is too large as described above, it becomes unclear how many times the thermal conductivity is measured even when the thermal conductivity is measured.

【0012】[0012]

【課題を解決するための手段】本願の発明はこのような
課題を解決するためになされたものである。而して本願
発明の要旨は、熱伝導率Kを測定すべき試料の加熱部位
を加熱手段にて加熱するとともに該加熱部位の温度を検
出する一方、該加熱部位から一定距離離れた特定部位の
温度を検出し、該加熱部位の温度を一定に保ちつつ該特
定部位の温度を該加熱部位の温度より低い温度で変化さ
せることによって、該加熱部位の温度Thと該特定部位
の温度Tcとの温度差Th−Tcを種々に変化させ、そ
の際に該加熱部位の温度Thを一定に保つために前記加
熱手段で発生させた熱量Pを各Th−Tcの値ごとに測
定し、それらPの測定値とTh−Tcの値とで表される
複数の座標値から関係式P=(KS/L)(Th−T
c)+Qeで表される直線を特定して、その傾きから熱
伝導率Kを求めることにある(請求項1)。
The invention of the present application has been made to solve such a problem. Thus, the gist of the present invention is to heat a heated portion of a sample whose thermal conductivity K is to be measured by a heating means and to detect the temperature of the heated portion, while detecting the temperature of the heated portion at a specific distance from the heated portion. By detecting the temperature and changing the temperature of the specific portion at a temperature lower than the temperature of the heated portion while maintaining the temperature of the heated portion constant, the temperature Th of the heated portion and the temperature Tc of the specific portion are changed. The temperature difference Th-Tc is variously changed, and at that time, the amount of heat P generated by the heating means is measured for each value of Th-Tc in order to keep the temperature Th of the heating portion constant. From a plurality of coordinate values represented by the measured value and the value of Th-Tc, a relational expression P = (KS / L) (Th-T
c) A straight line represented by + Qe is specified, and the thermal conductivity K is obtained from the slope thereof (claim 1).

【0013】本願の別の発明は熱伝導率の測定装置にか
かるものであり、その要旨は、(イ)熱伝導率Kを測定
すべき試料の加熱部位を加熱する主ヒータと、(ロ)該
加熱部位の温度Th及び該加熱部位より一定距離離れた
特定部位の温度Tcを検出する温度検出部と、(ハ)前
記特定部位を加熱し且つその加熱温度を変化させること
によって温度差Th−Tcを変化させるための温度差調
整用ヒータと、(ニ)前記主ヒータ及び該温度差調整用
ヒータに電力供給する電力供給部と、(ホ)前記温度検
出部からの温度検出値に基づき、前記試料の加熱部位を
一定温度Thに保ちつつ前記特定部位の温度Tcを該加
熱部位より低い温度範囲で種々変化させるべく主ヒータ
及び温度差調整用ヒータへの電力供給を制御する制御部
と、(ヘ)前記加熱部位を加熱すべく前記主ヒータで発
生させた熱量Pを測定する熱量測定部と、(ト)変化せ
しめられたTh−Tcの各値と、該Th−Tcの各値ご
とに前記主ヒータで発生させた熱量Pの測定値とを記憶
する記憶部と、(チ)該記憶部に記憶された複数のPの
測定値と(Th−Tc)の値とから最小二乗法により関
係式P=(KS/L)(Th−Tc)+Qeにて表され
る直線を特定して、その傾きから熱伝導率Kを演算する
演算部とを有することにある(請求項2)。
Another aspect of the present invention relates to an apparatus for measuring thermal conductivity, the gist of which is: (a) a main heater for heating a heated portion of a sample whose thermal conductivity K is to be measured; A temperature detecting section for detecting the temperature Th of the heated portion and the temperature Tc of the specific portion separated by a certain distance from the heated portion; and (c) heating the specific portion and changing the heating temperature to obtain a temperature difference Th−. A temperature difference adjustment heater for changing Tc, (d) a power supply unit for supplying power to the main heater and the temperature difference adjustment heater, and (e) a temperature detection value from the temperature detection unit. A control unit that controls power supply to a main heater and a temperature difference adjustment heater so as to variously change the temperature Tc of the specific part in a temperature range lower than the heating part while maintaining the heating part of the sample at a constant temperature Th; (F) The above A calorie measuring unit for measuring the calorie P generated by the main heater to heat the part; (g) the Th-Tc value changed and the Th-Tc value by the main heater. A storage unit for storing the measured value of the generated heat amount P, and (h) a relational expression P = from the plurality of measured values of P and the value of (Th−Tc) stored in the storage unit by the least square method. A calculation unit that specifies a straight line represented by (KS / L) (Th−Tc) + Qe and calculates the thermal conductivity K from the slope thereof (claim 2).

【0014】[0014]

【作用及び発明の効果】前述した従来の方法は、加熱手
段で発生した熱量のうち熱量ロスとなって失われる量、
即ち誤差分となって失われる熱量をできるだけ少なく
し、以て熱伝導率の測定精度を高めようとするものであ
るが、その熱量ロスは実際には避け得ないものである。
従って熱量ロスを計算上加味した上で熱伝導率を求めな
いかぎり、正確な熱伝導率の測定値を得ることは困難で
ある。
According to the conventional method described above, the amount of heat generated by the heating means, which is lost as a heat loss,
That is, the amount of heat lost as an error is reduced as much as possible to improve the accuracy of measuring the thermal conductivity, but the loss of the amount of heat is actually unavoidable.
Therefore, it is difficult to obtain an accurate measured value of the thermal conductivity unless the thermal conductivity is determined after taking into account the calorific value loss in the calculation.

【0015】本発明者はこのような知見の下に、加熱手
段にる加熱部位(高温点)Thの温度を固定化する一
方、これより一定距離離れた特定部位(低温点)の温度
Tcを変化させ、そしてTcを変化させたときにThを
一定に保つために加熱手段で発生した熱量Pを測定し
て、Pの測定値とTh−Tcとの値とをプロットしたと
ころ、図1に示すように綺麗な直線関係が得られること
を見出した。
Based on such knowledge, the present inventor fixes the temperature of the heating portion (high temperature point) Th by the heating means, and sets the temperature Tc of the specific portion (low temperature point) at a certain distance away from this. The amount of heat P generated by the heating means was measured in order to keep Th constant when Tc was changed, and the measured value of P and the value of Th-Tc were plotted. As shown, it has been found that a beautiful linear relationship can be obtained.

【0016】ここで直線による縦軸の切片Qeが失われ
た熱量(熱量ロス)であり、また直線の傾きmがm=K
S/Lである。但しKは試料の熱伝導率,Sは試料の断
面積,Lは高温点及び低温点間の距離である。
Here, the intercept Qe on the vertical axis of the straight line is the amount of heat lost (heat loss), and the slope m of the line is m = K
S / L. Where K is the thermal conductivity of the sample, S is the cross-sectional area of the sample, and L is the distance between the hot and cold points.

【0017】加熱手段で発生した熱量のうち一部Qeが
熱量ロスとなって失われる場合、熱伝導率の関係式は実
際には P=(KS/L)(Th−Tc)+Qe となる。
When a part of the heat generated by the heating means Qe is lost due to heat loss, the relational expression of the thermal conductivity is actually P = (KS / L) (Th-Tc) + Qe.

【0018】本発明では、Thを固定化することによっ
てこのQeを固定化し、そしてこれによりQeを加味し
た関係式に基づいて熱伝導率Kの値の算出を可能ならし
めたものである。
In the present invention, Qe is fixed by fixing Th, and the value of the thermal conductivity K can be calculated based on a relational expression taking into account Qe.

【0019】本発明においては、一般的には3点以上の
P値及び対応するTh−Tcの値を得、これより最小二
乗法によってこれを直線状化する。即ち誤差が最も小と
なるような直線式を求め、そしてこの直線によるP軸の
切片をQeとして求め、また直線の傾きm=KS/Lか
ら熱伝導率Kを求める(S,Lは既知の値である)。
In the present invention, generally, P values of three or more points and corresponding Th-Tc values are obtained, and are then linearized by the least square method. That is, a linear equation that minimizes the error is obtained, the intercept of the P axis by this line is obtained as Qe, and the thermal conductivity K is obtained from the slope m = KS / L of the line (S and L are known values). Value).

【0020】但し必ずしも現実に直線を引く必要はな
く、最小二乗法にて直線を現わす関係式を特定し、その
係数ないし定数より熱伝導率K,Qeの値を求めること
も可能であるし、また現実に測定値をプロットしてこれ
らを実質状つなぐように直線を引く場合において、Qe
の値は必ずしも算出しなくてもKの値のみを求めること
も可能である。
However, it is not always necessary to actually draw a straight line, but it is also possible to specify a relational expression expressing a straight line by the least squares method, and obtain the values of the thermal conductivity K and Qe from the coefficients or constants. In the case where the measured values are actually plotted and a straight line is drawn so as to substantially connect them, Qe
It is also possible to obtain only the value of K without necessarily calculating the value of.

【0021】本発明によれば、主ヒータの発熱量と測定
試料の温度差より得られる直線の相関係数が極めて高い
ことが確認されており、従って極めて精度高く熱伝導率
Kの値を求めることができる。また直線の傾きから求め
た熱伝導率Kが温度Thにおける値として確定できる利
点を有する。
According to the present invention, it has been confirmed that the correlation coefficient of the straight line obtained from the calorific value of the main heater and the temperature difference of the measurement sample is extremely high, and therefore, the value of the thermal conductivity K is obtained with extremely high accuracy. be able to. Further, there is an advantage that the thermal conductivity K obtained from the slope of the straight line can be determined as a value at the temperature Th.

【0022】請求項2の発明は熱伝導率Kの測定装置に
係るもので、本発明の装置によれば請求項1の発明に係
る方法を好適に実施でき且つ上記関係式P=KS/L
(Th−Tc)+Qeに基づいて試料の有する熱伝導率
Kを自動的に測定することができる。
A second aspect of the present invention relates to an apparatus for measuring the thermal conductivity K. According to the apparatus of the present invention, the method according to the first aspect of the present invention can be suitably implemented, and the relational expression P = KS / L
The thermal conductivity K of the sample can be automatically measured based on (Th-Tc) + Qe.

【0023】[0023]

【実施例】次に本発明の実施例を図面に基づいて詳しく
説明する。図2において10は円板状の試料、12は試
料10の一方の面に着座された発熱線14を有する主ヒ
ータ、16は主ヒータ12を覆うように試料10の一方
の面に着座された発熱線18を有するガードヒータ、2
2は試料10の他方の面を受けるように配されたヒート
シンクである。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention; In FIG. 2, 10 is a disk-shaped sample, 12 is a main heater having a heating wire 14 seated on one surface of the sample 10, and 16 is seated on one surface of the sample 10 so as to cover the main heater 12. A guard heater having a heating wire 18;
2 is a heat sink arranged to receive the other surface of the sample 10.

【0024】このヒートシンク22は、発熱線23にて
加熱されるようになっている。
The heat sink 22 is heated by a heating wire 23.

【0025】ここで主ヒータ12,ガードヒータ16,
ヒートシンク22の材料として試料10よりも大きな熱
伝導率を有するものが用いられている。
Here, the main heater 12, the guard heater 16,
A material having a higher thermal conductivity than the sample 10 is used as the material of the heat sink 22.

【0026】この装置は、主ヒータ12にて試料10の
一方の面に熱量供給してシートシンク22に向かう熱流
を生ぜしめ、そして試料10の両面近傍のH点(主ヒー
タ12内部の点)とC点(ヒートシンク22内部の点)
との温度差Th−Tcと、主ヒータ12での発生熱量P
から試料10の熱伝導率Kを求めるもので、試料10の
有効面積は主ヒータ12とガードヒータ16との間の間
隙20の中心円周にて囲まれた部分の面積である。
In this apparatus, heat is supplied to one surface of the sample 10 by the main heater 12 to generate a heat flow toward the sheet sink 22, and a point H (a point inside the main heater 12) near both surfaces of the sample 10. And point C (point inside heat sink 22)
And the amount of heat P generated by the main heater 12.
The effective area of the sample 10 is the area of a portion surrounded by the center circumference of the gap 20 between the main heater 12 and the guard heater 16.

【0027】この装置において、主ヒータ12及びガー
ドヒータ16には電力供給部24から電力供給され、そ
して主ヒータ12への供給電力が電力測定部(熱量測定
部)28にて測定され、パソコン30に入力される。
In this apparatus, power is supplied to the main heater 12 and the guard heater 16 from a power supply unit 24, and the power supplied to the main heater 12 is measured by a power measurement unit (heat amount measurement unit) 28, and a personal computer 30 Is input to

【0028】26は温度検出部であって、上記H点とC
点及びガードヒータ16内のP点の温度を、同部位に装
着した熱電対を通じて検出・測定する。その結果はパソ
コン30に入力される。
Reference numeral 26 denotes a temperature detecting section, which is used to detect the above point H and C
The temperature of the point and the point P in the guard heater 16 is detected and measured through a thermocouple attached to the same site. The result is input to the personal computer 30.

【0029】パソコン30は、演算・制御部34におい
てTh−Tcを計算し、その結果を電力測定部28から
の値(P値)とともに記憶部32に記憶させる。
The personal computer 30 calculates Th-Tc in the operation / control section 34 and stores the result in the storage section 32 together with the value (P value) from the power measurement section 28.

【0030】演算・制御部34は、電力供給部24から
ヒートシンク22を加熱する発熱線23への電力供給を
制御してC点の温度Tcを種々変化させるとともに、H
点の温度Thを一定に保つように電力供給部24から主
ヒータ12への電力供給を制御し、更にP点の温度Tp
がH点の温度Thと一致するようにガードヒータ16へ
の電力供給を制御する。
The arithmetic and control unit 34 controls the power supply from the power supply unit 24 to the heating wire 23 for heating the heat sink 22 to change the temperature Tc at the point C in various ways, and
The power supply from the power supply unit 24 to the main heater 12 is controlled so that the temperature Th at the point is kept constant.
Control the power supply to the guard heater 16 so as to match the temperature Th at the point H.

【0031】また一方、記憶部32に記憶された複数の
P値と(Th−Tc)値を最小二乗法で直線状化し、こ
れを表す関係式P=(KS/L)(Th−Tc)+Qe
に基づいてQe,熱伝導率Kを算出する。
On the other hand, a plurality of P values and (Th-Tc) values stored in the storage unit 32 are linearized by the least square method, and a relational expression P = (KS / L) (Th-Tc) + Qe
Qe and thermal conductivity K are calculated based on

【0032】次に本例の具体的な手順を以下に説明す
る。先ず試料10の断面積S,厚みL,高温点Hの設定
温度Th,変化させるべきC点の温度Tcの各設定値T
c1,Tc2,・・・・・Tcn(但しTc<Th)をパ
ソコン30の入力部から入力する。
Next, a specific procedure of this embodiment will be described below. First, the set value T of the cross-sectional area S, the thickness L, the set temperature Th of the high temperature point H, and the temperature Tc of the point C to be changed of the sample 10
c1, Tc2,... Tcn (where Tc <Th) is input from the input unit of the personal computer 30.

【0033】この入力値に基づいて演算・制御部34
は、温度検出部26にて測定される各部の温度がそれぞ
れ設定された温度Th,Tc1,Tpに到達するまで主
ヒータ12,ガードヒータ16,ヒートシンク22の発
熱線23への電力供給を制御(例えばPID制御)す
る。
An operation / control unit 34 based on this input value
Controls the power supply to the main heater 12, the guard heater 16, and the heat generating wire 23 of the heat sink 22 until the temperatures of the respective components measured by the temperature detector 26 reach the set temperatures Th, Tc1, and Tp, respectively ( For example, PID control).

【0034】各点H,C,Pの温度が目標設定温度T
h,Tc1,Tpに到達したところで(誤差は例えば
0.01℃)、その時の主ヒータ12への供給電力P1
を読み取り、Th−Tcの値及びP1の値をデ−タとし
て記憶部32に記憶させる。
The temperature at each of the points H, C and P is the target set temperature T
h, Tc1 and Tp (the error is, for example, 0.01 ° C.), the power P1 supplied to the main heater 12 at that time.
Is read, and the value of Th-Tc and the value of P1 are stored in the storage unit 32 as data.

【0035】次に演算・制御部34はC点の温度をTc
2とすべく、また併せてH点の温度をThに保つべく電
力制御を行い、C点の温度がTc2に到達したところで
上記と同様に(Th−Tc)値及び読み取ったP2の値
をデ−タとして記憶部32に記憶させる。
Next, the calculation / control section 34 calculates the temperature at the point C as Tc.
In addition, power control is performed to maintain the temperature at point H at Th, and when the temperature at point C reaches Tc2, the (Th-Tc) value and the read value of P2 are decomposed in the same manner as described above. The data is stored in the storage unit 32 as data.

【0036】以下同様の処理を次々と行ってC点の温度
をTc3,Tc4,・・・・・Tcnと次々に変化させ、
その都度(Th−Tc3),(Th−Tc4),・・・・・
・(Th−Tcn)及びP3,P4,・・・・Pnの値を記
憶部32に記憶させる。
Thereafter, the same processing is successively performed to change the temperature at the point C one after another as Tc3, Tc4,...
Each time (Th-Tc3), (Th-Tc4), ...
.. (Th−Tcn) and the values of P3, P4,.

【0037】演算・制御部34は、続いてこれら複数の
記憶された測定デ−タを最小二乗法で直線状化し、上記
関係式に基づいてQe及び直線の傾きmより試料10の
測定温度Thでの熱膨張率Kを式K=mL/Sに基づい
て算出する。
The arithmetic and control unit 34 then linearizes the plurality of stored measurement data by the least squares method, and calculates the measured temperature Th of the sample 10 from Qe and the slope m of the straight line based on the above relational expression. Is calculated based on the equation K = mL / S.

【0038】図3はスライドガラス,シリコンゴムにつ
いて本方法に従い温度差(Th−Tc)を種々変化させ
たときの発生熱量Pと(Th−Tc)との関係を、(T
h−Tc)を横軸に、またPを縦軸にとって表したもの
である。
FIG. 3 shows the relationship between the generated heat P and (Th-Tc) when the temperature difference (Th-Tc) is variously changed for the slide glass and the silicone rubber according to the present method.
h-Tc) on the horizontal axis and P on the vertical axis.

【0039】この結果から、各測定点が直線上に綺麗に
のっていることが分かる。即ちこの直線ないしこれを表
す関係式からOe及びKの値を精度高く求め得ることが
分かる。
From this result, it can be seen that each measurement point is clearly on a straight line. That is, it is understood that the values of Oe and K can be obtained with high accuracy from this straight line or a relational expression representing the straight line.

【0040】表1はこのようにして求めた各種材料ごと
の熱膨張率を、図4(B)に示す従来法との比較におい
て示したものである。ここで従来法による値はQeを無
視して求めた値となっている。尚測定は厚みL=2.7
〜2.8mm,有効面積S=314mm2の試料を用
い、Th−Tcを3〜30℃の範囲で変化させることに
より行った。
Table 1 shows the coefficients of thermal expansion of various materials obtained in this manner in comparison with the conventional method shown in FIG. 4 (B). Here, the value obtained by the conventional method is a value obtained by ignoring Qe. In addition, the thickness L = 2.7 was measured.
This was performed by using a sample having a thickness of 32.8 mm and an effective area S of 314 mm 2 and changing Th-Tc within a range of 3 to 30 ° C.

【0041】[0041]

【表1】 [Table 1]

【0042】以上本発明の実施例を詳述したがこれはあ
くまで一例示である。例えば本発明においては(Th−
Tc)/L或いはS(Th−Tc)/Lを変数とし、そ
の測定値を直線状化してその傾きをKS又は直接Kとし
て求める場合も当然に含まれるし、場合によってQeを
計算で求めることなくKのみを計算にて求めるといった
ことも可能である等、本発明はその主旨を逸脱しない範
囲において、当業者の知識に基づき種々変更を加えた態
様で実施可能である。
The embodiment of the present invention has been described in detail above, but this is merely an example. For example, in the present invention, (Th-
Tc) / L or S (Th-Tc) / L is a variable, and the measured value is linearized to determine the slope as KS or directly K. Naturally, Qe may be calculated by calculation. The present invention can be implemented in variously modified forms based on the knowledge of those skilled in the art without departing from the gist, for example, it is possible to obtain only K by calculation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従ってTh−TcとPとを変化させた
ときに得られるTh−TcとPとの関係を示す図であ
る。
FIG. 1 is a diagram showing the relationship between Th-Tc and P obtained when Th-Tc and P are changed according to the present invention.

【図2】本発明の測定装置の一例を示す図である。FIG. 2 is a diagram showing an example of the measuring device of the present invention.

【図3】図2の測定装置を用いて実際にスライドガラ
ス,シリコンゴムの熱伝導率測定を行った結果得られた
Th−TcとPとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between Th-Tc and P obtained as a result of actually measuring the thermal conductivity of a slide glass and a silicone rubber using the measuring device of FIG. 2;

【図4】従来の熱伝導率測定方法の説明図である。FIG. 4 is an explanatory view of a conventional thermal conductivity measuring method.

【図5】熱伝導率の温度に対する依存性を示す図であ
る。
FIG. 5 is a diagram showing the dependence of thermal conductivity on temperature.

【符号の説明】[Explanation of symbols]

10 試料 12 主ヒータ 16 ガードヒータ 23 発熱線 24 電力供給部 26 温度検出部 28 電力測定部(熱量測定部) 32 記憶部 34 演算・制御部 Reference Signs List 10 Sample 12 Main heater 16 Guard heater 23 Heating wire 24 Power supply unit 26 Temperature detection unit 28 Power measurement unit (calorific value measurement unit) 32 Storage unit 34 Operation / control unit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平2−291950(JP,A) (58)調査した分野(Int.Cl.6,DB名) G01N 25/00 - 25/72 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-2-291950 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G01N 25/00-25/72 JICST file ( JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 熱伝導率Kを測定すべき試料の加熱部位
を加熱手段にて加熱するとともに該加熱部位の温度を検
出する一方、該加熱部位から一定距離離れた特定部位の
温度を検出し、該加熱部位の温度を一定に保ちつつ該特
定部位の温度を該加熱部位の温度より低い温度で変化さ
せることによって、該加熱部位の温度Thと該特定部位
の温度Tcとの温度差Th−Tcを種々に変化させ、そ
の際に該加熱部位の温度Thを一定に保つために前記加
熱手段で発生させた熱量Pを各Th−Tcの値ごとに測
定し、それらPの測定値とTh−Tcの値とで表される
複数の座標値から関係式P=(KS/L)(Th−T
c)+Qeで表される直線を特定して、その傾きから熱
伝導率Kを求めることを特徴とする熱伝導率の測定方
法。但し、前記関係式中Qeは前記発生熱量のうちロス
として失われた誤差分となる熱量、S,Lはそれぞれ試
料の断面積及び厚みを表す。
1. A heating section of a sample whose thermal conductivity K is to be measured is heated by heating means and the temperature of the heating section is detected, while the temperature of a specific section at a certain distance from the heating section is detected. By changing the temperature of the specific portion at a temperature lower than the temperature of the heating portion while maintaining the temperature of the heating portion constant, a temperature difference Th- between the temperature Th of the heating portion and the temperature Tc of the specific portion is obtained. In order to keep the temperature Th of the heated portion constant at various times, the amount of heat P generated by the heating means is measured for each Th-Tc, and the measured value of P and Th And a relational expression P = (KS / L) (Th-T
c) A method of measuring the thermal conductivity, wherein a straight line represented by + Qe is specified, and the thermal conductivity K is obtained from the slope. However, in the above relational expression, Qe represents the amount of heat that is an error component lost as a loss in the generated heat amount, and S and L represent the cross-sectional area and the thickness of the sample, respectively.
【請求項2】(イ)熱伝導率Kを測定すべき試料の加熱
部位を加熱する主ヒータと (ロ)該加熱部位の温度Th及び該加熱部位より一定距
離離れた特定部位の温度Tcを検出する温度検出部と (ハ)前記特定部位を加熱し且つその加熱温度を変化さ
せることによって温度差Th−Tcを変化させるための
温度差調整用ヒータと (ニ)前記主ヒータ及び該温度差調整用ヒータに電力供
給する電力供給部と (ホ)前記温度検出部からの温度検出値に基づき、前記
試料の加熱部位を一定温度Thに保ちつつ前記特定部位
の温度Tcを該加熱部位より低い温度範囲で種々変化さ
せるべく主ヒータ及び温度差調整用ヒータへの電力供給
を制御する制御部と (ヘ)前記加熱部位を加熱すべく前記主ヒータで発生さ
せた熱量Pを測定する熱量測定部と (ト)変化せしめられたTh−Tcの各値と、該Th−
Tcの各値ごとに前記主ヒータで発生させた熱量Pの測
定値とを記憶する記憶部と (チ)該記憶部に記憶された複数のPの測定値と(Th
−Tc)の値とから最小二乗法により関係式P=(KS
/L)(Th−Tc)+Qeにて表される直線を特定し
て、その傾きから熱伝導率Kを演算する演算部とを有す
ることを特徴とする熱伝導率の測定装置。但し、前記関
係式中Qeは前記発生熱量のうちロスとして失われた誤
差分となる熱量、S,Lはそれぞれ試料の断面積及び厚
みを表す。
(A) a main heater for heating a heated portion of a sample whose thermal conductivity K is to be measured; and (b) a temperature Th of the heated portion and a temperature Tc of a specific portion at a certain distance from the heated portion. (C) a temperature difference adjusting heater for heating the specific portion and changing the heating temperature to change the temperature difference Th-Tc; and (d) the main heater and the temperature difference. A power supply unit for supplying power to the adjustment heater; and (e) a temperature Tc of the specific portion lower than the temperature of the specific portion while maintaining the temperature of the heated portion of the sample at a constant temperature Th based on the detected temperature value from the temperature detecting portion. A control unit for controlling power supply to the main heater and the heater for adjusting the temperature difference so as to make various changes in the temperature range; and (f) a calorific value measuring unit for measuring a heat amount P generated by the main heater to heat the heating portion. When ( ) And the value of the change made to obtained Th-Tc, the Th-
A storage unit for storing a measured value of the amount of heat P generated by the main heater for each value of Tc; and (h) a plurality of measured values of P stored in the storage unit and (Th
−Tc) and the relational expression P = (KS) by the least squares method.
/ L) (Th-Tc) + Qe, and a calculation unit for calculating a thermal conductivity K from a slope of the straight line. However, in the above relational expression, Qe represents the amount of heat that is an error component lost as a loss in the generated heat amount, and S and L represent the cross-sectional area and the thickness of the sample, respectively.
JP25247693A 1993-09-14 1993-09-14 Method and apparatus for measuring thermal conductivity Expired - Fee Related JP2787647B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25247693A JP2787647B2 (en) 1993-09-14 1993-09-14 Method and apparatus for measuring thermal conductivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25247693A JP2787647B2 (en) 1993-09-14 1993-09-14 Method and apparatus for measuring thermal conductivity

Publications (2)

Publication Number Publication Date
JPH0783864A JPH0783864A (en) 1995-03-31
JP2787647B2 true JP2787647B2 (en) 1998-08-20

Family

ID=17237918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25247693A Expired - Fee Related JP2787647B2 (en) 1993-09-14 1993-09-14 Method and apparatus for measuring thermal conductivity

Country Status (1)

Country Link
JP (1) JP2787647B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100437098C (en) * 2005-02-04 2008-11-26 鸿富锦精密工业(深圳)有限公司 Heat-conductive characteristic detecting device and detecting method
JP5911218B2 (en) * 2011-06-30 2016-04-27 ニチアス株式会社 Thermal conductivity measuring method and thermal conductivity measuring device

Also Published As

Publication number Publication date
JPH0783864A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
Fowler A third generation water bath based blackbody source
Han et al. Thermal behavior and geometry model of melt pool in laser material process
Lin et al. Estimation of cutting temperature in high speed machining
Ning et al. Analytical modeling of transient temperature in powder feed metal additive manufacturing during heating and cooling stages
Minakov et al. High-speed dynamics of temperature distribution in ultrafast (up to 108 K/s) chip-nanocalorimeters, measured by infrared thermography of high resolution
Höche et al. Marangoni convection during free electron laser nitriding of titanium
Wang et al. A new experimental apparatus for emissivity measurements of steel and the application of multi-wavelength thermometry to continuous casting billets
Mates et al. A pulse-heated Kolsky bar technique for measuring the flow stress of metals at high loading and heating rates
Xia et al. Numerical simulation of AFP nip point temperature prediction for complex geometries
JP2787647B2 (en) Method and apparatus for measuring thermal conductivity
Kumar et al. Determination of thermal conductivity, absorptivity and heat transfer coefficient during laser-based manufacturing
JPH10206246A (en) Non-contact measuring device and method for object temperature
Diller et al. Thermal model and measurements of polymer laser sintering
Fowler An oil-bath-based 293 K to 473 K blackbody source
Anuchin et al. Influence of the Method of Attaching Surface Thermocouples on the Error of Temperature Determination in Testing Ceramic Materials on Radiative Heating Installations
Rout et al. Measurement of the thermal diffusivities of insulating materials using boiling water
WO2002075264A1 (en) Temperature measuring method and apparatus and semiconductor heat treatment apparatus
JP6243811B2 (en) Method and apparatus for measuring physical property values by steady method
JP2866925B2 (en) How to measure thermal properties of objects
Indermuehle et al. A phase-sensitive technique for the thermal characterization of dielectric thin films
JPH0638071B2 (en) Method and apparatus for measuring thermal conductivity
JP2009025279A (en) Method of measuring hemispherical thermal emissivity on surface of objective body
Chupp et al. Development and evaluation of a remote sensing technique for determining the temperature distribution in semitransparent solids
RU2168168C2 (en) Method of contact-free test of thermophysical characteristics of materials
JPH0463276A (en) Method for measuring temperature of material to be treated in vacuum, method and device for controlling temperature

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080605

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090605

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100605

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110605

LAPS Cancellation because of no payment of annual fees