JP2866925B2 - How to measure thermal properties of objects - Google Patents
How to measure thermal properties of objectsInfo
- Publication number
- JP2866925B2 JP2866925B2 JP20603396A JP20603396A JP2866925B2 JP 2866925 B2 JP2866925 B2 JP 2866925B2 JP 20603396 A JP20603396 A JP 20603396A JP 20603396 A JP20603396 A JP 20603396A JP 2866925 B2 JP2866925 B2 JP 2866925B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- measured
- equation
- vacuum chamber
- heating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、ガラス板、セラミ
ックス板、合金板、プラスチック板、耐火レンガ等、建
造物や機械部品等各種の用途に用いられる板状又はブロ
ック状材料としての物体の熱的物性値である比熱容量及
び熱拡散率、又は比熱容量、熱伝導率及び熱拡散率を同
時に求める測定方法に関するものである。本発明に係る
方法は、上記物体の上記熱的物性値を測定する為の理化
学試験又は実験用の方法として有用である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment of an object as a plate-like or block-like material used for various uses such as a glass plate, a ceramic plate, an alloy plate, a plastic plate, a firebrick, etc. The present invention relates to a measuring method for simultaneously obtaining specific heat capacity and heat diffusivity, or specific heat capacity, heat conductivity and heat diffusivity, which are physical property values. The method according to the present invention is useful as a method for a physicochemical test or an experiment for measuring the thermal properties of the object.
【0002】[0002]
【従来の技術】従来の上記方法又は装置では、それぞれ
の熱的物性値を異なった装置を用いて測定するか、また
は同一の装置を用いて測定する場合であっても同時に測
定をすることはできなかった。尚、熱伝導率と熱拡散率
を同時に求める方法は、知られている。2. Description of the Related Art In the above-mentioned conventional method or apparatus, it is not possible to measure the respective thermal physical properties using different apparatuses, or even to measure them simultaneously using the same apparatus. could not. Note that a method for simultaneously obtaining the thermal conductivity and the thermal diffusivity is known.
【0003】[0003]
【発明が解決しようとする課題】本発明では、上記複数
の熱的物性値を同一の装置で同時に測定することができ
る方法を提供することを目的としている。SUMMARY OF THE INVENTION An object of the present invention is to provide a method capable of simultaneously measuring a plurality of the above-mentioned thermal properties with the same apparatus.
【0004】[0004]
【課題を解決するための手段】請求項1の発明は、真空
槽内に設けた熱供給源に対面して真空槽内に被測定物体
を設け、該被測定物体の熱供給源に対面する加熱又は冷
却面とその反対面である裏面の温度を測定し、該測定結
果、熱供給源の温度、真空槽壁面の温度と予め測定した
被測定物体の厚さ及び密度から、被測定物体の比熱容量
と熱伝導率を同時に測定する物体の熱的物性値の測定方
法にある。According to a first aspect of the present invention, an object to be measured is provided in a vacuum tank facing a heat supply source provided in the vacuum chamber, and the object to be measured faces the heat supply source of the object to be measured. Measure the temperature of the heating or cooling surface and the back surface which is the opposite surface, the measurement result, the temperature of the heat supply source, the temperature of the vacuum chamber wall and the thickness and density of the measured object in advance, the The present invention relates to a method for measuring a thermal property value of an object for simultaneously measuring a specific heat capacity and a thermal conductivity.
【0005】請求項2の発明は、真空槽内に設けた熱供
給源に対面して真空槽内に被測定物体を設け、該被測定
物体の熱供給源に対面する加熱又は冷却面とその反対面
である裏面の温度を測定し、該測定結果、熱供給源の温
度、真空槽壁面の温度と予め測定した被測定物体の厚さ
及び密度から、被測定物体の比熱容量、熱伝導率及び熱
拡散率を同時に測定する物体の熱的物性値の測定方法に
ある。According to a second aspect of the present invention, an object to be measured is provided in a vacuum chamber facing a heat supply source provided in the vacuum chamber, and a heating or cooling surface of the object to be measured facing the heat supply source and a heating or cooling surface thereof. Measure the temperature of the reverse side, which is the opposite side, and determine the specific heat capacity and thermal conductivity of the measured object from the measured result, the temperature of the heat supply source, the temperature of the vacuum chamber wall surface and the thickness and density of the measured object. And a method for measuring the thermal physical property value of an object for simultaneously measuring the thermal diffusivity.
【0006】上記請求項1及び2の発明に係る物体の熱
的物性値の測定方法は、真空槽と、真空槽内に設けられ
た熱供給源と、熱供給源に対面して真空槽内に設けられ
る被測定物体の設定部と、設定部に設定された被測定物
体の熱供給源に対面する加熱又は冷却面とその反対面で
ある裏面の温度をそれぞれ各別に測定する温度測定手段
と、を具備する測定装置によって達成される。The method for measuring the thermal properties of an object according to the first and second aspects of the present invention comprises a vacuum chamber, a heat source provided in the vacuum chamber, and a heat source provided in the vacuum chamber facing the heat source. A setting section of the measured object provided in the, and a temperature measuring means for separately measuring the temperature of the heating or cooling surface facing the heat supply source of the measured object set in the setting section and the temperature of the back surface which is the opposite surface, respectively. Is achieved by a measuring device comprising:
【0007】[0007]
【作用】上記各請求項の発明において、上記各測定結
果、熱供給源の温度、真空槽壁面の温度と予め測定した
被測定物体の厚さ及び密度の数値を、下記(数15)及
び(数16)(請求項1又は3)、又は、(数15)、
(数16)及び(数12)(請求項2又は3)の数式を
用いて演算することにより、被測定物体の比熱容量と熱
伝導率(請求項1又は3)、又は、比熱容量、熱伝導率
及び熱拡散率(請求項2又は3)の測定結果を同時に得
ることができる。演算手段としては、マイクロコンピュ
ーターを用いることができる。In each of the above-mentioned inventions, the above measurement results, the temperature of the heat supply source, the temperature of the vacuum chamber wall surface, and the previously measured values of the thickness and density of the object to be measured are represented by the following (Equation 15) and (Equation 15). (Equation 16) (Claim 1 or 3) or (Equation 15),
The specific heat capacity and the thermal conductivity of the object to be measured (Claim 1 or 3), or the specific heat capacity and heat are calculated by using the mathematical formulas of (Equation 16) and (Equation 12) (Claim 2 or 3). The measurement results of the conductivity and the thermal diffusivity (claim 2 or 3) can be obtained simultaneously. A microcomputer can be used as the calculation means.
【0008】[0008]
【発明の実施の形態】本発明に係る物体の熱的物性値の
測定方法の原理を説明する。例として、薄い板状の物体
が適当な熱供給源により連続的に加熱または冷却される
系を考える(図1参照)。物体の温度が一定の速度で上
昇、下降している場合は求めるべき比熱容量Cpと熱伝
導率λには下記の(数1)式、(数2)式、(数3)式
の関係式が成立する。L,ρは物体の厚さと密度であ
る。TL とTOは物体の加熱面とその裏面の温度であ
る。δT/δtは物体の単位時間あたりの温度変化つま
り温速度である。Wh とWo はそれぞれ加熱面が熱源か
ら授受する単位時間、単位面積あたりの熱エネルギとそ
の裏面から放出される熱エネルギである。物体の任意の
厚さ方向Xにおける温度勾配を下記(数4)式で表す
と、(数1)式は(数5)式で表されることになる。本
発明に係る物体の熱的物性値の測定方法では、物体が加
熱および冷却状態において、物体表裏の温度、供給およ
び放出の熱エネルギと温速度が同時に測定される。これ
ら、測定される物理量から比熱容量と熱伝導率、又は比
熱容量、熱伝導率と熱拡散率を同時に求める方法を以下
に示す。DESCRIPTION OF THE PREFERRED EMBODIMENTS The principle of the method for measuring the thermal properties of an object according to the present invention will be described. As an example, consider a system in which a thin plate-like object is continuously heated or cooled by a suitable heat source (see FIG. 1). When the temperature of the object rises and falls at a constant speed, the specific heat capacity Cp and the thermal conductivity λ to be determined are related to the following equations (Equation 1), (Equation 2), and (Equation 3). Holds. L and ρ are the thickness and density of the object. T L and T O are the temperature of the heated surface of the object and its back surface. δT / δt is a temperature change per unit time of the object, that is, a temperature rate. W h and W o are the heat energy per unit time and unit area that the heating surface transmits and receives from the heat source, and the heat energy emitted from the back surface. If the temperature gradient in an arbitrary thickness direction X of the object is expressed by the following expression (4), the expression (1) is expressed by the following expression (5). In the method for measuring the thermal properties of an object according to the present invention, the temperature of the front and back surfaces of the object, the thermal energy of supply and discharge, and the temperature rate are simultaneously measured when the object is in a heated and cooled state. The method for simultaneously obtaining the specific heat capacity and the thermal conductivity, or the specific heat capacity, the thermal conductivity and the thermal diffusivity from the measured physical quantities will be described below.
【0009】(1)比熱容量の導出 下記(数1)式、(数2)式、(数3)式より(数6)
式が求まる。(数6)式より、物体の温度上昇、下降時
における同じ加熱面温度について(数7)式が成立す
る。ここで(’)は温度下降時を示す。この式は式の右
辺を求めることによって、比熱容量を導出可能であるこ
とを示す。なお、この時の物体の温度は加熱面と放出面
の平均温度となる。(1) Derivation of specific heat capacity From the following equations (Equation 1), (Equation 2) and (Equation 3), (Equation 6)
Expression is found. From Equation (6), Equation (7) holds for the same heating surface temperature when the temperature of the object rises and falls. Here, (') indicates the time of temperature drop. This equation shows that the specific heat capacity can be derived by obtaining the right side of the equation. The temperature of the object at this time is the average temperature of the heating surface and the emission surface.
【0010】(2)熱伝導率の導出 (数5)式より、物体の温度上昇、下降時において、同
じ温速度を持ち、かつ同じ放出面温度の場合には、両式
の和を求めると(数8)式を得る。一方、(数4)式を
Xについて積分すると両表面の温度差を表す(数9)式
を得る。(数8)式と(数9)式を用いて、物体の同一
放出面温度における温度上昇、下降に関する式から(数
10)式を得る。この式の右辺の値が求まると、熱伝導
率が求まることになる。なお、(数10)式は同一の放
出面温度において求めた式であるが、同一の加熱面温度
について求めると(数11)式を得る。(2) Derivation of thermal conductivity From equation (5), when the temperature of an object rises and falls, it has the same temperature rate and the same emission surface temperature, the sum of both equations is obtained. (Equation 8) is obtained. On the other hand, when Expression (4) is integrated with respect to X, Expression (9) representing the temperature difference between both surfaces is obtained. Using Equations (8) and (9), Equation (10) is obtained from the equations relating to temperature rise and fall at the same emission surface temperature of the object. When the value on the right side of this equation is obtained, the thermal conductivity is obtained. Expression (Equation 10) is an expression obtained at the same emission surface temperature. However, Expression (Equation 11) is obtained when the same heating surface temperature is obtained.
【0011】(3)熱拡散率の導出 (数5)式と(数9)式より、物体の温度上昇、下降時
において、同じ放出面温度の場合には、両式の差を求め
ると(数12)式を得るが、この式の左辺は熱拡散率a
を与える式となっている。(3) Derivation of thermal diffusivity From equations (5) and (9), when the temperature of the object rises and falls, and the same emission surface temperature, the difference between the two equations is obtained. Equation 12) is obtained, and the left side of this equation is the thermal diffusivity a
Which gives
【0012】図1は、本発明に係る物体の熱的物性値の
測定装置の概略構成図である。この装置は、図1に示す
ように、水冷された真空槽1内に板状の被測定物体2と
熱供給源としてのヒータ3が対立する装置である。被測
定物体2は、真空槽1内の設定部に設定される。真空槽
1には、被測定物体2のヒータ3に対面する加熱面とそ
の反対面である裏面の温度をそれぞれ各別に継続して測
定する温度測定手段が設けられている。真空槽1は水冷
等によって常に一定の温度に保たれている。上記温度測
定手段からの温度信号と、ヒータ3の設定温度信号と、
真空槽壁面の温度と予め測定した被測定物体の厚さ及び
密度を、下記の数式により演算して、比熱容量及び熱伝
導率、又は、比熱容量、熱伝導率及び熱拡散率を経時的
に連続又は断続して測定表示するコンピューター演算手
段が設けられている。FIG. 1 is a schematic configuration diagram of an apparatus for measuring a thermal property value of an object according to the present invention. As shown in FIG. 1, this device is a device in which a plate-shaped measured object 2 and a heater 3 as a heat supply source are opposed to each other in a water-cooled vacuum chamber 1. The measured object 2 is set in a setting unit in the vacuum chamber 1. The vacuum chamber 1 is provided with temperature measuring means for continuously measuring the temperature of the heating surface of the object 2 to be measured facing the heater 3 and the temperature of the back surface opposite thereto, respectively. The vacuum chamber 1 is always kept at a constant temperature by water cooling or the like. A temperature signal from the temperature measuring means, a set temperature signal of the heater 3,
The temperature of the vacuum chamber wall surface and the thickness and density of the measured object measured in advance are calculated by the following formula, and the specific heat capacity and the thermal conductivity, or the specific heat capacity, the thermal conductivity and the thermal diffusivity over time are calculated. A computer operation means for continuously or intermittently measuring and displaying is provided.
【0013】被測定物体2がヒータ3の熱放射により加
熱される時、被測定物体2の加熱面が授受する単位面
積、単位時間当たりの放射エネルギは下記(数13)式
で与えられ、被測定物体の放出面が放射するエネルギは
(数14)式で与えられる。ここで、Thはヒータの温
度、Tr は真空槽壁面の温度であって水冷等により常に
一定に保たれている温度である。σはステファンの定
数、Eh はヒータと物体加熱面との間で成り立つ有効放
射率である。εは物体両表面の放射率である。bは加熱
面から真空槽壁へ散逸するエネルギについての係数で1
よりの小さい値を持つ。この測定装置では、比熱容量は
(数7)式より(数15)式で与えられることになり、
同様に熱拡散率は(数12)式より求められる。熱伝導
率は(数10)式より(数16)式で与えられることに
なる。When the object to be measured 2 is heated by the heat radiation of the heater 3, the radiant energy per unit area and per unit time transmitted and received by the heated surface of the object to be measured 2 is given by the following equation (13). The energy radiated by the emission surface of the measurement object is given by equation (14). Here, Th is the temperature of the heater, and Tr is the temperature of the wall surface of the vacuum chamber, which is always kept constant by water cooling or the like. σ is Stefan's constant, and E h is the effective emissivity established between the heater and the object heating surface. ε is the emissivity of both surfaces of the object. b is a coefficient of energy dissipated from the heating surface to the vacuum chamber wall, and is 1
Has a smaller value than In this measuring device, the specific heat capacity is given by Expression (15) from Expression (7),
Similarly, the thermal diffusivity can be obtained from equation (12). The thermal conductivity is given by Expression (16) from Expression (10).
【0014】次に、上記測定装置によって測定する物体
の熱的物性値の測定手順を説明する。測定され記録され
るものは、温度の上昇、下降時における、ヒータ温度
(Th)、試料表面の温度(TL )、試料裏面の温度
(TO )である。記録の方法は、連続、または一定時間
毎(例えば10秒毎)、または一定温度毎(例えば1度
毎)に上記3つの温度のデータをセットとして刻々記録
する。温度の上昇及び下降は、ヒータに流す電流を増減
コントロールすることで行わせることができる。温度速
度は、データ間の温度差をデータ間の時間で割ってやれ
ば求めることができる。これはコンピュータ処理により
簡単に求めることができる。Next, a procedure for measuring a thermal physical property value of an object measured by the above-described measuring device will be described. What is measured and recorded are the temperature of the heater (T h ), the temperature of the sample surface (T L ), and the temperature of the sample back surface (T O ) when the temperature rises and falls. As a recording method, the data of the above three temperatures is recorded as a set continuously, at regular intervals (for example, every 10 seconds), or at regular temperatures (for example, every 1 degree). The rise and fall of the temperature can be performed by controlling the current flowing through the heater to increase or decrease. The temperature speed can be obtained by dividing the temperature difference between data by the time between data. This can be easily obtained by computer processing.
【0015】図2の温度の上昇、下降と時間の関係を示
すグラフ図を参照するに、例えば、温度上昇時で、デー
タ間の温度差が1°Cで、この間の時間が10秒である
とすれば、温度速度は、1/10(°C/秒)となり、
下降時には、温度差が負となるので温度速度も−1/1
0(°C/秒)となる。温度上昇時における各温度のデ
ータセットを(Th ,TL ,TO )とし、温度下降時に
おける各温度のデータセットを(Th ’,TL ’,
TO ’)とすると、ある上昇時の試料表面温度がT
L (例えば100°C)で下降時の試料表面温度が
TL ’(例えば100°C)で同じであった場合には、
Th とTh ’は同じでなく、TO とTO ’は同じではな
い。この場合には、(数15)式より比熱容量を求める
ことができる。同様にして、温度上昇時の試料裏面温度
がTO で温度下降時の試料裏面温度がTO ’であって同
じ時には、(数12)式と(数16)式から熱拡散率と
熱伝導率が求まる。FIG. 2 shows the relationship between temperature rise and fall and time.
Referring to the graph, for example, when the temperature rises,
The temperature difference between the heaters is 1 ° C and the time between them is 10 seconds
Then the temperature rate would be 1/10 (° C / sec),
When descending, the temperature difference is negative, so the temperature speed is also -1/1.
0 (° C / sec). The data of each temperature when the temperature rises
Data set (Th, TL, TO) And when the temperature drops
Data set of each temperature in (Th’, TL’,
TO′), The sample surface temperature at a certain rise is T
L(For example, 100 ° C.)
TL’(E.g., 100 ° C.)
ThAnd Th’Is not the same,OAnd TO’Is not the same
No. In this case, the specific heat capacity is obtained from Expression (15).
be able to. Similarly, the back surface temperature of the sample when the temperature rises
Is TOAnd the back surface temperature of the sample when the temperature falls is TO’
At the same time, the thermal diffusivity is calculated from the equations (12) and (16).
The thermal conductivity is determined.
【0016】図3にそれぞれパイレックスガラス(厚さ
3mm、直径25mm)を試料とした比熱容量Cp(上
段)と熱伝導率λ(下段)の同時測定の実験結果を示
す。この実験結果により、本発明に係る装置を用いた方
法が有効に成り立つことを確認している。FIG. 3 shows experimental results of simultaneous measurement of the specific heat capacity Cp (upper part) and the thermal conductivity λ (lower part) using Pyrex glass (thickness 3 mm, diameter 25 mm) as a sample. These experimental results have confirmed that the method using the device according to the present invention is valid.
【0017】[0017]
【数1】 (Equation 1)
【0018】[0018]
【数2】 (Equation 2)
【0019】[0019]
【数3】 (Equation 3)
【0020】[0020]
【数4】 (Equation 4)
【0021】[0021]
【数5】 (Equation 5)
【0022】[0022]
【数6】 (Equation 6)
【0023】[0023]
【数7】 (Equation 7)
【0024】[0024]
【数8】 (Equation 8)
【0025】[0025]
【数9】 (Equation 9)
【0026】[0026]
【数10】 (Equation 10)
【0027】[0027]
【数11】 [Equation 11]
【0028】[0028]
【数12】 (Equation 12)
【0029】[0029]
【数13】 (Equation 13)
【0030】[0030]
【数14】 [Equation 14]
【0031】[0031]
【数15】 (Equation 15)
【0032】[0032]
【数16】 (Equation 16)
【0033】[0033]
【発明の効果】上記本発明によれば、物体の熱的物性値
である比熱容量及び熱伝導率、又は、比熱容量、熱伝導
率及び熱拡散率を同時に測定することが可能な効果があ
る。According to the present invention, there is an effect that the specific heat capacity and the thermal conductivity, or the specific heat capacity, the thermal conductivity and the thermal diffusivity, which are the thermal properties of the object, can be measured simultaneously. .
【図1】本発明に係る装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an apparatus according to the present invention.
【図2】温度の上昇、下降と時間の関係を示すグラフ図
である。FIG. 2 is a graph showing the relationship between temperature rise and fall and time.
【図3】本発明に係る装置を用いて同時測定されたパイ
レックスガラスの比熱容量と熱伝導率の温度変化を示す
図である。FIG. 3 is a diagram showing temperature changes of specific heat capacity and thermal conductivity of Pyrex glass measured simultaneously using the apparatus according to the present invention.
1 真空槽、2 被測定物体、3 ヒータ 1 vacuum chamber, 2 object to be measured, 3 heaters
Claims (2)
空槽内に被測定物体を設け、該被測定物体の熱供給源に
対面する加熱又は冷却面とその反対面である裏面の温度
を測定し、該測定結果、熱供給源の温度、真空槽壁面の
温度と予め測定した被測定物体の厚さ及び密度を、下記
(数15)及び(数16)の数式を用いて演算すること
により、被測定物体の比熱容量と熱伝導率を同時に測定
する物体の熱的物性値の測定方法。 【数15】 【数16】 上記数式において、Cp :比熱容量、λ:熱伝導率、
L,ρ:物体の厚さ,同密度、ε:物体表面の放射率、
δT/δt:温速度、σ:ステファンの定数、Th ,T
l ,To :温度上昇時におけるヒータの温度,同物体の
加熱面の温度,同その裏面の温度、Th ’,Tl ’,T
o ’:温度下降時におけるヒータの温度,同物体の加熱
面の温度,同その裏面の温度、である。An object to be measured is provided in a vacuum chamber facing a heat supply source provided in the vacuum chamber, and a heating or cooling surface of the object to be measured facing the heat supply source and a back surface opposite to the heating or cooling surface. Is measured, and the measurement result, the temperature of the heat supply source, the temperature of the wall surface of the vacuum chamber, and the thickness and density of the object to be measured which have been measured in advance are calculated using the following formulas (15) and (16). A method of measuring thermal physical properties of an object by calculating the specific heat capacity and thermal conductivity of the object to be measured simultaneously. (Equation 15) (Equation 16) In the above formula, C p : specific heat capacity, λ: thermal conductivity,
L, ρ: object thickness, same density, ε: emissivity of object surface,
δT / δt: temperature rate, σ: Stefan constant, Th , T
l, T o: the heater temperature at the time of temperature rise, the temperature of the heating surface of the object, the rear surface thereof in the temperature, T h ', T l' , T
o ': The temperature of the heater when the temperature drops, the temperature of the heating surface of the object, and the temperature of the back surface thereof.
空槽内に被測定物体を設け、該被測定物体の熱供給源に
対面する加熱又は冷却面とその反対面である裏面の温度
を測定し、該測定結果、熱供給源の温度、真空槽壁面の
温度と予め測定した被測定物体の厚さ及び密度を、下記
(数15)、(数16)及び(数12)の数式を用いて
演算することにより、被測定物体の比熱容量、熱伝導率
及び熱拡散率を同時に測定する物体の熱的物性値の測定
方法。 【数15】 【数16】 【数12】 上記数式において、Cp :比熱容量、λ:熱伝導率、
a:熱拡散率、L,ρ:物体の厚さ,同密度、ε:物体
表面の放射率、δT/δt:温速度、σ:ステファンの
定数、Th ,Tl ,To :温度上昇時におけるヒータの
温度,同物体の加熱面の温度,同その裏面の温度、
Th ’,Tl ’,To ’:温度下降時におけるヒータの
温度,同物体の加熱面の温度,同その裏面の温度、であ
る。2. An object to be measured is provided in a vacuum chamber facing a heat supply source provided in the vacuum chamber, and a heating or cooling surface facing the heat supply source of the object to be measured and a back surface opposite to the heating or cooling surface. And the measured result, the temperature of the heat supply source, the temperature of the vacuum chamber wall surface and the thickness and density of the object to be measured, which were measured in advance, are represented by the following (Equation 15), (Equation 16) and (Equation 12). A method for measuring thermal physical properties of an object by simultaneously calculating the specific heat capacity, the thermal conductivity, and the thermal diffusivity of the object to be measured by calculating using the mathematical formula: (Equation 15) (Equation 16) (Equation 12) In the above formula, C p : specific heat capacity, λ: thermal conductivity,
a: thermal diffusivity, L, [rho: the thickness of the object, the density, epsilon: emissivity of the object surface,? T / .DELTA.t: raising rate, sigma: Stefan constant, T h, T l, T o: Temperature rise The temperature of the heater, the temperature of the heating surface of the object,
T h ′, T l ′, T o ′: the temperature of the heater when the temperature drops, the temperature of the heating surface of the object, and the temperature of the back surface thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20603396A JP2866925B2 (en) | 1996-08-05 | 1996-08-05 | How to measure thermal properties of objects |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20603396A JP2866925B2 (en) | 1996-08-05 | 1996-08-05 | How to measure thermal properties of objects |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1048167A JPH1048167A (en) | 1998-02-20 |
JP2866925B2 true JP2866925B2 (en) | 1999-03-08 |
Family
ID=16516792
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20603396A Expired - Lifetime JP2866925B2 (en) | 1996-08-05 | 1996-08-05 | How to measure thermal properties of objects |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2866925B2 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015118856B3 (en) * | 2015-11-04 | 2016-08-18 | Netzsch-Gerätebau GmbH | Method and device for the photothermal examination of a sample |
KR102021847B1 (en) * | 2017-09-25 | 2019-09-17 | 주식회사 브이엠테크 | Method for Estimating Specific Volume of Synthetic Resin According to the Change of Temperature and Pressure |
CN108775971A (en) * | 2018-09-10 | 2018-11-09 | 中国科学院工程热物理研究所 | A kind of measurement method of temperature measuring equipment and specific heat capacity and thermal conductivity |
CN114487008B (en) * | 2022-01-28 | 2022-10-04 | 深圳大学 | System and method for measuring composite thermal parameters of phase-change concrete member |
CN117250227B (en) * | 2023-11-17 | 2024-01-23 | 西南交通大学 | 3D printed concrete surface heat exchange characteristic constant temperature test system, method and application |
-
1996
- 1996-08-05 JP JP20603396A patent/JP2866925B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH1048167A (en) | 1998-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104422711B (en) | Variable temperature sample platform and thermoelectric property measuring method | |
JPWO2003044509A1 (en) | Thermal analysis method and thermal analysis apparatus | |
HU190960B (en) | Method and measuring apparatus for determining the coefficient of thermal conduction and heat capacty | |
US7107835B2 (en) | Thermal mass flow sensor | |
JP2866925B2 (en) | How to measure thermal properties of objects | |
JPH0674836A (en) | Non-contact temperature measuring device based on automatic calibration sensor pair | |
Liu et al. | Experimental design | |
CN113092523A (en) | Device and method for testing heat-conducting property of thin-film material | |
JPH03148026A (en) | Automatic calibration pair sensor non- contact temperature measuring method and apparatus | |
JPH07294541A (en) | Measurement device | |
Lopeandia et al. | Heat transfer in symmetric U-shaped microreactors for thin film calorimetry | |
CA2301731C (en) | Method and device for generating a signal according to a liquid film on a surface | |
JPH09222404A (en) | Method and device for measuring specific heat capacity | |
JP2697781B2 (en) | Non-contact measurement method of object surface temperature facing a narrow gap | |
Hisano et al. | Simultaneous measurement of specific heat capacity, thermal conductivity, and thermal diffusivity by thermal radiation calorimetry | |
JPH0463276A (en) | Method for measuring temperature of material to be treated in vacuum, method and device for controlling temperature | |
JP2787647B2 (en) | Method and apparatus for measuring thermal conductivity | |
Panov et al. | Experimental investigation of the radiant and conductive-convective components of external heat exchange in a high-temperature fluidized bed | |
JPH0718826B2 (en) | Thermal conductivity measurement method | |
RU2530473C1 (en) | Device and method for complex determination of basic thermophysical properties of solid body | |
Atmane et al. | The effect of the liquid motion induced by air and vapor bubbles on heat transfer around a cylinder | |
EP1455171A1 (en) | Improvements in and relating to the measurement of heat flux in a heated chamber | |
Inaba et al. | Study on sublimation phenomenon of horizontal frost layer exposed to forced convection air flow and radiant heat | |
Dincer | A simple solution for transient heat transfer during heating of a slab product | |
JPH076842B2 (en) | Radiant heat detector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |