JP2021056036A - Low temperature thermal conductivity measuring device - Google Patents

Low temperature thermal conductivity measuring device Download PDF

Info

Publication number
JP2021056036A
JP2021056036A JP2019177327A JP2019177327A JP2021056036A JP 2021056036 A JP2021056036 A JP 2021056036A JP 2019177327 A JP2019177327 A JP 2019177327A JP 2019177327 A JP2019177327 A JP 2019177327A JP 2021056036 A JP2021056036 A JP 2021056036A
Authority
JP
Japan
Prior art keywords
cooling
airtight container
measuring device
metal
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019177327A
Other languages
Japanese (ja)
Other versions
JP7332413B2 (en
Inventor
和昭 下野
Kazuaki Shimono
和昭 下野
幸雄 中川
Yukio Nakagawa
幸雄 中川
良浩 山中
Yoshihiro Yamanaka
良浩 山中
洋一郎 ▲高▼橋
洋一郎 ▲高▼橋
Yoichiro Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Meisei Industrial Co Ltd
Original Assignee
Taiyo Nippon Sanso Corp
Meisei Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75273073&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2021056036(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taiyo Nippon Sanso Corp, Meisei Industrial Co Ltd filed Critical Taiyo Nippon Sanso Corp
Priority to JP2019177327A priority Critical patent/JP7332413B2/en
Publication of JP2021056036A publication Critical patent/JP2021056036A/en
Priority to JP2023130495A priority patent/JP7470851B2/en
Application granted granted Critical
Publication of JP7332413B2 publication Critical patent/JP7332413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a low-temperature thermal conductivity measuring device with which it is possible to suppress the consumption of liquid nitrogen or helium and cool the cooling plate of a GHP measurement device.SOLUTION: A GHP measurement device 4 which, with a pair of plates to be measured arranged on both sides of a heating plate and a pair of cooling plates further arranged respectively on outer sides of the pair of plates to be measured, measures the temperature of surface/reverse sides of each of the pair of plates to be measured, and calculates the thermal conductivity of the plates to be measured on the basis of an applied heat quantity and a difference in measured temperatures of the surface/reverse sides, is accommodated in the inside of a heat-insulating airtight container 5, and cooling means for cooling the cooling plate to low temperatures of 0°C or below is provided inside of the heat-insulating airtight container 5. To constitute the cooling means, a refrigerator 7 is provided that cools the cooling plate of the GHP measurement device 4 by heat conduction in the inside space of the heat-insulating airtight container 5.SELECTED DRAWING: Figure 1

Description

本発明は、加熱板の両面側に一対の被測定物平板を配置し、前記一対の被測定物平板の更に両外側夫々に一対の冷却板を配置し、前記一対の被測定物平板夫々の表裏両面部の温度を測定して、与えた熱量と前記表裏両面部の計測温度差に基づいて被測定物平板の熱伝導率を算出するGHP法測定装置を、断熱性気密容器の内側に収容し、前記冷却板を0℃以下の低温に冷却する冷却手段を前記断熱性気密容器内に設けてある低温熱伝導率測定装置に関する。 In the present invention, a pair of plate to be measured is arranged on both sides of the heating plate, a pair of cooling plates are arranged on both outer sides of the pair of plates to be measured, and the pair of plates to be measured are respectively arranged. A GHP method measuring device that measures the temperature of both the front and back sides and calculates the thermal conductivity of the flat plate to be measured based on the amount of heat given and the measured temperature difference between the front and back sides is housed inside the heat-insulating airtight container. The present invention relates to a low-temperature thermal conductivity measuring device provided with a cooling means for cooling the cooling plate to a low temperature of 0 ° C. or lower in the heat-insulating airtight container.

前記GHP法測定装置はJIS A 1412−1の測定法で定められているもので、詳しくは、支持フレームに加熱板、一対の冷却板を夫々板厚方向に移動自在に上から吊り下げ支持し、加熱板と冷却板との間夫々に被測定物平板を挟み込み、加熱板を中心にして一対の被測定物平板及び一対の冷却板を、互いに近接移動させて接触させる押し付け装置を、板厚方向の両外側に一対設けて構成してある。 The GHP method measuring device is defined by the measuring method of JIS A 1412-1. Specifically, a heating plate and a pair of cooling plates are hung and supported from above so as to be movable in the plate thickness direction on the support frame. A pressing device that sandwiches the plate to be measured between the heating plate and the cooling plate, and moves the pair of plates to be measured and the pair of cooling plates close to each other around the heating plate to bring them into contact with each other. A pair is provided on both outer sides of the direction.

従来、前記低温熱伝導率測定装置では、前記冷却板を冷却する冷却手段として、例えば、液体窒素や液体ヘリウムを直接利用、あるいは気化させて断熱性気密容器内の雰囲気温度を低下させ、その雰囲気温度によって前記冷却板を冷却する装置に構成してあった(例えば、非特許文献1参照)。 Conventionally, in the low temperature thermal conductivity measuring device, for example, liquid nitrogen or liquid helium is directly used or vaporized as a cooling means for cooling the cooling plate to lower the atmospheric temperature in the heat insulating airtight container, and the atmosphere thereof. It was configured as a device for cooling the cooling plate by temperature (see, for example, Non-Patent Document 1).

建材試験情報12 ‘89「GHP法による低音域における熱伝導率測定」Building Material Test Information 12 '89 "Measurement of Thermal Conductivity in Bass Range by GHP Method"

上述した従来の低温熱伝導率測定装置では、断熱性気密容器内の雰囲気温度を液体窒素を蒸発させた低温ガスでは、液体窒素の沸点以下の温度に低下させることは困難であり、例えば、−180℃以下の極低温域での伝導率測定は、困難であった。
そこで、図5に示すように、液体ヘリウム(LHe)を気化させて真空断熱容器で形成された断熱性気密容器5内の雰囲気温度を、約−268℃以下の極低温領域まで低下させる装置が考えられているが、液体ヘリウムの気化によって断熱性気密容器5内の雰囲気温度を低下させるためには、液体ヘリウムを大量に消費しなければならず、しかも、液体ヘリウムは非常に気化しやすくその補給や保管のための手間が非常に多くかかり、その上多額の費用が掛かるという問題があった(尚、図面中5は断熱性気密容器、31は液体ヘリウムの貯留容器、4はGHP法測定装置を収容する測定部、33は断熱性気密容器の上部を開放してGHP法測定装置を取り出しできるようにするための断熱材を設けた開閉蓋部である)。
In the conventional low-temperature thermal conductivity measuring device described above, it is difficult to lower the ambient temperature in the heat-insulating airtight container to a temperature below the boiling point of liquid nitrogen with a low-temperature gas obtained by evaporating liquid nitrogen. It was difficult to measure the conductivity in the extremely low temperature range of 180 ° C. or lower.
Therefore, as shown in FIG. 5, a device that vaporizes liquid helium (LHe) to lower the atmospheric temperature in the heat-insulating airtight container 5 formed by the vacuum heat-insulating container to an extremely low temperature region of about -268 ° C or lower. Although it is considered, in order to lower the atmospheric temperature in the heat insulating airtight container 5 by vaporizing the liquid helium, a large amount of the liquid helium must be consumed, and the liquid helium is very easily vaporized. There was a problem that it took a lot of time and effort for replenishment and storage, and it also cost a lot of money (Note that 5 in the drawing is an heat-insulating airtight container, 31 is a liquid helium storage container, and 4 is a GHP method measurement. The measuring unit 33 for accommodating the device is an opening / closing lid portion provided with a heat insulating material for opening the upper part of the heat-insulating airtight container so that the GHP method measuring device can be taken out).

従って、本発明の目的は、上記問題点を解消し、液体窒素やヘリウムの消費を抑制してGHP法測定装置の冷却板を冷却できる低温熱伝導率測定装置を提供するところにある。 Therefore, an object of the present invention is to provide a low-temperature thermal conductivity measuring device capable of solving the above-mentioned problems, suppressing the consumption of liquid nitrogen and helium, and cooling the cooling plate of the GHP method measuring device.

本発明の第1の特徴構成は、加熱板の両面側に一対の被測定物平板を配置し、前記一対の被測定物平板の更に両外側夫々に一対の冷却板を配置し、前記一対の被測定物平板夫々の表裏両面部の温度を測定して、与えた熱量と前記表裏両面部の計測温度差に基づいて被測定物平板の熱伝導率を算出するGHP法測定装置を、断熱性気密容器の内側に収容し、前記冷却板を0℃以下の低温に冷却する冷却手段を前記断熱性気密容器に設けてある低温熱伝導率測定装置であって、前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置の前記冷却板を熱伝導により冷却する冷凍機を設けたところにある。 The first characteristic configuration of the present invention is to arrange a pair of plate to be measured on both sides of the heating plate, and further to arrange a pair of cooling plates on both outer sides of the pair of plates to be measured, and to arrange the pair of cooling plates. A GHP method measuring device that measures the temperature of both the front and back surfaces of each flat plate to be measured and calculates the thermal conductivity of the flat plate to be measured based on the amount of heat given and the measured temperature difference between the front and back surfaces. A low-temperature thermal conductivity measuring device provided in the heat-insulating airtight container with a cooling means housed inside the airtight container and cooling the cooling plate to a low temperature of 0 ° C. or lower, for forming the cooling means. A refrigerator is provided in the inner space of the heat-insulating airtight container to cool the cooling plate of the GHP method measuring device by heat conduction.

本発明の第1の特徴構成によれば、前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置の前記冷却板を熱伝導により冷却する冷凍機を設けることにより、液体窒素やヘリウムの消費を抑制して、GHP測定装置の冷却板を簡単に冷却できる。 According to the first characteristic configuration of the present invention, in order to configure the cooling means, a refrigerator for cooling the cooling plate of the GHP method measuring device by heat conduction is provided in the inner space of the heat insulating airtight container. As a result, the consumption of liquid nitrogen and helium can be suppressed, and the cooling plate of the GHP measuring device can be easily cooled.

本発明の第2の特徴構成は、前記冷凍機を前記冷却板の下方に配置すると共に、前記冷凍機の放冷部と前記冷却板とを第1金属製熱伝導部材を介して直接熱接触可能に構成したところにある。 The second characteristic configuration of the present invention is that the refrigerator is arranged below the cooling plate, and the cooling portion of the refrigerator and the cooling plate are in direct thermal contact via a first metal heat conductive member. It is in the place where it is possible to configure.

本発明の第2の特徴構成によれば、前記冷凍機を前記冷却板の下方に配置することにより、冷却板を備えたGHP法測定装置の断熱性気密容器内への組み付けを容易に行え、また、前記冷凍機の放冷部と前記冷却板とを第1金属製熱伝導部材によって直接熱接触させられ、そのために、冷凍機の放冷部からの冷熱は、第1金属製熱伝導部材を介して冷却板に熱損失少なく効率よく伝熱される。 According to the second characteristic configuration of the present invention, by arranging the refrigerator below the cooling plate, it is possible to easily assemble the GHP method measuring device provided with the cooling plate into the heat insulating airtight container. Further, the cooling part of the refrigerator and the cooling plate are brought into direct thermal contact by the first metal heat conductive member, so that the cold heat from the cooling part of the refrigerator is transferred to the first metal heat conductive member. Heat is efficiently transferred to the cooling plate through the cooling plate with little heat loss.

本発明の第3の特徴構成は、前記冷却板の上部と前記放冷部とを直接熱接触させる第1金属製補助熱伝導部材を設けたところにある。 The third characteristic configuration of the present invention is that a first metal auxiliary heat conductive member is provided which directly brings the upper portion of the cooling plate and the cooling portion into direct thermal contact.

本発明の第3の特徴構成によれば、冷却板の上部は下部からの熱伝導の遅れや伝熱途中での熱損失により冷却度が低下するのを、第1金属製補助熱伝導部材を介して放冷部からの冷熱を、冷却板の上部に直接伝熱させることができ、冷却板を上から下までより均一に冷却しやすくなる。
従って、被測定物平板の熱伝導率の測定精度を向上させることができる。
According to the third characteristic configuration of the present invention, the cooling degree of the upper part of the cooling plate is lowered due to the delay of heat conduction from the lower part and the heat loss in the middle of heat transfer. The cold heat from the cooling plate can be directly transferred to the upper part of the cooling plate through the cooling plate, and it becomes easier to cool the cooling plate more uniformly from the top to the bottom.
Therefore, the measurement accuracy of the thermal conductivity of the flat plate to be measured can be improved.

本発明の第4の特徴構成は、前記冷凍機を前記冷却板の上方に配置して、前記冷凍機の放冷部と前記冷却板の上端部とを熱接触させる第2金属製熱伝導部材を設けたところにある。 The fourth characteristic configuration of the present invention is a second metal heat conductive member in which the refrigerator is arranged above the cooling plate and the cooling portion of the refrigerator and the upper end portion of the cooling plate are brought into thermal contact with each other. It is in the place where.

本発明の第4の特徴構成によれば、冷凍機を前記冷却板の上方に配置して、前記冷凍機の放冷部と前記冷却板の上端部とを熱接触させる第2金属製熱伝導部材を設けることにより、冷凍機により冷却板の上部から第2金属製熱伝導部材を介して直接伝熱して冷却でき、冷却板を上部から下部にかけてより均一な温度に冷却して、熱伝導率の測定精度を向上させることができる。 According to the fourth characteristic configuration of the present invention, the refrigerator is arranged above the cooling plate, and the cooling portion of the refrigerator and the upper end portion of the cooling plate are brought into thermal contact with each other. By providing the member, the refrigerator can directly transfer heat from the upper part of the cooling plate through the second metal heat conductive member to cool the cooling plate, and the cooling plate is cooled to a more uniform temperature from the upper part to the lower part to achieve thermal conductivity. It is possible to improve the measurement accuracy of.

本発明の第5の特徴構成は、前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置を囲繞する金属製気密容器を設け、前記金属製気密容器を熱伝導により冷却する冷凍機を設け、前記金属製気密容器と前記冷却板とを直接熱接触させる第1金属製熱伝導部材を設けたところにある。 The fifth characteristic configuration of the present invention is that the cooling means is provided with a metal airtight container surrounding the GHP method measuring device in the inner space of the heat insulating airtight container, and the metal airtight container is provided. A refrigerator that cools by heat conduction is provided, and a first metal heat conduction member that directly brings the metal airtight container and the cooling plate into direct thermal contact is provided.

本発明の第5の特徴構成によれば、断熱性気密容器の内側空間内で前記GHP法測定装置を囲繞する金属製気密容器を設け、前記金属製気密容器を熱伝導により冷却する冷凍機を設け、前記金属製気密容器と前記冷却板とを直接熱接触させる第1金属製熱伝導部材を設けることにより、冷却板は、第1金属製熱伝導部材によって直接冷却され、より低温に下げやすくできる。
その上、GHP法測定装置を囲繞する金属製気密容器によって、例えば、断熱性気密容器と金属製気密容器との間の空間を真空にして外部からの熱の侵入を遮断しながら、金属製気密容器の内部空間に熱交換用冷媒ガスを充填すれば、その冷媒ガスを介してGHP法測定装置の冷却板を効率よく冷却できる。
さらに、金属製気密容器の内部空間を真空状態にしたり、任意の圧力でガス(窒素、酸素、ヘリウム、アルゴン、水素等)充填状態にして、各種雰囲気中における精度の高い熱伝導率の測定を可能とできる。
According to the fifth characteristic configuration of the present invention, a refrigerator is provided in which a metal airtight container surrounding the GHP method measuring device is provided in the inner space of the heat insulating airtight container, and the metal airtight container is cooled by heat conduction. By providing the first metal heat conductive member that directly brings the metal airtight container and the cooling plate into direct thermal contact, the cooling plate is directly cooled by the first metal heat conductive member, and it is easy to lower the temperature to a lower temperature. it can.
In addition, the metal airtight container surrounding the GHP method measuring device, for example, evacuates the space between the heat insulating airtight container and the metal airtight container to block the intrusion of heat from the outside, while making the metal airtight. If the internal space of the container is filled with the heat exchange refrigerant gas, the cooling plate of the GHP method measuring device can be efficiently cooled through the refrigerant gas.
Furthermore, the internal space of the metal airtight container is evacuated or filled with gas (nitrogen, oxygen, helium, argon, hydrogen, etc.) at an arbitrary pressure to measure the thermal conductivity with high accuracy in various atmospheres. It can be possible.

本発明の第6の特徴構成は、前記冷凍機の放冷部を前記金属製気密容器の下面に接当させて取り付け、前記金属製気密容器の底板と前記冷却板の上部とを直接熱接触させる第1金属製補助熱伝導部材を設けたところにある。 The sixth characteristic configuration of the present invention is that the cooling part of the refrigerator is attached by being brought into contact with the lower surface of the metal airtight container, and the bottom plate of the metal airtight container and the upper part of the cooling plate are in direct thermal contact. It is in the place where the first metal auxiliary heat conduction member to be made to be provided is provided.

本発明の第6の特徴構成によれば、冷凍機は金属製気密容器の下面を直接冷却すると同時に第1金属製熱伝導部材により冷却板が下部より冷却され、また、冷却板の上部は、第1金属製補助熱伝導部材を介して冷却され、結局、冷却板を上下略均一に冷却することができる。 According to the sixth characteristic configuration of the present invention, the refrigerator directly cools the lower surface of the metal airtight container, and at the same time, the cooling plate is cooled from the lower part by the first metal heat conductive member, and the upper part of the cooling plate is It is cooled via the first metal auxiliary heat conductive member, and in the end, the cooling plate can be cooled substantially uniformly up and down.

本発明の第7の特徴構成は、前記冷凍機の放冷部を前記金属製気密容器の天井板部に接当させて取り付けたところにある。 The seventh characteristic configuration of the present invention is that the cooling part of the refrigerator is attached in contact with the ceiling plate part of the metal airtight container.

本発明の第7の特徴構成によれば、金属製気密容器は、その天井板部が優先的に冷却され、そのために、金属製気密容器の上部内部空間に、下部よりも温度の高い内部雰囲気ガスがたまった場合でも、その内部雰囲気ガスは優先的に冷却された金属製気密容器の上部壁で冷却され、冷却板をより均一に冷却できるようになり、その結果、低温熱伝導率測定装置の測定精度を上げることができる。 According to the seventh characteristic configuration of the present invention, the ceiling plate portion of the metal airtight container is preferentially cooled, and therefore, the internal atmosphere in the upper internal space of the metal airtight container is higher than that of the lower part. Even if gas accumulates, its internal atmosphere gas is cooled by the upper wall of the preferentially cooled metal airtight container, allowing the cooling plate to be cooled more evenly, resulting in a low temperature thermal conductivity measuring device. The measurement accuracy of is improved.

本発明の縦断正面図である。It is a vertical sectional front view of this invention. 要部(GHP法測定装置)の正面図である。It is a front view of the main part (GHP method measuring apparatus). 本発明の横断平面図である。It is a cross-sectional plan view of this invention. (a)は第1金属製熱伝導部材で、(b)は第1底板、(c)は第1底板に第1金属製熱伝導部材を立設させて取り付けた平面図である。(A) is a first metal heat conductive member, (b) is a first bottom plate, and (c) is a plan view in which a first metal heat conductive member is erected and attached to the first bottom plate. 従来例の縦断正面図である。It is a vertical sectional front view of a conventional example. 別実施形態の縦断正面図である。It is a vertical sectional front view of another embodiment. 別実施形態の縦断正面図である。It is a vertical sectional front view of another embodiment. 別実施形態の縦断正面図である。It is a vertical sectional front view of another embodiment. 別実施形態の縦断正面図である。It is a vertical sectional front view of another embodiment. 別実施形態の縦断正面図である。It is a vertical sectional front view of another embodiment. 別実施形態の縦断正面図である。It is a vertical sectional front view of another embodiment.

以下に本発明の実施の形態を図面に基づいて説明する。
図1〜図4に示すように、加熱板1の両面側に一対の被測定物平板2を配置し、一対の被測定物平板2の更に両外側夫々に一対の冷却板3を配置し、一対の被測定物平板2夫々の表裏両面部の温度を測定して、表裏両面部の計測温度差に基づいて被測定物平板2の熱伝導率を算出するGHP法測定装置4を、断熱性気密容器5の内側に収容し、冷却板3を0℃以下の低温に冷却する冷却手段を断熱性気密容器5内に設けてある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 to 4, a pair of plate objects to be measured 2 are arranged on both sides of the heating plate 1, and a pair of cooling plates 3 are arranged on both outer sides of the pair of plate plates 2 to be measured. A GHP method measuring device 4 that measures the temperature of both front and back surfaces of a pair of flat plates 2 to be measured and calculates the thermal conductivity of the flat plates 2 to be measured based on the measured temperature difference between the front and back surfaces. A cooling means for accommodating the inside of the airtight container 5 and cooling the cooling plate 3 to a low temperature of 0 ° C. or lower is provided in the heat insulating airtight container 5.

〔第1実施形態〕
前記冷却手段を構成するのに、断熱性気密容器5の内側空間内でGHP法測定装置4を囲繞する金属製気密容器6を設け、金属製気密容器6を熱伝導により冷却する冷凍機7を設け、金属製気密容器6と冷却板3とを直接熱接触させる第1金属製熱伝導部材8を設けてある。
[First Embodiment]
To form the cooling means, a metal airtight container 6 surrounding the GHP method measuring device 4 is provided in the inner space of the heat insulating airtight container 5, and a refrigerator 7 for cooling the metal airtight container 6 by heat conduction is provided. A first metal heat conductive member 8 is provided so that the metal airtight container 6 and the cooling plate 3 are in direct thermal contact with each other.

前記冷凍機7による冷却は、液体空気の沸点以下の極低温と称される温度で、特に液体ヘリウム(約―268℃)以下の領域まで冷却できるように、例えば、GM冷凍機(Gifford−McMahonサイクルを使った冷凍機)を使用する。 The cooling by the refrigerator 7 is, for example, a GM refrigerator (Giford-McMahon) so that it can be cooled to a temperature called an extremely low temperature below the boiling point of liquid air, particularly to a region below liquid helium (about -268 ° C). Use a cycle-based refrigerator).

図1〜図4に示すように、前記GHP法測定装置4は、支持フレーム15に加熱板1、一対の冷却板3を夫々板厚方向に移動自在に上から吊り下げ支持し、加熱板1と一対の冷却板3夫々の間に被測定物平板2を挟んで、加熱板1を中心にして一対の被測定物平板2及び一対の冷却板3を、互いに近接移動させて接触させる押し付け装置16を、板厚方向の両外側に一対設けて構成してある。
支持フレーム15の接地部15Aは、10ミリ厚の銅製の第1底板17に取り付けてあり(図4(b)、図2)、その第1底板17に対して銅製の3ミリ厚のアンカー板(第1金属製熱伝導部材8)を立設取り付けするように設け(図4(c))、アンカー板には、冷却板3との連結部19(ボルト挿通孔)を上部に設けると共に、下端部8Aに第1底板17と連結可能なボルト挿通用の長孔20が冷却板3の移動方向に沿って設けてあり、その長孔20に対応してボルト挿通孔21が、第1底板17に複数設けてある(図4(a)、(b)、(c))。
As shown in FIGS. 1 to 4, the GHP method measuring device 4 suspends and supports the heating plate 1 and the pair of cooling plates 3 from above on the support frame 15 so as to be movable in the plate thickness direction, respectively, and the heating plate 1 A pressing device that sandwiches the object to be measured plate 2 between the and the pair of cooling plates 3 and moves the pair of plates to be measured 2 and the pair of cooling plates 3 close to each other around the heating plate 1 to bring them into contact with each other. A pair of 16's are provided on both outer sides in the plate thickness direction.
The grounding portion 15A of the support frame 15 is attached to a first bottom plate 17 made of copper having a thickness of 10 mm (FIGS. 4 (b) and 2), and an anchor plate made of copper having a thickness of 3 mm with respect to the first bottom plate 17. (The first metal heat conductive member 8) is provided so as to be vertically mounted (FIG. 4 (c)), and the anchor plate is provided with a connecting portion 19 (bolt insertion hole) with the cooling plate 3 at the upper part. A long hole 20 for inserting a bolt that can be connected to the first bottom plate 17 is provided in the lower end portion 8A along the moving direction of the cooling plate 3, and the bolt insertion hole 21 corresponds to the long hole 20 in the first bottom plate. A plurality of them are provided in 17 (FIGS. 4 (a), (b), (c)).

図1に示すように、第1底板17を容器底板24にボルトにより固定し、容器底板24に対して、その上面部には、GHP法測定装置4を囲繞する第1カバー部22を取り付けて、容器底板24と第1カバー部22とで内部を気密にできる前記金属製気密容器6を構成してある。
容器底板24の下面部には、GM冷凍機をその2段冷却部23A(第2の放冷部23で2段膨張室が内部に設けてある)が接当する状態に取り付けてある。
従って、GM冷凍機からの冷熱は、冷凍機7の放冷部23から金属製気密容器6及び第1金属製熱伝導部材8を介して、冷却板3に直接伝熱される。
As shown in FIG. 1, the first bottom plate 17 is fixed to the container bottom plate 24 with bolts, and the first cover portion 22 surrounding the GHP method measuring device 4 is attached to the upper surface portion of the container bottom plate 24. The container bottom plate 24 and the first cover portion 22 constitute the metal airtight container 6 capable of making the inside airtight.
A GM refrigerator is attached to the lower surface of the container bottom plate 24 in a state where the two-stage cooling unit 23A (the second cooling unit 23 is provided with a two-stage expansion chamber inside) is in contact with the GM refrigerator.
Therefore, the cold heat from the GM refrigerator is directly transferred from the cooling unit 23 of the refrigerator 7 to the cooling plate 3 via the metal airtight container 6 and the first metal heat conductive member 8.

図1に示すように、金属製気密容器6を更に囲繞する輻射シールド容器25を設け、その輻射シールド容器25下部の第2底板26には、GM冷凍機の1段冷却部23B(第1の放冷部23で1段膨張室が内部に設けてある)が接触する状態に貫通させて連結してある。
従って、輻射シールド容器25も1段冷却部23Bから熱伝導により冷却される。
前記金属製気密容器6及び、輻射シールド容器25の外側は、輻射断熱のための、例えば、ポリイミドフィルムにアルミを蒸着したシートを積層したスーパーインシュレーションと呼ばれるシールド層部材27で、それらの全周を覆ってある。
As shown in FIG. 1, a radiation shield container 25 that further surrounds the metal airtight container 6 is provided, and the second bottom plate 26 below the radiation shield container 25 is provided with a one-stage cooling unit 23B (first) of the GM refrigerator. The cooling unit 23 is provided with a one-stage expansion chamber inside) and is connected so as to be in contact with each other.
Therefore, the radiation shield container 25 is also cooled by heat conduction from the one-stage cooling unit 23B.
The outside of the metal airtight container 6 and the radiant shield container 25 is a shield layer member 27 called super insulation in which, for example, a sheet in which aluminum is vapor-deposited on a polyimide film is laminated for radiant heat insulation, and the entire circumference thereof. Is covered.

前記金属製気密容器6、輻射シールド容器25を更に囲繞するアルミ製の外槽気密容器28を設けてある。
輻射シールド容器25、及び、外槽気密容器28によって、GHP法測定装置4を内側に収容する断熱性気密容器5を構成してある。
尚、外槽気密容器28の内部の第1空間S1及び輻射シールド容器25の内部の第2空間S2は、熱伝導率測定時には真空ポンプで減圧して真空断熱状態にすることで、外部からの熱の導入が極力抑えられ、且つ、冷凍能力を上げられる。
An aluminum outer tank airtight container 28 that further surrounds the metal airtight container 6 and the radiation shield container 25 is provided.
The radiation shield container 25 and the outer tank airtight container 28 constitute a heat insulating airtight container 5 that houses the GHP method measuring device 4 inside.
The first space S1 inside the outer tank airtight container 28 and the second space S2 inside the radiation shield container 25 are depressurized by a vacuum pump to be in a vacuum heat insulating state at the time of measuring the thermal conductivity, so that the heat is insulated from the outside. The introduction of heat can be suppressed as much as possible, and the refrigerating capacity can be increased.

前記金属製気密容器6は、その内部空間を真空状態にしたり、又は、特定のガスを充填してその充填ガスを介して冷却板3を冷却する冷媒冷却装置としたり、充填ガス雰囲気における熱伝導率の測定もできる。
尚、金属製気密容器6の内部空間に、熱交換作用を有する特定のガスを充填した場合は、放冷部23からの冷熱が、その充填ガスの凝固点以上の温度であれば、その充填ガスが熱交換ガスとして働いて、冷却板3に冷熱が伝わり、より冷却効率が上がる効果がある。
The metal airtight container 6 can be used as a refrigerant cooling device that evacuates the internal space thereof, or fills a specific gas to cool the cooling plate 3 through the filled gas, or conducts heat in a filled gas atmosphere. You can also measure the rate.
When the internal space of the metal airtight container 6 is filled with a specific gas having a heat exchange action, if the cold heat from the cooling unit 23 is at a temperature equal to or higher than the freezing point of the filling gas, the filling gas is filled. Acts as a heat exchange gas, and cold heat is transferred to the cooling plate 3, which has the effect of further increasing the cooling efficiency.

また、前記断熱性気密容器5は、前述の実施形態においては、外槽気密容器28の内部及び輻射シールド容器25の内部空間を減圧して真空断熱状態にしてあるが、GHP法測定装置による熱伝導率を測定するについて、外槽気密容器28の結露、氷結が問題にならない低温域において測定する場合は、常圧で断熱材を内装した断熱容器であってもよい。
ただし、冷凍機7の放冷部23の冷却能力を上げる必要のある場合、冷凍機7の周囲は、真空断熱などにより断熱能力を高く上げる必要がある。
Further, in the above-described embodiment, the heat-insulating airtight container 5 is in a vacuum-insulated state by reducing the pressure inside the outer tank airtight container 28 and the internal space of the radiation shield container 25, but the heat generated by the GHP method measuring device is obtained. When measuring the conductivity in a low temperature region where dew condensation and freezing of the outer tank airtight container 28 are not a problem, a heat insulating container having a heat insulating material at normal pressure may be used.
However, when it is necessary to increase the cooling capacity of the cooling unit 23 of the refrigerator 7, it is necessary to increase the heat insulating capacity around the refrigerator 7 by vacuum heat insulation or the like.

〔第2実施形態〕
前記冷却手段として、冷凍機7により冷却板3を冷却するのに、金属製気密容器6の第1底板17と冷却板3とを熱伝導可能に連結する第1金属製熱伝導部材8を設ける以外に、図6に示すように、第1底板17と冷却板3の上部とを直接熱接触させる8本の銅製のワイヤー(例えば、径1ミリの銅線が20本束ねてある)から成る第1金属製補助熱伝導部材29を設けてある。これにより、冷却板3の上部も効率よく冷却され、極低温領域での熱伝導率の測定が可能になる。
[Second Embodiment]
As the cooling means, in order to cool the cooling plate 3 by the refrigerator 7, a first metal heat conductive member 8 is provided which connects the first bottom plate 17 of the metal airtight container 6 and the cooling plate 3 so as to be heat conductive. In addition, as shown in FIG. 6, it is composed of eight copper wires (for example, 20 copper wires having a diameter of 1 mm are bundled) that directly bring the first bottom plate 17 and the upper portion of the cooling plate 3 into thermal contact. A first metal auxiliary heat conductive member 29 is provided. As a result, the upper part of the cooling plate 3 is also efficiently cooled, and the thermal conductivity can be measured in the extremely low temperature region.

〔第3実施形態〕
第1実施形態及び第2実施形態のように、冷凍機7の放冷部23を、金属製気密容器6の下面に接当させて取り付ける以外に、図7に示すように、金属製気密容器6の天井板部18に接当させて取り付けてあってもよい。尚、GHP法測定装置4は、金属製気密容器6の底板に載置固定されている。
[Third Embodiment]
As in the first embodiment and the second embodiment, in addition to attaching the cooling part 23 of the refrigerator 7 to the lower surface of the metal airtight container 6, as shown in FIG. 7, the metal airtight container 6 may be attached so as to be in contact with the ceiling plate portion 18. The GHP method measuring device 4 is placed and fixed on the bottom plate of the metal airtight container 6.

〔第4実施形態〕
図8に示すように、第1空間S1と第2空間S2を、真空断熱空間にして断熱性気密容器5の内側に、GHP法測定装置4を囲繞する金属製気密容器6を設けて、冷凍機7の放冷部23からの冷熱を直接冷却板3に熱伝導するように、冷凍機7を冷却板3の上方に配置して、冷凍機7の放冷部23と冷却板3の上端部とを直接熱接触する第2金属製熱伝導部材35を設けてあってもよい。
[Fourth Embodiment]
As shown in FIG. 8, the first space S1 and the second space S2 are used as a vacuum heat insulating space, and a metal airtight container 6 surrounding the GHP method measuring device 4 is provided inside the heat insulating airtight container 5 to freeze. The refrigerator 7 is arranged above the cooling plate 3 so that the cold heat from the cooling plate 23 of the machine 7 is directly conducted to the cooling plate 3, and the cooling unit 23 of the refrigerator 7 and the upper end of the cooling plate 3 are arranged. A second metal heat conductive member 35 that is in direct thermal contact with the portion may be provided.

〔第5実施形態〕
図9に示すように、GHP法測定装置4を囲繞する図1に示すような金属製気密容器6を設けずに、冷凍機7の放冷部23からの冷熱を直接冷却板3に熱伝導するように、例えば、前述の銅製のアンカー板のような第1金属製熱伝導部材8を、放冷部23と連結した第1底板17(GHP法測定装置4の支持フレーム15の接地部15Aを取り付ける)と冷却板3の下部とに亘って連結してもよい。
尚、GHP法測定装置4は、真空層を設けた断熱性気密容器5の内側に収容されている。
[Fifth Embodiment]
As shown in FIG. 9, the cold heat from the cooling unit 23 of the refrigerator 7 is directly conducted to the cooling plate 3 without providing the metal airtight container 6 as shown in FIG. 1 surrounding the GHP method measuring device 4. As described above, for example, the first bottom plate 17 (the ground contact portion 15A of the support frame 15 of the GHP method measuring device 4) in which the first metal heat conductive member 8 such as the copper anchor plate described above is connected to the cooling portion 23. (Attach) and the lower part of the cooling plate 3 may be connected.
The GHP method measuring device 4 is housed inside a heat insulating airtight container 5 provided with a vacuum layer.

また、図9と同様に、金属製気密容器6を設けない装置で、第1金属製熱伝導部材以外に、前記銅製のワイヤーと同等の第1金属製補助熱伝導部材29を、第1底板17と冷却板3の上部とに亘って連結してあってもよい。 Further, as in FIG. 9, in a device not provided with the metal airtight container 6, in addition to the first metal heat conductive member, a first metal auxiliary heat conductive member 29 equivalent to the copper wire is attached to the first bottom plate. It may be connected over the 17 and the upper part of the cooling plate 3.

〔その他の実施形態〕
以下にその他の実施の形態を説明する。
なお、以下の他の実施形態において、上記実施形態と同様の部材には同一の符号を附してある。
〈1〉 GHP法測定装置4を囲繞する金属製気密容器6は、冷凍機7により直接冷却されるように構成されているが、冷却板3に対する冷却は、金属製熱伝導部材を設けずに、金属製気密容器6に充填する熱交換作用を有するガスにより冷却する(間接冷却)ものでもよい。
〈2〉 前記GM冷凍機に代えて、他の機械式冷凍機(例えばパルスチューブ冷凍機等)が使用できる。
〈3〉 第1金属製熱伝導部材8、第1金属製補助熱伝導部材29は、熱伝導の良いものであれば銅以外の例えば、アルミニウム等の他の金属から成るものでもよく、それらの形態も板状やワイヤー以外の形状でもよい。
〈4〉 断熱性気密容器5の内側で、図10に示すように、GHP法測定装置4に冷凍機7を取り付け、且つ、冷凍機7の放冷部23から、第2金属製熱伝導部材35を介して直接冷却板3に冷熱を熱伝導するようにして、断熱性気密容器5の内部空間に従来のように液体窒素や液体ヘリウムを気化させる貯留容器31を設けて、雰囲気温度を低下させるようにして、冷凍機7との併用する装置であってもよく、この場合、従来装置よりも、液体窒素やヘリウムの使用量を減量できる利点が期待でき、また、併用により運用できる時間が延び、寒剤継ぎ足しの手間が少なくなる等の利点も期待できる。
〈5〉 図11に示すように、外槽気密容器28と金属製気密容器6の間の第1空間S1を、真空断熱空間に形成した断熱性気密容器5の内側にGHP法測定装置4を設けてあってもよい。尚、この場合、冷凍機は、単段の冷凍機を設ければよい。また、2段のGM冷凍機で図1における容器25がないパターンでもよい。
[Other Embodiments]
Other embodiments will be described below.
In the following other embodiments, the same members as those in the above embodiments are designated by the same reference numerals.
<1> The metal airtight container 6 surrounding the GHP method measuring device 4 is configured to be directly cooled by the refrigerator 7, but the cooling plate 3 is cooled without providing the metal heat conductive member. , The metal airtight container 6 may be cooled by a gas having a heat exchange action (indirect cooling).
<2> Instead of the GM refrigerator, another mechanical refrigerator (for example, a pulse tube refrigerator or the like) can be used.
<3> The first metal heat conductive member 8 and the first metal auxiliary heat conductive member 29 may be made of other metals other than copper, for example, aluminum, as long as they have good heat conductivity. The shape may be a plate shape or a shape other than a wire.
<4> Inside the heat-insulating airtight container 5, as shown in FIG. 10, the refrigerator 7 is attached to the GHP method measuring device 4, and the second metal heat conductive member is attached from the cooling part 23 of the refrigerator 7. By conducting heat conduction directly to the cooling plate 3 via 35, a storage container 31 for vaporizing liquid nitrogen or liquid helium is provided in the internal space of the heat insulating airtight container 5 as in the conventional case to lower the atmospheric temperature. The device may be used in combination with the refrigerator 7, and in this case, it can be expected that the amount of liquid nitrogen and helium used can be reduced as compared with the conventional device, and the time that can be operated by the combined use can be expected. It can also be expected to have advantages such as extension and less time and effort for replenishing the cryogen.
<5> As shown in FIG. 11, the GHP method measuring device 4 is installed inside the heat insulating airtight container 5 formed in the vacuum heat insulating space with the first space S1 between the outer tank airtight container 28 and the metal airtight container 6. It may be provided. In this case, the refrigerator may be provided with a single-stage refrigerator. Further, a pattern in which the container 25 in FIG. 1 is not provided in the two-stage GM refrigerator may be used.

尚、上述のように、図面との対照を便利にするために符号を記したが、該記入により本発明は添付図面の構成に限定されるものではない。また、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。 As described above, the reference numerals are given for convenience of comparison with the drawings, but the description does not limit the present invention to the configuration of the accompanying drawings. In addition, it goes without saying that it can be carried out in various modes without departing from the gist of the present invention.

1 加熱板
2 被測定物平板
3 冷却板
4 GHP法測定装置
5 断熱性気密容器
6 金属製気密容器
7 冷凍機
8 第1金属製熱伝導部材
23 放冷部
29 第1金属製補助熱伝導部材
35 第2金属製熱伝導部材
1 Heating plate 2 Flat plate to be measured 3 Cooling plate 4 GHP method measuring device 5 Insulation airtight container 6 Metal airtight container 7 Refrigerator 8 1st metal heat conductive member 23 Cooling part 29 1st metal auxiliary heat conductive member 35 Second metal heat conductive member

Claims (7)

加熱板の両面側に一対の被測定物平板を配置し、
前記一対の被測定物平板の更に両外側夫々に一対の冷却板を配置し、
前記一対の被測定物平板夫々の表裏両面部の温度を測定して、与えた熱量と前記表裏両面部の計測温度差に基づいて被測定物平板の熱伝導率を算出するGHP法測定装置を、断熱性気密容器の内側に収容し、前記冷却板を0℃以下の低温に冷却する冷却手段を前記断熱性気密容器内に設けてある低温熱伝導率測定装置であって、
前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置の前記冷却板を熱伝導により冷却する冷凍機を設けてある低温熱伝導率測定装置。
A pair of flat plates to be measured are placed on both sides of the heating plate.
A pair of cooling plates are arranged on both outer sides of the pair of flat plates to be measured.
A GHP method measuring device that measures the temperature of both front and back surfaces of each of the pair of flat plates to be measured and calculates the thermal conductivity of the flat plates to be measured based on the amount of heat given and the measured temperature difference between the front and back surfaces. A low-temperature thermal conductivity measuring device that is housed inside a heat-insulating airtight container and has a cooling means for cooling the cooling plate to a low temperature of 0 ° C. or lower in the heat-insulating airtight container.
A low-temperature thermal conductivity measuring device provided with a refrigerator for cooling the cooling plate of the GHP method measuring device by heat conduction in the inner space of the heat-insulating airtight container to constitute the cooling means.
前記冷凍機を前記冷却板の下方に配置すると共に、前記冷凍機の放冷部と前記冷却板とを第1金属製熱伝導部材を介して直接熱接触可能に構成してある請求項1に記載の低温熱伝導率測定装置。 According to claim 1, the refrigerator is arranged below the cooling plate, and the cooling unit of the refrigerator and the cooling plate are configured to be in direct thermal contact via a first metal heat conductive member. The low temperature thermal conductivity measuring device according to the above. 前記冷却板の上部と前記放冷部とを直接熱接触させる第1金属製補助熱伝導部材を設けてある請求項2に記載の低温熱伝導率測定装置。 The low-temperature thermal conductivity measuring device according to claim 2, further comprising a first metal auxiliary heat conductive member that directly brings the upper portion of the cooling plate and the cooling portion into direct thermal contact. 前記冷凍機を前記冷却板の上方に配置して、前記冷凍機の放冷部と前記冷却板の上端部とを熱接触させる第2金属製熱伝導部材を設けてある請求項1に記載の低温熱伝導率測定装置。 The first aspect of claim 1, wherein the refrigerator is arranged above the cooling plate, and a second metal heat conductive member is provided to bring the cooling portion of the refrigerator into thermal contact with the upper end of the cooling plate. Low temperature thermal conductivity measuring device. 前記冷却手段を構成するのに、前記断熱性気密容器の内側空間内で前記GHP法測定装置を囲繞する金属製気密容器を設け、
前記金属製気密容器を熱伝導により冷却する冷凍機を設け、
前記金属製気密容器と前記冷却板とを直接熱接触させる第1金属製熱伝導部材を設けてある請求項1に記載の低温熱伝導率測定装置。
To constitute the cooling means, a metal airtight container surrounding the GHP method measuring device is provided in the space inside the heat insulating airtight container.
A refrigerator is provided to cool the metal airtight container by heat conduction.
The low-temperature thermal conductivity measuring device according to claim 1, further comprising a first metal heat conductive member that directly brings the metal airtight container and the cooling plate into direct thermal contact.
前記冷凍機の放冷部を前記金属製気密容器の下面に接当させて取り付け、前記金属製気密容器の底板と前記冷却板の上部とを直接熱接触させる第1金属製補助熱伝導部材を設けてある請求項5に記載の低温熱伝導率測定装置。 A first metal auxiliary heat conductive member that attaches the cooling part of the refrigerator to the lower surface of the metal airtight container and directly brings the bottom plate of the metal airtight container and the upper part of the cooling plate into direct thermal contact. The low temperature thermal conductivity measuring device according to claim 5, which is provided. 前記冷凍機の放冷部を前記金属製気密容器の天井板部に接当させて取り付けてある請求項5に記載の低温熱伝導率測定装置。 The low-temperature thermal conductivity measuring device according to claim 5, wherein the cooling portion of the refrigerator is brought into contact with the ceiling plate portion of the metal airtight container and attached.
JP2019177327A 2019-09-27 2019-09-27 Low temperature thermal conductivity measuring device Active JP7332413B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019177327A JP7332413B2 (en) 2019-09-27 2019-09-27 Low temperature thermal conductivity measuring device
JP2023130495A JP7470851B2 (en) 2019-09-27 2023-08-09 Low-temperature thermal conductivity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019177327A JP7332413B2 (en) 2019-09-27 2019-09-27 Low temperature thermal conductivity measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023130495A Division JP7470851B2 (en) 2019-09-27 2023-08-09 Low-temperature thermal conductivity measuring device

Publications (2)

Publication Number Publication Date
JP2021056036A true JP2021056036A (en) 2021-04-08
JP7332413B2 JP7332413B2 (en) 2023-08-23

Family

ID=75273073

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019177327A Active JP7332413B2 (en) 2019-09-27 2019-09-27 Low temperature thermal conductivity measuring device
JP2023130495A Active JP7470851B2 (en) 2019-09-27 2023-08-09 Low-temperature thermal conductivity measuring device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023130495A Active JP7470851B2 (en) 2019-09-27 2023-08-09 Low-temperature thermal conductivity measuring device

Country Status (1)

Country Link
JP (2) JP7332413B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113340940A (en) * 2021-06-28 2021-09-03 江苏省建筑工程质量检测中心有限公司 Thermal detection method and detection device for integrated concrete combined external wall panel
WO2022210776A1 (en) 2021-03-29 2022-10-06 住友建機株式会社 Excavator
CN115266814A (en) * 2022-06-21 2022-11-01 安徽万瑞冷电科技有限公司 Low-temperature thermal conductivity measuring device and measuring method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169346A (en) * 1987-12-25 1989-07-04 Kenzai Shiken Center Measurement of heat conductivity by planar plate direct method
JP2011102768A (en) * 2009-11-11 2011-05-26 Canon Inc Measuring method of heat characteristic

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4550375B2 (en) 2003-05-30 2010-09-22 独立行政法人理化学研究所 Beam ammeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169346A (en) * 1987-12-25 1989-07-04 Kenzai Shiken Center Measurement of heat conductivity by planar plate direct method
JP2011102768A (en) * 2009-11-11 2011-05-26 Canon Inc Measuring method of heat characteristic

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
町田清、上園正義: ""GHP法による低温域における熱伝導率測定"", 建材試験情報, vol. 25, no. 12, JPN7023000950, 1 December 1989 (1989-12-01), JP, pages 6 - 10, ISSN: 0005005728 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022210776A1 (en) 2021-03-29 2022-10-06 住友建機株式会社 Excavator
CN113340940A (en) * 2021-06-28 2021-09-03 江苏省建筑工程质量检测中心有限公司 Thermal detection method and detection device for integrated concrete combined external wall panel
CN115266814A (en) * 2022-06-21 2022-11-01 安徽万瑞冷电科技有限公司 Low-temperature thermal conductivity measuring device and measuring method

Also Published As

Publication number Publication date
JP2023138763A (en) 2023-10-02
JP7332413B2 (en) 2023-08-23
JP7470851B2 (en) 2024-04-18

Similar Documents

Publication Publication Date Title
JP7470851B2 (en) Low-temperature thermal conductivity measuring device
JP3996935B2 (en) Cryostat structure
JP6904609B2 (en) Removable cryostat
TWI395916B (en) Refrigerator
JPWO2004055452A1 (en) Refrigerator mounting method and apparatus
RU2666718C2 (en) Vacuum insulation unit with thermoelectric element
WO2018129633A1 (en) Preparation method for loop heat pipe evaporator
JP5972368B2 (en) Cooling container
CA2158520A1 (en) Mechanical cooling system
EP2085720B1 (en) Cryogenic container with built-in refrigerator
RU2690292C2 (en) Refrigerating and / or freezing device
JP2009273673A (en) Superconducting electromagnet and mri apparatus
CN104034076B (en) Ultra-low temperature cold radiator cooler
JPS6290910A (en) Cryogenic device
JP5916517B2 (en) Cooling container
JP5030064B2 (en) Cryogenic refrigerator
JP2013247323A (en) Cooling container
JP6172979B2 (en) Superconducting device
Krysanov et al. A Helium Cryostat for Investigating the Properties of Massive Solid Resonators with Deep Cooling
JP2005331180A (en) Multi-stage refrigerator
JP2977809B1 (en) Refrigeration equipment
Duband et al. Socool: A 300 K-0.3 K pulse tube/sorption cooler
JPH068782B2 (en) Cryogenic material testing equipment
JP2005030646A (en) Ultra-low temperature freezer
RU2691880C2 (en) Thermoelectric cooled or heated vessel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20201211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201211

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20220726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230810

R150 Certificate of patent or registration of utility model

Ref document number: 7332413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150