JP2005331180A - Multi-stage refrigerator - Google Patents

Multi-stage refrigerator Download PDF

Info

Publication number
JP2005331180A
JP2005331180A JP2004150634A JP2004150634A JP2005331180A JP 2005331180 A JP2005331180 A JP 2005331180A JP 2004150634 A JP2004150634 A JP 2004150634A JP 2004150634 A JP2004150634 A JP 2004150634A JP 2005331180 A JP2005331180 A JP 2005331180A
Authority
JP
Japan
Prior art keywords
cooling end
gas
thermal
cooling
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004150634A
Other languages
Japanese (ja)
Other versions
JP3881675B2 (en
Inventor
Ryoichi Hirose
量一 広瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Superconductor Technology Inc
Original Assignee
Japan Superconductor Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Superconductor Technology Inc filed Critical Japan Superconductor Technology Inc
Priority to JP2004150634A priority Critical patent/JP3881675B2/en
Publication of JP2005331180A publication Critical patent/JP2005331180A/en
Application granted granted Critical
Publication of JP3881675B2 publication Critical patent/JP3881675B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-stage refrigerator capable of surely cutting off thermal connection in a thermal switch when the thermal switch is off even in the case where axial direction of the thermal switch is arbitrarily positioned, and capable of exercising sufficient convection heat transmission effect. <P>SOLUTION: The multi-stage refrigerator is equipped with a first refrigerating end of which lowest achieving temperature and refrigerating performance are high and a second refrigerating end of which lowest achieving temperature and refrigerating performance are low and a thermal switch for being switched from thermal-connection-on to thermal-connection-off at a predetermined temperature with which the first refrigerating end and the second refrigerating end can be thermally connected. The multi-stage refrigerator refrigerates an object to be refrigerated to a cryogenic temperature by attaching the object to be refrigerated to the second refrigerating end in a thermally connected manner. A gas solidification chamber for communicating with inside of the thermal switch via a tube at a side of the second refrigerating end of the thermal switch is also provided and at least part of the gas solidification chamber is thermally connected to the second refrigerating end. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被冷却物を極低温に冷却する多段式冷凍機、特に、超電導磁石を極低温に冷却する多段式冷凍機に関するものである。   The present invention relates to a multistage refrigerator that cools an object to be cooled to a cryogenic temperature, and more particularly to a multistage refrigerator that cools a superconducting magnet to a cryogenic temperature.

一般に、被冷却物を極低温に冷却する多段式冷凍機は複数個の冷却端を有しており、例えば、最低到達温度の高い第1冷却端と、最低到達温度が低い第2冷却端とを直列につなぐ構造により、第2冷却端に熱的に接触させた被冷却物を極低温に冷却するものである。しかし、この最低到達温度が低い第2冷却端は、冷却能力が低いので、第2冷却端に熱的に接触させた被冷却物を冷却するのに時間がかかるという問題があった。なお、第1冷却端は、冷却能力は高いが最低到達温度が高く、極低温を得ることが困難なものである。   In general, a multistage refrigerator that cools an object to be cooled to a cryogenic temperature has a plurality of cooling ends, for example, a first cooling end having a high minimum temperature and a second cooling end having a low minimum temperature. The object to be cooled which is in thermal contact with the second cooling end is cooled to a cryogenic temperature by a structure in which the two are connected in series. However, since the second cooling end having the lowest minimum temperature has a low cooling capacity, there is a problem that it takes time to cool the object to be cooled which is in thermal contact with the second cooling end. The first cooling end has a high cooling capacity but has a high minimum temperature, and it is difficult to obtain an extremely low temperature.

このため、下記特許文献1に開示されるように、上述した多段式冷凍機の第1冷却端と第2冷却端との間に熱スイッチを配置するものが提案されている。この熱スイッチは以下のような機能を有する。冷却初期段階では、被冷却物と第1冷却端とを熱スイッチを介して熱的に接続し、冷却能力の高い第1冷却端により、被冷却物をより早く冷却することができる。また、第1冷却端の最低到達温度に近付いた段階では、熱スイッチが自動的にオン状態からオフ状態となり、被冷却物と第1冷却端との熱的接続を断ち、最低到達温度の低い第2冷却端のみにより極低温までの冷却を行うことができる。
特許2835305号公報
For this reason, as disclosed in Patent Document 1 below, there has been proposed one in which a thermal switch is arranged between the first cooling end and the second cooling end of the multistage refrigerator described above. This thermal switch has the following functions. In the initial stage of cooling, the object to be cooled and the first cooling end are thermally connected via the thermal switch, and the object to be cooled can be cooled more quickly by the first cooling end having a high cooling capacity. In addition, when the temperature reaches the minimum temperature at the first cooling end, the thermal switch automatically changes from the on state to the off state, disconnects the thermal connection between the object to be cooled and the first cooling end, and the minimum temperature is low. Cooling to a cryogenic temperature can be performed only by the second cooling end.
Japanese Patent No. 2835305

しかし、特許文献1のものは、熱スイッチがオフ状態となっても、熱スイッチ内部のガスが液化さらに固化し、この固化したガス成分が第1冷却端側の伝熱面と第2冷却端側の伝熱面との間を埋めるように残留した場合、この固化したガス成分を介して熱伝導が発生し、熱スイッチ内での熱的接続を断つことができないことがあった。特に、熱スイッチの軸方向を水平配置とした場合、伝熱面間の隙間が小さい所で固化したガスが残留するため、熱スイッチ内での熱的接続を断てないことが起こり易かった。また、この熱スイッチは、円筒型のものであるから、その軸方向が鉛直方向でないと、十分な対流伝熱効果を得ることができなかった。   However, in Patent Document 1, even when the heat switch is turned off, the gas inside the heat switch is liquefied and solidified, and the solidified gas component is converted into the heat transfer surface on the first cooling end side and the second cooling end. When it remains so as to fill the space between the heat transfer surface on the side, heat conduction occurs through the solidified gas component, and the thermal connection in the heat switch may not be cut off. In particular, when the axial direction of the thermal switch is horizontally arranged, the solidified gas remains in a place where the gap between the heat transfer surfaces is small, so that it is easy for the thermal connection in the thermal switch to be disconnected. Further, since this thermal switch is of a cylindrical type, a sufficient convective heat transfer effect could not be obtained unless the axial direction is vertical.

そこで、本発明の目的は、熱スイッチの軸方向が任意の配置でも、熱スイッチがオフ状態となった際に、熱スイッチ内での熱的接続を確実に断ち、また、熱スイッチがオン状態では十分な対流伝熱効果を得ることができる多段式冷凍機を提供することである。   Therefore, even if the axial direction of the thermal switch is arbitrarily arranged, the object of the present invention is to reliably disconnect the thermal connection in the thermal switch when the thermal switch is turned off. Then, it is providing the multistage refrigerator which can acquire sufficient convection heat-transfer effect.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明の多段式冷凍機は、最低到達温度が高くかつ冷却能力が高い第1冷却端と、最低到達温度が低く且つ冷却能力が低い第2冷却端と、前記第1冷却端と前記第2冷却端との間を熱的に接続可能に設けられ、所定温度で熱的接続オンから熱的接続オフに切り換わる熱スイッチとを備え、前記第2冷却端に被冷却物を熱的に接続するように取り付けて前記被冷却物を極低温まで冷却する多段式冷凍機であって、前記熱スイッチの前記第2冷却端側、好ましくは、前記第2冷却端側端部の側面部で管を介して前記熱スイッチ内部と連通するガス固化室をさらに備え、前記ガス固化室の少なくとも一部を前記第2冷却端と熱的に接触させてなるものである。
上記構成により、熱スイッチが鉛直方向配置、水平方向配置又は傾斜配置であっても、熱スイッチがオフ状態となった際に、熱スイッチ内での熱的接続を確実に断つ多段式冷凍機を提供することができる。
The multi-stage refrigerator of the present invention includes a first cooling end having a high minimum temperature and a high cooling capacity, a second cooling end having a low minimum temperature and a low cooling capacity, the first cooling end and the second cooling end. A thermal switch that is provided so as to be thermally connectable to the cooling end, and that switches from thermal connection ON to thermal connection OFF at a predetermined temperature, and to which an object to be cooled is thermally connected to the second cooling end A multi-stage refrigerator that cools the object to be cooled to an extremely low temperature, and is a tube at the second cooling end side of the thermal switch, preferably at the side surface of the second cooling end side end. A gas solidification chamber that communicates with the inside of the thermal switch is further provided, and at least a part of the gas solidification chamber is in thermal contact with the second cooling end.
With the above configuration, even if the thermal switch is in a vertical arrangement, horizontal arrangement, or inclined arrangement, the multistage refrigerator that reliably disconnects the thermal connection in the thermal switch when the thermal switch is turned off. Can be provided.

上記本発明の多段式冷凍機は、前記熱スイッチが鉛直方向の伝熱面を持つ平板の伝熱フィンを備えるものであることが好ましい。
上記構成により、上記多段式冷凍機の効果だけでなく、熱スイッチの伝熱面が鉛直方向に配置されてさえいれば、熱スイッチの設置姿勢が鉛直、水平あるいはその中間など傾斜させられていたとしても、熱スイッチがオン状態となった際に、十分な対流伝熱効果を得ることができる。
In the multistage refrigerator of the present invention, it is preferable that the thermal switch includes a flat heat transfer fin having a vertical heat transfer surface.
With the above configuration, not only the effect of the multi-stage refrigerator, but also the heat switch installation posture is tilted vertically, horizontally, or in the middle as long as the heat transfer surface of the heat switch is arranged in the vertical direction. However, when the thermal switch is turned on, a sufficient convective heat transfer effect can be obtained.

本発明の多段式冷凍機は、最低到達温度が高くかつ冷却能力が高い第1冷却端と、最低到達温度が低く且つ冷却能力が低い第2冷却端と、前記第1冷却端と前記第2冷却端との間を熱的に接続可能に設けられ、所定温度で熱的接続オンから熱的接続オフに切り換わる熱スイッチとを備え、前記第2冷却端に被冷却物を熱的に接続するように取り付けて前記被冷却物を極低温まで冷却する多段式冷凍機であって、前記熱スイッチは、内部に鉛直方向の伝熱面を持つ平板の伝熱フィンを有し、かつ、内部に封入されたガスの気化で熱的接続オンになり、前記ガスの液化で熱的接続オフになるものである。
上記構成により、熱スイッチの伝熱面が鉛直方向に配置されてさえいれば、熱スイッチの設置姿勢が鉛直、水平あるいはその中間など傾斜させられていたとしても、熱スイッチがオン状態となった際に、十分な対流伝熱効果を得ることができる。
The multi-stage refrigerator of the present invention includes a first cooling end having a high minimum temperature and a high cooling capacity, a second cooling end having a low minimum temperature and a low cooling capacity, the first cooling end, and the second cooling end. A thermal switch that is provided so as to be thermally connectable to the cooling end, and that switches from thermal connection ON to thermal connection OFF at a predetermined temperature, and to which an object to be cooled is thermally connected to the second cooling end A multi-stage refrigerator that cools the object to be cooled to a cryogenic temperature, wherein the heat switch has a flat plate heat transfer fin having a vertical heat transfer surface inside, and an internal The thermal connection is turned on when the gas enclosed in the gas is vaporized, and the thermal connection is turned off when the gas is liquefied.
With the above configuration, as long as the heat transfer surface of the heat switch is arranged in the vertical direction, the heat switch is turned on even if the installation posture of the heat switch is inclined vertically, horizontally, or in the middle. In this case, a sufficient convective heat transfer effect can be obtained.

本発明の多段式冷凍機は、前記ガスが、窒素ガス、ネオンガス又は水素ガスであることが好ましい。
これらのガスは、第1冷却端の最低到達温度近傍の沸点を有するガスであるため、確実に熱スイッチを作動させることができる。なお、ネオンガス又は水素ガスは、被冷却物の冷却速度を早めるのに好ましいものである。
In the multistage refrigerator of the present invention, the gas is preferably nitrogen gas, neon gas, or hydrogen gas.
Since these gases have a boiling point near the lowest temperature reached at the first cooling end, the heat switch can be operated reliably. Neon gas or hydrogen gas is preferable for increasing the cooling rate of the object to be cooled.

以下、図面を参照しながら本発明に係る実施形態について説明する。図1は、本発明の実施形態の多段式冷凍機における熱スイッチの配置断面図、図2は、図1の多段式冷凍機における熱スイッチの構造を示す透過斜視図、図3は、図1の多段式冷凍機における熱スイッチの構造を示す断面図である。   Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view of the arrangement of thermal switches in the multistage refrigerator according to the embodiment of the present invention, FIG. 2 is a transparent perspective view showing the structure of the thermal switch in the multistage refrigerator of FIG. 1, and FIG. It is sectional drawing which shows the structure of the heat switch in this multistage refrigerator.

多段式冷凍機1は、容器2内に冷凍機本体1aの大部分を突出させてなっている。この容器2は普通、真空容器として形成されている。容器2内の冷凍機本体1aは、下面に第1冷却端3aを有する第1冷却部3と、下面に第2冷却端4aを有する第2冷却部4とを備えてなる。第1冷却端3aの下部には第1冷却板5が、第2冷却端4aの下部には第2冷却板6が、ネジ止めされている。また、第1冷却板5には輻射シールド7を接続して、冷却空間8を形成し、第2冷却板6の第2冷却端4aにおける冷凍機本体1aと反対側の面に被冷却物9が接続されるものである。熱スイッチ10は、第1冷却板5と第2冷却板6とを接続して配設される。また、この熱スイッチ10には、熱スイッチ10内部と第2冷却端4a側付近で管11aを介して連通するガス固化室11が配設されている。なお、このガス固化室11の外周の一部は、伝熱経路11bにより第2冷却端4aと熱的に接触させられている。また、熱スイッチ10及びガス固化室11内には、第1冷却端3aの最低到達温度近傍の沸点を有するガス(媒体)が封入されている。   In the multistage refrigerator 1, most of the refrigerator main body 1 a is protruded into the container 2. The container 2 is usually formed as a vacuum container. The refrigerator main body 1a in the container 2 includes a first cooling unit 3 having a first cooling end 3a on the lower surface and a second cooling unit 4 having a second cooling end 4a on the lower surface. A first cooling plate 5 is screwed to the lower part of the first cooling end 3a, and a second cooling plate 6 is screwed to the lower part of the second cooling end 4a. Further, a radiation shield 7 is connected to the first cooling plate 5 to form a cooling space 8, and an object 9 to be cooled is provided on the surface of the second cooling end 6 a opposite to the refrigerator main body 1 a at the second cooling end 4 a. Are connected. The thermal switch 10 is disposed by connecting the first cooling plate 5 and the second cooling plate 6. Further, the heat switch 10 is provided with a gas solidification chamber 11 that communicates with the inside of the heat switch 10 near the second cooling end 4a via a pipe 11a. A part of the outer periphery of the gas solidifying chamber 11 is in thermal contact with the second cooling end 4a through the heat transfer path 11b. Further, in the heat switch 10 and the gas solidification chamber 11, a gas (medium) having a boiling point in the vicinity of the lowest temperature reached by the first cooling end 3a is enclosed.

熱スイッチ10は、図2に示すように、第1部材12と、第2部材13とを備えている。   As shown in FIG. 2, the thermal switch 10 includes a first member 12 and a second member 13.

第1部材12は、円柱形状の第1純銅ブロック14と、純銅製の円筒状のフィン15a〜15c(熱交換部材)とを備えている。第1純銅ブロック14上に、径の小さい順にフィン15a、15b、15cと同心円上に重ねて並べられ、溶着等により接合されている。   The first member 12 includes a columnar first pure copper block 14 and pure copper cylindrical fins 15a to 15c (heat exchange members). On the first pure copper block 14, the fins 15 a, 15 b, 15 c are arranged concentrically with each other in order of increasing diameter, and are joined by welding or the like.

第2部材13は、円柱形状の第2純銅ブロック16と、純銅製の円筒状のフィン17a〜17c(熱交換部材)と、円筒状のステンレス鋼管23とを備えている。第2純銅ブロック16上に、径の小さい順にフィン17a、17b、17cと同心円上に重ねて並べられ、溶着等により接合されている。更に、第2純銅ブロック16上に、フィン17cの外側に薄肉のステンレス鋼管23が同心円状に接合されており、このステンレス鋼管23の長さはフィン15a〜15c及びフィン17a〜17cの長さよりも長い。また、第2純銅ブロック16は、その熱スイッチ10内部側表面において径方向に一部をくり貫いて設けられた凹部16aを有するものである。この凹部16aは外部と連通するように第2純銅ブロック16の外周に設けられた穴16bと連通している。   The second member 13 includes a columnar second pure copper block 16, pure copper cylindrical fins 17 a to 17 c (heat exchange members), and a cylindrical stainless steel tube 23. On the second pure copper block 16, the fins 17a, 17b and 17c are arranged concentrically on the second pure copper block 16 in the order of decreasing diameter, and are joined by welding or the like. Further, a thin stainless steel tube 23 is concentrically joined to the outer side of the fin 17c on the second pure copper block 16, and the length of the stainless steel tube 23 is longer than the lengths of the fins 15a to 15c and the fins 17a to 17c. long. Moreover, the 2nd pure copper block 16 has the recessed part 16a provided in the radial direction in the inner surface of the thermal switch 10 so that a part may be penetrated. The recess 16a communicates with a hole 16b provided on the outer periphery of the second pure copper block 16 so as to communicate with the outside.

上記の熱スイッチ10は、図3に示すように、上下の2つの第1部材12と第2部材13とが重ね合わされて、第1純銅ブロック14とステンレス鋼管23とが、溶着等により固定されることで、外側のステンレス鋼管23と第1純銅ブロック14と第2純銅ブロック16とにより、密閉した空間を形成する。この空間内で、フィン15a〜15cとフィン17a〜17cとが同心円状・交互に配置される構造である。フィン15a〜15cと第2純銅ブロック16との間及びフィン17a〜17cと第1純銅ブロック14との間に隙間を有するように対向させた構造となる。   As shown in FIG. 3, the upper and lower two first members 12 and the second member 13 are overlapped, and the first pure copper block 14 and the stainless steel pipe 23 are fixed by welding or the like. Thus, a sealed space is formed by the outer stainless steel tube 23, the first pure copper block 14, and the second pure copper block 16. In this space, the fins 15a to 15c and the fins 17a to 17c are concentrically arranged alternately. The fins 15a to 15c and the second pure copper block 16 and the fins 17a to 17c and the first pure copper block 14 are opposed to each other so as to have a gap.

熱スイッチ10は、図1の多段式冷凍機1に示すように、第1純銅ブロック14が鉛直方向上の高温側の第1冷却板5に、第2純銅ブロック16が鉛直方向下の低温側の第2冷却板6に接続されることになる。   As shown in the multistage refrigerator 1 of FIG. 1, the thermal switch 10 includes a first pure copper block 14 on the first cold plate 5 on the high temperature side in the vertical direction, and a second pure copper block 16 on the low temperature side in the vertical direction. The second cooling plate 6 is connected.

ガス固化室11は、図3に示すように、第2純銅ブロック16の穴16bにおいて凹部16aに接続された管11aを介して熱スイッチ10内部と連通するものである。また、ガス固化室11の外周の一部は、伝熱経路11b(例えば、純銅板や純銅線等)により第2冷却端4aと熱的に接触させられている。なお、図3における18は固化したガスを示している。   As shown in FIG. 3, the gas solidification chamber 11 communicates with the inside of the thermal switch 10 through a pipe 11 a connected to the recess 16 a in the hole 16 b of the second pure copper block 16. In addition, a part of the outer periphery of the gas solidification chamber 11 is in thermal contact with the second cooling end 4a through a heat transfer path 11b (for example, a pure copper plate or a pure copper wire). In addition, 18 in FIG. 3 has shown the solidified gas.

次に、熱スイッチ10の動作について説明する。本発明に係る熱スイッチ10は、ステンレス鋼管23により密閉した空間内部に、第1冷却端3aの最低到達温度近傍の沸点を有するガスを封入したガス伝導型のスイッチである。上下の熱伝導は、内部ガスを熱伝導媒体として、フィン15a〜15cとフィン17a〜17cとの隙間を通じて行われている。熱スイッチ10のオン・オフ状態の切換えは、ガスの沸点で起こる。熱スイッチの温度がガスの沸点以上であれば、ガスを熱媒体とした熱伝導がオン状態となり、沸点以下ではガスが凝縮し内部が真空となるのでオフ状態となる。なお、最外層のステンレス鋼管23の熱伝導度は小さいため、これを介しての伝熱は無視できる。特に、本装置では、まず、ガスが沸点以下となる場所は、一部が第2冷却板6に接続されたガス固化室11であるため、液化又は固化したガスがこのガス固化室11に溜まり、フィン15a〜15cとフィン17a〜17cとの隙間や、フィン17cとステンレス鋼管23との隙間等でガスが液化又は固化することはない。   Next, the operation of the thermal switch 10 will be described. The thermal switch 10 according to the present invention is a gas conduction type switch in which a gas having a boiling point in the vicinity of the lowest ultimate temperature of the first cooling end 3a is sealed in a space sealed by a stainless steel tube 23. The upper and lower heat conduction is performed through the gaps between the fins 15a to 15c and the fins 17a to 17c using the internal gas as the heat conduction medium. Switching of the on / off state of the thermal switch 10 occurs at the boiling point of the gas. When the temperature of the heat switch is equal to or higher than the boiling point of the gas, heat conduction using the gas as a heat medium is turned on, and when the temperature is equal to or lower than the boiling point, the gas is condensed and the inside is evacuated, so that it is turned off. In addition, since the heat conductivity of the stainless steel pipe 23 of the outermost layer is small, heat transfer through this can be ignored. In particular, in the present apparatus, the place where the gas is below the boiling point is the gas solidification chamber 11 partially connected to the second cooling plate 6, so that the liquefied or solidified gas accumulates in the gas solidification chamber 11. The gas does not liquefy or solidify in the gaps between the fins 15a to 15c and the fins 17a to 17c, the gap between the fins 17c and the stainless steel pipe 23, or the like.

ここで、第1冷却端3aの最低到達温度が30Kで、第2冷却端4aの最低到達温度が4Kである場合において、常圧における沸点が約30Kのネオンガスが、常温及び4気圧の状態で内部に封入された熱スイッチを用いた例を説明する。冷却初期段階では、ネオンガスは気体の状態であり、熱スイッチ10は熱を伝えることができ(熱スイッチ10がオン状態)、被冷却物9は第1冷却端3a及び第2冷却端4aで冷却される。第1冷却端3aは、第2冷却端4aよりも冷却能力が高いため、熱スイッチ10を用いない場合より早く冷却ができる。常温で4気圧のネオンガスは、第1冷却端4aの最低到達温度(30K)では0.4気圧となり、ネオンガスの沸点は27Kから24Kへと変化する。   Here, when the lowest temperature reached at the first cooling end 3a is 30K and the lowest temperature reached at the second cooling end 4a is 4K, neon gas having a boiling point of about 30K at normal pressure is in a state of normal temperature and 4 atm. An example using a thermal switch enclosed inside will be described. In the initial stage of cooling, neon gas is in a gaseous state, the heat switch 10 can transmit heat (the heat switch 10 is in an on state), and the object 9 is cooled by the first cooling end 3a and the second cooling end 4a. Is done. Since the first cooling end 3a has a higher cooling capacity than the second cooling end 4a, the first cooling end 3a can be cooled more quickly than when the thermal switch 10 is not used. The neon gas of 4 atm at normal temperature becomes 0.4 atm at the lowest temperature (30K) of the first cooling end 4a, and the boiling point of the neon gas changes from 27K to 24K.

更に、冷却が進行し、熱スイッチ10内の温度が第1冷却端3aの最低到達温度(30K)以下となり、ネオンガスの沸点に達すると、ガスは液化し、熱スイッチ10内部が真空となり、熱を伝えなくなるので(熱スイッチ10がオフ状態)、これ以降は第2冷却端4aのみで被冷却物9を極低温まで冷却する。液化または固化したガスは、ガス固化室11に留まることになり、熱スイッチ10は完全にオフ状態を保つことができる。   Further, when the cooling progresses and the temperature in the thermal switch 10 becomes equal to or lower than the lowest temperature (30K) of the first cooling end 3a and reaches the boiling point of the neon gas, the gas is liquefied and the inside of the thermal switch 10 becomes vacuum, (The heat switch 10 is in an off state), and thereafter, the object 9 is cooled to an extremely low temperature only by the second cooling end 4a. The liquefied or solidified gas remains in the gas solidification chamber 11, and the thermal switch 10 can be kept completely off.

なお、図示しないが、上記実施形態の熱スイッチの軸方向を水平にしたり、熱スイッチの軸方向を任意の角度傾斜させたりした多段式冷凍機でもよい。これらのような多段式冷凍機であっても、上記実施形態と同様に、熱スイッチは完全にオフ状態を保つことができる。   In addition, although not shown in figure, the multistage refrigerator which made the axial direction of the thermal switch of the said embodiment horizontal, or inclined the axial direction of the thermal switch by arbitrary angles may be sufficient. Even in such a multistage refrigerator, the heat switch can be kept in the OFF state completely as in the above embodiment.

次に、本発明別実施形態の多段式冷凍機について説明する。図4は、本発明別実施形態の多段式冷凍機の熱スイッチにおいて、鉛直方向の伝熱面を持つ伝熱フィン及びステンレス鋼管を示す図であって、(a)は透過斜視図、(b)は断面図である。なお、上記実施形態の多段式冷凍機1と同様の部分は説明を省略することがある。   Next, the multistage refrigerator according to another embodiment of the present invention will be described. FIG. 4 is a view showing heat transfer fins and stainless steel pipes having a heat transfer surface in the vertical direction in a heat switch of a multistage refrigerator according to another embodiment of the present invention, wherein (a) is a transparent perspective view, (b) ) Is a cross-sectional view. In addition, description may be abbreviate | omitted about the part similar to the multistage refrigerator 1 of the said embodiment.

本発明別実施形態の多段式冷凍機は、熱スイッチ10の円筒型のフィン15a〜15c、17a〜17cの代わりに、図4に示す、鉛直(地面に対し垂直)方向の面を有する平板型のフィン21a、21b、22a、22bを有し、上記実施形態の多段式冷凍機1を水平配置とすることにより、軸方向が水平配置となる熱スイッチとする以外、多段式冷凍機1と同様の構成である。   The multistage refrigerator according to another embodiment of the present invention is a flat plate type having a surface in the vertical (perpendicular to the ground) direction shown in FIG. 4 instead of the cylindrical fins 15a to 15c and 17a to 17c of the thermal switch 10. This is the same as the multistage refrigerator 1 except that the multistage refrigerator 1 of the above embodiment has a horizontal arrangement so that the heat switch has a horizontal arrangement in the axial direction by having the fins 21a, 21b, 22a, and 22b. It is the composition.

各フィンは図4(a)の紙面手前側から、フィン21b、フィン22b、フィン21a、フィン22aの順に紙面奥側に向って配置されている。また、図示しないが、フィン21a、21bは高温側(第1冷却板5側)の第1純銅ブロック14に取り付けられたフィンであり、フィン22a、22bは低温側(第2冷却板6側)の第2純銅ブロック16に取り付けられたフィンである。また、フィン21a、21b、22a、22bの熱スイッチ軸方向の長さは、ステンレス鋼管23より短いものである。   Each fin is arranged in the order of the fin 21b, the fin 22b, the fin 21a, and the fin 22a from the front side in FIG. Although not shown, the fins 21a and 21b are fins attached to the first pure copper block 14 on the high temperature side (first cooling plate 5 side), and the fins 22a and 22b are on the low temperature side (second cooling plate 6 side). These fins are attached to the second pure copper block 16. Further, the length of the fins 21 a, 21 b, 22 a, 22 b in the thermal switch axial direction is shorter than that of the stainless steel pipe 23.

次に、本発明別実施形態の熱スイッチの動作について説明する。基本動作は上記実施形態と同様であるが、フィン21a、21bはフィン22a、22bに比べ高温であり、各フィンは地面に対し垂直な平面を有するフィンであるため、図4(b)に示すようなガスの対流が発生し、この対流が十分に行われる点が異なる。   Next, the operation of the thermal switch according to another embodiment of the present invention will be described. Although the basic operation is the same as that of the above embodiment, the fins 21a and 21b are hotter than the fins 22a and 22b, and each fin is a fin having a plane perpendicular to the ground surface. Such gas convection is generated and the convection is sufficiently performed.

上記構成により、上記実施形態と同様の効果だけでなく、熱スイッチの伝熱面が鉛直方向に配置されてさえいれば、熱スイッチの設置姿勢が鉛直、水平あるいはその中間など傾斜させられていたとしても、熱スイッチがオン状態となった際に、十分な対流伝熱効果を得ることができる。   With the above configuration, not only the effects similar to those of the above-described embodiment, but also the thermal switch installation posture is tilted vertically, horizontally, or in the middle as long as the heat transfer surface of the thermal switch is arranged in the vertical direction. However, when the thermal switch is turned on, a sufficient convective heat transfer effect can be obtained.

なお、本発明別実施形態の多段式冷凍機の変形例として、ガス固化室を有しないものとしてもよい。例えば、固化したガスがフィン間を埋めないようにフィンの間隔を大きくとるなどしてもよい。   In addition, it is good also as a thing which does not have a gas solidification chamber as a modification of the multistage refrigerator of embodiment by this invention. For example, the interval between the fins may be increased so that the solidified gas does not fill between the fins.

次に、実施例を用いて本発明を具体的に説明する。なお、以下に示す実施例1、2及び比較例1の超電導電磁石装置の各部分の大きさや形状は、相違点のある部分以外は同構成のものである。   Next, the present invention will be specifically described using examples. In addition, the magnitude | size and shape of each part of the superconducting electromagnet apparatus of Examples 1 and 2 and the comparative example 1 shown below are the things of the same structure except a part with a difference.

(実施例1)
実施例1に係る超電導電磁石装置は、上記実施形態の多段式冷凍機(図1)と同構成であって、この多段式冷凍機を水平配置とすることにより、熱スイッチを水平配置した多段式冷凍機を用いたものである。なお、ガス固化室は図1と同配置であれば任意の位置でよい。
Example 1
The superconducting electromagnet apparatus according to Example 1 has the same configuration as the multi-stage refrigerator (FIG. 1) of the above embodiment, and the multi-stage refrigerator has a heat switch arranged horizontally by arranging the multi-stage refrigerator horizontally. A refrigerator is used. The gas solidification chamber may be located at any position as long as it is arranged in the same manner as in FIG.

(実施例2)
実施例1に係る超電導電磁石装置は、上記別実施形態と同構成の多段式冷凍機(図4の熱スイッチを使用)を用いたものである。
(Example 2)
The superconducting electromagnet apparatus according to Example 1 uses a multistage refrigerator (using the thermal switch of FIG. 4) having the same configuration as that of the above-described another embodiment.

(比較例1)
比較例1に係る超電導電磁石装置は、ガス固化室を有しない従来の熱スイッチを水平配置した多段式冷凍機(不図示)を用いたものである。
(Comparative Example 1)
The superconducting electromagnet apparatus according to Comparative Example 1 uses a multistage refrigerator (not shown) in which conventional heat switches having no gas solidification chamber are horizontally arranged.

上記実施例1、2及び比較例1の超電導電磁石装置内の被冷却物(第2冷却板に接続されている超電導電磁石、以下の実施例2及び比較例1でも同様)及び輻射シールド(第1冷却板に接続、以下の実施例2及び比較例1でも同様)の冷却時の温度を、被冷却物に埋め込んだ酸化ルテニウムセンサーおよび輻射シールドに埋め込んだ白金抵抗センサーの抵抗値を超電導電磁石装置外部に設置したモニターにて温度換算することにより測定した。その結果を上記実施例1、2及び比較例1の順に図5〜7のグラフに示す。なお、図5〜7において、それぞれ(a)は冷却開始時から最終到達温度までの全データ、(b)は最終到達温度近傍の拡大データを示し、実線は被冷却物の温度、点線は輻射シールドの温度を示すものである。   Objects to be cooled in the superconducting electromagnet apparatus of Examples 1 and 2 and Comparative Example 1 (superconducting electromagnet connected to the second cooling plate, the same applies to Example 2 and Comparative Example 1 below) and radiation shield (first Connected to the cooling plate, the same applies to the following Example 2 and Comparative Example 1), and the resistance value of the ruthenium oxide sensor embedded in the object to be cooled and the resistance value of the platinum resistance sensor embedded in the radiation shield were external to the superconducting electromagnet apparatus. It was measured by converting the temperature with a monitor installed in the above. The results are shown in the graphs of FIGS. 5 to 7 in the order of Examples 1 and 2 and Comparative Example 1. 5 to 7, (a) indicates all data from the start of cooling to the final temperature, (b) indicates enlarged data near the final temperature, the solid line indicates the temperature of the object to be cooled, and the dotted line indicates the radiation. It shows the temperature of the shield.

図5より、実施例1に係る超電導電磁石装置を用いた場合、最終到達温度は約4Kであることがわかる。これに対し、比較例1の超電導電磁石装置を用いた場合では、図6に示されるように、最終到達温度が約7Kにとどまっている。これは固化した作動ガスが伝熱面間を埋めるように残留したため、これを介した熱伝導により第1冷却端から第2冷却端への熱浸入があったためである。実施例1に係る多段式冷凍機を用いた場合には、このような問題は発生せず、熱スイッチは完全にオフ状態となっていることがわかる。   FIG. 5 shows that when the superconducting electromagnet apparatus according to Example 1 is used, the final temperature reached is about 4K. On the other hand, when the superconducting electromagnet apparatus of Comparative Example 1 is used, as shown in FIG. 6, the final reached temperature is only about 7K. This is because the solidified working gas remained so as to fill the space between the heat transfer surfaces, and there was heat penetration from the first cooling end to the second cooling end due to heat conduction therethrough. When the multistage refrigerator according to Example 1 is used, it is understood that such a problem does not occur and the heat switch is completely turned off.

また、実施例2に係る超電導電磁石装置を用いた場合では、鉛直方向の伝熱面を持つ平板の伝熱フィンを備えることにより、熱スイッチのオン状態では、十分な対流伝熱効果が得られる。これにより、最終到達温度に達するまでの時間は実施例1及び比較例1の超電導電磁石装置では約50時間であるが、実施例2の超電導電磁石装置では、約43時間に短縮された。なお、最終到達温度は、実施例1の多段式冷凍機を用いた場合と同様の効果により約4Kに達した。   Further, in the case of using the superconducting electromagnet apparatus according to the second embodiment, a sufficient heat transfer effect can be obtained in the on state of the thermal switch by providing a flat plate heat transfer fin having a heat transfer surface in the vertical direction. . As a result, the time to reach the final temperature reached about 50 hours in the superconducting electromagnet apparatus of Example 1 and Comparative Example 1, but was shortened to about 43 hours in the superconducting electromagnet apparatus of Example 2. Note that the final temperature reached about 4K due to the same effect as when the multistage refrigerator of Example 1 was used.

なお、本発明は、特許請求の範囲を逸脱しない範囲で設計変更できるものであり、上記実施形態や実施例に限定されるものではない。   The present invention can be changed in design without departing from the scope of the claims, and is not limited to the above-described embodiments and examples.

本発明の実施形態に係る多段式冷凍機における熱スイッチの配置断面図である。It is arrangement | positioning sectional drawing of the heat switch in the multistage refrigerator which concerns on embodiment of this invention. 図1の多段式冷凍機における熱スイッチの構造を示す透過斜視図である。It is a permeation | transmission perspective view which shows the structure of the heat switch in the multistage refrigerator of FIG. 図1の多段式冷凍機における熱スイッチの構造を示す断面図である。It is sectional drawing which shows the structure of the heat switch in the multistage refrigerator of FIG. 本発明別実施形態の多段式冷凍機の熱スイッチにおいて、鉛直方向の伝熱面を持つ伝熱フィン及びステンレス鋼管を示す図であって、(a)は透過斜視図、(b)は断面図である。In the thermal switch of the multistage refrigerator according to another embodiment of the present invention, it is a view showing a heat transfer fin and a stainless steel pipe having a heat transfer surface in the vertical direction, (a) is a transparent perspective view, (b) is a sectional view. It is. 実施例1の超電導電磁石装置内の被冷却物及び輻射シールドの冷却時の温度データを示すグラフである。It is a graph which shows the temperature data at the time of cooling of the to-be-cooled object and radiation shield in the superconducting electromagnet apparatus of Example 1. 実施例2の超電導電磁石装置内の被冷却物及び輻射シールドの冷却時の温度データを示すグラフである。It is a graph which shows the temperature data at the time of cooling of the to-be-cooled object in the superconducting electromagnet apparatus of Example 2, and a radiation shield. 比較例1の超電導電磁石装置内の被冷却物及び輻射シールドの冷却時の温度データを示すグラフである。It is a graph which shows the temperature data at the time of cooling of the to-be-cooled object and radiation shield in the superconducting electromagnet apparatus of the comparative example 1.

符号の説明Explanation of symbols

1 多段式冷凍機
1a 冷凍機本体
2 容器
3 第1冷却部
3a 第1冷却端
4 第2冷却部
4a 第2冷却端
5 第1冷却板
6 第2冷却板
7 輻射シールド
8 冷却空間
9 被冷却物
10 熱スイッチ
11 ガス固化室
11a 管
11b 伝熱経路
12 第1部材
13 第2部材
14 第1純銅ブロック
15a〜15c、17a〜17c、21a、21b、22a、22b フィン
16 第2純銅ブロック
16a 凹部
18 固化したガス
23 ステンレス鋼管
DESCRIPTION OF SYMBOLS 1 Multistage type refrigerator 1a Refrigerator main body 2 Container 3 1st cooling part 3a 1st cooling end 4 2nd cooling part 4a 2nd cooling end 5 1st cooling plate 6 2nd cooling plate 7 Radiation shield 8 Cooling space 9 Cooled Object 10 Heat switch 11 Gas solidification chamber 11a Pipe 11b Heat transfer path 12 First member 13 Second member 14 First pure copper block 15a-15c, 17a-17c, 21a, 21b, 22a, 22b Fin 16 Second pure copper block 16a Recess 18 Solidified gas 23 Stainless steel pipe

Claims (4)

最低到達温度が高くかつ冷却能力が高い第1冷却端と、最低到達温度が低く且つ冷却能力が低い第2冷却端と、
前記第1冷却端と前記第2冷却端との間を熱的に接続可能に設けられ、所定温度で熱的接続オンから熱的接続オフに切り換わる熱スイッチとを備え、
前記第2冷却端に被冷却物を熱的に接続するように取り付けて前記被冷却物を極低温まで冷却する多段式冷凍機であって、
前記熱スイッチの前記第2冷却端側で管を介して前記熱スイッチ内部と連通するガス固化室をさらに備え、前記ガス固化室の少なくとも一部を前記第2冷却端と熱的に接触させてなる多段式冷凍機。
A first cooling end having a high minimum temperature and a high cooling capacity; a second cooling end having a low minimum temperature and a low cooling capacity;
A thermal switch provided so as to be thermally connectable between the first cooling end and the second cooling end, and switching from thermal connection on to thermal connection off at a predetermined temperature;
A multi-stage refrigerator that attaches the object to be cooled to the second cooling end so as to be thermally connected and cools the object to be cooled to an extremely low temperature,
A gas solidification chamber that communicates with the inside of the heat switch via a pipe on the second cooling end side of the thermal switch; and at least a part of the gas solidification chamber is in thermal contact with the second cooling end. Multistage refrigerator.
前記熱スイッチが鉛直方向の伝熱面を持つ平板の伝熱フィンを備える請求項1記載の多段式冷凍機。   The multistage refrigerator according to claim 1, wherein the heat switch includes a flat heat transfer fin having a vertical heat transfer surface. 最低到達温度が高くかつ冷却能力が高い第1冷却端と、最低到達温度が低く且つ冷却能力が低い第2冷却端と、
前記第1冷却端と前記第2冷却端との間を熱的に接続可能に設けられ、所定温度で熱的接続オンから熱的接続オフに切り換わる熱スイッチとを備え、
前記第2冷却端に被冷却物を熱的に接続するように取り付けて前記被冷却物を極低温まで冷却する多段式冷凍機であって、
前記熱スイッチは、内部に鉛直方向の伝熱面を持つ平板の伝熱フィンを有し、かつ、内部に封入されたガスの気化で熱的接続オンになり、前記ガスの液化で熱的接続オフになる多段式冷凍機。
A first cooling end having a high minimum temperature and a high cooling capacity; a second cooling end having a low minimum temperature and a low cooling capacity;
A thermal switch provided so as to be thermally connectable between the first cooling end and the second cooling end, and switching from thermal connection on to thermal connection off at a predetermined temperature;
A multi-stage refrigerator that attaches the object to be cooled to the second cooling end so as to be thermally connected and cools the object to be cooled to an extremely low temperature,
The thermal switch has a flat plate heat transfer fin having a vertical heat transfer surface inside, and is thermally connected by vaporization of the gas enclosed therein, and is thermally connected by liquefaction of the gas. A multistage refrigerator that turns off.
前記ガスが、ネオンガス、水素ガス又は窒素ガスである請求項1〜3のいずれかに記載の多段式冷凍機。   The multistage refrigerator according to any one of claims 1 to 3, wherein the gas is neon gas, hydrogen gas, or nitrogen gas.
JP2004150634A 2004-05-20 2004-05-20 Multistage refrigerator Expired - Lifetime JP3881675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004150634A JP3881675B2 (en) 2004-05-20 2004-05-20 Multistage refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004150634A JP3881675B2 (en) 2004-05-20 2004-05-20 Multistage refrigerator

Publications (2)

Publication Number Publication Date
JP2005331180A true JP2005331180A (en) 2005-12-02
JP3881675B2 JP3881675B2 (en) 2007-02-14

Family

ID=35485965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004150634A Expired - Lifetime JP3881675B2 (en) 2004-05-20 2004-05-20 Multistage refrigerator

Country Status (1)

Country Link
JP (1) JP3881675B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298701A (en) * 2005-04-21 2006-11-02 Meidensha Corp Variable thermal resistance block, heating and cooling device and ozone feeding device
CN100408962C (en) * 2006-04-14 2008-08-06 中国科学院上海技术物理研究所 Cold switch for switching between master refrigerator and slave refrigerator
JP2013217516A (en) * 2012-04-04 2013-10-24 Sumitomo Heavy Ind Ltd Regenerative refrigerator
WO2014112343A1 (en) * 2013-01-15 2014-07-24 株式会社神戸製鋼所 Ultra-low-temperature device and method for refrigerating object to be refrigerated using same
KR101569918B1 (en) 2014-03-10 2015-11-17 한국과학기술원 Heat switch for using active carbon, crycooler system and method the heat switch

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006298701A (en) * 2005-04-21 2006-11-02 Meidensha Corp Variable thermal resistance block, heating and cooling device and ozone feeding device
CN100408962C (en) * 2006-04-14 2008-08-06 中国科学院上海技术物理研究所 Cold switch for switching between master refrigerator and slave refrigerator
JP2013217516A (en) * 2012-04-04 2013-10-24 Sumitomo Heavy Ind Ltd Regenerative refrigerator
WO2014112343A1 (en) * 2013-01-15 2014-07-24 株式会社神戸製鋼所 Ultra-low-temperature device and method for refrigerating object to be refrigerated using same
JP2014157011A (en) * 2013-01-15 2014-08-28 Kobe Steel Ltd Cryogenic device and method of cooling object to be cooled using the same
US9709313B2 (en) 2013-01-15 2017-07-18 Kobe Steel, Ltd. Ultra-low-temperature device and method for refrigerating object to be refrigerated using the same
KR101569918B1 (en) 2014-03-10 2015-11-17 한국과학기술원 Heat switch for using active carbon, crycooler system and method the heat switch

Also Published As

Publication number Publication date
JP3881675B2 (en) 2007-02-14

Similar Documents

Publication Publication Date Title
JP4040626B2 (en) Refrigerator mounting method and apparatus
KR0175113B1 (en) Cryogenic cooling apparatus for things
US5381666A (en) Cryostat with liquefaction refrigerator
US7816826B2 (en) Thermosyphon cooled superconductor
Mito et al. Achievement of high heat removal characteristics of superconducting magnets with imbedded oscillating heat pipes
JP6445752B2 (en) Superconducting magnet device
JP2006054444A (en) Cryostat structure with cryocooler and gas-gap heat transmission device
GB2367354A (en) Cryostats
JP2007194258A (en) Superconductive magnet apparatus
JP2004537026A (en) Apparatus for recondensing low-boiling gas of liquefied gas-gas evaporating from vessel using cryo-generator
JP5917153B2 (en) Cryogenic refrigerator, displacer
JP7470851B2 (en) Low-temperature thermal conductivity measuring device
US7131276B2 (en) Pulse tube refrigerator
JP3881675B2 (en) Multistage refrigerator
WO2014157084A1 (en) Cooling device for superconductive cable
JP2010060245A (en) Current lead of superconductive device
JP4037832B2 (en) Superconducting device
JP2008538856A (en) Cryostat assembly
JP5198358B2 (en) Superconducting magnet device
US7263841B1 (en) Superconducting magnet system with supplementary heat pipe refrigeration
JP2009283679A (en) Cooling container and superconducting device
JPS62261866A (en) Helium cooling device
JP2835305B2 (en) Multi-stage refrigerator
JPH0482042B2 (en)
JP4950392B2 (en) Multistage refrigerator and thermal switch used therefor

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061110

R150 Certificate of patent or registration of utility model

Ref document number: 3881675

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250