JP7331362B2 - film - Google Patents
film Download PDFInfo
- Publication number
- JP7331362B2 JP7331362B2 JP2018560239A JP2018560239A JP7331362B2 JP 7331362 B2 JP7331362 B2 JP 7331362B2 JP 2018560239 A JP2018560239 A JP 2018560239A JP 2018560239 A JP2018560239 A JP 2018560239A JP 7331362 B2 JP7331362 B2 JP 7331362B2
- Authority
- JP
- Japan
- Prior art keywords
- polymer
- film
- layer
- minutes
- functional film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229920000642 polymer Polymers 0.000 claims description 270
- 238000010438 heat treatment Methods 0.000 claims description 114
- 238000000034 method Methods 0.000 claims description 98
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 76
- -1 polybutylene terephthalate Polymers 0.000 claims description 57
- 230000008569 process Effects 0.000 claims description 26
- 238000004519 manufacturing process Methods 0.000 claims description 20
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims description 17
- 229920001225 polyester resin Polymers 0.000 claims description 17
- 239000000758 substrate Substances 0.000 claims description 16
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 11
- 238000007373 indentation Methods 0.000 claims description 8
- 229910000859 α-Fe Inorganic materials 0.000 claims description 6
- 239000002002 slurry Substances 0.000 claims description 5
- 239000012528 membrane Substances 0.000 claims 1
- 239000010408 film Substances 0.000 description 294
- 239000010410 layer Substances 0.000 description 195
- 238000005259 measurement Methods 0.000 description 58
- 238000002844 melting Methods 0.000 description 50
- 230000008018 melting Effects 0.000 description 44
- 239000000463 material Substances 0.000 description 33
- 229920005989 resin Polymers 0.000 description 32
- 239000011347 resin Substances 0.000 description 32
- 229920000139 polyethylene terephthalate Polymers 0.000 description 31
- 239000005020 polyethylene terephthalate Substances 0.000 description 31
- 239000000523 sample Substances 0.000 description 29
- 239000000203 mixture Substances 0.000 description 24
- 229920006267 polyester film Polymers 0.000 description 22
- 229920000728 polyester Polymers 0.000 description 19
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 18
- 230000002209 hydrophobic effect Effects 0.000 description 18
- 239000007788 liquid Substances 0.000 description 16
- 238000004381 surface treatment Methods 0.000 description 16
- 238000011282 treatment Methods 0.000 description 15
- 239000002245 particle Substances 0.000 description 14
- 229910052751 metal Inorganic materials 0.000 description 13
- 239000002184 metal Substances 0.000 description 13
- 229920005672 polyolefin resin Polymers 0.000 description 13
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 12
- 230000008859 change Effects 0.000 description 11
- 229920000098 polyolefin Polymers 0.000 description 11
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 238000009832 plasma treatment Methods 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 239000013081 microcrystal Substances 0.000 description 8
- 238000004458 analytical method Methods 0.000 description 7
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000001035 drying Methods 0.000 description 7
- 238000012545 processing Methods 0.000 description 7
- 230000003068 static effect Effects 0.000 description 7
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 6
- 150000002009 diols Chemical class 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 6
- 239000001301 oxygen Substances 0.000 description 6
- 229910052760 oxygen Inorganic materials 0.000 description 6
- 239000004645 polyester resin Substances 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000005266 casting Methods 0.000 description 5
- 238000001125 extrusion Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 229920000178 Acrylic resin Polymers 0.000 description 4
- 239000004925 Acrylic resin Substances 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 239000002841 Lewis acid Substances 0.000 description 4
- 239000002879 Lewis base Substances 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000003851 corona treatment Methods 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 150000007517 lewis acids Chemical class 0.000 description 4
- 150000007527 lewis bases Chemical class 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000010079 rubber tapping Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229920000103 Expandable microsphere Polymers 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000001143 conditioned effect Effects 0.000 description 3
- 125000004122 cyclic group Chemical group 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- NZZFYRREKKOMAT-UHFFFAOYSA-N diiodomethane Chemical compound ICI NZZFYRREKKOMAT-UHFFFAOYSA-N 0.000 description 3
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 239000003822 epoxy resin Substances 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 238000007790 scraping Methods 0.000 description 3
- 238000004804 winding Methods 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KLDXJTOLSGUMSJ-JGWLITMVSA-N Isosorbide Chemical compound O[C@@H]1CO[C@@H]2[C@@H](O)CO[C@@H]21 KLDXJTOLSGUMSJ-JGWLITMVSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 206010057040 Temperature intolerance Diseases 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 2
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229920006125 amorphous polymer Polymers 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920001400 block copolymer Polymers 0.000 description 2
- 229920006026 co-polymeric resin Polymers 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- TVIDDXQYHWJXFK-UHFFFAOYSA-N dodecanedioic acid Chemical compound OC(=O)CCCCCCCCCCC(O)=O TVIDDXQYHWJXFK-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000008543 heat sensitivity Effects 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229960002479 isosorbide Drugs 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 2
- 239000002861 polymer material Substances 0.000 description 2
- 229920000874 polytetramethylene terephthalate Polymers 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229920005992 thermoplastic resin Polymers 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- 238000005160 1H NMR spectroscopy Methods 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- WVDRSXGPQWNUBN-UHFFFAOYSA-N 4-(4-carboxyphenoxy)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1OC1=CC=C(C(O)=O)C=C1 WVDRSXGPQWNUBN-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- UUAGPGQUHZVJBQ-UHFFFAOYSA-N Bisphenol A bis(2-hydroxyethyl)ether Chemical compound C=1C=C(OCCO)C=CC=1C(C)(C)C1=CC=C(OCCO)C=C1 UUAGPGQUHZVJBQ-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- ALQSHHUCVQOPAS-UHFFFAOYSA-N Pentane-1,5-diol Chemical compound OCCCCCO ALQSHHUCVQOPAS-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- XDODWINGEHBYRT-UHFFFAOYSA-N [2-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCCC1CO XDODWINGEHBYRT-UHFFFAOYSA-N 0.000 description 1
- LUSFFPXRDZKBMF-UHFFFAOYSA-N [3-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCCC(CO)C1 LUSFFPXRDZKBMF-UHFFFAOYSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229920006127 amorphous resin Polymers 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910002113 barium titanate Inorganic materials 0.000 description 1
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- CDQSJQSWAWPGKG-UHFFFAOYSA-N butane-1,1-diol Chemical compound CCCC(O)O CDQSJQSWAWPGKG-UHFFFAOYSA-N 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical compound OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229920000840 ethylene tetrafluoroethylene copolymer Polymers 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- ABMFBCRYHDZLRD-UHFFFAOYSA-N naphthalene-1,4-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=C(C(O)=O)C2=C1 ABMFBCRYHDZLRD-UHFFFAOYSA-N 0.000 description 1
- DFFZOPXDTCDZDP-UHFFFAOYSA-N naphthalene-1,5-dicarboxylic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1C(O)=O DFFZOPXDTCDZDP-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229910000889 permalloy Inorganic materials 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-L phthalate(2-) Chemical compound [O-]C(=O)C1=CC=CC=C1C([O-])=O XNGIFLGASWRNHJ-UHFFFAOYSA-L 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920001515 polyalkylene glycol Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229940094537 polyester-10 Drugs 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005673 polypropylene based resin Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- APSBXTVYXVQYAB-UHFFFAOYSA-M sodium docusate Chemical group [Na+].CCCCC(CC)COC(=O)CC(S([O-])(=O)=O)C(=O)OCC(CC)CCCC APSBXTVYXVQYAB-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B3/00—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
- B32B3/26—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
- B32B3/30—Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2367/00—Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Laminated Bodies (AREA)
- Wire Bonding (AREA)
- Organic Insulating Materials (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
Description
本発明は、製造工程用フィルムに関するものである。 The present invention relates to manufacturing process films.
熱可塑性樹脂フィルムは、各種特性に応じて、光学用途、包装用途、工業材料用途などで幅広く使用されている。また、工業材料用途においては、半導体の薄膜や回路部材を製造するための工程基材として熱可塑性樹脂フィルムが使用されており、例えば、半導体を製造する際に使用される半導体裏面用フィルム(例えば、特許文献1)や、回路部材形成の際に使用される離型フィルム(例えば、特許文献2)が提案されている。 Thermoplastic resin films are widely used in optical applications, packaging applications, industrial material applications, and the like, depending on their various properties. In industrial material applications, thermoplastic resin films are used as process substrates for manufacturing semiconductor thin films and circuit components. , Patent Document 1) and a release film used in forming a circuit member (for example, Patent Document 2) have been proposed.
特許文献1に見られるようなフィルムの場合、熱膨張性微小球が加熱により膨張してフィルム表面形状を変化させることで、半導体のピックアップ性を向上させているが、表面形状の変化が大きいため、半導体よりも柔軟な塗布材料の工程基材として使用する場合は当該塗布材料に表面形状変化が転写してしまい、得られる塗布材料の平滑性が不十分になったり、アンカー効果により所望の剥離性を得ることが困難な場合があった。また、粘着剤層がフィルムの最表面に配置されることから、フィルム自身が傷つきやすい場合や、異物が付着しやすい場合があった。 In the case of the film as seen in Patent Document 1, the heat-expandable microspheres are expanded by heating to change the film surface shape, thereby improving the pick-up property of the semiconductor. When using a coating material that is more flexible than a semiconductor as a process substrate, the surface shape change is transferred to the coating material, resulting in insufficient smoothness of the coating material, or the desired peeling due to the anchor effect. It was sometimes difficult to obtain In addition, since the pressure-sensitive adhesive layer is arranged on the outermost surface of the film, the film itself may be easily damaged or foreign matter may easily adhere to it.
特許文献2に見られるようなフィルムの場合、マット状の表面設計となっており、工程基材として使用する際に、得られる塗布材料の平滑性が不十分になったり、塗布材料によっては所望の剥離性を得ることが困難な場合があった。 In the case of the film as seen in Patent Document 2, it has a matte surface design, and when used as a process base material, the smoothness of the resulting coating material may be insufficient, and depending on the coating material, it may not be desired. In some cases, it was difficult to obtain the peelability of
本発明では上記の欠点を解消し、機能性材料を塗布して機能性材料層の薄膜(機能性膜)を得るための工程基材として使用した際に、塗布性、加工後の剥離性、機能性膜の特性、品位を良好とすることが可能なフィルムを提供することを目的とする。 In the present invention, the above drawbacks are eliminated, and when used as a process substrate for applying a functional material to obtain a thin film of a functional material layer (functional film), the coating properties, peelability after processing, An object of the present invention is to provide a film capable of improving the properties and quality of a functional film.
上記課題を解決するための本発明の第1のフィルムは、以下の構成を有する。
(1) ポリマーA層を少なくとも片面に有するフィルムであって、ポリマーA層の主成分がポリエステル系樹脂であり、AFMにて求めたポリマーA層の最大高さをRm1(nm)、180℃5分間加熱処理後における、AFMにて求めたポリマーA層の最大高さをRm2(nm)とした際に、下記式(I)を満足することを特徴とする、フィルム。
Rm2-Rm1>0nm・・・(I)
(2) 下記式(I I)を満足する、(1)に記載のフィルム。
1nm≦(Rm2-Rm1)≦2.0×104nm・・・(I I)
(3) 180℃5分間加熱処理後における、AFMで求めたポリマーA層の算術平均粗さをRa2(nm)とした際に、下記式(III)を満足する、(1)または(2)に記載のフィルム。
6≦(Rm2/Ra2)≦15・・・(III)
(4)下記式(IV)を満足する、(1)から(3)のいずれかに記載のフィルム。
(Rm2/Ra2)-(Rm1/Ra1)>0・・・(IV)
(5) ポリマーA層が前記ポリエステル系樹脂とは異なるポリマーを1種類以上含有する、請求項1に記載のフィルム。
(6) 180℃5分間加熱処理後のポリマーA層の光沢度(60°)が30以上である、(1)から(5)のいずれかに記載のフィルム。
(7) ポリマーA層の押し込み弾性率が800N/mm2以上6,000N/mm2以下である、(1)から(6)のいずれかに記載のフィルム。
(8) 主配向軸方向、および主配向軸と直交する方向において引裂き伝播抵抗が4.0N/mm以上12.0N/mm以下である、(1)から(7)のいずれかに記載のフィルム。
(9) 製造工程用途に用いられる、(1)から(8)のいずれかに記載のフィルム。
A first film of the present invention for solving the above problems has the following configuration.
(1) A film having a polymer A layer on at least one side, wherein the main component of the polymer A layer is a polyester-based resin, and the maximum height of the polymer A layer determined by AFM is Rm1 (nm), 180 ° C. 5 A film which satisfies the following formula (I), where Rm2 (nm) is the maximum height of the polymer A layer obtained by AFM after heat treatment for a minute.
Rm2−Rm1>0 nm (I)
(2) The film according to (1), which satisfies the following formula (II).
1 nm≦(Rm2−Rm1)≦2.0×10 4 nm (II)
(3) Satisfying the following formula (III), where Ra2 (nm) is the arithmetic mean roughness of the polymer A layer obtained by AFM after heat treatment at 180° C. for 5 minutes, (1) or (2) The film described in .
6≦(Rm2/Ra2)≦15 (III)
(4) The film according to any one of (1) to (3), which satisfies the following formula (IV).
(Rm2/Ra2)-(Rm1/Ra1)>0 (IV)
(5) The film according to claim 1, wherein the polymer A layer contains at least one polymer different from the polyester resin.
(6) The film according to any one of (1) to (5), wherein the polymer A layer has a glossiness (60°) of 30 or more after heat treatment at 180°C for 5 minutes.
(7) The film according to any one of (1) to (6), wherein the indentation modulus of the polymer A layer is 800 N/mm 2 or more and 6,000 N/mm 2 or less.
(8) The film according to any one of (1) to (7), which has a tear propagation resistance of 4.0 N/mm or more and 12.0 N/mm or less in the main orientation axis direction and in the direction perpendicular to the main orientation axis. .
(9) The film according to any one of (1) to (8), which is used for manufacturing process applications.
上記課題を解決するための本発明の第2のフィルムは、以下の構成を有する。すなわち、ポリマーA層を少なくとも片面に有するフィルムであって、ポリマーA層の表面自由エネルギーをSE1(mN/m)、180℃5分間加熱処理後における、ポリマーA層の表面自由エネルギーをSE2(mN/m)とした際に、下記式(I)を満足することを特徴とする、フィルムである
SE1-SE2>0mN/m・・・(a)A second film of the present invention for solving the above problems has the following configuration. That is, in a film having a polymer A layer on at least one side, the surface free energy of the polymer A layer is SE1 (mN/m), and the surface free energy of the polymer A layer after heat treatment at 180 ° C. for 5 minutes is SE2 (mN / m), the film is characterized by satisfying the following formula (I)
SE1-SE2>0mN/m (a)
本発明の第1、第2のフィルムは、加熱前の密着性、加熱後の剥離性を良好にできることから、機能性材料を塗布して機能性材料の薄膜(機能性膜)を得るための工程基材として使用した際に、機能性膜の特性、品位を向上させる効果を奏する。 The first and second films of the present invention can improve adhesion before heating and peelability after heating. When used as a process base material, it has the effect of improving the properties and quality of the functional film.
以下、本発明のフィルムについて詳細に説明する。
[第1のフィルム]
本発明の第1のフィルムは、ポリマーA層を少なくとも片面に有するフィルムであって、AFMにて求めたポリマーA層の最大高さをRm1(nm)、180℃5分間加熱処理後における、AFMにて求めたポリマーA層の最大高さをRm2(nm)とした際に、下記式(I)を満足することが重要である。
Rm2-Rm1>0nm・・・(I)
ここで、Rm1(nm)は、以下の通り求めた値とする。BrukerAXS製「NanoScopeV Dimension Icon」などのAFM(原子間力顕微鏡)において、シリコンカンチレバーを探針として適用し、タッピングモードにて、フィルムの表面形状を計測した後、AFMに付属のソフトウェア(例えば、NanoScope Analysisなど)を用いて、カットオフ3nmの条件にて最大高さを算出した。このような測定を5回繰り返し、5回の測定の平均値を求める。なお、測定方向(探針の走査方向)は、任意の一方向、および任意の一方向と直交する方向の計2方向にて測定を行い、各方向での最大高さの平均値(すなわち、任意の一方向の5回の測定値と、任意の一方向と直交する方向の5回の測定値の合計10回の測定値の平均値)をRm1(nm)として採用する。The film of the present invention will be described in detail below.
[First film]
The first film of the present invention is a film having a polymer A layer on at least one side, and the maximum height of the polymer A layer obtained by AFM is Rm1 (nm), and after heat treatment at 180 ° C. for 5 minutes, the AFM It is important to satisfy the following formula (I), where Rm2 (nm) is the maximum height of the polymer A layer obtained in .
Rm2−Rm1>0 nm (I)
Here, Rm1 (nm) is a value obtained as follows. In AFM (atomic force microscope) such as "NanoScope V Dimension Icon" made by Bruker AXS, a silicon cantilever is applied as a probe and the surface shape of the film is measured in tapping mode. Analysis, etc.) was used to calculate the maximum height under the condition of a cutoff of 3 nm. Such measurements are repeated 5 times, and the average value of the 5 measurements is obtained. In addition, the measurement direction (scanning direction of the probe) is an arbitrary direction and a direction orthogonal to the arbitrary direction, and the average value of the maximum height in each direction (i.e., An average value of a total of 10 measurements (5 measurements in an arbitrary direction and 5 measurements in a direction perpendicular to the arbitrary direction) is adopted as Rm1 (nm).
また、Rm2(nm)は、180℃5分間加熱処理を行ったフィルムについて、Rm1(nm)と同様にして最大高さを5回算出し、5回の測定の平均値を求める。なお、測定方向(探針の走査方向)は、任意の一方向、および任意の一方向と直交する方向の計2方向にて測定を行い、各方向での最大高さの平均値(すなわち、任意の一方向の5回の測定値と、任意の一方向と直交する方向の5回の測定値の合計10回の測定値の平均値)をそれぞれRm2(nm)として採用する。 For Rm2 (nm), the maximum height of a film heat-treated at 180° C. for 5 minutes is calculated five times in the same manner as for Rm1 (nm), and the average value of the five measurements is obtained. In addition, the measurement direction (scanning direction of the probe) is an arbitrary direction and a direction orthogonal to the arbitrary direction, and the average value of the maximum height in each direction (i.e., An average value of a total of 10 measurements (5 measurements in an arbitrary direction and 5 measurements in a direction perpendicular to the arbitrary direction) is adopted as Rm2 (nm).
本発明における、180℃5分間熱処理とは、機能性膜の工程基材としてフィルムを使用した際に、機能性膜の乾燥、機能性向上のために生じるフィルムへの加熱を模した処理であり、たとえば、180℃に設定した熱風循環方式のコンベアオーブンにフィルムを5分間かけて搬送する処理を指す。また、フィルムを搬送する際には、2枚の金属枠でフィルムを挟み込んだ後、金属枠を金属クリップで固定することで、フィルムが直接コンベアに接触しないようにして行うものとする。 In the present invention, the heat treatment at 180° C. for 5 minutes is a treatment simulating the heating of the film to dry the functional film and improve its functionality when the film is used as a process substrate for the functional film. , for example, refers to a process in which the film is conveyed to a hot air circulation type conveyor oven set at 180° C. for 5 minutes. When transporting the film, the film is sandwiched between two metal frames, and then the metal frames are fixed with a metal clip so that the film does not come into direct contact with the conveyor.
本発明において、式(I)は、AFMにて求めたポリマーA層の最大高さが180℃5分間の熱処理後に大きくなることを示している。なお、Rm1(nm)、Rm2(nm)など、本条件にて求めた最大高さは、一般的な接触式三次元粗さ計での測定と異なり測定範囲が非常に狭いため、例えば公知のサンドマット加工フィルム、エンボス加工フィルム、練り込み粒子によるマットフィルムの凹凸の影響は受けづらい値となっている。AFMで求められる微小範囲での最大高さを加熱後に大きくすることで、例えば、本発明のフィルムが機能性膜と積層された構成であった場合に、機能性膜の平滑性を大きく変化させずにフィルムと機能性膜との界面に微小な空間を形成し、機能性膜との密着性を低下させることが可能となる。すなわち、本発明のフィルムは、AFMで求められる微小範囲での最大高さを加熱後に大きくすることで、加熱前の機能性膜との密着性、および、加熱後の機能性膜との剥離性を両立できることを見出したものである。 In the present invention, the formula (I) indicates that the maximum height of the polymer A layer determined by AFM increases after heat treatment at 180° C. for 5 minutes. Note that the maximum heights such as Rm1 (nm) and Rm2 (nm) obtained under these conditions have a very narrow measurement range, unlike measurement with a general contact-type three-dimensional roughness meter. The value is less susceptible to the effects of sand matte film, embossed film, and unevenness of the matte film due to kneaded particles. By increasing the maximum height in a minute range obtained by AFM after heating, for example, when the film of the present invention has a structure in which it is laminated with a functional film, the smoothness of the functional film is greatly changed. It is possible to form a minute space at the interface between the film and the functional film without removing the film and reduce the adhesion to the functional film. That is, the film of the present invention increases the maximum height in a minute range required by AFM after heating, so that the adhesion to the functional film before heating and the peelability from the functional film after heating It is found that it can be compatible with
Rm1(nm)、Rm2(nm)を式(I)の範囲にするための方法としては、ポリマーA層を2種類以上のポリマーを組み合わせた構成とし、ポリマーA層を延伸させた後、ポリマーA層に含まれるポリマーの中で低融点のポリマーのみを180℃5分間の加熱により変形させてポリマーA層表面に歪みを形成させる方法、ポリマーA層に結晶性ポリマーを含む構成とし、UV処理やプラズマ処理などによりポリマーA層に微結晶を形成させ、180℃5分間の加熱によって、微結晶周辺の非晶部分のみを熱運動させてA層表面に歪みを形成させる方法、ポリマーA層に微小な空隙を形成しておき、180℃5分間の加熱によって空隙周辺のポリマーを軟化させて空隙の形状を変化させ、ポリマーA層表面に歪みを形成させる方法などが挙げられる。なお、ポリマーA層を延伸させた後、ポリマーA層に含まれるポリマーの中で低融点のポリマーのみを180℃5分間の加熱により変形させてポリマーA層表面に歪みを形成させる方法を用いる場合は、低融点のポリマーの融点より20℃以上100℃以下高い温度で延伸することが、低融点のポリマーのドメインの運動性と運動のための歪み蓄積を両立させる点から好ましく用いられる。 As a method for making Rm1 (nm) and Rm2 (nm) within the range of formula (I), the polymer A layer is formed by combining two or more types of polymers, and after stretching the polymer A layer, the polymer A A method of deforming only the low melting point polymer among the polymers contained in the layer by heating at 180 ° C. for 5 minutes to form strain on the surface of the polymer A layer. Microcrystals are formed in the polymer A layer by plasma treatment or the like, and by heating at 180 ° C. for 5 minutes, only the amorphous part around the microcrystals is thermally moved to form strain on the layer A surface. voids are formed in advance, and the polymer around the voids is softened by heating at 180° C. for 5 minutes to change the shape of the voids and create strain on the surface of the polymer A layer. In the case of using a method of stretching the polymer A layer and then deforming only the polymer with a low melting point among the polymers contained in the polymer A layer by heating at 180° C. for 5 minutes to form strain on the surface of the polymer A layer. Drawing at a temperature higher than the melting point of the low-melting polymer by 20° C. or more and 100° C. or less is preferably used from the viewpoint of achieving both the mobility of the domains of the low-melting polymer and the accumulation of strain for the movement.
本発明の第1のフィルムは、機能性膜を製造するための工程基材として使用した場合に、機能性膜の平滑性、加熱後の剥離性を良好とする観点から、下記式(I I)を満足することが好ましい。
1nm≦(Rm2-Rm1)≦2.0×104nm・・・(I I)
本発明の第1のフィルムは、(Rm2-Rm1)を1nm以上とすることで、加熱後の剥離性が良好となる。(Rm2-Rm1)は、加熱後の剥離性をより良好とする観点から、3nm以上がより好ましい。また、(Rm2-Rm1)を2.0×104nm以下とすることで、機能性膜の平滑性や、平滑性に伴う機能が良好となる。(Rm2-Rm1)は、機能性膜の平滑性や、平滑性に伴う機能をより良好とする観点から、1.0×103nm以下がより好ましく、100nm以下がさらに好ましく、50nm以下が特に好ましく、20nm以下が最も好ましい。The first film of the present invention has the following formula (II) from the viewpoint of improving the smoothness of the functional film and the peelability after heating when used as a process substrate for producing a functional film. is preferably satisfied.
1 nm≦(Rm2−Rm1)≦2.0×10 4 nm (II)
By setting (Rm2-Rm1) to 1 nm or more, the first film of the present invention exhibits good peelability after heating. (Rm2-Rm1) is more preferably 3 nm or more from the viewpoint of improving the peelability after heating. Further, by setting (Rm2−Rm1) to 2.0×10 4 nm or less, the smoothness of the functional film and the functions associated with the smoothness are improved. (Rm2-Rm1) is more preferably 1.0×10 3 nm or less, more preferably 100 nm or less, and particularly 50 nm or less, from the viewpoint of improving the smoothness of the functional film and the functions associated with the smoothness. Preferably, 20 nm or less is most preferable.
(Rm2-Rm1)を式(I I)の範囲にするための方法としては、ポリマーA層を2種類以上のポリマーを組み合わせた構成とし、ポリマーA層を延伸させた後、ポリマーA層に含まれるポリマーの中で低融点のポリマーのみを180℃5分間の加熱により変形させてポリマーA層表面に歪みを形成させる方法において、ポリマーA層に含まれるポリマーの中で低融点のポリマーをサイドフィード方式により押出機に投入する方法が挙げられる。低融点のポリマーのみをサイドフィード方式にて投入することで、低融点のポリマーが融点よりはるかに高い温度(たとえば、ポリマーA層に含まれる、主成分の融点が高いポリマーに適した押出温度)で押し出され、溶融粘度が低くなってポリマーA層の主成分のポリマーとの分散性低下を抑制することが可能となる。その他の方法としては、ポリマーA層に結晶性ポリマーを含む構成とし、UV処理やプラズマ処理などによりポリマーA層に微結晶を形成させ、180℃5分間の加熱によって微結晶周辺の非晶部分のみを熱運動させてポリマーA層表面に歪みを形成させる方法において、UV処理やプラズマ処理などの表面処理条件とポリマーA層中の結晶性ポリマーの濃度を調整する方法、ポリマーA層に、微小な空隙を形成しておき、180℃5分間の加熱によって空隙周辺のポリマーを軟化させて空隙の形状を変化させ、ポリマーA層表面に歪みを形成させる方法において、空隙の大きさを特定範囲にする方法などが挙げられる。 As a method for making (Rm2-Rm1) within the range of formula (II), the polymer A layer is configured by combining two or more types of polymers, and after stretching the polymer A layer, In the method of deforming only the polymer with the low melting point among the polymers by heating at 180° C. for 5 minutes to form strain on the surface of the polymer A layer, the polymer with the low melting point among the polymers contained in the polymer A layer is side-fed. A method of putting it into an extruder is mentioned. By feeding only the low-melting polymer by side feeding, the temperature of the low-melting polymer is much higher than the melting point (for example, the extrusion temperature suitable for the polymer with a high melting point as the main component contained in the polymer A layer). It is possible to suppress the decrease in dispersibility with the main component polymer of the polymer A layer due to the low melt viscosity. As another method, the polymer A layer is configured to contain a crystalline polymer, microcrystals are formed in the polymer A layer by UV treatment or plasma treatment, and only the amorphous part around the microcrystals is heated at 180 ° C. for 5 minutes. In the method of thermally exercising to form strain on the surface of the polymer A layer, the method of adjusting the surface treatment conditions such as UV treatment and plasma treatment and the concentration of the crystalline polymer in the polymer A layer, the method of adjusting the concentration of the crystalline polymer in the polymer A layer, In the method in which voids are formed and the polymer around the voids is softened by heating at 180° C. for 5 minutes to change the shape of the voids and strain is formed on the surface of the polymer A layer, the size of the voids is adjusted to a specific range. methods and the like.
本発明の第1のフィルムは、180℃5分間加熱処理後における、AFMで求めたポリマーA層の算術平均粗さをRa2(nm)とした際に、機能性膜を製造するための工程基材として使用した場合に機能性膜の平滑性、加熱後の剥離性を良好とする観点から下記式(III)を満足することが好ましい。
6≦(Rm2/Ra2)≦15・・・(III)
ここで、Ra2(nm)は、以下の通り求めた値とする。BrukerAXS製「NanoScopeV Dimension Icon」などのAFM(原子間力顕微鏡)において、シリコンカンチレバーを探針として適用し、タッピングモードにて、180℃5分間加熱処理を行ったフィルムの表面形状を計測した後、AFMに付属のソフトウェア(例えば、NanoScope Analysisなど)を用いて、カットオフ3nmの条件にて算術平均粗さを算出した。このような測定を5回繰り返し、5回の測定値の平均値を求める。なお、測定方向(探針の走査方向)は、任意の一方向、および任意の一方向と直交する方向の計2方向について測定を行い、各方向での算術平均粗さの平均値(すなわち、任意の一方向の5回の測定値と、任意の一方向と直交する方向の5回の測定値の合計10回の測定値の平均値)をRa2(nm)として採用する。(Rm2/Ra2)は、ポリマーA層における、180℃5分間加熱処理後のAFMでの最大高さを180℃5分間加熱処理後のAFMでの算術平均粗さで除した値であり、(Rm2/Ra2)が小さいほどAFMにおける算術平均粗さに対する最大高さが小さい、すなわち、AFMにて求めた凹凸の最大高さの山とその他の山の高さの差が小さい傾向を示す。また、(Rm2/Ra2)が大きいほどAFMにおける算術平均粗さに対する最大高さが大きい、すなわち、AFMにて求めた凹凸の最大高さの山とその他の山の高さの差が大きい傾向を示す。機能性膜を製造するための工程基材としてフィルムを適用する場合において、(Rm2/Ra2)が小さすぎると、最大高さの山以外の山が全体的に低くなり、機能性膜との加熱後の剥離性が不十分な場合があり、(Rm2/Ra2)が大きすぎると、最大高さの山以外の山も全体的に高くなり、機能性膜の平滑性が不十分となる場合がある。そのため、本発明のフィルムは、(Rm2/Ra2)を式(III)の範囲とすることで、機能性膜の平滑性、加熱後の剥離性を高い範囲で両立することが可能となる。さらには、(Rm2/Ra2)は、機能性膜の表面形状と相関が見られる値であり、機能性膜同士を積層して使用する用途(たとえば、チップ積層セラミックコンデンサやチップインダクタなどの回路部材用途)においては、Rm2(nm)やRa2(nm)ではなく、(Rm2/Ra2)を式(III)の範囲とすることで、機能性膜同士を積層した際の積層部分の空隙を適切な範囲とすることができ、機能性膜を積層体とした際のの各種特性(例えば、積層時の小型化、低背化など)を良好とすることもできる。本発明のフィルムの(Rm2/Ra2)は、機能性フィルムの剥離性と平滑性を両立させる観点から、7以上14以下がより好ましく、8以上12以下が特に好ましい。The first film of the present invention is a process base for producing a functional film, where Ra2 (nm) is the arithmetic mean roughness of the polymer A layer obtained by AFM after heat treatment at 180 ° C. for 5 minutes. When used as a material, it preferably satisfies the following formula (III) from the viewpoint of improving the smoothness of the functional film and the peelability after heating.
6≦(Rm2/Ra2)≦15 (III)
Here, Ra2 (nm) is a value obtained as follows. In an AFM (atomic force microscope) such as "NanoScope V Dimension Icon" manufactured by Bruker AXS, a silicon cantilever was applied as a probe, and the surface shape of the film was subjected to heat treatment at 180 ° C. for 5 minutes in tapping mode. Using software attached to the AFM (for example, NanoScope Analysis, etc.), the arithmetic mean roughness was calculated under the conditions of a cutoff of 3 nm. Such measurements are repeated 5 times, and the average value of the 5 measurements is obtained. In addition, the measurement direction (scanning direction of the probe) is an arbitrary direction and a direction orthogonal to the arbitrary direction, and the average value of the arithmetic average roughness in each direction (that is, An average value of 10 measurements (5 measurements in an arbitrary direction and 5 measurements in a direction perpendicular to the arbitrary direction) is adopted as Ra2 (nm). (Rm2/Ra2) is the value obtained by dividing the maximum height in the AFM after heat treatment at 180°C for 5 minutes in the polymer A layer by the arithmetic mean roughness in the AFM after heat treatment at 180°C for 5 minutes, The smaller the Rm2/Ra2), the smaller the maximum height with respect to the arithmetic mean roughness in AFM. In addition, the larger the (Rm2/Ra2), the larger the maximum height with respect to the arithmetic mean roughness in AFM, that is, the tendency that the difference between the maximum peak height of the unevenness obtained by AFM and the height of other peaks is large. show. In the case of applying the film as a process base material for producing a functional film, if (Rm2/Ra2) is too small, the peaks other than the peaks with the maximum height are generally low, and the heating with the functional film The subsequent peelability may be insufficient, and if (Rm2/Ra2) is too large, the peaks other than the peaks with the maximum height will be raised overall, and the smoothness of the functional film may be insufficient. be. Therefore, in the film of the present invention, by setting (Rm2/Ra2) within the range of formula (III), it is possible to achieve both the smoothness of the functional film and the releasability after heating within a high range. Furthermore, (Rm2/Ra2) is a value that correlates with the surface shape of the functional film, and is used in applications where functional films are laminated (for example, circuit members such as chip laminated ceramic capacitors and chip inductors). application), by setting (Rm2/Ra2) in the range of formula (III) instead of Rm2 (nm) or Ra2 (nm), the gap in the laminated portion when the functional films are laminated can be appropriately adjusted. It is also possible to improve various characteristics (for example, miniaturization and height reduction during lamination) when the functional film is formed into a laminate. (Rm2/Ra2) of the film of the present invention is more preferably 7 or more and 14 or less, particularly preferably 8 or more and 12 or less, from the viewpoint of achieving both peelability and smoothness of the functional film.
(Rm2/Ra2)を所望の範囲にするための方法としては、ポリマーA層を2種類以上のポリマーを組み合わせた構成とし、ポリマーA層を延伸させた後、ポリマーA層に含まれるポリマーの中で低融点のポリマーのみを180℃5分間の加熱により変形させてポリマーA層表面に歪みを形成させる方法において、ポリマーA層全体に対する低融点のポリマーの濃度、ポリマーA層の厚みを特定範囲に調整する方法、ポリマーA層に結晶性ポリマーを含む構成とし、UV処理やプラズマ処理などによりポリマーA層に微結晶を形成させ、180℃5分間の加熱によって、微結晶周辺の非晶部分のみを熱運動させてポリマーA層表面に歪みを形成させる方法において、UV処理やプラズマ処理などの表面処理条件とポリマーA層中の結晶性ポリマーの濃度を調整する方法、ポリマーA層に、微小な空隙を形成しておき、180℃5分間の加熱によって空隙周辺のポリマーを軟化させて空隙の形状を変化させ、ポリマーA層表面に歪みを形成させる方法において、空隙の大きさを特定範囲にする方法などが挙げられる。 As a method for setting (Rm2/Ra2) to a desired range, the polymer A layer is configured by combining two or more types of polymers, and after stretching the polymer A layer, the polymer contained in the polymer A layer In the method of deforming only the low melting point polymer by heating at 180 ° C. for 5 minutes to form strain on the surface of the polymer A layer, the concentration of the low melting point polymer with respect to the entire polymer A layer and the thickness of the polymer A layer are set to a specific range. The method of adjustment, the polymer A layer is configured to contain a crystalline polymer, microcrystals are formed in the polymer A layer by UV treatment or plasma treatment, and only the amorphous part around the microcrystals is removed by heating at 180 ° C. for 5 minutes. In the method of forming distortion on the surface of the polymer A layer by thermal motion, the method of adjusting the surface treatment conditions such as UV treatment and plasma treatment and the concentration of the crystalline polymer in the polymer A layer. is formed, and the polymer around the voids is softened by heating at 180 ° C. for 5 minutes to change the shape of the voids and create strain on the surface of the polymer A layer. etc.
本発明の第1のフィルムは、AFMで求めたポリマーA層の算術平均粗さをRa1(nm)とした際に、機能性膜を製造するための工程基材として使用した場合に、加熱後の剥離性を良好とする観点から、下記式(IV)を満たすことが好ましい。
(Rm2/Ra2)-(Rm1/Ra1)>0・・・(IV)
ここで、Ra1(nm)は、以下の通り求めた値とする。BrukerAXS製「NanoScopeV Dimension Icon」などのAFM(原子間力顕微鏡)において、シリコンカンチレバーを探針として適用し、タッピングモードにて、フィルムの表面形状を計測した後、AFMに付属のソフトウェア(例えば、Nano Scope Analysisなど)を用いて、カットオフ3nmの条件にて算術平均粗さを算出した。このような測定を5回繰り返し、5回の測定値の平均値を求める。なお、測定方向(探針の走査方向)は、任意の一方向、および任意の一方向と直交する方向の計2方向について測定を行い、各方向での算術平均粗さの平均値を、Ra1(nm)として採用する。フィルムを加熱する前の値である(Rm1/Ra1)と比較して、180℃5分間処理後の値である(Rm2/Ra2)を大きくすることで、加熱後の最大高さ以外の山の高さが大きくなったり、もしくは加熱後の最大高さの山が低くなるため、ポリマーA層と機能性膜の層間歪みを形成しやすくでき、加熱後の剥離性を良好とすることができる。When the first film of the present invention is used as a process substrate for producing a functional film, when the arithmetic average roughness of the polymer A layer obtained by AFM is Ra1 (nm), after heating From the viewpoint of improving the releasability of the film, it is preferable to satisfy the following formula (IV).
(Rm2/Ra2)-(Rm1/Ra1)>0 (IV)
Here, Ra1 (nm) is a value obtained as follows. In AFM (atomic force microscope) such as "NanoScopeV Dimension Icon" made by Bruker AXS, a silicon cantilever is applied as a probe and the surface shape of the film is measured in tapping mode. Scope Analysis, etc.) was used to calculate the arithmetic mean roughness under the condition of a cutoff of 3 nm. Such measurements are repeated 5 times, and the average value of the 5 measurements is obtained. In addition, the measurement direction (scanning direction of the probe) is measured in two directions, one arbitrary direction and the direction perpendicular to the arbitrary one direction, and the average value of the arithmetic average roughness in each direction is Ra1 (nm). Compared to the value (Rm1/Ra1) before heating the film, by increasing the value (Rm2/Ra2) after treatment at 180°C for 5 minutes, the peaks other than the maximum height after heating Since the height is increased or the maximum peak height after heating is decreased, interlaminar strain between the polymer A layer and the functional film can be easily formed, and peelability after heating can be improved.
(Rm1/Ra1)、(Rm2/Ra2)について、(IV)式の関係を満たすための方法としては、ポリマーA層を2種類以上のポリマーを組み合わせた構成とし、ポリマーA層を延伸させた後、ポリマーA層に含まれるポリマーの中で低融点のポリマーのみを180℃5分間の加熱により変形させてA層表面に歪みを形成させる方法において、低融点のポリマーの種類や濃度を特定成分とする方法、ポリマーA層に結晶性ポリマーを含む構成とし、UV処理やプラズマ処理などによりポリマーA層に微結晶を形成させ、180℃5分間の加熱によって、微結晶周辺の非晶部分のみを熱運動させてポリマーA層表面に歪みを形成させる方法において、UV処理やプラズマ処理などの表面処理条件とポリマーA層中の結晶性ポリマーの濃度を調整する方法、ポリマーA層に、微小な空隙を形成しておき、180℃5分間の加熱によって空隙周辺のポリマーを軟化させて空隙の形状を変化させ、ポリマーA層表面に歪みを形成させる方法において、空隙の大きさを特定範囲にする方法などが挙げられる。 Regarding (Rm1/Ra1) and (Rm2/Ra2), as a method for satisfying the relationship of the formula (IV), the polymer A layer is configured by combining two or more types of polymers, and after stretching the polymer A layer In the method of deforming only the low-melting polymer among the polymers contained in the polymer A layer by heating at 180 ° C. for 5 minutes to form strain on the surface of the A layer, the type and concentration of the low-melting polymer are used as specific components. In the method, the polymer A layer contains a crystalline polymer, microcrystals are formed in the polymer A layer by UV treatment or plasma treatment, and only the amorphous part around the microcrystals is heated by heating at 180 ° C. for 5 minutes. In the method of forming strain on the surface of the polymer A layer by motion, the surface treatment conditions such as UV treatment and plasma treatment and the concentration of the crystalline polymer in the polymer A layer are adjusted. A method in which the polymer around the voids is softened by heating at 180° C. for 5 minutes to change the shape of the voids and strain is formed on the surface of the polymer A layer, and the size of the voids is set to a specific range. is mentioned.
[第2のフィルム]
本発明の第2のフィルムは、ポリマーA層を少なくとも片面に有するフィルムであって、ポリマーA層の表面自由エネルギーをSE1(mN/m)、180℃5分間加熱処理後における、ポリマーA層の表面自由エネルギーをSE2(mN/m)とした際に、下記式(a)を満足することが重要である。
SE1-SE2>0mN/m・・・(a)
ここで、SE1(mN/m)、SE2(mN/m)は、以下の通り求めた値とする。23℃、65%RHの条件下で24時間調湿したフィルムについて、接触角計(協和界面化学製CA-D型)を使用して、水、エチレングリコ-ル、ホルムアミド、及びヨウ化メチレンの4種類の測定液を用い、協和界面化学(株)製接触角計CA-D型を用いて、フィルム表面に対する静的接触角を求めた。それぞれの液体について得られた接触角と測定液の表面張力の各成分を下式にそれぞれ代入し、4つの式からなる連立方程式をγL 、γ+ 、γ- について解いた。[Second film]
The second film of the present invention is a film having a polymer A layer on at least one side, and the surface free energy of the polymer A layer is SE1 (mN/m), and after heat treatment at 180 ° C. for 5 minutes, the polymer A layer is When the surface free energy is SE2 (mN/m), it is important to satisfy the following formula (a).
SE1-SE2>0mN/m (a)
Here, SE1 (mN/m) and SE2 (mN/m) are values obtained as follows. Water, ethylene glycol, formamide, and methylene iodide were measured using a contact angle meter (Kyowa Interface Science CA-D type) on a film that had been conditioned for 24 hours under conditions of 23°C and 65% RH. A contact angle meter CA-D manufactured by Kyowa Kaimen Kagaku Co., Ltd. was used to determine the static contact angle with respect to the film surface using four kinds of measurement liquids. Each component of the contact angle and the surface tension of the liquid to be measured obtained for each liquid was substituted into the following equations, and four simultaneous equations were solved for γ L , γ + , and γ − .
(γL γj
L )1/2 +2(γ+ γj
-)1/2 +2(γj
+γ-)1/2 =(1+cosθ)[γj
L +2(γj
+ γj
- )1/2]/2
ただし、γ=γL +2(γ+ γ- )1/2γj =γj
L +2(γj
+γj
- )1/2ここで、γ、γL 、γ+ 、γ- は、それぞれ、フィルム表面の表面自由エネルギー、長距離間力項、ルイス酸パラメーター、ルイス塩基パラメーターを、また、γj 、γj
L 、γj
+ 、γj
- は、それぞれ、用いた測定液の表面自由エネルギー、長距離間力項、ルイス酸パラメーター、ルイス塩基パラメーターをあらわすものとする。(γ L γ j L ) 1/2 + 2(γ + γ j - ) 1/2 + 2(γ j + γ - ) 1/2 = (1 + cos θ)[γ j L + 2(γ j + γ j - ) 1 /2 ]/2
However, γ = γ L + 2 (γ + γ - ) 1/2 γ j = γ j L + 2 (γ j + γ j - ) 1/2 where γ, γ L , γ + and γ - are respectively , the surface free energy of the film surface, the long-range force term, the Lewis acid parameter, and the Lewis base parameter, and γ j , γ j L , γ j + , γ j − are the surface free It shall represent the energy, the long-range force term, the Lewis acid parameter, and the Lewis base parameter.
ここで用いた各液体の表面張力は、Oss("Fundamentals ofAdhesion", L.H.Lee(Ed.), p153, Plenum ess, New York(1991))によって提案された表7の値を用いた。 As the surface tension of each liquid used here, the values in Table 7 proposed by Oss ("Fundamentals of Adhesion", L.H. Lee (Ed.), p153, Plenum ess, New York (1991)) were used.
本発明における、180℃5分間熱処理とは、機能性膜の工程基材としてフィルムを使
用した際に、機能性膜の乾燥、機能性向上のために生じるフィルムへの加熱を模した処理であり、たとえば、180℃に設定した熱風循環方式のコンベアオーブンにフィルムを5分間かけて搬送する処理を指す。また、フィルムを搬送する際には、2枚の金属枠でフィルムを挟み込んだ後、金属枠を金属クリップで固定することで、フィルムが直接コンベアに接触しないようにして行うものとする。In the present invention, the heat treatment at 180° C. for 5 minutes is a treatment simulating the heating of the film to dry the functional film and improve its functionality when the film is used as a process substrate for the functional film. , for example, refers to a process in which the film is conveyed to a hot air circulation type conveyor oven set at 180° C. for 5 minutes. When transporting the film, the film is sandwiched between two metal frames, and then the metal frames are fixed with a metal clip so that the film does not come into direct contact with the conveyor.
本発明において、式(a)は、ポリマーA層の表面自由エネルギーが180℃5分間の熱処理後に小さくなることを示している。ポリマーA層の表面自由エネルギーを加熱後に小さくすることで、例えば、本発明のフィルムが機能性膜と積層された構成であった場合に、機能性膜を製造する際の密着性と、乾燥等による加熱後での機能性膜の剥離性を両立できることを見出した。 In the present invention, formula (a) indicates that the surface free energy of the polymer A layer decreases after heat treatment at 180° C. for 5 minutes. By reducing the surface free energy of the polymer A layer after heating, for example, when the film of the present invention has a structure in which it is laminated with a functional film, the adhesion when producing the functional film, drying, etc. It was found that the peelability of the functional film after heating by is compatible.
SE1-SE2を式(a)の範囲にするための方法としては、ポリマーA層に、疎水性部分を含むポリマーを少量含有させ、疎水性部分を含むポリマーをポリマーA層の島側に配置し、加熱後に疎水性部分をフィルム表面に配列させる方法などが挙げられる。なお、ポリマーA層の海島構造は、公知の方法にてフィルムの染色を行った後、断面TEM観察などによって確認することが可能である。 As a method for making SE1-SE2 within the range of formula (a), the polymer A layer contains a small amount of a polymer containing a hydrophobic portion, and the polymer containing a hydrophobic portion is placed on the island side of the polymer A layer. , a method of arranging the hydrophobic portion on the film surface after heating, and the like. The sea-island structure of the polymer A layer can be confirmed by cross-sectional TEM observation or the like after dyeing the film by a known method.
本発明の第2のフィルムは、機能性膜を製造するための工程基材として使用した場合に、機能性膜の平滑性、加熱後の剥離性を良好とする観点から、下記式(b)を満足することが好ましい。
0.5mN/m≦(SE1-SE2)≦40mN/m・・・(b)
本発明のフィルムは、(SE1-SE2)を0.5mN/m以上とすることで、加熱後の剥離性が良好となる。(SE1-SE2)は、加熱後の剥離性をより良好とする観点から、2mN/mがより好ましく、5mN/m以上が特に好ましい。また、(SE1-SE2)を40mN/m以下とすることで、加熱後に剥離性が必要以上に高くなり、加工中に機能性膜との剥がれ、浮きの発生を防止することができる。(SE1-SE2)は、機能性膜の剥離性や加工中の剥がれ、浮きの発生抑制をより良好とする観点から、30mN/m以下がより好ましい。The second film of the present invention has the following formula (b) from the viewpoint of improving the smoothness of the functional film and the peelability after heating when it is used as a process base material for producing a functional film. is preferably satisfied.
0.5mN/m≦(SE1−SE2)≦40mN/m (b)
In the film of the present invention, when (SE1-SE2) is 0.5 mN/m or more, the peelability after heating is improved. (SE1-SE2) is more preferably 2 mN/m, particularly preferably 5 mN/m or more, from the viewpoint of improving the peelability after heating. Further, by setting (SE1-SE2) to 40 mN/m or less, the releasability becomes higher than necessary after heating, and it is possible to prevent the separation from the functional film and the occurrence of floating during processing. (SE1-SE2) is more preferably 30 mN/m or less from the viewpoint of improving the releasability of the functional film and suppressing the occurrence of peeling and lifting during processing.
(SE1-SE2)を式(b)の範囲にするための方法としては、ポリマーA層に、疎水性部分を含むポリマーを少量含有させ、疎水性部分を含むポリマーをポリマーA層の海島構造の島側に配置し、加熱後に疎水性部分をフィルム表面に配列させる方法において、疎水性部分を含むポリマーのポリマーA層に対する重量比率、疎水性部分を含むポリマーの疎水性部分の比率の調整を行う方法などが挙げられる。さらには、加熱前にコロナ処理などの各種表面処理を行っておくと、疎水性部分が表面に引き出されるため、加熱後に表面自由エネルギーが低下しやすくなる。そのため、本来はフィルムの親水化で用いられるような各種表面処理(コロナ処理、プラズマ処理、UV処理など)も、加熱後にポリマーA層を疎水化させて、式(b)の範囲にするための方法としては有効である。 As a method for making (SE1-SE2) within the range of formula (b), the polymer A layer contains a small amount of a polymer containing a hydrophobic portion, and the polymer containing a hydrophobic portion is added to the sea-island structure of the polymer A layer. In the method of placing on the island side and arranging the hydrophobic portion on the film surface after heating, the weight ratio of the polymer containing the hydrophobic portion to the polymer A layer and the ratio of the hydrophobic portion of the polymer containing the hydrophobic portion are adjusted. methods and the like. Furthermore, if various surface treatments such as corona treatment are performed before heating, the hydrophobic portion is pulled out to the surface, so that the surface free energy tends to decrease after heating. Therefore, various surface treatments (corona treatment, plasma treatment, UV treatment, etc.) that are originally used for hydrophilization of films are also used to hydrophobize the polymer A layer after heating to make it within the range of formula (b). It is effective as a method.
本発明のフィルムは、下記式(c)を満たすことが、機能性膜の塗布性、機能性膜の加熱後の密着性の観点から好ましい。
25mN/m≦SE1≦70mN/m・・・(c)
SE1は加熱前のポリマーA層の表面自由エネルギーであり、25mN/m以上であると、機能性膜のポリマーA層に対する塗布性が良好となることから好ましく、より好ましくは35mN/m以上、特に好ましくは42mN/m以上である。また、加熱後のポリマーA層と機能性膜の剥離性を考慮すると、加熱前においてもSE1は70mN/m以下であることが好ましく、48mN/m以下がより好ましい。 The film of the present invention preferably satisfies the following formula (c) from the viewpoint of the coatability of the functional film and the adhesion of the functional film after heating.
25mN/m≤SE1≤70mN/m (c)
SE1 is the surface free energy of the polymer A layer before heating, and when it is 25 mN/m or more, it is preferable because the coatability of the functional film to the polymer A layer is improved, more preferably 35 mN/m or more, especially It is preferably 42 mN/m or more. Also, considering the peelability between the polymer A layer and the functional film after heating, SE1 is preferably 70 mN/m or less, more preferably 48 mN/m or less, even before heating.
SE1を所望の範囲にする方法としては、ポリマーA層の組成、各種表面処理により調整を行う方法などが挙げられる。本発明の第2のフィルムは、180℃5分間加熱処理後における、ポリマーA層の分散力をSd2、極性力をSp2とした際に、下記式(d)の関係を満たすことが、機能性膜の均質性の観点から好ましい。 Examples of methods for adjusting SE1 to a desired range include a method of adjusting the composition of the polymer A layer and various surface treatments. The second film of the present invention satisfies the relationship of the following formula (d), where Sd2 is the dispersion force of the polymer A layer and Sp2 is the polar force after heat treatment at 180 ° C. for 5 minutes. This is preferable from the viewpoint of film homogeneity.
23mN/m≦(Sd2-Sp2)≦36mN/m・・・(d)
ここで、(Sd2-Sp2)は、表面自由エネルギーの極性に関わる値であり、(Sd2-Sp2)が小さいほど、ポリマーA層の極性が高く、(Sd2-Sp2)が大きいほど、ポリマーA層の極性が低くなることを示す。本発明の第2のフィルムは、加熱後にポリマーA層の極性を低くすることで、機能性材料を塗布する際に、機能性材料の極性部分がポリマーA層の極性部分と近づこうとして機能性膜の分散性が不均一になることを抑制することができ、機能性膜の各種機能を良好とすることができる。なお、(Sd2-Sp2)は、後述する実施例の方法にてSd2(mN/m)、Sp2(mN/m)をそれぞれ算出し、これらの差から求めることができる。(Sd2-Sp2)は、機能性膜の機能をより良好とする観点から、17mN/m以上27mN/m以下がより好ましい。(Sd2-Sp2)を式(d)の範囲とする方法としては、ポリマーA層の組成、各種表面処理の調整を行う方法などが挙げられる。具体的には、ポリマーA層に含有される疎水性部分を含むポリマーの固有粘度を、ポリマーA層の主成分のポリマーの固有粘度よりも0.5以上低くして、加熱後に疎水性成分がフィルム表面に顕在化しやすいように疎水性部分を含むポリマーの運動性を相対的に高くしておき、かつ、フィルム製膜時の延伸後の熱処理温度を、ポリマーA層の融点を超えない範囲でできるだけ高温に設定し、さらに、コロナ処理、UV処理などの各種表面処理を、従来フィルムの濡れ性を向上させるような条件と比較して非常に弱い条件にて実施し、疎水性部分を含むポリマーに各種機能性膜との密着性を損なわない範囲で運動エネルギーを与える方法などが挙げられる。23mN/m≦(Sd2−Sp2)≦36mN/m (d)
Here, (Sd2-Sp2) is a value related to the polarity of surface free energy, the smaller (Sd2-Sp2) the higher the polarity of the polymer A layer, and the larger becomes less polar. In the second film of the present invention, by lowering the polarity of the polymer A layer after heating, when the functional material is applied, the polar portion of the functional material tries to approach the polar portion of the polymer A layer, and the functional property is reduced. It is possible to suppress non-uniform dispersibility of the film and improve various functions of the functional film. Incidentally, (Sd2-Sp2) can be obtained from the difference between Sd2 (mN/m) and Sp2 (mN/m) calculated by the method described later in Examples. (Sd2-Sp2) is more preferably 17 mN/m or more and 27 mN/m or less from the viewpoint of improving the function of the functional film. Examples of the method for making (Sd2−Sp2) fall within the range of formula (d) include a method of adjusting the composition of the polymer A layer and various surface treatments. Specifically, the intrinsic viscosity of the polymer containing the hydrophobic portion contained in the polymer A layer is made 0.5 or more lower than the intrinsic viscosity of the polymer that is the main component of the polymer A layer, and the hydrophobic component is reduced after heating. The mobility of the polymer containing the hydrophobic portion is relatively high so that it is easy to manifest on the film surface, and the heat treatment temperature after stretching during film formation is set within a range that does not exceed the melting point of the polymer A layer. The temperature is set as high as possible, and various surface treatments such as corona treatment and UV treatment are performed under extremely weak conditions compared to the conditions that improve the wettability of conventional films. a method of applying kinetic energy to the film within a range that does not impair the adhesion with various functional films.
[第1および第2のフィルム]
本発明の第1および第2のフィルムにおいて、ポリマーA層を構成する樹脂は、本発明の各種要件を満たす範囲において特に限定はされないが、たとえば、ポリプロピレン系樹脂、ポリエチレン系樹脂、環状オレフィン系樹脂などのポリオレフィン系樹脂、ポリオレフィン系樹脂にカルボン酸や無水マレイン酸などの側鎖(金属イオンに置換された構造を含む)を有する変性ポリオレフィン系樹脂、ポリエチレンテレフタレート、ポリテトラメチレンテレフタレート、ポリブチレンテレフタレート、およびこれらにエチレングリコール、テトラメチレングリコール、ブタンジオール以外のグリコール成分や、テレフタル酸以外のカルボン酸成分を共重合させたポリエステル系樹脂、アクリル系樹脂、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・エチレン共重合体、ポリクロロトリフルオロエチレン、クロロトリフルオエチレン・エチレン共重合体といったフッ素系樹脂、ポリカーボネート系樹脂、ポリウレタン系樹脂、ポリ塩化ビニル系樹脂、ポリスチレン系樹脂、ABS(アクリロニトリル・ブタジエン・スチレン共重合体)系樹脂、AS(アクリロニトリル・スチレン共重合体)系樹脂などが挙げられる。[First and second films]
In the first and second films of the present invention, the resin constituting the polymer A layer is not particularly limited as long as it satisfies the various requirements of the present invention. Polyolefin resins such as polyolefin resins, modified polyolefin resins having side chains (including structures substituted with metal ions) such as carboxylic acid and maleic anhydride in polyolefin resins, polyethylene terephthalate, polytetramethylene terephthalate, polybutylene terephthalate, And polyester resins, acrylic resins, polyvinylidene fluoride, polytetrafluoroethylene, tetrafluoroethylene obtained by copolymerizing these with glycol components other than ethylene glycol, tetramethylene glycol and butanediol, and carboxylic acid components other than terephthalic acid.・Fluorine-based resins such as perfluoroalkyl vinyl ether copolymer, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, polychlorotrifluoroethylene, chlorotrifluoroethylene-ethylene copolymer, polycarbonate-based resins, polyurethane resins, polyvinyl chloride resins, polystyrene resins, ABS (acrylonitrile-butadiene-styrene copolymer) resins, AS (acrylonitrile-styrene copolymer) resins, and the like.
これらの中でも、180℃の加熱において大きな変形が起こらない観点やコストの観点から、ポリマーA層の主成分は、ポリエステル系樹脂であることが好ましい。 Among these, it is preferable that the main component of the polymer A layer is a polyester-based resin from the standpoint of not causing large deformation when heated at 180° C. and from the standpoint of cost.
本発明におけるポリエステル系樹脂とは、ジカルボン酸由来の構造単位(ジカルボン酸成分)とジオール由来の構造単位(ジオール成分)のエステル結合により結合されるポリマーを指す。 The polyester-based resin in the present invention refers to a polymer in which a structural unit derived from dicarboxylic acid (dicarboxylic acid component) and a structural unit derived from diol (diol component) are bonded via an ester bond.
ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸などの芳香族ジカルボン酸、アジピン酸、スベリン酸、セバシン酸、ダイマー酸、ドデカンジオン酸、シクロヘキサンジカルボン酸などの脂肪族ジカルボン酸、および、各種芳香族ジカルボン酸、脂肪族ジカルボン酸とのエステル誘導体が挙げられる。これらのジオール成分はエチレングリコール以外に1種類のみでもよく、2種類以上を併用してもよい。 Examples of dicarboxylic acid components include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, Aromatic dicarboxylic acids such as 4,4′-diphenyletherdicarboxylic acid and 4,4′-diphenylsulfonedicarboxylic acid, Aliphatic dicarboxylic acids such as adipic acid, suberic acid, sebacic acid, dimer acid, dodecanedioic acid and cyclohexanedicarboxylic acid , and ester derivatives with various aromatic dicarboxylic acids and aliphatic dicarboxylic acids. These diol components may be of one type other than ethylene glycol, or may be used in combination of two or more types.
また、ジオール成分としては、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、ネオペンチルグリコール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2-ビス(4-ヒドロキシエトキシフェニル)プロパン、イソソルビド、スピログリコールなどを挙げることができる。これらのジカルボン酸成分はエチレングリコール以外に1種類のみでもよく、2種類以上を併用してもよい。
これらのジカルボン酸成分、ジオール成分の中でも、耐溶剤性、耐熱性の観点から、ジカルボン酸成分としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸が好ましく、ジオール成分としては、エチレングリコール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、イソソルビド、スピログリコールが好ましく用いられる。The diol component includes ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1 ,6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2-bis(4-hydroxyethoxy phenyl)propane, isosorbide, spiroglycol, and the like. These dicarboxylic acid components may be of one type other than ethylene glycol, or may be used in combination of two or more types.
Among these dicarboxylic acid components and diol components, terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid are preferable as the dicarboxylic acid component from the viewpoint of solvent resistance and heat resistance, and ethylene glycol as the diol component. , 1,4-butanediol, 1,4-cyclohexanedimethanol, isosorbide and spiroglycol are preferably used.
[第1のフィルム]
本発明の第1のフィルムのポリマーA層は、AFMにて求めたポリマーA層の最大高さを加熱後に大きくする観点から、主成分のポリマーと異なるポリマーを1種類以上含有している構成が好ましい。主成分のポリマーと異なるポリマーとしては、相溶性の低い部分を加熱で運動させてポリマーA層と機能性膜の界面に歪みを形成させる観点からは、主成分のポリマーと相溶性が高い部分と相溶性が低い部分の両方の構成を有するポリマーが好ましく選定される。また、主成分のポリマーと異なるポリマーは、加熱時にポリマーA層の主成分のポリマーとの配向緩和の差をより大きくしてポリマーA層と機能性膜の界面に歪みを形成させやすくするため、主成分のポリマーより融点が低いことが好ましい。主成分のポリマーと異なるポリマーは、主成分のポリマーよりも融点が15℃以上低いことが好ましく、30℃以上低いことがより好ましい。また、主成分のポリマーは、融点を有しない非晶性のポリマーでも構わないが、非晶性ポリマーの場合は、180℃での加熱でもフィルムの変形が起きないよう、ポリマーA層100質量%に対して20質量%以下の濃度であることが好ましい。また、主成分のポリマーと異なるポリマーとして、ポリマーA層に微小な空隙を形成しておき、加熱後に空隙の形状を変化させてポリマーA層と機能性膜の界面に歪みを形成させる観点からは、ポリマーA層の主成分のポリマーと相溶性が低いポリマーであり、かつ溶融粘度が近いポリマーが好ましく選定される。 [First film]
The polymer A layer of the first film of the present invention may contain at least one type of polymer different from the main component polymer from the viewpoint of increasing the maximum height of the polymer A layer obtained by AFM after heating. preferable. As the polymer different from the main component polymer, a portion having high compatibility with the main component polymer and a portion having high compatibility with the main component polymer are selected from the viewpoint of causing the portion having low compatibility to move by heating to form strain at the interface between the polymer A layer and the functional film. Polymers having both configurations of less compatible moieties are preferably selected. In addition, since the polymer different from the main component polymer increases the difference in orientation relaxation from the main component polymer of the polymer A layer when heated, making it easier to form strain at the interface between the polymer A layer and the functional film, It preferably has a lower melting point than the main component polymer. The melting point of the polymer different from that of the main component polymer is preferably 15° C. or more, more preferably 30° C. or more, lower than that of the main component polymer. In addition, the main component polymer may be an amorphous polymer that does not have a melting point. In the case of an amorphous polymer, the polymer A layer is 100% by mass so that the film does not deform even when heated at 180 ° C. It is preferable that the concentration is 20% by mass or less with respect to the In addition, as a polymer different from the main component polymer, fine voids are formed in the polymer A layer, and after heating, the shape of the voids is changed to form strain at the interface between the polymer A layer and the functional film. A polymer having low compatibility with the polymer of the main component of the polymer A layer and having a similar melt viscosity is preferably selected.
本発明の第1のフィルムのポリマーA層の一例として、主成分がポリエステル系樹脂であり、ポリエステル系樹脂の中でもポリエチレンテレフタレートである場合、主成分のポリマーと相溶性が高い部分と相溶性が低い部分の両方の構成を有するポリマーとしては、例えば、ポリブチレンテレフタレートとポリオキシアルキレングリコールのブロック共重合体(ポリブチレンテレフタレートがポリエチレンテレフタレートと相溶性が高い部分であり、ポリオキシアルキレングリコールがポリエチレンテレフタレートと相溶性が低い部分)、各種変性ポリオレフィン系樹脂(変性させた官能基がポリエチレンテレフタレートと相溶性が高い部分であり、ポリオレフィン部分がポリエチレンテレフタレートと相溶性が低い部分)などが挙げられる。また、主成分のポリマーと相溶性が低いポリマーとしては、各種ポリオレフィン系樹脂で、主成分のポリマーの溶融押出温度にて主成分のポリマー(今回の例ではポリエチレンテレフタレート)と近い溶融粘度特性を有するポリマーなどが挙げられる。 As an example of the polymer A layer of the first film of the present invention, the main component is a polyester-based resin, and in the case of polyethylene terephthalate among the polyester-based resins, the portion that is highly compatible with the main component polymer and the low compatibility are low. Examples of polymers having both configurations of moieties include block copolymers of polybutylene terephthalate and polyoxyalkylene glycol (polybutylene terephthalate is a moiety highly compatible with polyethylene terephthalate, and polyoxyalkylene glycol is a moiety highly compatible with polyethylene terephthalate). low compatibility portion), various modified polyolefin resins (modified functional groups are highly compatible with polyethylene terephthalate, polyolefin portion is low compatibility with polyethylene terephthalate), and the like. In addition, as polymers with low compatibility with the main component polymer, various polyolefin resins have melt viscosity characteristics similar to the main component polymer (polyethylene terephthalate in this example) at the melt extrusion temperature of the main component polymer. polymers and the like.
[第2のフィルム]
本発明の第2のフィルムのポリマーA層は、加熱後の表面自由エネルギーを低下させる観点から、主成分のポリマーと異なるポリマーを1種類以上含有している構成が好ましい。主成分のポリマーと異なるポリマーとしては、表面自由エネルギーを加熱後に低くする観点とフィルム品位を両立させる観点からは、主成分のポリマーと相溶性が高い部分と相溶性が低い部分の両方の構成を有し、相溶性が低い部分が相溶性が高い部分に対して疎水性であるポリマーが好ましく選定される。[Second film]
From the viewpoint of reducing the surface free energy after heating, the polymer A layer of the second film of the present invention preferably contains at least one polymer different from the main component polymer. As a polymer different from the main component polymer, from the viewpoint of reducing the surface free energy after heating and achieving both film quality, it is necessary to have both a portion that is highly compatible with the main component polymer and a portion that is not compatible with the main component polymer. Polymers are preferably selected that have a low compatibility fraction that is hydrophobic with respect to the high compatibility fraction.
本発明の第2のフィルムのポリマーA層の一例として、主成分がポリエステル系樹脂であり、ポリエステル系樹脂の中でもポリエチレンテレフタレートである場合、主成分のポリマーと相溶性が高い部分と相溶性が低い部分の両方の構成を有するポリマーとしては、例えば、ポリブチレンテレフタレートとポリオキシアルキレングリコールのブロック共重合体(ポリブチレンテレフタレートがポリエチレンテレフタレートとの相溶性が高い部分であり、ポリオキシアルキレングリコールがポリエチレンテレフタレートと相溶性が低い部分)、各種変性ポリオレフィン系樹脂(変性させた官能基がポリエチレンテレフタレートとの相溶部分)などが挙げられる。一方で、加熱前の各種表面処理と組み合わせる場合においては、ポリエチレンテレフタレートに、ポリオキシアルキレングリコールなど、ポリエチレンテレフタレートと相溶性が低い構造を直接共重合させる方法も、加熱後の表面自由エネルギーをより低下させる観点からは好ましい。 As an example of the polymer A layer of the second film of the present invention, the main component is a polyester-based resin, and among the polyester-based resins, when polyethylene terephthalate is used, the portion that is highly compatible with the main component polymer and the low compatibility are low. Examples of polymers having both of the configurations of moieties include block copolymers of polybutylene terephthalate and polyoxyalkylene glycol (polybutylene terephthalate is a moiety highly compatible with polyethylene terephthalate, and polyoxyalkylene glycol is polyethylene terephthalate portion having low compatibility with polyethylene terephthalate), various modified polyolefin resins (portion having modified functional group compatible with polyethylene terephthalate), and the like. On the other hand, when combined with various surface treatments before heating, a method of directly copolymerizing polyethylene terephthalate with a structure having low compatibility with polyethylene terephthalate, such as polyoxyalkylene glycol, also reduces the surface free energy after heating. It is preferable from the viewpoint of
[第1および第2のフィルム]
本発明の第1、第2のフィルムは、機能性膜の外観や、平滑性に伴う特性を向上させる観点から、180℃5分間加熱後のポリマーA層の光沢度(60°)が30以上であることが好ましい。ここで、光沢度(60°)とは、入射角が60°の条件における光沢度を指す。機能性膜は、電磁波を反射させる特性や、機能性膜同士を複数枚積層させて回路部材とする際の各種電気特性を良好とする場合は平滑であることが好ましく、機能性膜の巨視的な視点での平滑性の指標として、機能性膜を転写させるポリマーA層の光沢度を好ましく用いることができる。180℃5分間加熱後のポリマーA層の光沢度(60°)は、50以上がより好ましく、70以上がさらに好ましく、80以上が特に好ましい。また、ポリマーA層側の光沢度(60°)は、機能性膜の取扱い性の観点から、200以下が好ましく、155以下がより好ましい。[First and second films]
In the first and second films of the present invention, the glossiness (60°) of the polymer A layer after heating at 180°C for 5 minutes is 30 or more from the viewpoint of improving the appearance of the functional film and the properties associated with smoothness. is preferably Here, the glossiness (60°) refers to the glossiness under the condition that the incident angle is 60°. The functional film is preferably smooth in order to improve the characteristics of reflecting electromagnetic waves and various electrical characteristics when a plurality of functional films are laminated to form a circuit member. As an index of smoothness from such a viewpoint, the glossiness of the polymer A layer onto which the functional film is transferred can be preferably used. The glossiness (60°) of the polymer A layer after heating at 180°C for 5 minutes is more preferably 50 or more, still more preferably 70 or more, and particularly preferably 80 or more. In addition, the glossiness (60°) of the polymer A layer is preferably 200 or less, more preferably 155 or less, from the viewpoint of handleability of the functional film.
180℃5分間加熱後のポリマーA層の光沢度(60°)を所望の範囲とするための方法としては、ポリマーA層に巻取り性付与のために含有させている各種粒子の種類、大きさを調整する方法が挙げられる。 As a method for adjusting the glossiness (60°) of the polymer A layer after heating at 180°C for 5 minutes to the desired range, the type and size of various particles contained in the polymer A layer for imparting winding properties. There is a method of adjusting the thickness.
本発明の第1、第2のフィルムは、フィルムの打痕や異物巻き込み時の痕を抑制し、機能性膜の品位を良好とする観点から、ポリマーA層の押し込み弾性率が800N/mm2以上6,000N/mm2以下であることが好ましい。ここで、押し込み弾性率は、ナノインデンテーション法と呼ばれる、微小領域や薄膜の硬さ、弾性率が測定可能な評価手法であり、押し込み弾性率が高いと厚み方向の微小変形に対する回復がしやすくなり、フィルムが衝撃を受けたり異物を巻き込んだ状態で重ねられたりしても打痕や異物巻き込み時の痕が生じにくくなることから、フィルムの表面品位を良好とし、転写される機能性膜の表面品位を良好とすることができる。In the first and second films of the present invention, the indentation elastic modulus of the polymer A layer is 800 N/mm 2 from the viewpoint of suppressing dents on the film and marks when foreign matter is caught and improving the quality of the functional film. It is preferable that it is 6,000 N/mm 2 or more and 6,000 N/mm 2 or less. Here, the indentation elastic modulus is an evaluation method that can measure the hardness and elastic modulus of a minute region or thin film, called the nanoindentation method. Therefore, even if the film receives an impact or is stacked with foreign matter caught in it, dents and marks caused by foreign matter are less likely to occur. Good surface quality can be achieved.
本発明の第1、第2のフィルムにおいて、ポリマーA層の押し込み弾性率を800N/mm2以上6,000N/mm2以下にするための方法としては、フィルムの組成(融点、2種類以上の原料のアロイ)、製造条件(二軸延伸処理、および当該処理における延伸温度や延伸倍率など)による調整を行う方法などが挙げられる。In the first and second films of the present invention, as a method for making the indentation modulus of the polymer A layer 800 N/mm 2 or more and 6,000 N/mm 2 or less, the composition of the film (melting point, two or more raw material alloy), production conditions (biaxial stretching treatment, stretching temperature and stretching ratio in the treatment, etc.), and the like.
本発明の第1、第2のフィルムは、機能性材料を塗布して機能性材料層の薄膜(機能性膜)を得るための工程基材として使用した際に、取扱い性を良好とする観点から、主配向軸方向、および主配向軸と直交する方向において引裂き伝播抵抗が4.0N/mm以上12.0N/mm以下であることが好ましい。ここで、引裂き伝播抵抗とは、JIS K-7128-2-1998に沿って測定した値を指し、数値が大きいほど引き裂けにくいことを示す。また、本発明における主配向軸は、マイクロ波分子配向計を用いて求めた方向であり、主配向軸と直交する方向は、マイクロ波分子配向計を用いた主配向軸方向を元にして求めた方向とする。なお、フィルムの主配向軸とは、フィルムを構成するポリマーの分子鎖が最も強く配向している面内の方位であり、マイクロ波分子配向計以外の一般的な測定方法としては、自動複屈折計(王子計測機器製「KOBRA」シリーズなど)、アッベ屈折計(アタゴ製「DR-A1」シリーズ、「NAR」シリーズなど)等で求めることが可能である。また、二軸配向フィルムは一般的に主配向軸と直交する方向が最も分子鎖の配向が弱い面内の方位となることから、フィルム面内で最も分子鎖の配向が強い方向と弱い方向の二方向の引裂き伝播抵抗を求めることで、引裂き伝播抵抗のフィルム面内の最も高い値と最も低い値を確認できる。すなわち、フィルムの引裂き抵抗の上限と下限がわかることから、いずれの方向にも取り扱い性が良好なことが確認可能となる。 The first and second films of the present invention provide good handleability when used as a process base material for applying a functional material to obtain a thin film of a functional material layer (functional film). Therefore, it is preferable that the tear propagation resistance is 4.0 N/mm or more and 12.0 N/mm or less in the main orientation axis direction and in the direction perpendicular to the main orientation axis. Here, the tear propagation resistance refers to a value measured according to JIS K-7128-2-1998, and the larger the value, the more difficult it is to tear. Further, the main orientation axis in the present invention is the direction obtained by using a microwave molecular orienter, and the direction orthogonal to the main orientation axis is obtained based on the main orientation axis direction using the microwave molecular orienter. direction. The main orientation axis of the film is the in-plane direction in which the molecular chains of the polymer composing the film are most strongly oriented. ("KOBRA" series manufactured by Oji Keisoku Kiseki Co., Ltd.), Abbe refractometer ("DR-A1" series, "NAR" series manufactured by Atago Co., Ltd.), etc. In biaxially oriented films, the orientation of the molecular chains is generally weakest in the direction perpendicular to the main orientation axis. By determining the tear propagation resistance in two directions, it is possible to identify the highest and lowest tear propagation resistance values in the film plane. That is, since the upper and lower limits of the tear resistance of the film are known, it can be confirmed that the handleability is good in any direction.
引裂き伝播抵抗は、工程基材として使用した際の取扱い性を良好とする観点から、4.5N/mm以上がより好ましく、5.5N/mm以上が特に好ましく、6.0N/mm以上が最も好ましい。また、本発明のフィルムは加工後の機能膜の剥離性を良好とする観点から、引裂き強度が9.8N/mm以下であることがより好ましい。フィルムの引裂き強度を4.0N/mm以上12.0N/mm以下の範囲とする方法としては、フィルムを構成する主成分のポリマーより低融点のポリマーを少量しか含まない層、あるいは低融点のポリマーを含まない層をフィルム中に有する積層構成とし、当該層がフィルム全体厚み100%として、50%以上95%以下の厚みを有する構成とし、フィルム総厚みを特定範囲とする方法が挙げられる。 The tear propagation resistance is more preferably 4.5 N/mm or more, particularly preferably 5.5 N/mm or more, and most preferably 6.0 N/mm or more, from the viewpoint of good handleability when used as a process substrate. preferable. Further, the film of the present invention more preferably has a tear strength of 9.8 N/mm or less from the viewpoint of improving the peelability of the functional film after processing. As a method for adjusting the tear strength of the film to the range of 4.0 N/mm or more and 12.0 N/mm or less, a layer containing only a small amount of a polymer having a lower melting point than the main component polymer constituting the film, or a low melting point polymer A method of setting the total thickness of the film to a specific range by forming a laminated structure in which a layer containing no
本発明の第1、第2のフィルムは、工程基材として使用した際に、塗布性、加工後の剥離性、傷付き性を良好とすることができるため、導電性、磁性を有する各種材料やセラミック部材等の回路部材、光学部材など各種機能性膜の製造工程用途として好ましく使用できる。 The first and second films of the present invention, when used as a process base material, can have good coatability, peelability after processing, and scratch resistance. It can be preferably used as a manufacturing process application of various functional films such as circuit members such as ceramic members and optical members.
本発明における、機能性膜を構成する機能性材料とは、材料の持つ様々な物理的特性、化学的特性に基づき機能を発現させることを目的として各種製品に用いられる材料を指し、感光性や感熱性などの特徴を有する高分子材料、接着剤、粘着材、光学材料、セラミック、金属材料、磁性材料などが例として挙げられる。 In the present invention, the functional material constituting the functional film refers to a material used in various products for the purpose of expressing functions based on the various physical and chemical properties of the material. Examples include polymer materials, adhesives, pressure-sensitive adhesives, optical materials, ceramics, metal materials, and magnetic materials that have characteristics such as heat sensitivity.
感光性や感熱性などの特徴を有する高分子材料としては、紫外線やレーザーなどの光、あるいは熱で硬化するアクリル系樹脂などが挙げられ、各種レジスト材料や印刷インク、プラスチック材料の表面保護用途などで好ましく用いられる。 Examples of polymer materials that have characteristics such as photosensitivity and heat sensitivity include acrylic resins that cure with light such as ultraviolet rays and lasers, or with heat, and are used for various resist materials, printing inks, surface protection of plastic materials, etc. It is preferably used in
接着剤、粘着材としては、アクリル系樹脂、シリコーン系樹脂、ポリビニルアルコール系樹脂、エポキシ系樹脂などの材料が挙げられ、半導体チップの封止材や導電性接着剤、ディスプレイなどの電子部材のシール材、半導体チップ製造時のダイシングテープ、メッキのマスキングテープなどの加工用途などで好ましく用いられる。 Adhesives and pressure-sensitive adhesives include materials such as acrylic resins, silicone resins, polyvinyl alcohol resins, and epoxy resins. It is preferably used for processing applications such as materials, dicing tapes for manufacturing semiconductor chips, masking tapes for plating, and the like.
光学材料としては、アクリル系樹脂、ポリカーボネート系樹脂、環状オレフィン系樹脂など透明性、位相差特性などに特徴のある材料が挙げられ、光ディスク、フラットパネルディスプレイなど情報の記録、表示、伝送を担う光学材料向け用途などで好ましく用いられる。 Optical materials include acrylic resins, polycarbonate resins, cyclic olefin resins, and other materials with characteristics such as transparency and retardation properties. It is preferably used for applications such as materials.
セラミックとしては、チタン酸バリウムやアルミナ、ジルコニア、炭化ケイ素、ゼオライトなど、誘電特性や耐熱性に特徴のある材料が挙げられ、スマートフォンなど各種デジタル電子機器で使用される、コンデンサやインダクタ、回路基板材料用途などで好ましく用いられる。 Ceramics include materials with dielectric properties and heat resistance, such as barium titanate, alumina, zirconia, silicon carbide, and zeolite. They are used in various digital electronic devices such as smartphones, and are used as capacitors, inductors, and circuit board materials. It is preferably used for various purposes.
金属材料としては、銀、胴、鉄など、導電性、放熱性、電磁波遮蔽性、バリア性に特徴のある材料が挙げられ、金属転写箔用途などで好ましく用いられる。 Examples of metal materials include silver, copper, iron, and other materials that are characterized by electrical conductivity, heat dissipation, electromagnetic wave shielding, and barrier properties, and are preferably used for metal transfer foils and the like.
磁性材料としては、フェライトやパーマロイなど、磁界中で磁力が発生したり変形したり、あるいは電気抵抗が変化する特徴を有する材料が挙げられ、インダクタやノイズ抑制、無線通信、無線給電用途などで好ましく用いられる。 Examples of magnetic materials include ferrite, permalloy, and other materials that generate magnetic force, change shape, or change electrical resistance in a magnetic field, and are preferable for use in inductors, noise suppression, wireless communication, and wireless power supply. Used.
[第1および第2のフィルム]
次に、本発明の第1、第2のフィルムの好ましい製造方法を、ポリマーA層としてポリエステル系樹脂を選定した場合の例として以下に説明する。本発明はかかる例に限定して解釈されるものではない。[First and second films]
Next, a preferred method for producing the first and second films of the present invention will be described below as an example in which a polyester-based resin is selected as the polymer A layer. The present invention should not be construed as being limited to such examples.
はじめに、ポリマーA層を構成する原料をベント式二軸押出機に供給して溶融押出する。ポリマーA層とポリマーA層以外の層を積層させる場合は、ポリマーA層に用いるポリエステルAと、ポリマーA層以外の層に用いるポリエステル原料とをそれぞれ別々のベント式二軸押出機に供給し溶融押出する。また、異なる組成のポリマーA層同士を積層させる場合は、各ポリマーA層に用いるポリエステルAを、それぞれ別々のベント式二軸押出機に供給し溶融押出するが、以下においては、ポリマーA層と、ポリマーA層以外の層(ポリマーB層とする)を積層した構成として説明する。溶融押出を行う際は、押出機内を流通窒素雰囲気下で、酸素濃度を0.7体積%以下とし、樹脂の押出温度は、各層のうち最も融点が高い樹脂の融点より5℃~40℃高く設定することが好ましく、融点が観測されない非晶性樹脂のみの場合は、溶融粘度や溶融状態を見ながら例えば180℃~270℃の範囲内で調整することが好ましい。ついで、フィルターやギヤポンプを通じて、異物の除去、押出量の均整化を各々行い、ポリマーA層とポリマーB層を合流させた後、Tダイより冷却ドラム上にシート状に吐出する。その際、高電圧を掛けた電極を使用して静電気で冷却ドラムと樹脂を密着させる静電印加法、キャスティングドラムと押出したポリマーシート間に水膜を設けるキャスト法、キャスティングドラム温度をポリマーAのガラス転移点~(ガラス転移点-20℃)にして押出したポリマーを粘着させる方法、もしくは、これらの方法を複数組み合わせた方法により、シート状ポリマーをキャスティングドラムに密着させ、冷却固化し、未延伸フィルムを得る。これらのキャスト法の中でも、ポリエステル系樹脂を使用する場合は、生産性や平面性の観点から、静電印加する方法が好ましく使用される。 First, raw materials constituting the polymer A layer are supplied to a vented twin-screw extruder and melt extruded. When the polymer A layer and a layer other than the polymer A layer are laminated, the polyester A used for the polymer A layer and the polyester raw material used for the layer other than the polymer A layer are supplied to separate vented twin-screw extruders and melted. Extrude. Further, when polymer A layers having different compositions are laminated, the polyester A used for each polymer A layer is supplied to a separate vented twin-screw extruder and melt extruded. In the following, the polymer A layer and , and layers other than the polymer A layer (referred to as a polymer B layer) are laminated. When performing melt extrusion, the extruder is circulated in a nitrogen atmosphere, the oxygen concentration is 0.7% by volume or less, and the extrusion temperature of the resin is 5 ° C to 40 ° C higher than the melting point of the resin with the highest melting point among the layers. It is preferable to set the melting point, and in the case of only an amorphous resin whose melting point is not observed, it is preferable to adjust it within the range of 180° C. to 270° C., for example, while observing the melt viscosity and the melting state. Next, foreign substances are removed and the extrusion rate is made uniform through a filter or a gear pump. After the polymer A layer and the polymer B layer are combined, the mixture is discharged from a T-die onto a cooling drum in the form of a sheet. At that time, an electrostatic application method in which an electrode to which a high voltage is applied is used to statically adhere the cooling drum and the resin, a casting method in which a water film is formed between the casting drum and the extruded polymer sheet, and the casting drum temperature is changed to that of polymer A. A sheet-shaped polymer is brought into close contact with a casting drum, cooled and solidified, and unstretched by a method of adhering the extruded polymer at a glass transition point of -20 ° C. or a method combining a plurality of these methods. get the film. Among these casting methods, when a polyester-based resin is used, the method of applying static electricity is preferably used from the viewpoint of productivity and flatness.
また、本発明の第1のフィルムにおいて、ポリマーA層を2種類以上のポリマーを組み合わせた構成とする場合は、押出機の溶融ゾーンからも原料投入が可能となる、いわゆるサイドフィード方式の押出機がポリマーA層の押出機として好ましく用いられる。また、低融点のポリマーが過度に加熱され溶融粘度が低くなってしまい、ポリマーA層を不均一な構成となることを防止する観点から、ポリマーA層に含まれるポリマーの中で低融点のポリマーをサイドフィード側から投入する方法が好ましく用いられる。 Further, in the first film of the present invention, when the polymer A layer is composed of a combination of two or more types of polymers, a so-called side-feed type extruder that allows raw materials to be introduced from the melting zone of the extruder. is preferably used as an extruder for the polymer A layer. In addition, from the viewpoint of preventing the polymer A layer from having a non-uniform structure due to excessive heating of the low-melting-point polymer resulting in a low melt viscosity, a low-melting-point polymer among the polymers contained in the polymer A layer is preferably used from the side feed side.
本発明の第1、第2のフィルムは、耐熱性、寸法安定性の観点から二軸配向させることが好ましく、未延伸フィルムを長手方向に延伸した後、幅方向に延伸する、あるいは、幅方向に延伸した後、長手方向に延伸する逐次二軸延伸方法により、または、フィルムの長手方向、幅方向をほぼ同時に延伸していく同時二軸延伸方法などにより延伸を行うことが好ましい。フィルムの二軸配向状態は、たとえばポリエチレンテレフタレート系樹脂などのポリエステル系樹脂を主成分とする構成のフィルムの場合、アッベ屈折計などでフィルム面内の主配向軸方向、フィルム面内の主配向軸と直交する方向、およびフィルムの厚み方向それぞれの屈折率を測定し、フィルムの厚み方向の屈折率が最も小さくなっていることから確認することができる。 The first and second films of the present invention are preferably biaxially oriented from the viewpoint of heat resistance and dimensional stability. It is preferable to stretch the film by a sequential biaxial stretching method in which the film is stretched in the longitudinal direction after the film is stretched to a thickness, or by a simultaneous biaxial stretching method in which the film is stretched substantially simultaneously in the longitudinal direction and the width direction. The biaxially oriented state of the film, for example, in the case of a film composed mainly of a polyester resin such as a polyethylene terephthalate resin, is determined by an Abbe refractometer or the like to determine the main orientation axis direction in the film plane and the main orientation axis in the film plane. and the thickness direction of the film are measured, and it can be confirmed from the fact that the refractive index in the thickness direction of the film is the smallest.
かかる延伸方法における延伸倍率としては、長手方向に、好ましくは、2.7倍以上4倍以下、さらに好ましくは3倍以上3.5倍以下が採用される。また、延伸速度は1,000%/分以上200,000%/分以下であることが望ましい。また長手方向の延伸温度は、80℃以上130℃以下が好ましい。また、幅方向の延伸倍率としては、好ましくは2.8倍以上4倍以下、より好ましくは、3倍以上3.8倍以下が好ましい。幅方向の延伸速度は1,000%/分以上200,000%/分以下であることが好ましい。 The stretching ratio in the stretching method is preferably 2.7 times or more and 4 times or less, more preferably 3 times or more and 3.5 times or less in the longitudinal direction. Moreover, it is desirable that the drawing speed is 1,000%/minute or more and 200,000%/minute or less. Moreover, the stretching temperature in the longitudinal direction is preferably 80° C. or higher and 130° C. or lower. The draw ratio in the width direction is preferably 2.8 times or more and 4 times or less, more preferably 3 times or more and 3.8 times or less. The stretching speed in the width direction is preferably 1,000%/min or more and 200,000%/min or less.
さらに、二軸延伸の後にフィルムの熱処理を行ってもよい。熱処理はオーブン中、加熱したロール上など従来公知の任意の方法により行うことができる。この熱処理は、二軸配向後の配向結晶を成長させて熱寸法性を向上させることが目的であるため、最も融点の高いポリマーA層の融点以下の範囲内で、なるべく高い熱処理温度に設定する場合が一般的である。 Furthermore, the film may be heat treated after biaxial stretching. The heat treatment can be performed by any conventionally known method such as in an oven or on heated rolls. The purpose of this heat treatment is to grow oriented crystals after the biaxial orientation and to improve the thermal dimensional properties. Therefore, the heat treatment temperature is set as high as possible within the range below the melting point of the polymer A layer, which has the highest melting point. is common.
また、本発明の第1のフィルムのポリマーA層において、ポリマーA層の主成分より融点の低いポリマーを少量含有させる構成とすることで、ポリマーA層の中で低配向のドメインを形成し、加熱後のポリマーA層の表面歪みを形成しやすい設計とすることができる。ポリマーA層が2種類以上のポリマーを組み合わせた構成とする場合は、ポリマーA層の主成分のポリマーと、ポリマーA層に含有される、主成分より融点の低いポリマーの配向差をつけておき、機能性膜の加工時に配向緩和の差によりポリマーA層と機能性膜の界面に歪みを形成させやすくする観点からは、二軸延伸の後のフィルムの熱処理温度は、融点の低いポリマーの融点より15℃以上30℃以下の温度であることが好ましい。 Further, the polymer A layer of the first film of the present invention contains a small amount of a polymer having a melting point lower than that of the main component of the polymer A layer, thereby forming a low-orientation domain in the polymer A layer, It can be designed to facilitate the formation of surface strain in the polymer A layer after heating. When the polymer A layer has a structure in which two or more types of polymers are combined, a difference in orientation is provided between the main component polymer of the polymer A layer and the polymer contained in the polymer A layer and having a melting point lower than that of the main component. , From the viewpoint of making it easier to form strain at the interface between the polymer A layer and the functional film due to the difference in orientation relaxation during processing of the functional film, the heat treatment temperature of the film after biaxial stretching is the melting point of the polymer with a low melting point. More preferably, the temperature is 15°C or higher and 30°C or lower.
また、本発明の第2のフィルムのポリマーA層において、ポリマーA層の主成分と異なるポリマー(主成分のポリマーと相溶性が高い部分と相溶性が低い部分の両方の構成を有し、相溶性が低い部分が相溶性が高い部分に対して疎水性であるポリマー)を少量含有させる構成とすることで、加熱後に主成分と異なるポリマーの相溶性が低い部分(疎水性部分)が表面に配列し、A層の表面自由エネルギーを低下させやすい設計とすることができる。 In addition, in the polymer A layer of the second film of the present invention, a polymer different from the main component of the polymer A layer (having both a configuration of a portion highly compatible with the polymer of the main component and a portion having low compatibility, By incorporating a small amount of a polymer in which the part with low solubility is hydrophobic with respect to the part with high compatibility), after heating, the part with low compatibility of the polymer (hydrophobic part), which is different from the main component, appears on the surface. By arranging them, the surface free energy of the A layer can be easily lowered.
また、本発明の第1、第2のフィルムは、機能性膜との加熱前の密着性、加熱後の剥離性をより良好とするために、ポリマーA層の表面に、コロナ処理やプラズマ処理、UV処理をはじめとした表面処理を行ったり、易接着層、離型層をフィルムの製造工程中にコーティングさせたりしてもよい。 In addition, in the first and second films of the present invention, the surface of the polymer A layer is subjected to corona treatment or plasma treatment in order to improve adhesion to the functional film before heating and peelability after heating. , UV treatment and other surface treatments may be performed, or an easy-adhesion layer and a release layer may be coated during the film manufacturing process.
特に、本発明の第2のフィルムのポリマーA層に疎水部分を含むポリマーを含有している場合は、従来、フィルムの濡れ性を向上させるような条件と比較して非常に弱い条件にて実施し、疎水性部分を含むポリマーに、各種機能性膜との密着性を損なわない範囲で運動エネルギーを与える方法を用いることで、ポリマーA層の極性を特定範囲に制御して機能性膜の特性、品位を良好とすることができる。 In particular, when the polymer A layer of the second film of the present invention contains a polymer containing a hydrophobic moiety, the wettability of the film is conventionally improved under very weak conditions compared to the conditions for improving the wettability of the film. Then, by using a method of applying kinetic energy to a polymer containing a hydrophobic portion within a range that does not impair the adhesion with various functional films, the polarity of the polymer A layer is controlled within a specific range and the properties of the functional film are improved. , the quality can be good.
本発明における特性の測定方法、および効果の評価方法は次の通りである。なお、以下において、実施例1~5、8~12、25、29~31、34、35、36、37は、参考例1~5、8~12、25、29~31、34、35、36、37と読み替えるものとする。
Methods for measuring properties and evaluating effects in the present invention are as follows. In the following, Examples 1 to 5, 8 to 12, 25, 29 to 31, 34, 35, 36, and 37 refer to Reference Examples 1 to 5, 8 to 12, 25, 29 to 31, 34, 35, 36 and 37 shall be read.
(1)ポリマーの組成
公知のポリマー組成分析手法(FT-IR(フーリエ変換赤外分光光度計)、NMR(核磁気共鳴)など)によりポリマーA層の組成を求めた。ポリマーA層のうちポリエステルが含まれている場合においては、ポリマーA層をフィルムから削り取った後、ヘキサフルオロイソプロパノール(HFIP)に溶解し、1H-NMRおよび13C-NMRを用いて各モノマー残基成分や副生ジエチレングリコールについて含有量を定量した。なお、本発明のフィルムについては、フィルム製造時の混合比率から計算により、組成を算出した。(1) Polymer Composition The composition of the polymer A layer was determined by a known polymer composition analysis method (FT-IR (Fourier transform infrared spectrophotometer), NMR (nuclear magnetic resonance), etc.). In the case where the polymer A layer contains polyester, after scraping the polymer A layer from the film, it was dissolved in hexafluoroisopropanol (HFIP) and each monomer residue was analyzed using 1 H-NMR and 13 C-NMR. The contents of base components and by-product diethylene glycol were quantified. The composition of the film of the present invention was calculated from the mixing ratio at the time of film production.
(2)固有粘度
公知のポリマー組成分析手法(FT-IR、NMRなど)によりポリマーA層がポリエステルである傾向が確認された場合においては、ポリマーA層をオルトクロロフェノールに溶解し、オストワルド粘度計を用いて25℃にて測定した。積層フィルムの場合は、積層厚みに応じて、フィルムの各層を削り取ることで、各層単体の固有粘度を評価した。(2) Intrinsic viscosity When it is confirmed that the polymer A layer tends to be polyester by a known polymer composition analysis method (FT-IR, NMR, etc.), the polymer A layer is dissolved in orthochlorophenol and measured using an Ostwald viscometer. was measured at 25°C using In the case of the laminated film, the intrinsic viscosity of each layer was evaluated by scraping off each layer of the film according to the laminated thickness.
(3)フィルム厚み、層厚み
フィルム厚みを測定する際は、ダイヤルゲージを用いて、フィルムから切り出した試料の任意の場所5ヵ所の厚みを測定し、平均値を求めた。層厚みを測定する際は、フィルムをエポキシ樹脂に包埋し、フィルム断面をミクロトームで切り出した。該断面を透過型電子顕微鏡(日立製作所製TEM H7100)で5000倍の倍率で観察し、各層の厚みを求めた。(3) Film Thickness and Layer Thickness When measuring the film thickness, a dial gauge was used to measure the thickness of a sample cut out from the film at five arbitrary locations, and the average value was obtained. When measuring the layer thickness, the film was embedded in an epoxy resin, and the cross section of the film was cut out with a microtome. The cross section was observed with a transmission electron microscope (TEM H7100 manufactured by Hitachi, Ltd.) at a magnification of 5000 times to determine the thickness of each layer.
(4)融点
示差走査熱量計(SIIナノテクノロジー(旧セイコー電子工業)製、EXTRA DSC6220)を用い、JIS K-7121-1987、JIS K-7122-1987に準拠して測定および、解析を行った。フィルムを5mg、サンプルに用い、25℃から20℃/分で300℃まで昇温した際のDSC曲線より得られた吸熱ピークの頂点の温度を融点とした。なお、積層フィルムの場合は、フィルムの各層を削り取ることで、各層単体の融点を測定し、複数の融点が観測された場合は、最も面積が大きな吸熱ピークを層の融点として採用した。(4) Using a melting point differential scanning calorimeter (EXTRA DSC6220, manufactured by SII Nano Technology (formerly Seiko Electronics)), measurement and analysis were performed in accordance with JIS K-7121-1987 and JIS K-7122-1987. . 5 mg of film was used as a sample, and the temperature at the top of the endothermic peak obtained from the DSC curve when the temperature was raised from 25° C. to 300° C. at 20° C./min was taken as the melting point. In the case of a laminated film, the melting point of each layer was measured by scraping off each layer of the film, and when multiple melting points were observed, the endothermic peak with the largest area was adopted as the melting point of the layer.
(5)Rm1、Ra1
BrukerAXS製「NanoScopeV Dimension Icon」などのAFM(原子間力顕微鏡)において、シリコンカンチレバーを探針として適用し、タッピングモードにて、フィルム、もしくは180℃5分間加熱処理を行ったフィルムの表面形状を計測した。なお、走査範囲は3μm角とし、走査速度は0.4Hz、測定は室温(25℃)、大気中にて実施した。なお、測定の前処理として、フィルムを1cm角程度に切り出し、エポキシ樹脂でシリコンウェハに固定した後に測定を行った。その後、AFMに付属のソフトウェア(例えば、Nano Scope Analysisなど)を用いて、カットオフ3nmの条件にて最大高さ、算術平均粗さを算出し、それぞれにおいて5回の測定の平均値を計算した。測定方向(探針の走査方向)は、任意の一方向、および任意の一方向と直交する方向の計2方向にて測定を行い、各方向での最大高さ、算術平均粗さの各平均値(すなわち、任意の一方向の5回の測定値と、任意の一方向と直交する方向の5回の測定値の合計10回の測定値の平均値)をそれぞれRm1(nm)、Ra1(nm)として採用した。(5) Rm1, Ra1
In AFM (atomic force microscope) such as "NanoScope V Dimension Icon" made by Bruker AXS, a silicon cantilever is applied as a probe, and the surface shape of a film or a film subjected to heat treatment at 180 ° C for 5 minutes is measured in tapping mode. did. The scanning range was 3 μm square, the scanning speed was 0.4 Hz, and the measurement was performed at room temperature (25° C.) in the atmosphere. As a pretreatment for the measurement, the film was cut into pieces of about 1 cm square, and the measurement was performed after fixing the film to a silicon wafer with an epoxy resin. After that, using the software attached to the AFM (e.g., Nano Scope Analysis, etc.), the maximum height and arithmetic mean roughness were calculated under the condition of a cutoff of 3 nm, and the average value of 5 measurements was calculated for each. . The measurement direction (scanning direction of the probe) is an arbitrary direction and a direction orthogonal to the arbitrary one direction, and the maximum height in each direction and the average of the arithmetic average roughness The values (that is, the average value of a total of 10 measurements of 5 measurements in an arbitrary direction and 5 measurements in a direction orthogonal to an arbitrary direction) are Rm1 (nm) and Ra1 ( nm).
(6)Rm2、Ra2
A4サイズのフィルムを、A4サイズで四辺1cm幅以外がくり抜かれた厚み2mmのアルミニウム枠2枚で挟み込んだ後、アルミニウム枠を金属クリップで固定したサンプルを準備した。その後、180℃に設定したコンベア式オーブン(フジマック製FGJOA9H)にて、オーブン通過時間が5分になるように設定し、フィルムの熱処理を行った。上記方法によって得られた180℃5分間加熱後のフィルムについて、(5)と同様の方法にてAFMでの最大高さ、算術平均粗さを算出し、それぞれにおいて5回の測定の平均値を計算した。測定方向(探針の走査方向)は、任意の一方向、および任意の一方向と直交する方向の計2方向にて測定を行い、各方向での最大高さ、算術平均粗さの各平均値(すなわち、任意の一方向の5回の測定値と、任意の一方向と直交する方向の5回の測定値の合計10回の測定値の平均値)をそれぞれRm2(nm)、Ra2(nm)として採用した。(6) Rm2, Ra2
A sample was prepared by sandwiching an A4 size film between two A4 size aluminum frames each having a thickness of 2 mm and having a width other than 1 cm on all four sides, and then fixing the aluminum frames with metal clips. Thereafter, the film was heat-treated in a conveyor type oven (FGJOA9H manufactured by Fujimac Co., Ltd.) set at 180° C. so that the oven passing time was set to 5 minutes. For the film after heating at 180 ° C. for 5 minutes obtained by the above method, the maximum height by AFM and the arithmetic average roughness were calculated in the same manner as in (5), and the average value of 5 measurements in each was calculated. Calculated. The measurement direction (scanning direction of the probe) is an arbitrary direction and a direction orthogonal to the arbitrary one direction, and the maximum height in each direction and the average of the arithmetic average roughness The values (that is, the average value of a total of 10 measurements of 5 measurements in an arbitrary direction and 5 measurements in a direction orthogonal to an arbitrary direction) are Rm2 (nm) and Ra2 ( nm).
(7)押し込み弾性率
ナノインデンター(エリオニクス製、ENT-2100)を用い、フィルムの一方に「アロンアルファ プロ用耐衝撃」(東亜合成製、接着剤)を1滴塗布し、サンプル固定台に固定して、残りの面を測定面として測定を行った。測定には稜間角115°の三角錐ダイヤモンド圧子(Berkovich圧子)を用いた。測定データは「ENT-2100」の専用解析ソフト(version 6.18)によりデータ処理を行い、押し込み弾性率を求めた。その後、測定面を逆にして同様の測定を実施し、両面の押し込み弾性率を求めた。(7) Using an indentation modulus nanoindenter (manufactured by Elionix, ENT-2100), apply a drop of "Aron Alpha Pro Impact Resistant" (manufactured by Toagosei, adhesive) on one side of the film and fix it on the sample fixing table. Then, measurement was performed using the remaining surface as the measurement surface. A triangular pyramidal diamond indenter (Berkovich indenter) with an edge-to-edge angle of 115° was used for the measurement. The measured data was processed using dedicated analysis software (version 6.18) for "ENT-2100" to obtain the indentation modulus. After that, the measurement surface was reversed and the same measurement was performed to obtain the indentation elastic modulus of both surfaces.
(8)耐痕性
鉄板の上に置いた、5mm角のポリエステルフィルム片(東レ製、“ルミラー”S10(50μm))の上に、評価に用いるフィルムを10枚重ねの状態で被せた。その後、500gの錘(直径20mm、高さ28mmの円柱状)を、ポリエステルフィルム片が被さった位置に1時間放置した。その後、錘を取り除き、非接触表面・層断面形状計測システム(菱化システム製、VertScan2.0 RG300GL-Lite-AC)にてフィルムを1枚ずつ撮影し、付属の解析ソフトにより撮影画面を多項式4次近似にて面補正して表面形状の計測を実施した。合計10枚のうち、5μm以上の段差が確認されたフィルムの枚数について、下記基準にて評価を実施した。
なお、撮影に用いたカメラはSONY製HR-57(1/2インチ)を用い、波長フィルタは530nm white、測定ソフトウェアはVS-Measure Version5.5.1、解析ソフトウェアはVS-Viewer Version5.5.1をそれぞれ用いた。
A: 2枚以下
B: 3枚以上4枚以下
C: 5枚以上。(8) A 5 mm square piece of polyester film (manufactured by Toray, "Lumirror" S10 (50 μm)) placed on an iron plate was covered with 10 films used for evaluation in a stacked state. After that, a 500 g weight (cylindrical with a diameter of 20 mm and a height of 28 mm) was left for 1 hour at the position covered with the piece of polyester film. After that, the weight is removed, the film is photographed one by one with a non-contact surface / layer cross-sectional shape measurement system (Ryoka System, VertScan2.0 RG300GL-Lite-AC), and the photographed screen is converted to polynomial 4 by the attached analysis software. The surface shape was measured by correcting the surface using the following approximation. Of the 10 films in total, the number of films in which a level difference of 5 μm or more was confirmed was evaluated according to the following criteria.
The camera used for photographing was a Sony HR-57 (1/2 inch), the wavelength filter was 530 nm white, the measurement software was VS-Measure Version 5.5.1, and the analysis software was VS-Viewer Version 5.5. 1 were used respectively.
A: 2 or less B: 3 or more and 4 or less C: 5 or more.
(9)機能性膜との密着性(方法1)
フィルムのポリマーA層側に、機能性膜として、フェライト系スラリーを乾燥後の厚みが20μmとなるように塗布した。なお、フェライト系スラリーとしては、軟磁性フェライト粉末(数平均粒子径0.7μm)100部、ポリビニルブチラール樹脂(積水化学工業(株)社製「エスレック BM-S」)30部、可塑剤(フタール酸ジオクチル)5部、トルエン/エタノール混合溶媒(混合比率:6:4)200部よりなるスラリーを使用し、乾燥条件は100℃5分間とした。得られたフィルム/機能性膜(フェライト系スラリーを乾燥させて得られた層)の、機能性膜側に、日東電工製OPP粘着テープ(ダンプロンエースNo.375)を貼り合わせ、幅10mm、長さ150mmの矩形に切り出しサンプルとした。該サンプルの一部をフィルム/機能性膜層間で剥離し、引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期引張チャック間距離100mm、引張速度を20mm/分として、180°剥離試験を行った。剥離長さ130mm(チャック間距離230mm)になるまで測定を行い、剥離長さ25mm~125mmの荷重の平均値を剥離強度とした。なお、測定は5回行い、その平均値を採用した。このようにして求めた剥離強度に対して、下記基準にて機能性膜との密着性を評価した。
A:0.030N/10mm以上、もしくは剥離不可
B:0.010N/10mm以上0.030N/mm未満
C:0.010N/10mm未満。(9) Adhesion with functional film (Method 1)
A ferrite-based slurry was coated as a functional film on the polymer A layer side of the film so that the thickness after drying was 20 μm. The ferrite-based slurry includes 100 parts of soft magnetic ferrite powder (number average particle diameter 0.7 μm), 30 parts of polyvinyl butyral resin (“S-Lec BM-S” manufactured by Sekisui Chemical Co., Ltd.), a plasticizer (phthalate A slurry consisting of 5 parts of dioctyl acid) and 200 parts of a toluene/ethanol mixed solvent (mixing ratio: 6:4) was used, and the drying conditions were 100° C. for 5 minutes. Nitto Denko OPP adhesive tape (Danpron Ace No. 375) was attached to the functional film side of the obtained film/functional film (layer obtained by drying the ferrite-based slurry), and the width was 10 mm. A rectangular sample with a length of 150 mm was cut out. Part of the sample was peeled between the film/functional film layers, and a tensile tester (Tensilon UCT-100 manufactured by Orientec) was used to set the initial tension chuck distance to 100 mm and the tensile speed to 20 mm/min, and peel at 180°. did the test. Measurement was performed until the peel length reached 130 mm (distance between chucks: 230 mm), and the average value of the load over the peel length of 25 mm to 125 mm was taken as the peel strength. In addition, the measurement was performed 5 times and the average value was adopted. Adhesion to the functional film was evaluated based on the following criteria with respect to the peel strength thus obtained.
A: 0.030 N/10 mm or more, or not peelable B: 0.010 N/10 mm or more and less than 0.030 N/mm C: Less than 0.010 N/10 mm.
(10)機能性膜との剥離性(方法1)(加熱後)
(9)と同様にフィルム/機能性膜層を作製したのち、(6)と同様にして180℃5分間の加熱処理を行った。その後は(9)と同様の方法にて剥離強度を算出した。その後、(9)で求めた剥離強度と、180℃5分間加熱処理を行った後の剥離強度を比較し、下記基準にて加熱後の剥離性向上効果を評価した。
A:180℃5分間加熱後に、剥離強度が0.01N/10mm以上低くなった、もしくは剥離不可だったものが剥離可能となった。
B:180℃5分間加熱後に、剥離強度が0.005N/10mm以上、0.01N/10mm未満低くなった。
C:180℃5分間加熱後に、剥離強度が0N/10mmを超えて0.005N/10mm未満低くなった。
D:180℃5分間加熱後に、剥離強度が変化しなかった、もしくは剥離強度が高くなった。(10) Peelability from functional film (Method 1) (after heating)
After producing a film/functional film layer in the same manner as in (9), heat treatment was performed at 180° C. for 5 minutes in the same manner as in (6). After that, the peel strength was calculated by the same method as in (9). Thereafter, the peel strength obtained in (9) was compared with the peel strength after heat treatment at 180° C. for 5 minutes, and the peelability improvement effect after heating was evaluated according to the following criteria.
A: After heating at 180° C. for 5 minutes, the peel strength decreased by 0.01 N/10 mm or more, or peeling was not possible, but became peelable.
B: After heating at 180° C. for 5 minutes, the peel strength decreased by 0.005 N/10 mm or more and less than 0.01 N/10 mm.
C: After heating at 180° C. for 5 minutes, the peel strength exceeded 0 N/10 mm and decreased by less than 0.005 N/10 mm.
D: After heating at 180° C. for 5 minutes, the peel strength did not change or increased.
(11)機能性膜の平滑性(方法1)
(10)と同様にしてフィルムから剥離した機能性膜について、ベック式平滑度試験機(熊谷理機工業株式会社製、HK型)を用いて、ガラスと機能性膜の隙間からの空気流入時間を測定し、下記基準にて評価した。なお、空気流入時間が長いと、機能性膜同士を積層しても空気が流入する隙間が少なく、機能性膜同士を積層して使用する用途において電気特性や部材の小型化で有利な指標である。なお、測定条件としては、測定面積が10cm2、ガラス上へ機能性膜を固定する加圧が100kPa、測定開始時の真空側圧力を0.05MPa、大気側の圧力を0.1MPaとし、0.051MPaから0.052MPaに圧力が変化する時間を空気流入時間とした。
A:20分以上
B:5分以上20分未満
C:1分以上5分未満
D:1分未満。(11) Smoothness of functional film (method 1)
For the functional film peeled from the film in the same manner as in (10), the air inflow time from the gap between the glass and the functional film is was measured and evaluated according to the following criteria. In addition, if the air inflow time is long, even if the functional films are laminated, there are few gaps for air to flow in. This is an advantageous index for electrical properties and miniaturization of members in applications where functional films are laminated and used. be. The measurement conditions were a measurement area of 10 cm 2 , a pressure of 100 kPa for fixing the functional film on the glass, a pressure of 0.05 MPa on the vacuum side at the start of measurement, and a pressure of 0.1 MPa on the atmosphere side. The time required for the pressure to change from 0.051 MPa to 0.052 MPa was defined as the air inflow time.
A: 20 minutes or more B: 5 minutes or more and less than 20 minutes C: 1 minute or more and less than 5 minutes D: Less than 1 minute.
(12)180℃5分間加熱後のポリマーA層の光沢度
(6)と同様にして180℃5分間の加熱処理を行ったフィルムについて、JIS Z-8741-1997に規定された方法に従って、スガ試験機製デジタル変角光沢度計UGV-5Dを用いて、ポリマーA層側の60°鏡面光沢度を測定した。測定はn=5で行い、最大値と最小値を除いた平均値を光沢度とした。なお、光沢度を測定する際には、黒画用紙(キングコーポレーション製、GK8012(厚み0.19mm))をフィルムの測定面の裏側に設置して測定を行った。(12) Glossiness of polymer A layer after heating at 180°C for 5 minutes For a film heat-treated at 180°C for 5 minutes in the same manner as in (6), Suga Using a digital variable angle gloss meter UGV-5D manufactured by Test Instruments, the 60° specular gloss of the polymer A layer side was measured. The measurement was performed with n=5, and the average value excluding the maximum and minimum values was taken as the glossiness. In addition, when measuring the glossiness, black drawing paper (GK8012 (thickness: 0.19 mm) manufactured by King Corporation) was placed on the back side of the measurement surface of the film.
(13)主配向軸方向、主配向軸方向と直交する方向
フィルムの任意の点において100mm×100mmの寸法でサンプルを切り出し、KSシステムズ(現王子計測機器)製のマイクロ波分子配向計MOA-2001A(周波数4GHz)を用い、ポリエステルフィルムの面内の主配向軸方向を求めた。また、得られた主配向軸方向を元に、主配向軸方向と直交する方向についても求めた。(13) A sample with a size of 100 mm × 100 mm was cut out at an arbitrary point of the film in the direction of the main orientation axis or in a direction perpendicular to the direction of the main orientation axis, and a microwave molecular orientation meter MOA-2001A manufactured by KS Systems (now Oji Scientific Instruments) was used. (frequency 4 GHz), the in-plane main orientation axis direction of the polyester film was determined. Further, based on the obtained main orientation axis direction, the direction perpendicular to the main orientation axis direction was also determined.
(14)引裂き伝播抵抗
重荷重引裂試験機(東洋精機製)を用いて、JIS K-7128-2-1998に沿って測定した。サンプルは、主配向軸方向、および主配軸方向と直交する方向にそれぞれ75mm×63mmとし、その75mmの辺の中央部の位置に端から20mmの深さの切れ込みを入れ、残り43mmを引き裂いたときの指示値を読みとって主配向軸方向の引裂力(N)を求めた。次に、指示値より読み取った主配向軸方向の引裂力(N)をフィルム厚み(mm)で除して主配向軸方向の引裂き伝播抵抗を求めた。なお、測定は10回ずつ行い、10回の平均値を採用した。また、測定サンプルを主配向軸方向と直交する方向、および主配軸方向にそれぞれ75mm×63mmとした以外は上記と同様に測定を行い、主配向軸方向と直交する方向の引裂き伝播抵抗を求めた。(14) Tear Propagation Resistance Measured according to JIS K-7128-2-1998 using a heavy load tear tester (manufactured by Toyo Seiki). The sample was 75 mm x 63 mm in the main orientation axis direction and in the direction perpendicular to the main alignment axis direction, and a 20 mm deep cut was made at the center of the 75 mm side, and the remaining 43 mm was torn off. The tearing force (N) in the direction of the main orientation axis was obtained by reading the indicated value at the time. Next, the tear propagation resistance in the main orientation axis direction was obtained by dividing the tear force (N) in the main orientation axis direction read from the indicated value by the film thickness (mm). In addition, the measurement was performed 10 times each, and the average value of 10 times was adopted. In addition, measurement was performed in the same manner as above except that the measurement sample was 75 mm × 63 mm in the direction perpendicular to the main orientation axis direction and in the main orientation axis direction, respectively, and the tear propagation resistance in the direction perpendicular to the main orientation axis direction was obtained. Ta.
(15)表面粗さ
表面粗さ計(小坂研究所製、SE4000)を用いて両面について測定した。触針先端半径0.5μm、測定力100μN、測定長1mm、低域カットオフ0.200mm、高域カットオフ0.000mmの条件で測定し、JIS B0601-2001に準拠して算術平均粗さSRaを求めた。(15) Surface roughness Measured on both sides using a surface roughness meter (SE4000, manufactured by Kosaka Laboratory Ltd.). Measured under the conditions of a stylus tip radius of 0.5 μm, a measuring force of 100 μN, a measuring length of 1 mm, a low frequency cutoff of 0.200 mm, and a high frequency cutoff of 0.000 mm, the arithmetic mean roughness SRa in accordance with JIS B0601-2001. asked for
(16)破断伸度
(13)の方法で主配向軸方向、および主配向軸方向と直交する方向を求めた後、150mm×30mm(主配向軸方向×主配向軸方向と直交する方向)の矩形に切り出してサンプルを作製した。引張試験機(オリエンテック製テンシロンUCT-100)に試長(初期引張チャック間距離(Sa))が50mmとなるようにサンプルをセットし、引張速度300mm/分でサンプルが破断した際のチャック間距離(Sb)を求めた。Sa、Sbについて10回の測定を行い、10回の平均値を(Sb-Sa)/Sa×100の計算式で求めた値を主配向軸方向の破断伸度(%)とした。また、主配向軸方向と直交する方向の破断伸度(%)についても、150mm×10mm(主配向軸方向と直交する方向×主配向軸方向)の矩形サンプルを用いて測定を行って求めた。(16) Breaking elongation After determining the main orientation axis direction and the direction perpendicular to the main orientation axis direction by the method of (13), 150 mm × 30 mm (main orientation axis direction × direction perpendicular to the main orientation axis direction) A sample was prepared by cutting out into a rectangle. Set the sample in a tensile tester (Tensilon UCT-100 made by Orientec) so that the test length (initial tensile chuck distance (Sa)) is 50 mm, and the sample is broken at a tensile speed of 300 mm / min. A distance (Sb) was obtained. Sa and Sb were measured 10 times, and the average value of 10 times was obtained by the formula (Sb-Sa)/Sa×100, and the elongation at break (%) in the direction of the main orientation axis was taken. The elongation at break (%) in the direction perpendicular to the main orientation axis direction was also obtained by measuring a rectangular sample of 150 mm x 10 mm (direction perpendicular to the main orientation axis direction x main orientation axis direction). .
(17)破断強度
(16)の方法で主配向軸方向の破断伸度を求めた際に、サンプルが破断した際の応力を10回読み取り、10回の平均値を主配向軸方向の破断強度(MPa)とした。また、(16)の方法で主配向軸方向と直交する方向の破断伸度を求めた際に、サンプルが破断した際の応力を10回読み取り、10回の平均値を主配向軸方向と直交する方向の破断強度(MPa)とした。(17) Breaking strength When the breaking elongation in the direction of the main orientation axis is obtained by the method of (16), the stress when the sample breaks is read 10 times, and the average value of 10 times is the breaking strength in the direction of the main orientation axis. (MPa). Further, when the breaking elongation in the direction perpendicular to the main orientation axis direction was obtained by the method of (16), the stress when the sample broke was read 10 times, and the average value of 10 times was taken perpendicular to the main orientation axis direction. The breaking strength (MPa) in the direction of
(18)加工性(方法1)
300mm幅、200m長(6インチ、350mm長コア巻)のフィルムを準備し、下記条件で、3インチ、350mm長コアに巻返しを行い、搬送速度、張力を変増加しながら下記の基準で評価を行った。
A:速度10m/分、搬送張力70N/mで巻き返しても破れが発生しなかった。
B:速度5m/分、搬送張力50N/mで巻き返しても破れが発生しなかったが、速10m/分、搬送張力70N/mに変更すると破れが発生した。
C:速度5m/分、搬送張力35N/mで巻き返しても破れが発生しなかったが、速度5m/分、搬送張力50N/mで巻き返すと破れが発生した。
D:速度5m/分、搬送張力35N/mで巻き返しても破れが発生した。(18) Workability (Method 1)
Prepare a film with a width of 300 mm and a length of 200 m (6 inches, 350 mm long core winding), rewind it on a 3 inch, 350 mm long core under the following conditions, and evaluate it according to the following criteria while varying and increasing the transport speed and tension. did
A: No breakage occurred even when rewound at a speed of 10 m/min and a conveying tension of 70 N/m.
B: No tear occurred even when rewinding at a speed of 5 m/min and a conveying tension of 50 N/m, but a tear occurred when the speed was changed to 10 m/min and a conveying tension of 70 N/m.
C: No tear occurred even when rewinding at a speed of 5 m/min and a conveying tension of 35 N/m, but a tear occurred when rewinding at a speed of 5 m/min and a conveying tension of 50 N/m.
D: Breakage occurred even when rewound at a speed of 5 m/min and a conveying tension of 35 N/m.
(19)表面自由エネルギーSE1
23℃、65%RHの条件下で24時間調湿したフィルムについて、接触角計(協和界面化学製CA-D型)を使用して、水、エチレングリコ-ル、ホルムアミド、及びヨウ化メチレンの4種類の測定液を用い、協和界面化学(株)製接触角計CA-D型を用いて、フィルム表面に対する静的接触角を求めた。それぞれの液体について得られた接触角と測定液の表面張力の各成分を下式にそれぞれ代入し、4つの式からなる連立方程式をγL 、γ+ 、γ- について解いた。(19) Surface free energy SE1
Water, ethylene glycol, formamide, and methylene iodide were measured using a contact angle meter (Kyowa Interface Science CA-D type) on a film that had been conditioned for 24 hours under conditions of 23°C and 65% RH. A contact angle meter CA-D manufactured by Kyowa Kaimen Kagaku Co., Ltd. was used to determine the static contact angle with respect to the film surface using four kinds of measurement liquids. Each component of the contact angle and the surface tension of the liquid to be measured obtained for each liquid was substituted into the following equations, and four simultaneous equations were solved for γ L , γ + , and γ − .
(γL γj
L )1/2 +2(γ+ γj
-)1/2 +2(γj
+γ-)1/2 =(1+cosθ)[γj
L +2(γj
+ γj
- )1/2]/2
ただし、γ=γL +2(γ+ γ- )1/2γj =γj
L +2(γj
+γj
- )1/2ここで、γ、γL 、γ+ 、γ- は、それぞれ、フィルム表面の表面自由エネルギー、長距離間力項、ルイス酸パラメーター、ルイス塩基パラメーターを、また、γj 、γj
L 、γj
+ 、γj
- は、それぞれ、用いた測定液の表面自由エネルギー、長距離間力項、ルイス酸パラメーター、ルイス塩基パラメーターをあらわすものとする。(γ L γ j L ) 1/2 + 2(γ + γ j - ) 1/2 + 2(γ j + γ - ) 1/2 = (1 + cos θ)[γ j L + 2(γ j + γ j - ) 1 /2 ]/2
However, γ = γ L + 2 (γ + γ - ) 1/2 γ j = γ j L + 2 (γ j + γ j - ) 1/2 where γ, γ L , γ + and γ - are respectively , the surface free energy of the film surface, the long-range force term, the Lewis acid parameter, and the Lewis base parameter, and γ j , γ j L , γ j + , γ j − are the surface free It shall represent the energy, the long-range force term, the Lewis acid parameter, and the Lewis base parameter.
ここで用いた各液体の表面張力は、Oss("Fundamentals ofAdhesion", L.H.Lee(Ed.), p153, Plenum ess, New York(1991))によって提案された表1の値を用いた。なお、各測定液における静的接触角は、5回の測定の平均値を採用した。 As the surface tension of each liquid used here, the values in Table 1 proposed by Oss ("Fundamentals of Adhesion", L.H. Lee (Ed.), p153, Plenum ess, New York (1991)) were used. The average value of five measurements was adopted as the static contact angle for each liquid to be measured.
(20)表面自由エネルギーSE2
A4サイズのフィルムを、A4サイズで四辺1cm幅以外がくり抜かれた厚み2mmのアルミニウム枠2枚で挟み込んだ後、アルミニウム枠を金属クリップで固定したサンプルを準備した。その後、180℃に設定したコンベア式オーブン(フジマック製FGJOA9H)にて、オーブン通過時間が5分になるように設定し、フィルムの熱処理を行った。上記方法によって得られた180℃5分間加熱後のフィルムについて、(19)と同様の方法にて表面自由エネルギーを求め、SE2とした。(20) Surface free energy SE2
A sample was prepared by sandwiching an A4 size film between two A4 size aluminum frames each having a thickness of 2 mm and having a width other than 1 cm on all four sides, and then fixing the aluminum frames with metal clips. Thereafter, the film was heat-treated in a conveyor type oven (FGJOA9H manufactured by Fujimac Co., Ltd.) set at 180° C. so that the oven passing time was set to 5 minutes. For the film obtained by the above method after heating at 180° C. for 5 minutes, the surface free energy was determined by the same method as in (19), and was defined as SE2.
(21)機能性膜との密着性(方法2)
フィルムのポリマーA層側に、機能性膜として、導電性ペーストを乾燥後の厚みが20μmとなるように塗布した。導電性ペーストとしては、エポキシ系接着剤(東亞合成製“AS-60”)100質量部に、50%粒子径(メディアン径)が5.9μmの銀コート銅粉(福田金属箔粉工業製“Cu-HWQ5μm”)150質量部を混合したものを使用し、乾燥条件は100℃5分間とした。得られたフィルム/機能性膜(導電性ペーストを乾燥させて得られた層)の、機能性膜側に、日東電工製OPP粘着テープ(ダンプロンエースNo.375)を貼り合わせ、幅10mm、長さ150mmの矩形に切り出しサンプルとした。該サンプルの一部をフィルム/機能性膜間で剥離し、引張試験機(オリエンテック製テンシロンUCT-100)を用いて、初期引張チャック間距離100mm、引張速度を20mm/分として、180°剥離試験を行った。剥離長さ130mm(チャック間距離230mm)になるまで測定を行い、剥離長さ25mm~125mmの荷重の平均値を剥離強度とした。なお、測定は5回行い、その平均値を採用した。このようにして求めた剥離強度に対して、下記基準にて機能性膜との密着性を評価した。
A:0.030N/10mm以上、もしくは剥離不可
B:0.010N/10mm以上0.030N/mm未満
C:0.010N/10mm未満。(21) Adhesion with functional film (Method 2)
A conductive paste was applied as a functional film on the polymer A layer side of the film so that the thickness after drying was 20 μm. As the conductive paste, 100 parts by mass of an epoxy adhesive (“AS-60” manufactured by Toagosei Co., Ltd.) and silver-coated copper powder with a 50% particle size (median diameter) of 5.9 μm (“Fukuda Metal Foil & Powder Co., Ltd.” A mixture of 150 parts by mass of Cu--HWQ (5 μm″) was used, and the drying conditions were 100° C. for 5 minutes. Nitto Denko OPP adhesive tape (Danpron Ace No. 375) is attached to the functional film side of the obtained film / functional film (layer obtained by drying the conductive paste), and the width is 10 mm, A rectangular sample with a length of 150 mm was cut out. A portion of the sample was peeled between the film and the functional film, and a tensile tester (Tensilon UCT-100 manufactured by Orientec) was used to set the initial tension chuck distance to 100 mm and the tensile speed to 20 mm/min. did the test. Measurement was performed until the peel length reached 130 mm (distance between chucks: 230 mm), and the average value of the load over the peel length of 25 mm to 125 mm was taken as the peel strength. In addition, the measurement was performed 5 times and the average value was adopted. Adhesion to the functional film was evaluated based on the following criteria with respect to the peel strength thus determined.
A: 0.030 N/10 mm or more, or not peelable B: 0.010 N/10 mm or more and less than 0.030 N/mm C: Less than 0.010 N/10 mm.
(22)機能性膜との剥離性(方法2)(加熱後)
(21)と同様にフィルム/機能性膜を作製したのち、(20)と同様にして180℃5分間の加熱処理を行った。その後は(21)と同様の方法にて剥離強度を算出した。その後、(21)で求めた剥離強度と、180℃5分間加熱処理を行った後の剥離強度を比較し、下記基準にて加熱後の剥離性向上効果を評価した。
A:180℃5分間加熱後に、剥離強度が0.01N/10mm以上低くなった、もしくは剥離不可だったものが剥離可能となった。
B:180℃5分間加熱後に、剥離強度が0.005N/10mm以上、0.01N/10mm未満低くなった。
C:180℃5分間加熱後に、剥離強度が0N/10mmを超えて0.005N/10mm未満低くなった。
D:180℃5分間加熱後に、剥離強度が変化しなかった、もしくは剥離強度が高くなった。(22) Peelability from functional film (Method 2) (after heating)
After producing a film/functional film in the same manner as in (21), heat treatment was performed at 180° C. for 5 minutes in the same manner as in (20). After that, the peel strength was calculated in the same manner as in (21). Thereafter, the peel strength obtained in (21) was compared with the peel strength after heat treatment at 180° C. for 5 minutes, and the peelability improvement effect after heating was evaluated according to the following criteria.
A: After heating at 180° C. for 5 minutes, the peel strength decreased by 0.01 N/10 mm or more, or peeling was not possible, but became peelable.
B: After heating at 180° C. for 5 minutes, the peel strength decreased by 0.005 N/10 mm or more and less than 0.01 N/10 mm.
C: After heating at 180° C. for 5 minutes, the peel strength exceeded 0 N/10 mm and decreased by less than 0.005 N/10 mm.
D: After heating at 180° C. for 5 minutes, the peel strength did not change or increased.
(23)機能性膜の均一性
(21)と同様にフィルム/機能性膜を作製したのち、機能性膜の表面比抵抗を測定し、下記基準にて評価した。機能性膜の組成が均一であれば、機能性膜に含有される金属が均一に分散し、電流が流れやすくなるので表面比抵抗は小さくなり、機能性膜が均一であることの指標となる。なお、表面比抵抗の測定方法としては、フィルムを200mm×200mmに切り取った後、23℃、相対湿度25%に調湿された部屋にて24時間放置後、その雰囲気下で、ポリマーA層側についてデジタル超高抵抗/微小電流系R8340A(アドバンテスト製)を用いて測定を行い、10回の平均値を求めたのち下記基準で評価した。
A:1.0×108Ω/sq以下
B:1.0×108Ω/sqを超えて1.0×1013Ω/sq以下
C:1.0×1013Ω/sqを超えて1.0×1015Ω/sq以下
D:1.0×1015Ω/sqを超えた値
(24)Sd2、Sp2
(20)と同様にして180℃5分間の加熱処理を行ったフィルムについて、分散力Sd2、極性力Sp2は、次にようにして求めた。まず、拡張Fowkes式とYoungの式から、下記式(e)を導いた。
〔拡張Fowkes式〕
γSL=γS +γL -2(γsd ・γLd )1/2 -2(γsD ・γLD )1/2 -2(γsh ・γLh )1/2
〔Youngの式〕
γS =γSL+γL cosθ
γS :固体の表面自由エネルギー
γL :液体の表面張力
γSL:固体と液体の界面の張力
θ :液体との接触角
γsd ,γLd :γS ,γL の分散力成分
γsD,γLD :γS ,γL の極性力成分
γsh ,γhL :γS ,γL の水素結合成分
(γsd ・γLd )1/2 +(γsD ・γLD )1/2 +(γsh ・γLh )1/2=γL (1+cosθ)/2 ・・・(e)
次に、表面張力の各成分が既知である4種類の液体について、180℃5分間の加熱処理を行ったフィルムとの接触角を測定し、式(e)に代入、各液体についての3元1次連立方程式を解くことで、180℃5分間の加熱処理を行ったフィルムの表面自由エネルギー中の分散力成分γsdをSd2、極性力成分γsDをSp2として採用した。連立方程式の解法には数値計算ソフト“Mathematica”を用いた。また、接触角の測定には、水、エチレングリコール、ホルムアミド、ヨウ化メチレンの測定液を用い、測定機は協和界面化学(株)製接触角計CA-D型を使用した。なお、各測定液における静的接触角は、5回の測定の平均値を採用した。(23) Uniformity of functional film After producing a film/functional film in the same manner as in (21), the surface resistivity of the functional film was measured and evaluated according to the following criteria. If the composition of the functional film is uniform, the metal contained in the functional film will be uniformly dispersed, and current will flow easily, so the surface resistivity will be small, which is an indicator of the uniformity of the functional film. . In addition, as a method for measuring the surface specific resistance, after cutting the film into 200 mm × 200 mm, after leaving it for 24 hours in a room conditioned at 23 ° C. and a relative humidity of 25%, under that atmosphere, the polymer A layer side was measured using a digital ultra-high resistance/micro current system R8340A (manufactured by ADVANTEST), the average value of 10 times was obtained, and then evaluated according to the following criteria.
A: 1.0×10 8 Ω/sq or less B: Over 1.0×10 8 Ω/sq and 1.0×10 13 Ω/sq or less C: Over 1.0×10 13 Ω/sq 1.0×10 15 Ω/sq or less D: Value exceeding 1.0×10 15 Ω/sq (24) Sd2, Sp2
Regarding the film heat-treated at 180° C. for 5 minutes in the same manner as in (20), the dispersion power Sd2 and the polar power Sp2 were obtained as follows. First, the following formula (e) was derived from the extended Fowkes formula and Young's formula.
[Extended Fowkes formula]
γSL = γS + γL −2 (γsd · γLd ) 1/2 −2 (γsD · γLD ) 1/2 −2 (γsh · γLh ) 1/2
[Young's formula]
γS = γSL + γL cos θ
γS: Surface free energy of solid γL: Surface tension of liquid γSL: Tension of interface between solid and liquid θ: Contact angle with liquid γsd, γLd: Dispersion force component of γS and γL γsD, γLD: Polar force of γS and γL Components γsh , γhL : Hydrogen bond components of γS, γL (γsd γLd ) 1/2 + (γsD γLD ) 1/2 + (γsh γLh ) 1/2 = γL (1 + cos θ)/2 (e )
Next, for four types of liquids with known surface tension components, the contact angle with a film that was subjected to heat treatment at 180 ° C. for 5 minutes was measured, substituted into formula (e), and ternary for each liquid By solving the linear simultaneous equations, the dispersion force component γsd and the polar force component γsD in the surface free energy of the film heat-treated at 180° C. for 5 minutes were adopted as Sd2 and Sp2, respectively. Numerical calculation software "Mathematica" was used to solve the simultaneous equations. Further, the contact angle was measured using a measuring liquid of water, ethylene glycol, formamide and methylene iodide, and a contact angle meter CA-D manufactured by Kyowa Interface Science Co., Ltd. was used as the measuring instrument. The average value of five measurements was adopted as the static contact angle for each liquid to be measured.
(25)加工性(方法2)
300mm幅、200m長(6インチ、350mm長コア巻)のフィルムを準備し、下記条件で、3インチ、350mm長コアに巻返しを行い、搬送速度、張力を変増加しながら下記の基準で評価を行った。
A:速度10m/分、搬送張力70N/mで巻き返しても破れが発生しなかった。
B:速度5m/分、搬送張力50N/mで巻き返しても破れが発生しなかったが、速10m/分、搬送張力70N/mに変更すると破れが発生した。
C:速度5m/分、搬送張力50N/mで巻き返すと破れが発生した。(25) Workability (Method 2)
Prepare a film with a width of 300 mm and a length of 200 m (6 inches, 350 mm long core winding), rewind it on a 3 inch, 350 mm long core under the following conditions, and evaluate it according to the following criteria while varying and increasing the transport speed and tension. did
A: No breakage occurred even when rewound at a speed of 10 m/min and a conveying tension of 70 N/m.
B: No tear occurred even when rewinding at a speed of 5 m/min and a conveying tension of 50 N/m, but a tear occurred when the speed was changed to 10 m/min and a conveying tension of 70 N/m.
C: Breakage occurred when rewinding at a speed of 5 m/min and a conveying tension of 50 N/m.
(26)機能性膜の平滑性(方法2)
(22)と同様にしてフィルムから剥離した機能性膜について、蛍光灯の下に置き、視認される蛍光灯の像を下記基準で評価した。
A:蛍光灯の輪郭がはっきりと確認できた。
B:蛍光灯の輪郭がぼやけて見えるものの、蛍光灯の状態をほぼ確認できた。
C:蛍光灯の輪郭がほとんど確認できなかった。(26) Smoothness of functional film (method 2)
The functional film peeled off from the film in the same manner as in (22) was placed under a fluorescent lamp, and the visible image of the fluorescent lamp was evaluated according to the following criteria.
A: The outline of the fluorescent lamp was clearly confirmed.
B: Although the outline of the fluorescent lamp appears blurred, the state of the fluorescent lamp can be almost confirmed.
C: The outline of the fluorescent lamp could hardly be confirmed.
(27)主配向軸方向、主配向軸方向と直交する方向
フィルムの任意の点において100mm×100mmの寸法でサンプルを切り出し、KSシステムズ(現王子計測機器)製のマイクロ波分子配向計MOA-2001A(周波数4GHz)を用い、ポリエステルフィルムの面内の主配向軸方向を求めた。また、得られた主配向軸方向を元に、主配向軸方向と直交する方向についても求めた。
本発明のフィルムの製造には下記の樹脂を使用した。(27) A sample with a size of 100 mm × 100 mm was cut out at an arbitrary point of the film in the direction of the main orientation axis or in a direction perpendicular to the direction of the main orientation axis, and a microwave molecular orientation meter MOA-2001A manufactured by KS Systems (now Oji Scientific Instruments) was used. (frequency 4 GHz), the in-plane main orientation axis direction of the polyester film was determined. Further, based on the obtained main orientation axis direction, the direction perpendicular to the main orientation axis direction was also determined.
The following resins were used in the production of the films of the present invention.
(ポリエステル1)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂を製造後、数平均粒子径2.2μmのシリカ粒子をポリエチレンテレフタレート樹脂100質量%に対して0.04質量%含有させた、粒子含有ポリエチレンテレフタレート樹脂(固有粘度0.63、融点255℃)。(Polyester 1)
After producing a polyethylene terephthalate resin containing 100 mol % of terephthalic acid as a dicarboxylic acid component and 100 mol % of ethylene glycol as a glycol component, silica particles having a number average particle diameter of 2.2 μm are added to 100% by mass of the polyethylene terephthalate resin. Particle-containing polyethylene terephthalate resin (intrinsic viscosity: 0.63, melting point: 255°C).
(ポリオレフィン2)
無水マレイン酸が結合されている変性ポリオレフィン系樹脂として、三洋化成製“ユーメックス”1001(融点142℃)を用いた。
(ポリエステル3)
ポリブチレンテレフタレート90質量%と、ポリテトラメチレングリコールを10質量%とをブロック共重合させたポリエステル系樹脂(固有粘度1.1、融点215℃)を用いた。(Polyolefin 2)
As the modified polyolefin resin to which maleic anhydride is bound, Sanyo Kasei's "Umex" 1001 (melting point: 142° C.) was used.
(Polyester 3)
A polyester resin (intrinsic viscosity: 1.1, melting point: 215° C.) obtained by block-copolymerizing 90% by mass of polybutylene terephthalate and 10% by mass of polytetramethylene glycol was used.
(ポリオレフィン4)
ポリプロピレン系樹脂として、住友化学製R101(MFR=19、融点163℃)を用いた。(Polyolefin 4)
Sumitomo Chemical's R101 (MFR=19, melting point 163° C.) was used as the polypropylene resin.
(ポリオレフィン5)
環状ポリオレフィン系樹脂として、ポリプラスチックス製“TOPAS”8007F-04(融点なし)を用いた。(Polyolefin 5)
As the cyclic polyolefin resin, "TOPAS" 8007F-04 (no melting point) manufactured by Polyplastics was used.
(ポリオレフィン6)
ポリエチレン系主鎖に、メタクリル酸(カルボン酸)の水素イオンの一部を金属イオンに置換した側鎖が結合されている変性ポリオレフィン系樹脂として、三井デュポンポリケミカル製“ハイミラン”1707(融点90℃)を用いた。(Polyolefin 6)
"Himilan" 1707 (melting point 90°C) manufactured by Mitsui DuPont Polychemicals is used as a modified polyolefin resin in which a side chain obtained by replacing some of the hydrogen ions of methacrylic acid (carboxylic acid) with metal ions is bonded to a polyethylene-based main chain. ) was used.
(アクリル7)
DIC製“ファインタック”CT-3088を74質量%に対して、熱膨張性微小球(マイクロスフェアF-50)を26質量%含有させた樹脂塗剤を用いた。
(ポリエステル8)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂を製造後、数平均粒子径3.5μmのシリカ粒子をポリエチレンテレフタレート樹脂100質量%に対して5質量%含有させた、粒子含有ポリエチレンテレフタレート樹脂(固有粘度0.63、融点255℃)。
(ポリエステル9)
ポリブチレンテレフタレート85質量%と、ポリテトラメチレングリコールを15質量%とをブロック共重合させたポリエステル系樹脂(固有粘度1.0、融点213℃)を用いた。
(ポリエステル10)
ポリブチレンテレフタレート90質量%と、ポリテトラメチレングリコールを10質量%とをブロック共重合させたポリエステル系樹脂(固有粘度1.4、融点218℃)を用いた。
(ポリエステル11)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂を製造後、数平均粒子径3.5μmのシリカ粒子をポリエチレンテレフタレート樹脂100質量%に対して20質量%含有させた、粒子含有ポリエチレンテレフタレート樹脂(固有粘度0.65、融点255℃)。(Acrylic 7)
A resin coating agent containing 74% by mass of “Finetac” CT-3088 manufactured by DIC and 26% by mass of thermally expandable microspheres (Microsphere F-50) was used.
(Polyester 8)
After producing a polyethylene terephthalate resin containing 100 mol % of terephthalic acid as a dicarboxylic acid component and 100 mol % of ethylene glycol as a glycol component, silica particles having a number average particle diameter of 3.5 μm are added to 100% by mass of the polyethylene terephthalate resin. Particle-containing polyethylene terephthalate resin (intrinsic viscosity: 0.63, melting point: 255°C).
(Polyester 9)
A polyester resin (intrinsic viscosity of 1.0, melting point of 213° C.) obtained by block-copolymerizing 85% by mass of polybutylene terephthalate and 15% by mass of polytetramethylene glycol was used.
(Polyester 10)
A polyester resin (intrinsic viscosity: 1.4, melting point: 218° C.) obtained by block-copolymerizing 90% by mass of polybutylene terephthalate and 10% by mass of polytetramethylene glycol was used.
(Polyester 11)
After producing a polyethylene terephthalate resin containing 100 mol % of terephthalic acid as a dicarboxylic acid component and 100 mol % of ethylene glycol as a glycol component, silica particles having a number average particle diameter of 3.5 μm are added to 100% by mass of the polyethylene terephthalate resin. Particle-containing polyethylene terephthalate resin (intrinsic viscosity: 0.65, melting point: 255°C).
(ポリエステル12)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が100モル%であるポリエチレンテレフタレート樹脂を製造後、数平均粒子径2.2μmのシリカ粒子をポリエチレンテレフタレート樹脂100質量%に対して0.04質量%含有させた、粒子含有ポリエチレンテレフタレート樹脂(固有粘度0.63)。(Polyester 12)
After producing a polyethylene terephthalate resin containing 100 mol % of terephthalic acid as a dicarboxylic acid component and 100 mol % of ethylene glycol as a glycol component, silica particles having a number average particle diameter of 2.2 μm are added to 100% by mass of the polyethylene terephthalate resin. Particle-containing polyethylene terephthalate resin (intrinsic viscosity of 0.63) containing 0.04% by mass of
(ポリオレフィン13)
無水マレイン酸が結合されている変性ポリオレフィン系樹脂として、三洋化成製“ユーメックス1001”を用いた。(Polyolefin 13)
As the modified polyolefin resin to which maleic anhydride is bound, "Umex 1001" manufactured by Sanyo Chemical Industries, Ltd. was used.
(ポリエステル14)
ポリブチレンテレフタレート90質量%と、ポリテトラメチレングリコールを10質量%とをブロック共重合させた樹脂(固有粘度0.57)を用いた。(Polyester 14)
A resin (intrinsic viscosity of 0.57) obtained by block-copolymerizing 90% by mass of polybutylene terephthalate and 10% by mass of polytetramethylene glycol was used.
(ポリオレフィン15)
ポリプロピレン系樹脂として、住友化学製“R101”(MFR=19)を用いた。(Polyolefin 15)
Sumitomo Chemical's "R101" (MFR=19) was used as the polypropylene-based resin.
(ポリオレフィン16)
環状ポリオレフィン系樹脂として、ポリプラスチックス製“TOPAS8007F-04”を用いた。(Polyolefin 16)
As the cyclic polyolefin resin, "TOPAS8007F-04" manufactured by Polyplastics was used.
(アクリル17)
DIC製“ファインタックCT-3088”74質量%に、熱膨張性微小球(マイクロスフェアF-50)を26質量%含有させた樹脂塗剤を用いた。
ジカルボン酸成分としてテレフタル酸成分が90モル%、イソフタル酸成分が10モル%、グリコール成分としてエチレングリコール成分が100モル%であるイソフタル酸共重合
ポリエチレンテレフタレート樹脂(固有粘度0.7、融点230℃)。(Acrylic 17)
A resin coating agent containing 26% by mass of thermally expandable microspheres (Microsphere F-50) in 74% by mass of "Finetac CT-3088" manufactured by DIC was used.
An isophthalic acid-copolymerized polyethylene terephthalate resin (intrinsic viscosity: 0.7, melting point: 230°C) containing 90 mol% of terephthalic acid component and 10 mol% of isophthalic acid component as the dicarboxylic acid component, and 100 mol% of ethylene glycol component as the glycol component. .
(ポリエステル18)
ジカルボン酸成分としてテレフタル酸成分が100モル%、グリコール成分としてエチレングリコール成分が99.3モル%、テトラメチレングリコールが0.7モル%である、テトラメチレングリコール共重合ポリエチレンテレフタレート樹脂を製造後、数平均粒子径2.2μmのシリカ粒子をポリエチレンテレフタレート樹脂100質量%に対して0.04質量%含有させた、粒子含有ポリエチレンテレフタレート樹脂(固有粘度0.65)。(Polyester 18)
After producing a tetramethylene glycol copolymerized polyethylene terephthalate resin containing 100 mol % of terephthalic acid as a dicarboxylic acid component, 99.3 mol % of ethylene glycol as a glycol component, and 0.7 mol % of tetramethylene glycol, several A particle-containing polyethylene terephthalate resin (intrinsic viscosity of 0.65) containing 0.04% by mass of silica particles having an average particle size of 2.2 μm with respect to 100% by mass of polyethylene terephthalate resin.
(ポリエステル19)
ポリブチレンテレフタレートとポリテトラメチレンテレフタレートのブロック共重合させた樹脂として、東レデュポン製“ハイトレル”7247を用いた。(Polyester 19)
As a block-copolymerized resin of polybutylene terephthalate and polytetramethylene terephthalate, "Hytrel" 7247 manufactured by Toray DuPont was used.
(実施例1)
組成を表の通りとして、ポリエステル1を酸素濃度を0.2体積%としたベント同方向二軸押出機の通常フィーダーに供給し、ポリオレフィン2を、同方向二軸押出機のサイドフィーダーから供給し、ポリマーA層の押出機のシリンダー温度を280℃で溶融し、短管温度を280℃、口金温度を280℃で、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。次いで、長手方向へ延伸温度85℃で長手方向に3.5倍延伸し、すぐに40℃に温度制御した金属ロールで冷却化した。次いでテンター式横延伸機にて予熱温度85℃で1.5秒予熱を行い、延伸温度100℃で幅方向に3.5倍延伸し、そのままテンター内にて、熱処理温度を245℃として熱処理を行った。なお、幅方向に5%縮めながら熱処理を行い、フィルム厚み50μmの二軸配向ポリエステルフィルムを得た。(Example 1)
The composition is as shown in the table, polyester 1 is supplied to a normal feeder of a vented co-rotating twin-screw extruder with an oxygen concentration of 0.2% by volume, and polyolefin 2 is supplied from a side feeder of the co-rotating twin-screw extruder. The polymer layer A was melted at a cylinder temperature of 280°C in an extruder and extruded into a sheet from a T-die onto a cooling drum controlled at 25°C with a short tube temperature of 280°C and a nozzle temperature of 280°C. At that time, static electricity was applied using a wire-shaped electrode having a diameter of 0.1 mm, and the sheet was brought into close contact with a cooling drum to obtain an unstretched sheet. Next, the film was stretched 3.5 times in the longitudinal direction at a stretching temperature of 85°C and immediately cooled to 40°C with metal rolls. Next, the film is preheated at a preheating temperature of 85°C for 1.5 seconds in a tenter-type transverse stretching machine, stretched 3.5 times in the width direction at a stretching temperature of 100°C, and heat-treated as it is in the tenter at a heat treatment temperature of 245°C. went. A biaxially oriented polyester film having a thickness of 50 μm was obtained by performing heat treatment while shrinking the film by 5% in the width direction.
(実施例2,3、6、7、8、9、11、18、19、20、21)
組成、製造条件を表のとおりに変更した以外は、実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Examples 2, 3, 6, 7, 8, 9, 11, 18, 19, 20, 21)
A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that the composition and production conditions were changed as shown in the table.
(実施例4)
組成を表の通りとして、原料をそれぞれ酸素濃度を0.2体積%とした別々のベント同方向二軸押出機に供給した。ポリマーA層についてはポリエステル1を通常フィーダーに供給し、ポリオレフィン2を、サイドフィーダーから供給しポリマーA層の押出機のシリンダー温度を280℃に設定して原料を溶融させた。ポリマーB層については、ポリエステル1を通常フィーダーに供給し、押出機シリンダー温度を280℃に設定して原料を溶融させた。その後、それぞれの押出機にて溶融させたポリマーA層、ポリマーB層の原料について、フィードブロック内でA層/B層の2層構成になるよう合流させた以外は、実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Example 4)
The ingredients were fed to separate vented co-rotating twin-screw extruders, each having an oxygen concentration of 0.2% by volume, with the composition shown in the table. For the polymer A layer, the polyester 1 was supplied to a normal feeder, the polyolefin 2 was supplied from a side feeder, and the cylinder temperature of the extruder for the polymer A layer was set to 280° C. to melt the raw materials. For the polymer B layer, polyester 1 was fed to a normal feeder and the extruder cylinder temperature was set to 280° C. to melt the raw materials. Thereafter, the same procedure as in Example 1 was carried out, except that the raw materials for the polymer A layer and the polymer B layer melted in the respective extruders were combined in the feed block so as to form a two-layer structure of A layer/B layer. to obtain a biaxially oriented polyester film.
(実施例5、13、14、15、16、17、22、23、24、25、26,27、28、29、30、31、32、33、34、35、36)
各層の厚みを表の通りとした以外は、実施例4と同様にして二軸配向ポリエステルフィルムを得た。(Examples 5, 13, 14, 15, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36)
A biaxially oriented polyester film was obtained in the same manner as in Example 4, except that the thickness of each layer was as shown in the table.
(実施例10)
アクリル7を、二軸配向ポリエステルフィルムである東レ製“ルミラー”S10(100μm)に塗工し、80℃で3分間乾燥を行って、ポリエステルフィルムとアクリル7の積層フィルムを得た。(Example 10)
Acrylic 7 was applied to a biaxially oriented polyester film “Lumirror” S10 (100 μm) manufactured by Toray Industries, and dried at 80° C. for 3 minutes to obtain a laminated film of polyester film and acrylic 7 .
(実施例12)
ポリエステル1とポリオレフィン2をいずれも通常フィーダーから供給した以外は、実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Example 12)
A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that both polyester 1 and polyolefin 2 were supplied from a conventional feeder.
(実施例37)
組成を表の通りとした以外は、実施例12と同様にして二軸配向ポリエステルフィルムを得た。(Example 37)
A biaxially oriented polyester film was obtained in the same manner as in Example 12, except that the composition was as shown in the table.
(比較例1、2)
組成、製造条件を表の通りに変更した以外は、実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Comparative Examples 1 and 2)
A biaxially oriented polyester film was obtained in the same manner as in Example 1, except that the composition and production conditions were changed as shown in the table.
(参考実施例1)
組成を表の通りとして、原料をそれぞれ酸素濃度を0.2体積%としたベント同方向二軸押出機に供給し、ポリマーA層の押出機のシリンダー温度を280℃で溶融し、短管温度を280℃、口金温度を280℃で、Tダイより25℃に温度制御した冷却ドラム上にシート状に吐出した。その際、直径0.1mmのワイヤー状電極を使用して静電印加し、冷却ドラムに密着させ未延伸シートを得た。次いで、長手方向へ延伸温度85℃で長手方向に3.5倍延伸し、すぐに40℃に温度制御した金属ロールで冷却化した。次いでテンター式横延伸機にて予熱温度85℃で1.5秒予熱を行い、延伸温度100℃で幅方向に3.5倍延伸し、そのままテンター内にて、幅方向に5%縮めながら、245℃の熱処理温度にて熱処理を行った。その後、得られたフィルムに、コロナ表面処理の照射強度の目安であるE値(=処理強度(W)/(処理電極幅(m)×コロナ表面処理時のフィルム搬送速度(m/分))を1W・分/m2に設定してコロナ表面処理を行い、フィルム厚み50μmの二軸配向ポリエステルフィルムを得た。(Reference Example 1)
The composition is as shown in the table, and the raw materials are supplied to a vented co-rotating twin-screw extruder with an oxygen concentration of 0.2% by volume. was discharged in a sheet form from a T-die onto a cooling drum controlled at 25°C at a die temperature of 280°C. At that time, static electricity was applied using a wire-shaped electrode having a diameter of 0.1 mm, and the sheet was brought into close contact with a cooling drum to obtain an unstretched sheet. Next, the film was stretched 3.5 times in the longitudinal direction at a stretching temperature of 85°C and immediately cooled to 40°C with metal rolls. Next, the film was preheated at a preheating temperature of 85°C for 1.5 seconds in a tenter-type transverse stretching machine, stretched 3.5 times in the width direction at a stretching temperature of 100°C, and was directly in the tenter while shrinking in the width direction by 5%. The heat treatment was performed at a heat treatment temperature of 245°C. After that, the E value (= treatment intensity (W) / (treated electrode width (m) × film transport speed during corona surface treatment (m/min)), which is a measure of the irradiation intensity of the corona surface treatment, was applied to the obtained film. was set to 1 W·min/m 2 and corona surface treatment was performed to obtain a biaxially oriented polyester film having a film thickness of 50 μm.
(参考実施例2,3、6、7、8、11、15、16、20、21)
組成、製造条件を表の通りに変更した以外は、参考実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Reference Examples 2, 3, 6, 7, 8, 11, 15, 16, 20, 21)
A biaxially oriented polyester film was obtained in the same manner as in Reference Example 1, except that the composition and production conditions were changed as shown in the table.
(参考実施例4、10、12)
組成、製造条件を表の通りとし、コロナ表面処理におけるE値を60W・分/m2とした以外は、参考実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Reference Examples 4, 10, 12)
A biaxially oriented polyester film was obtained in the same manner as in Reference Example 1, except that the composition and production conditions were as shown in the table, and the E value in the corona surface treatment was 60 W·min/m 2 .
(参考実施例5)
コロナ表面処理のE値を50W・分/m2に変更した以外は、参考実施例4と同様にして二軸配向ポリエステルフィルムを得た。(Reference Example 5)
A biaxially oriented polyester film was obtained in the same manner as in Reference Example 4, except that the E value of the corona surface treatment was changed to 50 W·min/m 2 .
(参考実施例13、17、18)
組成、製造条件を表の通りとして、原料をそれぞれ酸素濃度を0.2体積%とした別々のベント同方向二軸押出機に供給し、ポリマーA層の押出機のシリンダー温度を280℃、B層押出機シリンダー温度を280℃で溶融し、フィードブロック内でA層/B層の2層構成になるよう合流させた以外は、参考実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Reference Examples 13, 17, 18)
The composition and production conditions are as shown in the table, and the raw materials are supplied to separate co-vented co-rotating twin-screw extruders with an oxygen concentration of 0.2% by volume, and the cylinder temperature of the extruder for polymer A layer is 280 ° C., B A biaxially oriented polyester film was obtained in the same manner as in Reference Example 1, except that the layers were melted at a cylinder temperature of 280°C in the layer extruder and merged to form a two-layer structure of A layer/B layer in the feed block. .
(参考実施例9)
アクリル6を、二軸配向ポリエステルフィルムである東レ製“ルミラー”S10(100μm)に塗工、80℃で3分間乾燥を行って、ポリエステルフィルムとアクリル17の積層フィルムを得た。(Reference Example 9)
Acrylic 6 was applied to a biaxially oriented polyester film “Lumirror” S10 (100 μm) manufactured by Toray and dried at 80° C. for 3 minutes to obtain a laminated film of polyester film and acrylic 17 .
(参考実施例14)
組成、製造条件を表の通りとして、コロナ表面処理を行わなかった以外は、参考実施例1と同様にして二軸延伸ポリエステルフィルムを得た。(Reference Example 14)
A biaxially stretched polyester film was obtained in the same manner as in Reference Example 1, except that the composition and production conditions were as shown in the table and the corona surface treatment was not performed.
(参考実施例19)
組成、製造条件を表の通りとして、原料をそれぞれ酸素濃度を0.2体積%とした別々のベント同方向二軸押出機に供給し、ポリマーA層の押出機のシリンダー温度を280℃、B層押出機シリンダー温度を280℃で溶融し、フィードブロック内でA層/B層/A層の3層構成になるように合流させた以外は、参考実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Reference Example 19)
The composition and production conditions are as shown in the table, and the raw materials are supplied to separate co-vented co-rotating twin-screw extruders with an oxygen concentration of 0.2% by volume, and the cylinder temperature of the extruder for polymer A layer is 280 ° C., B A biaxially oriented polyester was produced in the same manner as in Reference Example 1, except that the cylinder temperature of the layer extruder was melted at 280 ° C., and the three layers of A layer / B layer / A layer were combined in the feed block. got the film.
(参考比較例1、2)
組成、製造条件を表の通りに変更した以外は、参考実施例1と同様にして二軸配向ポリエステルフィルムを得た。(Reference Comparative Examples 1 and 2)
A biaxially oriented polyester film was obtained in the same manner as in Reference Example 1, except that the composition and production conditions were changed as shown in the table.
本発明の第1、第2のフィルムは、加熱前の密着性、加熱後の剥離性を良好にできることから、機能性材料を塗布して機能性材料の薄膜(機能性膜)を得るための工程基材として好ましく用いられる。 The first and second films of the present invention can improve adhesion before heating and peelability after heating. It is preferably used as a process substrate.
Claims (7)
Rm2-Rm1≧3nm・・・(I-2) A film having a polymer A layer on at least one side, wherein the main component of the polymer A layer is a polyester-based resin, and polybutylene terephthalate and polyoxyalkylene glycol are used as polymers different from the polyester-based resin in which the polymer A layer is a main component. The maximum height of the polymer A layer obtained by AFM is Rm1 (nm), and the maximum height of the polymer A layer obtained by AFM after heat treatment at 180 ° C. for 5 minutes is Rm2. (nm), satisfies the following formula (I-2), and the glossiness (60°) of the polymer A layer after heat treatment at 180° C. for 5 minutes is 69 or more, in order to produce a functional film. process base film.
Rm2-Rm1≧3 nm (I-2)
3nm≦(Rm2-Rm1)≦2.0×104nm・・・(I I-2) A process substrate film for producing a functional film according to claim 1, which satisfies the following formula (II-2).
3 nm≦(Rm2−Rm1)≦2.0×10 4 nm (II-2)
6≦(Rm2/Ra2)≦15・・・(III) The functionality according to claim 1 or 2, which satisfies the following formula (III), where Ra2 (nm) is the arithmetic mean roughness of the polymer A layer obtained by AFM after heat treatment at 180 ° C. for 5 minutes. Process substrate film for manufacturing membranes.
6≦(Rm2/Ra2)≦15 (III)
(Rm2/Ra2)-(Rm1/Ra1)>0・・・(IV) The process substrate film for manufacturing a functional film according to claim 1, which satisfies the following formula (IV).
(Rm2/Ra2)-(Rm1/Ra1)>0 (IV)
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017142446 | 2017-07-24 | ||
JP2017142447 | 2017-07-24 | ||
JP2017142447 | 2017-07-24 | ||
JP2017142446 | 2017-07-24 | ||
JP2018116757 | 2018-06-20 | ||
JP2018116756 | 2018-06-20 | ||
JP2018116757 | 2018-06-20 | ||
JP2018116756 | 2018-06-20 | ||
PCT/JP2018/026043 WO2019021814A1 (en) | 2017-07-24 | 2018-07-10 | Film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2019021814A1 JPWO2019021814A1 (en) | 2020-05-28 |
JP7331362B2 true JP7331362B2 (en) | 2023-08-23 |
Family
ID=65040568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018560239A Active JP7331362B2 (en) | 2017-07-24 | 2018-07-10 | film |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7331362B2 (en) |
KR (1) | KR102680427B1 (en) |
CN (1) | CN110997319B (en) |
TW (1) | TWI820032B (en) |
WO (1) | WO2019021814A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11822117B2 (en) * | 2019-10-08 | 2023-11-21 | Corning Incorporated | Primary coating compositions with improved microbending performance |
JP2021172021A (en) | 2020-04-27 | 2021-11-01 | 株式会社コバヤシ | Release film |
JP7536528B2 (en) | 2020-06-29 | 2024-08-20 | 日東電工株式会社 | Laminate |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000344914A (en) | 1999-04-02 | 2000-12-12 | Toray Ind Inc | Roughness-changeable film |
JP2005029688A (en) | 2003-07-14 | 2005-02-03 | Toray Ind Inc | Biaxially oriented polyester film |
JP2009280830A (en) | 2009-08-31 | 2009-12-03 | Toray Ind Inc | Polyester film and its method for manufacturing |
WO2014141866A1 (en) | 2013-03-13 | 2014-09-18 | Dic株式会社 | Hard coat film, protective film, and image display device |
JP2015134922A (en) | 2015-02-05 | 2015-07-27 | 住友ベークライト株式会社 | Mold release film |
JP2016043594A (en) | 2014-08-25 | 2016-04-04 | 東レ株式会社 | Biaxially oriented polyester film for mold release |
JP2016065209A (en) | 2014-09-25 | 2016-04-28 | 日東電工株式会社 | Heat peelable adhesive sheet |
JP2016089150A (en) | 2014-10-31 | 2016-05-23 | 東レ株式会社 | Polyester film for manufacturing optical film |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2682638B2 (en) * | 1988-04-26 | 1997-11-26 | 三井石油化学工業株式会社 | Method for producing polyester resin molded article |
JPH0737098B2 (en) * | 1989-08-17 | 1995-04-26 | 東レ株式会社 | Laminated white polyester film |
JPH10157024A (en) * | 1996-11-29 | 1998-06-16 | Teijin Ltd | Laminated film |
JP2000344915A (en) * | 1999-04-02 | 2000-12-12 | Toray Ind Inc | Roughness-changeable film |
JP4839642B2 (en) * | 2005-03-15 | 2011-12-21 | 住友化学株式会社 | Easy peelable film and lid |
JP4826196B2 (en) * | 2005-10-05 | 2011-11-30 | 住友ベークライト株式会社 | Release film and circuit board manufacturing method |
KR20080096504A (en) * | 2006-02-15 | 2008-10-30 | 도레이 가부시끼가이샤 | Polyester film for molded member |
KR100786011B1 (en) * | 2006-08-24 | 2007-12-14 | 에스케이씨 주식회사 | Polyester film having heat-shrinkage property |
JP5283838B2 (en) * | 2006-11-04 | 2013-09-04 | 日東電工株式会社 | Thermally peelable pressure-sensitive adhesive sheet and adherend recovery method |
JP2008297412A (en) * | 2007-05-30 | 2008-12-11 | Nitto Denko Corp | Heat-peelable adhesive sheet |
JP5632695B2 (en) * | 2009-11-26 | 2014-11-26 | 日東電工株式会社 | Adhesive film with dicing film and method for manufacturing semiconductor device using adhesive film with dicing film |
CN104842621A (en) * | 2010-03-31 | 2015-08-19 | 住友电木株式会社 | Mould release film |
JP5744434B2 (en) | 2010-07-29 | 2015-07-08 | 日東電工株式会社 | Heat release sheet-integrated film for semiconductor back surface, semiconductor element recovery method, and semiconductor device manufacturing method |
JP5888933B2 (en) * | 2011-10-25 | 2016-03-22 | 興人フィルム&ケミカルズ株式会社 | Easy tear biaxially stretched polybutylene terephthalate film |
JP5398814B2 (en) * | 2011-12-02 | 2014-01-29 | 日東電工株式会社 | Method for producing heat-foamable removable acrylic adhesive tape or sheet |
DE102012112965A1 (en) * | 2012-12-21 | 2014-06-26 | Leibniz-Institut Für Neue Materialien Gemeinnützige Gesellschaft Mit Beschränkter Haftung | Object with switchable adhesion |
WO2016017416A1 (en) * | 2014-07-31 | 2016-02-04 | 東レ株式会社 | Polyester film |
CN111808541A (en) * | 2014-09-25 | 2020-10-23 | 日东电工株式会社 | Heat-peelable pressure-sensitive adhesive sheet |
JP6588720B2 (en) * | 2015-03-31 | 2019-10-09 | 興人フィルム&ケミカルズ株式会社 | Easy tear biaxially stretched polybutylene terephthalate film |
-
2018
- 2018-07-10 KR KR1020197038317A patent/KR102680427B1/en active IP Right Grant
- 2018-07-10 JP JP2018560239A patent/JP7331362B2/en active Active
- 2018-07-10 WO PCT/JP2018/026043 patent/WO2019021814A1/en active Application Filing
- 2018-07-10 CN CN201880048855.8A patent/CN110997319B/en active Active
- 2018-07-12 TW TW107124032A patent/TWI820032B/en active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000344914A (en) | 1999-04-02 | 2000-12-12 | Toray Ind Inc | Roughness-changeable film |
JP2005029688A (en) | 2003-07-14 | 2005-02-03 | Toray Ind Inc | Biaxially oriented polyester film |
JP2009280830A (en) | 2009-08-31 | 2009-12-03 | Toray Ind Inc | Polyester film and its method for manufacturing |
WO2014141866A1 (en) | 2013-03-13 | 2014-09-18 | Dic株式会社 | Hard coat film, protective film, and image display device |
JP2016043594A (en) | 2014-08-25 | 2016-04-04 | 東レ株式会社 | Biaxially oriented polyester film for mold release |
JP2016065209A (en) | 2014-09-25 | 2016-04-28 | 日東電工株式会社 | Heat peelable adhesive sheet |
JP2016089150A (en) | 2014-10-31 | 2016-05-23 | 東レ株式会社 | Polyester film for manufacturing optical film |
JP2015134922A (en) | 2015-02-05 | 2015-07-27 | 住友ベークライト株式会社 | Mold release film |
Also Published As
Publication number | Publication date |
---|---|
CN110997319A (en) | 2020-04-10 |
CN110997319B (en) | 2022-09-09 |
TWI820032B (en) | 2023-11-01 |
TW201908379A (en) | 2019-03-01 |
KR20200034963A (en) | 2020-04-01 |
KR102680427B1 (en) | 2024-07-02 |
JPWO2019021814A1 (en) | 2020-05-28 |
WO2019021814A1 (en) | 2019-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6973584B2 (en) | Laminated film | |
TWI317324B (en) | Laminated polyester film and laminated polyester film roll | |
JP6627218B2 (en) | Biaxially oriented polyester film | |
JP7331362B2 (en) | film | |
JP6187025B2 (en) | Biaxially oriented polyester film for mold release | |
JP2017002307A (en) | Polyester film and polarizer protective film | |
JP2023026489A (en) | Film | |
KR102566683B1 (en) | film | |
JP7010218B2 (en) | Film and film manufacturing method | |
JP6878956B2 (en) | the film | |
JP6852598B2 (en) | Laminated film | |
JP2017132990A (en) | Polyester film | |
JP2018184509A (en) | Polyester film | |
JP2018053063A (en) | Polyester film | |
JP2019104247A (en) | Polyester film used as substrate in coating process | |
JP7188537B2 (en) | Release film for manufacturing ceramic green sheets | |
JP7188535B2 (en) | Release film for manufacturing ceramic green sheets | |
JP7188536B2 (en) | Release film for manufacturing ceramic green sheets | |
JP2021050296A (en) | Film | |
JP2019044157A (en) | Thermoplastic resin film | |
JP2018008521A (en) | Biaxially-oriented polyester film for releasing | |
WO2022024492A1 (en) | Polyester film for polarizer protection and polarizing plate comprising said polyester film | |
WO2022024494A1 (en) | Polarizer-protecting polyester film and polarizing plate including said polyester film | |
JP2017052273A (en) | Laminated film | |
JP2017177411A (en) | Laminate film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210421 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210421 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211021 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220517 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220629 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221101 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221223 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230404 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230410 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230711 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230724 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7331362 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |