JP7328178B2 - 車両制御装置、および、自車位置推定方法 - Google Patents

車両制御装置、および、自車位置推定方法 Download PDF

Info

Publication number
JP7328178B2
JP7328178B2 JP2020091076A JP2020091076A JP7328178B2 JP 7328178 B2 JP7328178 B2 JP 7328178B2 JP 2020091076 A JP2020091076 A JP 2020091076A JP 2020091076 A JP2020091076 A JP 2020091076A JP 7328178 B2 JP7328178 B2 JP 7328178B2
Authority
JP
Japan
Prior art keywords
vehicle
unit
information
control device
learning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020091076A
Other languages
English (en)
Other versions
JP2021188914A (ja
Inventor
將裕 清原
岳 緒方
宏樹 太田
真一 天谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Astemo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Astemo Ltd filed Critical Hitachi Astemo Ltd
Priority to JP2020091076A priority Critical patent/JP7328178B2/ja
Priority to CN202180037960.3A priority patent/CN115667847A/zh
Priority to US17/927,096 priority patent/US20230243657A1/en
Priority to PCT/JP2021/003488 priority patent/WO2021240884A1/ja
Publication of JP2021188914A publication Critical patent/JP2021188914A/ja
Application granted granted Critical
Publication of JP7328178B2 publication Critical patent/JP7328178B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • G01C21/30Map- or contour-matching
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/28Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network with correlation of data from several navigational instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/48Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
    • G01S19/485Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/09626Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages where the origin of the information is within the own vehicle, e.g. a local storage device, digital map
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/165Anti-collision systems for passive traffic, e.g. including static obstacles, trees
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/029Location-based management or tracking services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/025Services making use of location information using location based information parameters
    • H04W4/027Services making use of location information using location based information parameters using movement velocity, acceleration information

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Automation & Control Theory (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Navigation (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、自車が走行する周囲環境構造と、地図情報に記録されている構造情報を照合し、地図中の自車位置を推定する、車両制御装置および自車位置推定方法に関する。
従来、測位装置が検出した車両の現在位置を補正する技術として、衛星測位を利用した自車位置推定と、車両に搭載したカメラなどの外界センサを用いてランドマークを認識し、事前に地図情報に記録されたランドマーク位置と照合することによる自車位置推定を組み合わせることで、より精度を高めた自車位置を推定する技術が提案されている。
例えば、特許文献1では、段落0038に「第1車両位置検出部23は、測位部2の測定結果と地図データベース5の地図情報とに基づいて、車両の地図上の位置である第1車両位置を検出する。」との記載があり、段落0039に「第1車両位置検出部23は、カメラの撮像画像から抽出した白線のエッジ点と地図情報に含まれる白線の位置情報とを照合することで、車両の位置を補正する。」との記載がある。すなわち、特許文献1には、衛星測位で得た自車位置を、カメラの検出結果に基づいて補正することで、自車位置の推定精度を改善する自動運転システムが開示されている。
また、特許文献1の請求項1には、「車両の自動運転制御を実行する自動運転システムであって、前記車両の位置を測定する測位部と、地図情報を記憶する地図データベースと、前記測位部の測定結果と前記地図データベースの前記地図情報とに基づいて、前記車両の地図上の位置である第1車両位置を検出する第1車両位置検出部と、前記第1車両位置検出部の検出した前記第1車両位置と前記地図データベースの前記地図情報とに基づいて、前記車両の走行シーンを特定する走行シーン特定部と、前記車両に搭載されたカメラの撮像画像又は前記車両に搭載されたレーダセンサの検出結果、前記測位部の測定結果、及び前記地図データベースの前記地図情報に基づいて、前記走行シーンに予め関連付けられた位置検出処理により、前記車両の地図上の位置である第2車両位置を検出する第2車両位置検出部と、前記第1車両位置と前記第2車両位置との差が閾値以下であるか否かを判定する判定部と、前記第1車両位置と前記第2車両位置との差が閾値以下であると判定された場合、前記第2車両位置に基づいて前記車両の前記自動運転を実行し、前記第1車両位置と前記第2車両位置との差が前記閾値以下ではないと判定された場合、前記第1車両位置に基づいて前記車両の前記自動運転制御を実行する自動運転制御部と、を備える、自動運転システム。」との記載がある。すなわち、特許文献1には、前述した第1車両位置と、走行シーンに関連付けられた位置検出処理による第2車両位置を比較し、両者の差の大きさに応じて、何れの車両位置を採用するかを切り替えることで、自車位置の推定精度を改善する自動運転システムが開示されている。
特開2017-138282号公報
特許文献1では、走行している車線の白線種別や、走行路面の傾斜、トンネル内外などの走行環境に応じて、前述した第2車両位置を検出する方法を選択して切り替えることで、走行シーンに応じて位置算出方法を選択し、精度改善を図る手段が開示されている。
しかしながら、第2車両位置を求める位置検出処理については、位置検出処理方法を環境に応じて切り替えるのみであり、例えば、路面に描画された白線やトンネルといった、走行地点の固定的な環境に対応して自車の検出位置を切り替えることしかできない。
一方で、自動運転システムに用いられるGNSS(Global Navigation Satellite System:全球測位衛星システム)では、受信機周囲に存在する建物等の遮蔽物環境と、その日時での測位衛星の配置によって、検出される自車位置が偏って出力されるが、この位置ずれのある自車位置をそのまま用いるため、精度が悪化するという課題がある。
このような課題を鑑み、本発明では、GNSSに基づいて推定した自車位置の補正量を、環境変化に応じて適切に学習することができる、車両制御装置、および、自車位置推定方法を提供することを目的とする。
上記課題を解決するために、本発明の車両制御装置は、自車位置を推定する自車位置推定部を備え、前記自車位置推定部は、GNSSから取得した絶対位置情報に基づいて、第一車両位置を推定する絶対位置推定部と、車外から取得した相対位置情報に基づいて、第二車両位置を推定する相対位置推定部と、車両情報または衛星情報に基づいて、自車の走行状態の変化を判定する走行状態判定部と、前記第一車両位置と前記第二車両位置の時刻を同期した上で差分量を演算する差分演算部と、前記走行状態ごとに前記差分量を時系列データとして蓄積し、蓄積した時系列データに基づいて前記走行状態ごとの前記第一車両位置の補正量を学習する学習部と、該学習部で算出した補正量に基づいて、前記第一車両位置を補正する位置補正部と、を具備するものとした。
また、本発明の自車位置推定方法は、GNSSから取得した絶対位置情報に基づいて、第一車両位置を推定するステップと、車外から取得した相対位置情報に基づいて、第二車両位置を推定するステップと、車両情報または衛星情報に基づいて、自車の走行状態の変化を判定するステップと、前記第一車両位置と前記第二車両位置の時刻を同期した上で差分量を演算するステップと、前記走行状態ごとに前記差分量を時系列データとして蓄積し、蓄積した時系列データに基づいて前記走行状態ごとの前記第一車両位置の補正量を学習するステップと、学習した補正量に基づいて、前記第一車両位置を補正するステップと、を具備するものとした。
GNSSにおける測位測位は、周囲の構造物による遮蔽・回折・反射の影響や、自車挙動変化による誤差発生の影響や、測位に使用する衛星の組み合わせの影響を受けて、正確な自車位置に対して偏差を持つ。こうした偏差は、周囲の構造物の環境が一定、かつ自車挙動変化が少ない、かつ測位使用衛星の組み合わせが変わらないといった走行環境が一定である間は、大きくは変動しない。
このため、一定の走行環境が継続する場合、外界センサを用いて自車の正確な位置を得られれば、それに対する測位座標の偏差をえることができ、その偏差を用いて精度を改善した測位座標を算出することができるようになる。また、走行環境が変化する場合は、再度補正量である偏差を算出しなおすことで、走行環境毎に最適な補正量を得ることができるようになる。
従って、本発明の車両制御装置、および、自車位置推定方法によれば、走行環境および走行状態に応じて、測位位置の適切な補正量(オフセット)を学習し、走行状態変化の影響を除去することで、走行環境や走行状態が変化しても、地図中の自車位置の高精度な推定を、高頻度で得ることが可能となる。
実施例1の自車位置推定部を含む電子制御ユニットの構成図 実施例1に係る自車位置推定部のブロック図 相対位置推定部の処理内容を示すフローチャート 旋回する走行車両例の模式図 旋回する走行車両例の舵角および車両方位角を表す模式図 走行環境を車速により判別する場合のテーブル 自車位置の推定タイミングを示す模式図 位置補正部の処理内容を示すフローチャート 実施例2に係る自車位置推定部のブロック図 実施例2の相対位置推定部の処理内容を示すフローチャート 横断歩道を外界認識センサで認識するときの説明図 傾斜した道路上にある横断歩道との相対関係を算出するときの説明図 傾斜した道路上にある横断歩道との相対関係を算出するときの説明図
以下、本発明に係る車両制御装置の実施例を、図面を用いて説明する。
図1は、本発明の実施例1に係る自車位置推定部10を備えた車両制御装置100を説明するブロック図である。ここに示すように、車両制御装置100は、自車位置推定部10、自律航法統合部20、地図照合部30、自動運転制御部40を備えている。また、車両制御装置100は、車両情報受信部1a、絶対位置取得センサ1b、相対位置取得センサ1c、アクチュエータ1d、HMI(Human Machine Interface)1e、地図データMを記憶した記憶装置、および、経路生成部50に接続されている。
自車位置推定部10は、車両情報受信部1aからの車両情報、絶対位置取得センサ1bからの絶対位置情報、および、相対位置取得センサ1cからの相対位置情報に基づいて、自車位置を推定し、その位置推定結果を自律航法統合部20に送出する。
自律航法統合部20は、車両情報受信部1aからの車両情報と、自車位置推定部10の位置推定結果に基づき、自車位置を算出して地図照合部30に出力する。
地図照合部30では、自律航法統合部20の位置推定結果と、地図データMに基づき、地図中での自車位置を推定する。さらに、地図照合部30の結果は自動運転制御部40に送られる。
自動運転制御部40では、この地図中での自車位置推定結果と経路生成部50で生成された運転経路を元にアクチュエータ1dを制御し、車両Vの自動運転を実現する。
アクチュエータ1dは、例えば、車両Vの操舵系、駆動系、制動系等を駆動するための各種のアクチュエータであり、HMI1eは、例えば、運転手が操作するハンドル、アクセルペダル、ブレーキペダル、および、それらの操作量を検出するセンサ等である。
なお、車両制御装置100は、具体的には、CPU等の演算装置、半導体メモリ等の主記憶装置、補助記憶装置、および、通信装置などのハードウェアを備えた電子制御ユニット(ECU、Electronic Control Unit)であり、主記憶装置にロードされたプログラムを演算装置が実行することで、自車位置推定部10等の各機能を実現するが、以下では、このようなコンピュータ分野の周知技術を適宜省略しながら、各部の詳細を説明する。
<自車位置推定部10>
図2は、自車位置推定部10の詳細を説明するブロック図である。ここに示すように、自車位置推定部10は、絶対位置推定部11、相対位置推定部12、走行状態判定部13、差分演算部14、学習部15、位置補正部16、を備えている。
<絶対位置推定部11>
絶対位置推定部11は、例えばGNSSの受信装置やスードライト(擬似衛星)などの測位電波を受信できる受信装置といった絶対位置取得センサから得られる信号(絶対位置情報と衛星測位状態情報)に基づき、自車の絶対位置を認識するための1つ以上からなるセンサを用いて自車位置を推定する。なお、絶対位置取得センサによる自車位置および姿勢の推定は高頻度でおこなわれており、例えばGNSSの測位間隔は0.1秒から1秒程度であることが多いが、この測位間隔は自動運転システムの経路誘導機能に対しては十分に更新周期が高速であるといえる。
また、GNSSによる測位は、測位衛星から発信される測位電波を受信し、その到達時刻に基づいて測位衛星と受信機アンテナ間の距離を計測する。衛星配置情報は測位電波に重畳されているため測位衛星の位置は既知であり、それらからの距離が複数得られると、受信機の位置を算出することが可能となる。しかしながら、測位衛星と受信機アンテナとの間に遮蔽物があったり、付近に構造物があったりすると、遮蔽・回折・反射の影響により測位衛星と受信機アンテナ間の距離が不正確になることがある。さらに、GNSSの受信装置からは自車位置だけでなく、ドップラー現象を利用した各衛星からの測位電波の周波数変動を観測することで計測できる自車進行方位や走行速度も得られているものとする。
なお、スードライトにおいてもGNSSと同様のシステムであるため、測位衛星を疑似衛星信号発信器と読み替えることができ、GNSSと類似の特性をもっている。
<相対位置推定部12>
相対位置推定部12は、C2X装置やマーカ読取装置を用いて、自車の位置を高精度に推定する。C2X装置やマーカ読取装置は、自車の走行環境中に設置されるマーカを基準とした相対位置や、発信器から出力される位置情報を基準とした相対位置を得るものであるため、相対位置取得センサ1cとも呼ばれる。そして、相対位置推定部12では、マーカや発信器の位置情報とその位置情報を基準とした自車の相対位置から、自車の絶対位置を算出して出力する。
相対位置取得センサ1cの観測対象となるマーカや発信器は自車からの距離が短く、さらに回折・反射による位置誤差が発生しないため、絶対位置推定部11の位置推定結果よりも、相対位置推定部12の位置推定結果が高精度であることが期待できる。一方で、相対位置推定部12による自車位置および姿勢の推定は、マーカが存在する場所、あるいはC2X通信が成立した場所でのみ行われる。このため、時間的または空間的な観点で離散的であるといえる。
前述のC2X装置およびマーカ読取装置について説明する。C2X装置とは、例えば環境に配置されたビーコン発信器を認識するビーコン受信機、無線LAN(Local Area Network)通信やBluetooth通信などのアクセスポイント装置との路車間通信装置、他車両から情報を受信するための車車間通信装置などを指す。マーカ読取装置とは、例えば環境中に配置された特徴的な標示や標識、磁気を帯びたタグなどのマーカを、カメラや磁気センサなどの対応するセンサを用いて、マーカの種別や位置、姿勢といったマーカ情報を検出し、このマーカ情報を相対位置推定部12に送信する。
<走行状態判定部13>
走行状態判定部13は、(1)旋回角度や車速などの車両情報、(2)衛星配置や可視衛星数などの衛星情報、などが変化することによりGNSSの偏差傾向が変動するため、同一の走行環境が継続していることを判定する機能、走行状態が変化したタイミングを判定する機能、のいずれか、または両方をもつ。車両情報や受信環境に関して、各パラメタ数値を時系列情報として蓄積し、所定のパラメタ数値が変化した場合や、それぞれ一定時間中の変化量が所定の閾値を超えた場合、パラメタの変化量の累積が一定値を超えた場合、などに走行状態が変化したと判定する。また、走行状態判定部13はその出力結果を学習部15に送信する。
前述の車両情報について説明する。車両情報には、車軸部に配置された回転速度センサのほか、各車輪付近に配置され、車輪が一定角度回転するたびにパルスを出力する車輪速パルスセンサ、単位時間あたりの車輪速パルス数を出力する車輪速パルス数センサなどから得られる車速情報や、操舵輪の角度を出力する舵角センサ、ハンドルの回転量を出力するハンドル角センサなどから得られる舵角情報、前進後退状態や変速状態などを示すシフトポジション情報などが含まれる。
前述の衛星情報について説明する。衛星情報はGNSS受信機から得られる測位Fix状態、位置アキュラシや速度アキュラシなどの各精度指標、pDOPやvDOPなどの各精度劣化指標、測位使用衛星数、各測位衛星の受信信号強度やマルチパスフラグなどの、GNSS測位に関わる各種パラメタを指している。
<差分演算部14>
差分演算部14は、絶対位置推定部11と相対位置推定部12がそれぞれ出力する自車位置の差を算出する。前述したように、絶対位置推定部11は高頻度に推定位置を出力する反面、走行状況によって偏差が増大する場合がある。また、相対位置推定部12は絶対位置推定部11と比べ、出力頻度は少ないが、高精度な推定位置を出力する。このため、これらの推定位置の差分を計算する場合に、同一時刻の推定位置が出力されていない場合があるため、時刻同期機能を含む必要がある。絶対位置推定部11と相対位置推定部12の各出力の時刻を同期した上で、それらの差分量を算出する。この差分は各推定位置の緯度と経度と高さの差の二乗を加算したユークリッド距離でもよいし、その時点の進行方向を基準として進行方向の前後成分と左右成分と高さ成分にそれぞれ分けた距離でもよい。こうして算出された距離を学習部15に出力する。
<学習部15>
学習部15は、差分演算部14で算出された差分量に基づいて、絶対位置推定部11の推定位置を補正するための補正量を算出する。例えば、走行状態判定部13が走行状態の変化タイミングを出力した後、最初にマーカが観測されて相対位置推定部12が出力された時点での、差分演算部14が出力した絶対位置推定部と相対位置推定部との差分をそのまま補正量としてもよい。さらに、その補正量を保持し、次に走行状態判定部13が走行状態の変化タイミングを出力するまで同一の補正量を位置補正部16に出力し続けてもよい。
<位置補正部16>
位置補正部16は、絶対位置推定部11、走行状態判定部13、および、学習部15の出力を受け取り、絶対位置推定部11の推定位置を補正して出力する。例えば、走行状態判定部13が、同一走行状態の継続と判定している状態では、学習部15の補正量をそのまま用いて、絶対位置推定部11の出力位置に補正量を加算して補正した位置を出力する。一方で、走行状態判定部13が、走行状態が継続していないと判定している状態では、学習部15の補正量を所定の割合だけ減少させた値を用いて、絶対位置推定部11の出力位置を補正した位置を出力する。また、位置補正部16では補正結果の精度指標も出力する。
次に、本実施例に係る各部の処理内容について、必要に応じてフローチャートを用いて説明する。
<絶対位置推定部11の処理内容>
まず、絶対位置推定部11に用いられるような車両位置の検出に関する技術文献として、特許第6482720号公報が知られている。この公報には、GNSS受信機などを用いてレーンレベル精度の測位を行う測位装置(ロケータ装置)および測位方法が開示されている。
測量分野では、GNSS受信機からの測位信号の搬送波位相を測定して行う高精度な測位方式(搬送波位相測位方式)がある。この搬送波位相測位方式では、高精度な時計を有する2周波GNSS受信機が必要となり、高コストとなる。一方、自車位置推定装置で行われている従来のコード測位方式は、安価な1周波GNSS受信機を用いて可能である。しかし、そのようなGNSS受信機の時計の精度は低いため(車載用のGNSS受信機の場合で1μ秒程度)、高い測位精度を得るためには、GNSS受信機の時計のバイアス誤差(受信機時計バイアス誤差)を高精度で補正する必要がある。
この課題を解決するため、特許第6482720号公報では、GNSS受信機の受信機時計バイアス誤差に起因する測位誤差を高い精度で補正できる測位装置を開示している。本実施例の絶対位置推定部11では、このような既存技術を用いることで、絶対位置を推定するものとする。
また、絶対位置推定部11は、測位位置だけでなく、どの衛星からの測位電波を用いて測位位置を算出したか(測位使用衛星)、各衛星からの電波強度などの衛星情報も出力する。
<相対位置推定部12の処理内容>
次に、相対位置推定部12を図3のフローチャートを用いて説明する。図3に示すフローチャートは、自車位置推定部10の自車位置推定動作中に継続して実行される。
ステップS1では、相対位置推定部12は、自車の相対位置を求める際の基準となるマーカやビーコン等の存在有無を判定する。相対位置取得センサ1cの具体例である、マーカ読取装置やC2X装置の検知可能範囲内にマーカやビーコン等が存在しているときに、相対位置推定部12は自車の絶対位置を推定できるため、まず、これらの装置の出力に基づいて、マーカまたはビーコン等の存在有無を判定する。具体的には、基準が画像的なマーカ(QRコード(登録商標)に代表される2次元バーコード)の場合は、マーカ読取装置は、切り出しシンボル(Finder Pattern)が検知でき、さらにそのコントラスト比率や大きさが一定以上の場合にマーカが存在したと判定し、そうでなければマーカが存在しないと判定する。また、基準がビーコン等の場合は、C2X装置は、特定周波数の信号が、所定の強度以上で検知できるかを判定し、検知できた場合にはビーコン等が存在したと判定し、そうでなければビーコン等が存在しないと判定する。
ステップS2では、相対位置推定部12は、基準となるマーカやビーコン等までの相対距離と相対方向を算出する。これは、C2X装置あるいはマーカ読取装置の検知可能範囲はある程度の範囲に限定されるため、位置同定の正確性を上げるために、マーカまたはビーコン等までの距離を算出する。例えば、基準が2次元バーコードの場合は、切り出しシンボル間のタイミングパターンの見かけの大きさから距離と相対的な方位を算出することができる。また、基準が特定周波数の信号を出すビーコンの場合、ドップラー周波数の変化を検知することでビーコン直下を通過した瞬間を検知でき、通常ビーコンは自動車が走行するときにC2X装置が移動する平面とは異なる高さに設置されているため、車速を考慮することにより水平方向と高さ方向の成分を分けて距離を算出することが可能である。あるいは、ビーコンが複数存在する場合に、各ビーコンの周波数変化をそれぞれ観測し、三角測量の要領で各ビーコンまでの相対関係を算出することが可能である。
ステップS3では、相対位置推定部12は、マーカまたはビーコン等から取得した信号に埋め込まれているマーカまたはビーコン等の絶対位置情報を読み出す。例えば、2次元バーコードの場合は、データ部に緯度経度や方位等に関連する情報や、図示しないデータベースを検索するための索引情報を埋め込んでおき、それを読み出してもよい。ビーコン等であれば、その発信周波数に緯度経度や方位等に関連する情報や、図示しないデータベースを検索するための索引情報を重畳しておき、それらをデコードしてもよい。
ステップS4では、相対位置推定部12は、自車の絶対位置の算出、走行方位の算出、および算出された絶対位置または走行方位に対する信頼性指標を算出する。絶対位置および走行方位は、ステップS2で得られたマーカまたはビーコン等までの相対関係と、ステップS3で得られたマーカまたはビーコン等の絶対位置および設置方位とをタイミングを合わせて統合することによって算出される。信頼性指標は、二次元バーコードであればデータ部とリードソロモン符号等による誤り訂正符号部との差異がなければ信頼性が高く、誤り訂正処理により情報復元が行われているビット数が多いほど信頼性が低くなる関数として定義すればよい。ビーコン等でもデータ部とチェックサムとの差異数が大きいほど信頼性が低くなる関数として定義すればよい。あるいは、カメラを用いた外界認識の場合、薄暮や逆光などの照明環境や、高速走行や急旋回による画像ブレなどの自車挙動、観測対象の汚れやカスレなどの対象状態に基づき、照明環境に関してはコントラスト比、自車挙動に関しては周波数成分、対象状況に関してはエッジの直線度をそれぞれ閾値範囲として設定しておき、閾値範囲を満たさない条件が多いほど信頼性が低くなる関数として定義すればよい。こうして定義した関数の出力を信頼性指標として出力してもよい。
ステップS5では、相対位置推定部12での算出結果を後段処理に出力する。出力内容は、自車の絶対位置、走行方位、信頼性指標、およびそれらが観測された時刻情報、のうち1つ以上を含む。例えば、自車位置推定部10が車室内に搭載されており、他機器とCAN(Car Area Network)にて接続されている場合には、出力処理は前述した出力内容をCAN出力用のパケットに詰め直して送出する。
<走行状態判定部13の処理内容>
次に、走行状態判定部13を説明する。走行状態判定部13は、(1)旋回角度や車速などの車両情報、(2)衛星配置や可視衛星数などの衛星情報の変化に基づいて、走行方位や平均車速の変化を算出し、同一の動向状態が継続しているか、あるいは走行状態が変化したかを判定する。以下、走行状態判定部13による走行状態変化の判定方法を具体的に説明する。
<右左折に伴う走行状態変化の判定方法>
走行状態判定部13は、車両情報から検出した右左折に基づいて、走行状態変化を判定する。具体的には、以下のように交差点などで右左折をおこない、これまで走行していた道路とは異なる道路に進入または合流したことを判定する。図4および図5の状況を想定し、前述した車軸部の回転角度センサと舵角センサまたはハンドル角センサからの観測値を用いることで、自車の走行挙動を推定する。
図4は、車両Vが右に約90度旋回するときの模式図である。図から明らかなように、車両Vは、時刻t=t~tは直進、時刻t=t~tが旋回中、時刻t=t~tが旋回後に再度直進している。
図5は、このときの舵角および車両Vの旋回角度を示している。アッカーマンモデルに代表される車両モデルを用いることで、通常は4輪である車両Vを駆動輪と操舵輪の2輪にモデル化し、操舵輪の操舵角から旋回半径を算出し、駆動輪の回転量から進行距離を算出することで、旋回角度を算出することが可能である。t時点のように、一定時間内に閾値(thr1)以上の旋回角度が算出された場合は、交差点などで右左折をおこない、これまで走行していた道路とは異なる道路に進入または合流したと考え、操舵角が変化し始める前の時刻(t)に同一の走行環境が継続しなくなっていたと判定する。さらに、操舵角が中立に戻って(t)、一定時間経過しても中立のままのとき、操舵角が中立に戻った時点(t)を走行状態が変化し終わったタイミングであると判定する。なお、ここでの操舵角が中立とは、一定の閾値(thr1)以下の状態を指す。
交差点などで右左折をおこなうと、自車左右にある遮蔽物との位置関係が変化する。例えば、周囲にビル等の建築物が密集している市街地において、南北方向に走行しているということは、南北方向、すなわち自車の前後方向には建築物がなく、東西方向、すなわち自車の左右に建築物が並んでいる状況である。このとき、東西方向にある測位衛星から直接得られる測位電波は建築物に遮蔽されており、測位電波が受信できたとしてもビル等で反射されてマルチパスが発生している状態である可能性が高い。マルチパスが発生すると直接測位電波を受信した場合と比べて測位電波の伝送距離が伸びるため、マルチパスが起きている測位電波を用いて自車位置測位をおこなうと、測位衛星が存在する方位に偏差が大きくなることが考えられる。前述の状況の場合、自車から見て南北方向に存在する測位衛星からの測位電波はマルチパスが起こりにくく、東西方向に存在する測位衛星からの測位電波はマルチパスが起きやすくなるため、東西方向に偏差をもつ結果になりやすい。
次に、交差点での右左折により、自車走行方向が変化すると、今度は逆に、自車から見て東西方向に存在する測位衛星からの測位電波はマルチパスが起こりにくく、南北方向に存在する測位衛星からの測位電波はマルチパスが起きやすくなるため、南北方向に偏差をもつ結果になりやすい。交差点などでの右左折を検知して、同一の走行環境が継続しなくなっていたと判定する、あるいは、走行状態が変化し終わったタイミングであると判定することで、こうした状況の変化を切り替えることができるようになる。
<車速変化に伴う走行状態変化の判定方法>
走行状態判定部13は、車両情報から検出した車速に基づいて、走行状態変化を判定する。具体的には、以下のように車速を用いて、これまで走行していた道路とは走行環境が変化したことを判別する。
通常、住宅地などの狭小環境では制限速度が30km/h程度の低い車速に、片側複数車線の走行路をもつ幹線道路などでは制限速度が60km/h程度に設定されている。このため、走行中の平均車速の時系列変化を観測することで、走行環境変化を判別することができる。具体的には、事前に走行環境毎に、車速域とその継続時間を図6のように定義しておき、当該車速域での走行が当該継続時間以上継続した場合に、当該走行状態に遷移したと判断する。なお、車速域が頻繁に変動するなどで、いずれの条件にも適合しない場合は走行状態が不明状態となるようにしておいてもよい。
一般的に、住宅地などの狭小環境では、道幅が狭く、かつ歩道も狭いため、自動車の走行路に近接して建築物が存在する場合が多い。こうした環境下では周囲の測位衛星が遮蔽されやすく、また測位に使用する衛星の組み合わせも頻繁に切り替わりやすいため、測位結果が不安定になりやすい。一方、幹線道路では走行車線幅が広く、さらに歩道があるため、自動車の走行路から一定距離離れて建築物が存在する場合が多い。こうした環境下では、先に挙げた狭小環境よりも測位衛星を直接観測することがしやすくなり、測位結果が安定しやすい。測位結果が不安定な状態から安定した状態へ、あるいはその逆の変化がある場合、同一の走行環境が継続しなくなっていたと判定する、あるいは、走行状態が変化し終わったタイミングであると判定することで、こうした状況の変化を切り替えることができるようになる。
<使用衛星の組合せ変化に伴う走行状態変化の判定方法>
走行状態判定部13は、衛星情報から検出した使用衛星の組合せ変化に基づいて、走行状態変化を判定する。衛星測位では、3衛星もしくは4衛星以上の疑似距離を算出できると、中心を各衛星位置とし半径を疑似距離とした球面を仮定し、その球面の交点として観測地点の絶対位置を算出可能である。しかし、一般に算出された疑似距離は衛星軌道誤差、電離層遅延誤差、対流圏遅延誤差等の各種誤差の影響を受けるため、球面の交点は1点では交わらない。そこで、より多くの衛星からの疑似距離を算出しておき、最小二乗法などで交点に近い点を算出することが多い。このため、特定方位に疑似距離が算出できている衛星数の偏りがある場合など、測位に使用する衛星配置に偏りがあるとき、観測地点の絶対位置の誤差にも偏りが発生する。そこで、測位に使用する衛星配置が変化した時に、同一の動向状態が継続しているか、あるいは走行状態が変化したかを判定する。
具体的には、絶対位置推定部11から出力される使用衛星情報が、一定時刻前(例えば2秒前)から現時刻直前までの状態と比べて、一定数以上(例えば3衛星以上)変化していれば走行状態が変化したと出力する。また、一定時刻の間に使用衛星が一旦変化して再度元の使用衛星に戻った場合には、走行状態が変化していないと出力する。
例えば、時刻t-2にG~Gの5衛星、時刻t-1にG~G,Gの5衛星、時刻tにG~G、G,Gの6衛星が測位衛星となった場合は、走行状態が変化したと判定する。一方、時刻t-2にG~Gの5衛星、時刻t-1にG~Gの3衛星、時刻tにG~Gの5衛星が測位衛星となった場合は、走行状態が変化していないと判定する。
<測位結果のアキュラシ変化に伴う走行状態変化の判定方法>
走行状態判定部13は、衛星情報から検出した測位結果のアキュラシ変化に基づいて、走行状態変化を判定する。衛星測位では、前述したように複数の測位衛星の疑似距離から観測地点の絶対位置を算出する際、観測ベクトルに基づき、幾何学的な精度劣化率(GDOP)、空間座標に関する精度劣化率(PDOP)などの精度劣化率(DOP:Position Dilution of Precision)が算出できる。これは天空における測位衛星配置にも度付いて算出される数値である。ほかにも、先に述べた最小二乗法による絶対位置算出の際の損失関数の値に基づく指標、3D測位か2D測位かなどの測位ステータスなど、算出された絶対位置の推定精度指標がある。また、GNSS受信機メーカー独自の精度指標(アキュラシ値)を出力するものもあるが、本実施例においてはこれらを特に区別せずに使うものとする。これらの推定精度指標が安定しているか、大きく変化したか、などを判定することで、同一の動向状態が継続しているか、あるいは走行状態が変化したかを判定する。
具体的には、一定時間内(例えば2秒間)に、pDOPが閾値以上(例えば1.0以上)の変化がある場合に走行状態が変化したと判定してもよい。これらの精度指標のための閾値は実験的に求めた固定値を用いても良いし、後述する通信部18を用いて当該地域に適切な閾値を受信しても良い。他推定精度指標についても同様である。
<差分演算部14の処理内容>
次に、差分演算部14について説明する。差分演算部14では、絶対位置推定部11と相対位置推定部12の推定した自車位置の差分量を算出したいが、位置推定が同時刻に実施されるとは限らないため、以下のように時刻同期をおこなった後に両位置推定部が推定した自車位置の差分量を演算する。
絶対位置推定部11では、絶対位置推定部11がGNSSの受信装置の場合、0.1秒から1秒程度の一定間隔で絶対位置が得られる。一方、相対位置推定部12では、数秒から数分程度の不定間隔で、マーカやビーコン等の位置情報とそれらからの相対的な位置が得られる。このため、差分演算部14では、相対位置推定部12の出力タイミング、もしくは、相対位置推定部12の出力内容に含まれるマーカまたはビーコン等が観測された時刻情報の時刻に合わせて差分の演算をおこなう。
例えば、差分演算部14では、絶対位置推定部11の出力を、線形補間を用いて、相対位置推定部12の出力タイミングに合わせた値に変換して、差分を演算する。ここで、絶対位置推定部11が時刻tに推定した自車位置をP(t)と定義し、相対位置推定部12が時刻sに推定した自車位置をQ(s)と定義する。図7は、P(t)とQ(s)の推定タイミングの関係を模式的に表した図であり、絶対位置推定部11がP(t)を推定した時刻である時刻tの直後の、相対位置推定部12がQ(s)を推定した時刻を時刻sとしている。なお、nは整数であり、絶対位置推定部11が位置推定を行う毎に1つ増加する。また、時刻sの直前の時刻tを時刻snb、時刻sの直後の時刻tn+1を時刻snaと定義している。なお、b、aは、それぞれ、before、afterを示す添え字である。
この場合、s、sについての、s、sは以下のようになる。
Figure 0007328178000001
Figure 0007328178000002
ここで、
Figure 0007328178000003
Figure 0007328178000004
とおくと、線形補間を用いて絶対位置推定部11の出力を、相対位置推定部12の出力タイミングに合わせた値P(s)、P(s)は以下のように計算できる。
Figure 0007328178000005
Figure 0007328178000006
このようにして絶対位置推定部11の出力に基づくP(s)やP(s)を算出した後、差分演算部14は、同時刻のQ(s)やQ(s)との差を算出する。この差分算出には、例えば、各推定位置の緯度と経度と高さの差の二乗を加算したユークリッド距離とそのオイラー角を、差分ベクトルとすることができる。差分演算部14は、この差分ベクトルを学習部15に出力する。
<差分演算部14の処理内容の変形例>
以上は線形補間を用いて絶対位置推定部11の出力を、相対位置推定部12の出力タイミングに合わせた値に変換した例であるが、差分演算部14では、更に前後の点まで用いて二次補間、バイキュービック補間などをおこなってもよい。これにより、補間近似の精度が向上し、演算された差分の精度が向上する効果が期待できる。
また、差分演算部14では、相対位置推定部12の出力頻度が絶対位置推定部11の出力頻度より高い場合や、間隔が数倍長い程度で比較的近い場合には、相対位置推定部12の出力を、絶対位置推定部11の出力タイミングに合わせた値に変換してもよい。これにより、絶対位置推定部11の出力タイミングに合わせて定期的に差分演算ができるようになり、さらに学習部15および位置補正部16での補正量更新のタイミングが早くなる効果が期待できる。
さらに、差分演算部14では、自車位置を同期した後に算出する差分ベクトルとして、その時点の進行方向を基準として進行方向の前後成分と左右成分と高さ成分にそれぞれ分けたベクトルを算出してもよい。これにより、位置補正部16において、自車の進行方向の前後方向と左右方向とに分けて、細かく位置補正をおこなうことができるようになる。
<学習部15の処理内容>
次に、学習部15について説明する。学習部15は、差分演算部14で算出された差分量を時系列データとして蓄積し、蓄積した時系列データに基づいて、絶対位置推定部11に対する補正量を算出する。例えば、最も簡素な形態は、差分演算部14が差分量を演算したタイミングで学習を実施し、差分量をそのまま補正量として採用する方式である。この方式では、相対位置推定部12の信頼性が高い場合に使用可能であり、相対位置推定部12が認識可能なマーカ、発信器の認識誤差が十分に小さいことを想定し、この認識結果に基づく自車位置に合わせるように補正量を生成する。このように、差分演算部14が演算結果を出力したタイミング、すなわち、相対位置推定部12がマーカやビーコン等の位置情報を観測したタイミングを起点とした演算により、位置情報を検知後すみやかに絶対位置推定部11に対する補正量を確定することができるため、最新の相対位置推定部12の結果を算出し次第、すみやかに補正を開始できるという効果がある。
また、学習部15は、走行状態の変化が完了すると学習状態をリセットし、複数回のマーカまたはビーコン等から得た位置情報について、その観測結果の統計量に基づき補正量を算出してもよい。具体的には、走行状態判定部13から走行状態が変化し終わったタイミングであるという判定結果を受けると、その時点までの学習状態、または補正量をリセットする。さらに、それ以降に得られた差分演算部14の出力を複数回受信した後、その分散が閾値以下であるときに最小二乗法に基づいて損失関数が最小になる値を補正量として決定することができる。あるいは最尤推定法を用いてもよい。こうすることで、外界認識結果の不安定性を除去し、推定位置の信頼性向上の効果が期待できる。
さらに、学習部15は、相対位置推定部12の信頼性指標を用いてもよい。前述したように、誤り訂正情報の利用や、照明環境、自車挙動、対象状態によって認識性能が低下する。このため、こうした信頼性指標が閾値以下のマーカまたはビーコン等からの情報は学習データから除外する、あるいは重視せずに補正量を算出してもよい。具体的には前述した最小二乗法の場合であれば損失関数算出の際に当該データ点に1より小さい係数を乗じて加算することで、信頼性指標の小さいデータ点の影響を減らし、推定位置の信頼性向上の効果が期待できる。
<位置補正部16の処理内容>
次に、位置補正部16を図8のフローチャートを用いて説明する。図8に示すフローチャートは、絶対位置推定部11が自車位置を出力するたびに実行される。位置補正部16は、絶対位置推定部11、走行状態判定部13、および、学習部15の出力を受け取り、補正された推定位置と誤差指標を出力する。
ステップS11では、位置補正部16は、走行状態判定部13の出力に基づいて、同一の走行環境が継続しているかを判定する。走行状態判定部13が同一の走行環境が継続しなくなっていたと判定しており、走行状態が変化中である場合(分岐のNo側)は、学習部15における補正量での補正が適切ではないため、補正量を使わずに絶対位置推定部11の出力値を出力する(ステップS14)。一方、ステップS11で同一の走行状態が継続していると判定された場合(分岐のYes側)は、ステップS12に進む。
ステップS12では、位置補正部16は、学習部15での学習が完了しているかを判定する。学習部15の学習が完了していない場合(分岐のNo側)は、学習部15における補正量での補正が適切ではないため、補正量を使わずに絶対位置推定部11の出力値をそのまま出力する(ステップS14)。一方、学習部15の学習が完了している場合、あるいは相対位置推定部12の1回の出力結果のみで補正量を決定する場合(分岐のYes側)は、ステップS13に進む。
ステップS13では、位置補正部16は、学習部15での補正量が、以前の補正量と比べて閾値以上変化したかを判定する。
学習部15から出力される補正量が、以前までの時刻の補正量と比べて閾値以上大きく変わる場合(分岐のYes側)は、ステップS15に進む。ステップS15では、位置補正部16は、補正量変動を緩和するために、前回補正量と今回補正量とを内挿補間した補正量を絶対位置推定量に加算して出力する。具体的には、前回までに学習部15から出力された補正量をΔx(t-N),Δx(t-N+1),・・・,Δx(t-1)とし、今回の学習部15から出力された補正量をΔx(t)とすると、Δc(N)Δx(t-N)+Δc(N-1)Δx(t-N+1)+・・・+Δc(1)Δx(t-1)+Δc(0)Δx(t)を今回の補正量として用いてもよい。ここで、ΣΔc(t)=1、t=t~t、とした。
一方、ステップS13で、以前までの時刻の補正量と比べて閾値以上大きく変わらない場合(分岐のNo側)は、ステップS16に進む。ステップS16では、位置補正部16は、学習部15から安定した補正量が得られているとみなして、絶対位置推定部11からの結果に学習部15からの補正量を加算して出力する。
また、ステップS14、S15、S16において、位置補正部16は、それぞれ精度指標を算出する。例えば、この精度指標は例えば誤差円半径であり、ステップS14においては絶対位置推定部11が出力する精度指標をそのまま出力すればよい。例えば、ステップS15においては、前回までの絶対位置推定部11から出力された精度指標をR(t-N),R(t-N+1),・・・、R(t-1)とし、今回の絶対位置推定部11から出力された精度指標をR(t)とすると、Δc(N)ΔR(t-N)+Δc(N-1)ΔR(t-N+1)+・・・+Δc(1)ΔR(t-1)+Δc(0)ΔR(t)を今回の精度指標とすれば良い。また、ステップS16においては、相対位置推定部12の信頼性指標に適当な乗数をかけて精度指標に変換すればよい。
前述した位置補正部16からの出力は、各種処理時間分の遅延はあるものの、絶対位置推定部11の出力タイミングに合わせておこなわれる。絶対位置推定部11は、例えばGNSSなどの測位情報を2Hz程度で定期的に取得するものであるため、位置補正部16も一定周期で出力することが期待できる。自動運転システムにおいては、常時自車がどこを走行しているかを取得する必要があるため、本実施例の構成をとることで、こうした自動運転システムのニーズに応えることができる。
以上で説明したように、本実施例の車両制御装置によれば、走行環境および走行状態に応じて、測位位置の適切な補正量(オフセット)を学習し、走行状態変化の影響を除去することで、走行環境や走行状態が変化しても、地図中の自車位置の高精度な推定を、高頻度で得ることが可能となる。
次に、本発明の実施例2に係る自車位置推定部10を説明する。なお、実施例1との共通点は重複説明を省略する。
図9は、本実施例に係る自車位置推定部10を説明するブロック図である。ここに示すように、自車位置推定部10は、絶対位置推定部11、相対位置推定部12、走行状態判定部13、差分演算部14、学習部15、位置補正部16に加え、学習制御部17、通信部18を備えている。また、本実施例の走行状態判定部13には、走行経路情報を含む地図データMも入力され、本実施例の相対位置推定部12には、ランドマーク情報を含む地図データMも入力される。なお、本実施例の地図データMと地図データMは、図1の地図データMの一部である。以下、本実施例の特徴を中心に、各部の詳細を説明する。
<絶対位置推定部11>
絶対位置推定部11は、実施例1と同様であるため説明を省略する。
<相対位置推定部12>
相対位置推定部12は、外界認識センサやC2X装置あるいはマーカ読取装置を用いて、自車の位置を高精度に推定する。外界認識センサ、C2X装置、マーカ読取装置は、自車の走行環境中に存在するランドマーク、マーカ、発信器の絶対位置を基準とした相対位置を得るものであるため、相対位置取得センサ1cとも呼ばれる。そして、相対位置推定部12では、ランドマーク、マーカ、発信器の絶対位置を基準とした自車の相対位置から、自車の絶対位置を算出して出力する。その際に用いられるランドマークやマーカ、発信器の位置情報は、ランドマーク情報を含む地図データMに格納されているものを検索して利用してもよいし、実施例1に記載したようにマーカや発信器から出力されている位置情報を用いてもよい。
相対位置取得センサ1cの観測対象となるランドマークは自車からの距離が短く、さらに回折・反射による位置誤差が発生しないため、絶対位置推定部11での位置推定結果よりも、相対位置推定部12の位置推定結果が高精度であることが期待できる。一方で、相対位置推定部12による自車位置および姿勢の推定は、ランドマークが存在する場所、あるいはC2X通信が成立した場所でのみ行われる。このため、時間的または空間的な観点で離散的であるといえる。
前述の外界認識センサについて説明する。外界認識センサとは、例えば単眼カメラやステレオカメラ、Lidar、ミリ波、超音波センサといった計測機器を指す。
単眼カメラやステレオカメラは、車両Vの外部状況を撮像する撮像機器である。カメラは、車両Vのフロントガラスの内側及び車両Vのリアガラスの内側に設けられている。カメラは、車両Vの左右側面に設けられていてもよいし、車室外のライセンスプレート上部などに設けられていてもよい。カメラは車両Vの前方及び後方を撮像した撮像画像を、さらにステレオカメラは両眼視差に基づく奥行き情報を相対位置推定部12に送信する。
Lidar、ミリ波、超音波センサは、光、電波、音波などを利用して車両Vの周辺の障害物を検出するレーダセンサである。レーダセンサは光、電波、音波などを車両Vの周辺に送信し、障害物で反射された光、電波、音波などを受信することで、障害物の有無および種別、速度、距離といった障害物情報を検出し、この障害物情報を相対位置推定部12に送信する。ここでいう障害物とは、ガードレールや標識支柱、建物などの構造物、および歩行者、自転車、他車両等の移動障害物が含まれる。
ランドマーク情報を含む地図データMについて説明する。この地図データMは、外界認識センサで認識可能な地物の種別や配置を含む。例えば、カメラに対しては、走行路区分線である白線や黄線などの直線や破線、通行制限を示す斜線、交通規則や規制を示す速度制限標示や車種区分標示、一時停止線、横断歩道、走行時に視野に入る立体物であるガードレール、信号機、標識、案内標示板、看板、店舗やビルの外観などがある。また、Lidar、ミリ波、超音波センサに対しては、ガードレールやリフレクタ、マンホールの蓋、標識支柱などがある。
次に、走行経路情報を含む地図データMについて説明する。この地図データMは、道路情報や構造物情報、地理地形情報、経路情報を含む。道路情報とは、道路の地点情報(ノード情報)と各地点情報の接続情報(リンク情報)のほかに、道路の車線数、道路幅、速度規制情報、路肩の有無と路肩幅、歩道の有無と歩道幅などを指す。構造物情報とは、ビルや家屋、歩道橋などの建築物の幅や高さ、道路との相対関係、道路横に設置されている防音壁や防風壁の有無や壁の高さ、トンネルや落石防護用天井部に対する内外状態、橋梁や高架道路を含む周囲の立体的な道路情報などを指す。地理地形情報とは、住宅地、商業地、田畑、林地などの各地点の土地利用状況や、道路や土地の起伏情報を含む地形情報などを指す。経路情報は、経路生成部50で生成された走行ルートや、バス等の決められたコースを走行する移動体の場合には事前に固定の走行ルートとして作成しておいてもよい。
<走行状態判定部13>
走行状態判定部13は、(1)旋回角度や車速などの車両情報、(2)衛星配置や可視衛星数などの衛星情報、(3)地形や周囲建造物などの立体物環境を含む地図情報、などが変化することによりGNSSの偏差傾向が変動するため、同一の走行環境が継続していることを判定する機能、走行状態が変化したタイミングを判定する機能、のいずれか、または両方をもつ。車両情報や受信環境に関して、各パラメタ数値を時系列情報として蓄積し、所定のパラメタ数値が変化した場合や、それぞれ一定時間中の変化量が所定の閾値を超えた場合、パラメタの変化量の累積が一定値を超えた場合、などに走行状態が変化したと判定する。また、走行状態判定部13はその出力結果を学習制御部17に送信する。
<学習制御部17>
学習制御部17は、学習部15の学習状態の初期化、学習内容の更新、学習頻度などを制御するものであり、具体的には、走行状態判定部13の結果を蓄積し、その時系列情報に基づいて学習部15に対して学習指示を出力する。例えば、郊外の高速道路を長時間走行する場合と、右左折を繰り返しながら市街地の狭小道路を走行する場合とで、学習部15の挙動を変えることで性能向上が期待できる。
郊外の高速道路を長時間走行する場合には、走行状態が同じ環境が継続し、相対位置推定部12による高精度な位置推定が複数回行われることが期待できるため、差分演算部14の一定時間内に得られた複数回の結果を用いて最頻値を出力とするような学習指示を学習部15に出力してもよい。
一方、右左折を繰り返しながら反対に市街地の狭小道路を走行する場合には、走行状態が短時間で切り替わるため、右左折などのように走行状態判定部13が走行状態の変化タイミングを出力した後、最初にマーカが観測されて相対位置推定部12が出力された時点での、差分演算部14が出力した絶対位置推定部と相対位置推定部との差分をそのまま出力とするような学習指示を学習部15に出力してもよい。
<差分演算部14>
差分演算部14は、実施例1に記載したものと同様であるため説明を省略する。
<学習部15>
学習部15は、差分演算部14で算出された差分量と、学習制御部17から出力された学習指示に基づいて、絶対位置推定部11の推定位置を補正するための補正量を算出する。例えば、学習制御部17からの学習指示として、一定時間内に得られた複数回の結果を用いて最頻値を出力とするような学習指示、が出力されている場合には、一定時間内の差分量を蓄積し、その最頻値を出力とする。また、差分演算部14からの差分情報を得てからの時間、および絶対位置推定部11の推定誤差量、相対位置推定部12の推定誤差量に基づき、学習部15が出力する補正量の信頼性指標も出力してもよい。
<位置補正部16、通信部18>
位置補正部16は、絶対位置推定部11、走行状態判定部13、および、学習部15の出力を受け取り、絶対位置推定部11の推定位置を補正して出力し、また、通信部18と双方向に情報を入出力する。例えば、走行状態判定部13が、同一走行状態の継続と判定している状態では、学習部15の補正量をそのまま用いて、絶対位置推定部11の出力位置に補正量を加算して補正した位置を出力する。一方で、走行状態判定部13が、走行状態が継続していないと判定している状態では、学習部15の補正量を所定の割合だけ減少させた値を用いて、絶対位置推定部11の出力位置を補正した位置を出力するとともに、通信部18にもその出力位置と学習量のほか、日時、自車の車種情報などを送信する。また、通信部18を介して車外から補正情報を受信した場合、学習部15から得られた補正量の信頼性指標に基づき、通信部18からの補正情報と、学習部15からの補正情報のいずれを用いるかを判断してもよい。
前述の通信部18との入出力について説明する。通信部は、図示しないサーバに対して、位置補正部16からの出力位置と学習量のほか、日時、自車の車種情報と、学習部15からの信頼性指標と、絶対位置推定部11からの自車位置などの情報を送信する。
図示しないサーバでの処理は、本発明には直接関係しないため、ここでは詳細に記載することは避けるが、例えば本発明を適用した複数の車両から送信された、出力位置と学習量、日時、自車の車種情報、学習の信頼性指標、自車位置などを蓄積し、日時から推定できる測位衛星配置と、車種情報から推定できる測位センサのアンテナ高さ、走行地点などの類型毎に補正量を蓄積することで、特定の車両が特定の衛星配置の環境下を走行したときに、ある日時にある経緯度において絶対位置センサに対してどのような偏差が重畳するかを推定することが可能になる。こうした推定値を当該日時に当該経緯度を走行している車両の通信部18に送出することを想定している。
こうして通信部18は図示しないサーバから補正情報を得ることができ、その補正情報を位置補正部16に送出することができる。
次に、本実施例に係る各部の処理内容について、必要に応じてフローチャートを用いて説明する。
<絶対位置推定部11の処理内容>
絶対位置推定部11は、測位位置だけでなく、どの衛星からの測位電波を用いて測位位置を算出したか(測位使用衛星)、各衛星からの電波強度などの衛星情報も出力する。処理の詳細は実施例1に記載したものと同様のため省略する。
<相対位置推定部12の処理内容>
相対位置推定部12の処理内容を、図10のフローチャートを用いて説明する。図10に示すフローチャートは、自車位置推定部10の自車位置推定動作中に継続して実行される。
ステップS1aでは、相対位置推定部12は、自車の相対位置を求める際の基準となる、ランドマーク、マーカ、ビーコン等の存在有無を判定する。相対位置取得センサ1cの具体例である、外界認識センサ、マーカ読取装置、C2X装置などの検知可能範囲内に、ランドマーク、マーカ、ビーコン等が存在しているときに、相対位置推定部12は自車の絶対位置を推定できるため、まず、これらの装置の出力に基づいて、ランドマークやマーカ、ビーコン等の存在有無を判定する。
基準がマーカやビーコンである場合に関しては実施例1にて説明しているため省略し、ここでは、地図データMと外界認識センサを用いてランドマークを認識する方法について詳細に説明する。例えば、外界認識センサの具体例であるカメラを用いて、横断歩道標示を認識するユースケースについて説明する。横断歩道標示は、主に交差点などに、車両走行路を横切るように幅0.6mの白線を、間隔0.6mおきに3本以上並べた周期的なパターンの路面標示である。
地図データMには、交差点に対する横断歩道標示の白線の長さ、端点や白線角度などの相対関係、白線本数、側線の有無などが格納されており、絶対位置推定部11が推定した自車位置に基づいて自車周囲のランドマーク情報が、相対位置推定部12に入力される。具体的には、絶対位置推定部11からは、補正されていないため偏差が含まれているものの、自車位置と自車進行方位、自車速度を得ている。このため、自車進行方位をベクトルの向き、自車速度に時間Tを乗じてベクトルの長さとした移動ベクトルを考え、これを現在の自車位置に加算することで、時間Tが経過したあとの自車位置を算出することができる。自車位置と時刻T経過後の自車位置との間と、その区間にさらに一定範囲のマージン領域を考え、その領域に含まれるランドマーク情報を自車からの距離の近い順に出力することで、自車進路上のランドマークを出現する順番で相対位置推定部12に出力することができる。
地図データMから、自車進路上に存在すると横断歩道標示のランドマーク情報を受け取ると、ステップS1aではカメラからの横断歩道標示の検出をおこなう。この横断歩道標示検出を図11の模式図を用いて説明する。Dはカメラから入力された加工前の画像である。ステップS1aでは横断歩道標示検出のために入力画像に対し縦エッジ検出をおこないDを得る。その後、Dから既存技術であるラベリング等をおこない線分要素を抽出し、端点座標および長さを得る。この線分要素のうち、閾値以内の類似した長さをもつ線分要素をグループ化した後、グループ毎に一定の間隔をもつ端点座標を抽出しDを得る。なお、この間隔はカメラのレンズ歪みの影響をうけるため閾値以内で変動していても構わない。前述したように横断歩道標示は3本以上の周期的な白線要素をもつため、線分要素の上端、下端、それぞれ6点ずつ以上の一定間隔を持つ端点座標グループとなる。さらに、横断歩道標示は走行路上に存在するため、カメラの自動車車体に対する設置角度、および設置高、画角を考慮すると、画像中の消失点あるいは地平線の高さを推定することが可能であり、路面に存在する線分要素としてDを抽出することができる。こうした端点座標グループが抽出された場合に、横断歩道標示が認識できたと判定する。
また、ランドマークが最高速度制限標識などの標識の場合は、形状および文字などが規定されているため、標識種別に対応するテンプレート画像を事前に準備しておき、カメラ映像と照合することでその有無を判定する。具体的には、距離によって見かけのサイズが変動することを考慮して、複数のサイズに拡大縮小したテンプレート画像を、カメラから入力される画像の一部と順次ずらしながら重ね合わせて相関をとり、相関値が閾値以上になる箇所に検知対象が存在すると判定する方法(テンプレートマッチング法)を用いて認識できたか否かを判定する。前述の横断歩道標示と同様、カメラの自動車車体に対する設置角度、設置高、画角を考慮して、画像中で標識を検知する領域を制限してもよい。
さらに、横断歩道標示以外の路面標示や、構造物に対しても、多くの既存技術が公開されているため、それらを用いることで、対象が存在しているか否かを判定することができる。
こうして、ステップS1aではランドマークやマーカ、ビーコン等が存在しているか否かを判定する。存在している場合(分岐のYes側)は、次のステップであるステップS2aに進む。存在していない場合(分岐のNo側)は再度ランドマークやマーカ、ビーコン等の存在有無の検出を試みる。
ステップS2aでは、相対位置推定部12は、基準となるランドマーク、マーカ、ビーコン等までの相対距離と相対方向を算出する。これは、外界認識センサ、C2X装置、マーカ読取装置の検知可能範囲はある程度の範囲に限定されるため、位置同定の正確性を上げるために、ランドマーク、またはマーカ、ビーコン等までの距離を算出する。基準がマーカやビーコンである場合に関しては実施例1に記載しているため省略し、ここでは地図データMを用いて、外界認識センサでランドマークを認識する方法について説明する。
例えば、カメラを用いて横断歩道標示を認識するユースケースについて記載する。前述したステップS1aの処理で、ランドマークが存在していると判定されており、横断歩道標示として抽出された線分要素の上端、下端のそれぞれの端点座標グループが得られているものとする。カメラの自動車車体に対する設置角度、設置高、画角、レンズ歪みを用い、さらに自車直下の走行路路面が少なくとも横断歩道標示まで平坦であると仮定すると、走行路上に横断歩道標示があると仮定したときの横断歩道標示までの距離を算出することができる。さらに、端点座標グループの各端点の並びの角度を算出することで、横断歩道標示に対する自車の角度を算出することができる。
なお、自車直下の走行路路面が少なくとも横断歩道標示まで平坦であるという仮定が成立しない場合、例えば坂道やバンク角度つきのカーブであっても、地図データMから、ランドマークの大きさ情報を用いることで、ランドマークまでの距離を算出することが可能である。例えば横断歩道の場合について図12を用いて説明する。
図12に例示するように、上端の点群グループGrと、下端の点群グループGrの座標を用いると、横断歩道標示までの距離とその地面傾斜角を算出することができる。以下、便宜上、点群グループGrはそれぞれ複数の点を有するが、その重心点を代表点として扱う。任意の点Aから任意の点群グループGrまでの距離とは、点Aから点群グループGrの代表点までの距離のことをさす。端点座標間の距離は前述したように横断歩道の規格上0.6mであるため、これが画像上で観測されている大きさと画角等のカメラ情報を用いて、カメラ原点Oから下端の点群グループGrまでの距離と、カメラ原点Oと上端の端点座標グループGrまでの距離をそれぞれ算出することができる。
ここで、図13に例示するように、カメラ原点Oと投影平面Sを固定し、カメラ原点Oから投影平面S上の点P,Pを通り、距離の定まった点P’,P’を決めると、その2点を通る直線の傾きを決めることができるため、カメラ原点Oから下端の点群グループGrまでの距離と、カメラ原点Oと上端の端点座標グループGrまでの距離から路面の傾きを推定することが可能である。
ステップS3aでは、相対位置推定部12は、ランドマークやマーカまたはビーコン等の絶対位置情報を決定する。マーカやビーコンに関しては実施例1に記載しているため省略し、ここでは地図データMを用いて、外界認識センサでランドマークを認識する方法について説明する。
例えば、基準となるランドマークが横断歩道である場合、図11のDに示すように、四隅の端点P~Pについて、緯度、経度、高度等の位置情報、路面標示の設置方位や、白線長さ、白線本数、側線の有無などが地図データMに格納されている。ステップS2aで認識した横断歩道標示の認識結果の白線本数や側線の有無、設置方位などの情報と、地図データMに格納されている情報が一致している場合、横断歩道の四隅の端点の緯度経度を読出し結果として利用する。
ステップS4では、相対位置推定部12は、自車の絶対位置の算出、走行方位の算出、および算出された絶対位置または走行方位に対する信頼性指標を算出する。絶対位置および走行方位は、ステップS2aで得られたランドマーク、マーカ、ビーコン等までの相対関係と、ステップS3aで得られたランドマーク、マーカ、ビーコン等の絶対位置および設置方位とをタイミングを合わせて統合することによって算出される。信頼性指標については実施例1に記載しているため省略する。なお、マーカ認識用のカメラと、外界認識センサとしてのカメラの信頼性指標は同じ考え方で定義することが可能である。
ステップS5では、相対位置推定部12での算出結果を後段処理に出力する。出力内容は、自車の絶対位置、走行方位、信頼性指標、およびそれらが観測された時刻情報、のうち1つ以上を含む。例えば、自車位置推定部10が車室内に搭載されており、他機器とCANにて接続されている場合には、出力処理は前述した出力内容をCAN出力用のパケットに詰め直して送出する。
<外界認識センサがLidarやミリ波の場合>
以上では、外界認識センサがカメラである例を説明したが、それ以外の外界認識センサでも基本的には同様に扱うことができる。例えば、外界認識センサがLidarやミリ波を用いるものである場合、ステップS1aにおけるランドマークの認識有無の検出は、それぞれスキャン方向の反射強度の変化、すなわち距離情報と材質情報の空間的な変化と見なし、こうした変化パターンを地図データMに事前に記録しておき、この記録された変化パターンと閾値以上の類似性の存在有無として定義できる。
また、ステップS2aにおける自車までの相対関係は、Lidarやミリ波で計測できる距離情報を距離として、スキャン方向の反射強度変化のバイアス変化を角度として、それぞれ定義できる。
ステップS3aにおける地図データMからのランドマークの読出しは、カメラの場合と同じである。
ステップS4における絶対位置の算出方法はカメラの場合と同じであり、信頼性指標はLidarやミリ波の反射強度として定義できる。Lidarやミリ波の場合、車室外にレーザーやミリ波を発射し、その反射波を計測するものであるため、雨滴や泥汚れなどが付着して感度が低下すると、計測される反射強度が減少する。なお、このとき得られた計測データは、不均一に付着する雨滴や泥汚れによって歪むため、信頼性が低下しているものと考える。
以上で説明したように、本実施例の車両制御装置によれば、ランドマーク情報、または、通信部を介して外部から入手した情報を利用することで、車両位置をより高精度に推定することができる。
次に、本発明の実施例3に係る自車位置推定部10を説明する。なお、前述した実施例との共通点は重複説明を省略する。
本実施例では、相対位置推定部12において、外界認識センサでランドマークを認識する際により詳細な認識特性を考慮し、補正方法に反映させる方法について述べる。
本発明の実施例3は、実施例2と装置構成上は同じであり、自車位置推定部10は、絶対位置推定部11、相対位置推定部12、走行状態判定部13、差分演算部14、学習部15、位置補正部16のほかに、さらに、走行経路情報を含む地図データM、ランドマーク情報を含む地図データM、学習制御部17、通信部18を備えている。前述した相対位置推定部12、差分演算部14、位置補正部16の内部処理が異なる。
以下では、実施例2と重複している部分については適宜省略しながら、各部の詳細を説明する。
相対位置推定部12における認識特性とは、認識対象の形状によって、特定の方向には精度良く計測できるが、別な方向には精度が劣化したり、あるいは全く位置同定ができないものがある。
前述した横断歩道標示を例にあげて説明する。通常、自動車が走行する際、横断歩道標示に直交するように通過する。このとき、点群グループGrに含まれる白線の端点は周期的であり、白線同士を区別する特徴はないため、多数の白線が並ぶ場合にはその区別をつけることは難しい。つまり、自動車の左右方向に対して多数の白線が並ぶ場合にはその区別をつけることは難しく、左右方向の位置を特定する際に誤る可能性がある。一方で、自動車の前後方向、すなわち横断歩道標示を横切るように進入する方向(点群グループGrの並びに直交する方向)については、こうした周期性はなく、一意に位置を特定できる特徴がある。
あるいは、車線区分線の白線を例にとると、通常、自動車が走行する際、車線区分線の白線に平行に走行する。このとき、白線とアスファルト等の路面との境界を用いて位置合わせをおこなうことを考えると、自動車の左右方向に対しては位置を特定しやすいが、自動車の前後方向に対しては白線が連続しているために位置を特定することができない。
こうした認識対象の形状によって、特定の方向に位置補正がしやすくなる特徴があるため、横断歩道に対しては前後方向(縦方向)のみ、白線に対しては左右方向(横方向)のみ、最高速度制限標示に対しては前後方向と左右方向の両方、などとルールベースで事前に定義しておいてもよい。
あるいは、地図データMのランドマーク情報には、各ランドマークに方向毎の位置補正可否を格納しておくとよい。これにより、細街路の横断歩道のように、外界認識センサで全体を捉えやすく左右方向の誤差が起きにくい場合と、歩行者や車両が多く部分遮蔽が発生しやすい多車線道路の横断歩道のように、外界認識センサでその一部しか捉えられず左右方向の誤差が起きやすい場合と、を分けて扱うことができるようになり、環境に応じた位置情報を得やすくなるという効果がある。
相対位置推定部12では、ランドマーク毎に予め定義された、車両進行方向に対する方向成分に関してその位置を出力するものとする。
差分演算部14では、絶対位置推定部11および相対位置推定部12の差分を、相対位置推定部12から出力された方向成分に関して計算する。具体的には、絶対位置推定部11から自車が北向きに走行していると得られた状態で、かつ相対位置推定部12からは地図上で東西方向に設置された横断歩道標示に関して南北方向成分の位置情報が出力されている状態を考える。このとき、自車の南北方向の位置差分としては、絶対位置推定部11と相対位置推定部12の差分を算出し、自車の東西方向の位置差分としては差分量が計算されていないことを出力する。
学習部15は、実施例2と同じであるため説明を省略する。
位置補正部16では、学習部15から出力される方位毎の差分量に基づき、絶対位置推定部11の出力を補正して出力する。こうすることで、外界認識センサでランドマークを認識する際により詳細な認識特性を考慮し、補正方法に反映させることができる。
100 車両制御装置
1a 車両情報受信部
1b 絶対位置取得センサ
1c 相対位置取得センサ
1d アクチュエータ
1e HMI
10 自車位置推定部
11 絶対位置推定部
12 相対位置推定部
13 走行状態判定部
14 差分演算部
15 学習部
16 位置補正部
17 学習制御部
18 通信部
20 自律航法統合部
30 地図照合部
40 自動運転制御部
50 経路生成部
M、M、M 地図データ

Claims (11)

  1. 自車位置を推定する自車位置推定部を備えた車両制御装置であって、
    前記自車位置推定部は、
    GNSSから取得した絶対位置情報に基づいて、第一車両位置を推定する絶対位置推定部と、
    車外から取得した相対位置情報に基づいて、第二車両位置を推定する相対位置推定部と、
    車両情報または衛星情報に基づいて、自車の走行状態の変化を判定する走行状態判定部と、
    前記第一車両位置と前記第二車両位置の時刻を同期した上で差分量を演算する差分演算部と、
    前記走行状態ごとに前記差分量を時系列データとして蓄積し、蓄積した時系列データに基づいて前記走行状態ごとの前記第一車両位置の補正量を学習する学習部と、
    該学習部で算出した補正量に基づいて、前記第一車両位置を補正する位置補正部と、
    を具備することを特徴とする車両制御装置。
  2. 請求項1に記載の車両制御装置において、
    前記第二車両位置は、マーカ読取装置が読み取ったマーカの絶対位置を基準とした相対位置、または、C2X装置が受信した発信器もしくはアクセスポイント装置の絶対位置を基準とした相対位置であることを特徴とする車両制御装置。
  3. 請求項1に記載の車両制御装置において、
    前記相対位置推定部には、自車周囲のランドマークの絶対位置を登録したランドマーク情報が入力され、
    前記第二車両位置は、外界認識センサが認識した前記ランドマークの絶対位置を基準とした相対位置であることを特徴とする車両制御装置。
  4. 請求項3に記載の車両制御装置において、
    前記ランドマーク情報には、各ランドマークについて方向毎の位置補正可否情報を格納していることを特徴とする車両制御装置。
  5. 請求項1に記載の車両制御装置において、
    前記走行状態判定部は、前記車両情報に基づいて、自車の右左折を検出した場合、または、自車の車速変化を検出した場合に、自車の走行状態の変化を判定することを特徴とする車両制御装置。
  6. 請求項1に記載の車両制御装置において、
    前記走行状態判定部は、前記衛星情報に基づいて、前記第一車両位置の推定に使用した測位衛星の変化を検出した場合、または、測位結果のアキュラシの変化を検出した場合に、自車の走行状態の変化を判定することを特徴とする車両制御装置。
  7. 請求項1に記載の車両制御装置において、
    前記差分演算部は、自車の進行方向に対して前後方向と左右方向に分けて差分量を演算し、
    前記位置補正部は、自車の進行方向に対して前後方向と左右方向に分けて前記第一車両位置を補正することを特徴とする車両制御装置。
  8. 請求項1に記載の車両制御装置において、
    さらに、前記走行状態判定部の判定結果に応じて、前記学習部の学習状態の初期化、学習内容の更新、または、学習頻度を制御する学習制御部を具備することを特徴とする車両制御装置。
  9. 請求項1に記載の車両制御装置において、
    さらに、車外と通信する通信部、を具備しており、
    前記位置補正部は、前記通信部を介して車外から受信した補正情報に基づいて、前記第一車両位置を補正することを特徴とする車両制御装置。
  10. 請求項1から請求項9の何れか一項に記載の車両制御装置において、
    さらに、
    前記車両情報と前記自車位置推定部が推定した自車位置に基づいて自車位置を算出する自律航法統合部と、
    前記自律航法統合部が算出した自車位置と地図データに基づき、地図中の自車位置を推定する地図照合部と、
    該地図照合部が推定した地図中の自車位置と運転経路に基づいて、車両の操舵系、駆動系、制動系を制御する自動運転制御部と、
    を具備することを特徴とする車両制御装置。
  11. 自車位置を推定する自車位置推定方法であって、
    GNSSから取得した絶対位置情報に基づいて、第一車両位置を推定するステップと、
    車外から取得した相対位置情報に基づいて、第二車両位置を推定するステップと、
    車両情報または衛星情報に基づいて、自車の走行状態の変化を判定するステップと、
    前記第一車両位置と前記第二車両位置の時刻を同期した上で差分量を演算するステップと、
    前記走行状態ごとに前記差分量を時系列データとして蓄積し、蓄積した時系列データに基づいて前記走行状態ごとの前記第一車両位置の補正量を学習するステップと、
    学習した補正量に基づいて、前記第一車両位置を補正するステップと、
    を具備することを特徴とする自車位置推定方法。
JP2020091076A 2020-05-26 2020-05-26 車両制御装置、および、自車位置推定方法 Active JP7328178B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020091076A JP7328178B2 (ja) 2020-05-26 2020-05-26 車両制御装置、および、自車位置推定方法
CN202180037960.3A CN115667847A (zh) 2020-05-26 2021-02-01 车辆控制装置和本车位置推算方法
US17/927,096 US20230243657A1 (en) 2020-05-26 2021-02-01 Vehicle control device and host vehicle position estimation method
PCT/JP2021/003488 WO2021240884A1 (ja) 2020-05-26 2021-02-01 車両制御装置、および、自車位置推定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020091076A JP7328178B2 (ja) 2020-05-26 2020-05-26 車両制御装置、および、自車位置推定方法

Publications (2)

Publication Number Publication Date
JP2021188914A JP2021188914A (ja) 2021-12-13
JP7328178B2 true JP7328178B2 (ja) 2023-08-16

Family

ID=78744221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020091076A Active JP7328178B2 (ja) 2020-05-26 2020-05-26 車両制御装置、および、自車位置推定方法

Country Status (4)

Country Link
US (1) US20230243657A1 (ja)
JP (1) JP7328178B2 (ja)
CN (1) CN115667847A (ja)
WO (1) WO2021240884A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953608B2 (en) * 2019-07-08 2024-04-09 Mitsubishi Electric Corporation Position estimation device and position estimation method
JP7497398B2 (ja) 2022-09-26 2024-06-10 株式会社デンソーテン 情報処理装置、情報処理方法およびプログラム
CN116380107B (zh) * 2023-05-29 2023-08-22 速度科技股份有限公司 一种基于高精地图对车辆进行定位的系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349405A (ja) 2005-06-14 2006-12-28 Mitsubishi Motors Corp 車車間通信システム
JP2007057419A (ja) 2005-08-25 2007-03-08 Oki Electric Ind Co Ltd 車両位置取得管理システム
JP2013246038A (ja) 2012-05-25 2013-12-09 Denso Corp 車両用現在位置決定装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2802020B2 (ja) * 1993-06-21 1998-09-21 富士通テン株式会社 位置補正機能付きナビゲーション装置
JP6380422B2 (ja) * 2016-02-05 2018-08-29 トヨタ自動車株式会社 自動運転システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006349405A (ja) 2005-06-14 2006-12-28 Mitsubishi Motors Corp 車車間通信システム
JP2007057419A (ja) 2005-08-25 2007-03-08 Oki Electric Ind Co Ltd 車両位置取得管理システム
JP2013246038A (ja) 2012-05-25 2013-12-09 Denso Corp 車両用現在位置決定装置

Also Published As

Publication number Publication date
WO2021240884A1 (ja) 2021-12-02
CN115667847A (zh) 2023-01-31
US20230243657A1 (en) 2023-08-03
JP2021188914A (ja) 2021-12-13

Similar Documents

Publication Publication Date Title
US20240255291A1 (en) Sparse map for autonomous vehicle navigation
US20210311490A1 (en) Crowdsourcing a sparse map for autonomous vehicle navigation
US20210063162A1 (en) Systems and methods for vehicle navigation
US10248124B2 (en) Localizing vehicle navigation using lane measurements
CN112923930B (zh) 用于自主车辆导航的众包和分发稀疏地图以及车道测量
CN106546977B (zh) 车辆雷达感知和定位
JP5761162B2 (ja) 車両位置推定装置
KR102425272B1 (ko) 디지털 지도에 대한 위치를 판별하기 위한 방법 및 시스템
US8134480B2 (en) Image processing system and method
JP4277717B2 (ja) 車両位置推定装置およびこれを用いた運転支援装置
JP7328178B2 (ja) 車両制御装置、および、自車位置推定方法
AU2008231233A1 (en) System and method for vehicle navigation and piloting including absolute and relative coordinates
JP6806891B2 (ja) 情報処理装置、制御方法、プログラム及び記憶媒体
KR102137043B1 (ko) 환경센서와 정밀지도를 이용한 측위 정확도 개선 시스템
JP7289761B2 (ja) 車両の自己位置推定装置、および、自己位置推定方法
JP7031748B2 (ja) 自己位置推定方法及び自己位置推定装置
KR102603534B1 (ko) Ldm 정보와 환경 센서를 이용한 차량의 측위 개선 방법 및 장치
US20230086589A1 (en) Vehicle position estimation device
Kojima et al. High accuracy local map generation method based on precise trajectory from GPS Doppler
Bronson et al. A study of the potential for increased safety through active vehicle lane-keeping
KR20230012159A (ko) 차량 측위 방법, 차량 및 차량 측위 시스템
CN115773765A (zh) 结合动态和静态特征的语义定位方法、电子设备和介质

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20220615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230331

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230803

R150 Certificate of patent or registration of utility model

Ref document number: 7328178

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150