JP7323910B2 - Spun yarn, heat storage fiber structure, method for producing heat storage fiber structure, heat storage spun yarn, and method for producing heat storage spun yarn - Google Patents

Spun yarn, heat storage fiber structure, method for producing heat storage fiber structure, heat storage spun yarn, and method for producing heat storage spun yarn Download PDF

Info

Publication number
JP7323910B2
JP7323910B2 JP2019048123A JP2019048123A JP7323910B2 JP 7323910 B2 JP7323910 B2 JP 7323910B2 JP 2019048123 A JP2019048123 A JP 2019048123A JP 2019048123 A JP2019048123 A JP 2019048123A JP 7323910 B2 JP7323910 B2 JP 7323910B2
Authority
JP
Japan
Prior art keywords
spun yarn
short fibers
fiber
heat storage
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019048123A
Other languages
Japanese (ja)
Other versions
JP2020147874A (en
Inventor
充俊 角野
和彦 田中
Original Assignee
加茂繊維株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 加茂繊維株式会社 filed Critical 加茂繊維株式会社
Priority to JP2019048123A priority Critical patent/JP7323910B2/en
Publication of JP2020147874A publication Critical patent/JP2020147874A/en
Application granted granted Critical
Publication of JP7323910B2 publication Critical patent/JP7323910B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Multicomponent Fibers (AREA)
  • Woven Fabrics (AREA)
  • Knitting Of Fabric (AREA)

Description

本発明は、紡績糸、蓄熱性繊維構造物および蓄熱性繊維構造物の製造方法、ならびに蓄熱性紡績糸および蓄熱性紡績糸の製造方法に関する。詳細には、黒鉛珪石の微粉末を含有する短繊維(黒鉛珪石含有短繊維)を含む紡績糸および蓄熱性繊維構造物などに関する。 TECHNICAL FIELD The present invention relates to a spun yarn, a heat storage fiber structure, a method for producing a heat storage fiber structure, a heat storage spun yarn, and a method for producing a heat storage spun yarn. Specifically, the present invention relates to a spun yarn containing short fibers containing graphite silica fine powder (graphite silica-containing short fibers), a heat storage fiber structure, and the like.

黒鉛珪石の微粉末を含有する繊維は、例えば、特許文献1などに記載されている。特許文献1には、「黒鉛珪石の微粉末を0.2~25重量%有する繊維であって、前記黒鉛珪石は、平均粒径が70~80μmの黒鉛珪石粒子1gを上下電極に挟んで350gの加重を付与した状態における抵抗値が9×1010Ω以下である、繊維。」が開示されており、これによって、「蓄熱保温性能に優れた繊維を安定的に得ることができる」とある。黒鉛珪石含有繊維を用いた肌着や被服は、遠赤外線効果などにより、薄くても暖かいという優れた特徴を有する。 Fibers containing fine powder of graphite silica are described, for example, in Patent Document 1 and the like. In Patent Document 1, "fibers containing 0.2 to 25% by weight of fine powder of graphite silica, the graphite silica is 350 g with 1 g of graphite silica particles having an average particle size of 70 to 80 µm sandwiched between upper and lower electrodes. The fiber has a resistance value of 9 × 10 10 Ω or less in a state where a load of 1 is applied.", and it is stated that "a fiber excellent in heat storage and heat retention performance can be stably obtained." . Undergarments and clothing using fibers containing graphite silica have the excellent feature of being thin but warm due to the effect of far infrared rays.

一方、特許文献2には「平衡水分率が2%以下のポリエステルを海成分とし、4~15モル%のエチレン単位を含有する水溶性熱可塑性ポリビニルアルコール系重合体を島成分とする複合繊維。」が開示されている。「この複合繊維から水溶性熱可塑性ポリビニルアルコールを溶解除去することで、中空繊維が得られる」とある。水溶性熱可塑性ポリビニルアルコールを溶解除去するための条件として、例えば、170℃で約40秒のプレセットの後、120℃で40分の熱水処理(段落0056)と記載されている。 On the other hand, Patent Document 2 describes "a composite fiber having a polyester having an equilibrium moisture content of 2% or less as a sea component and a water-soluble thermoplastic polyvinyl alcohol-based polymer containing 4 to 15 mol % of ethylene units as an island component. ” is disclosed. It states, "By dissolving and removing the water-soluble thermoplastic polyvinyl alcohol from this conjugate fiber, a hollow fiber can be obtained." The conditions for dissolving and removing the water-soluble thermoplastic polyvinyl alcohol are, for example, pre-setting at 170° C. for about 40 seconds, followed by hot water treatment at 120° C. for 40 minutes (paragraph 0056).

特開2017‐020141号公報(特許請求の範囲)Japanese Patent Application Laid-Open No. 2017-020141 (Claims) 特許第4514977号公報(特許請求の範囲)Japanese Patent No. 4514977 (Claims)

黒鉛珪石含有繊維を用いた肌着や被服には、蓄熱性に優れ、薄くても暖かいという優れた特徴がある。しかし、蓄熱性を維持しつつさらなる軽量化やふくらみ感の向上が望まれていた。 Undergarments and clothing using fibers containing graphite silica have excellent heat storage properties and are warm even though they are thin. However, it has been desired to further reduce the weight and improve the bulging feeling while maintaining the heat storage property.

本発明は、上記課題を解決するものであり、蓄熱性や風合い(軽量感、ソフト感、ふくらみ感)に優れた蓄熱性繊維構造物を提供することである。
また、この蓄熱性繊維構造物に用いられる紡績糸および蓄熱性繊維構造物の製造方法を提供することである。
さらに、蓄熱性繊維構造物に用いることができる蓄熱性紡績糸を提供することである。
加えて、この蓄熱性紡績糸の製造方法を提供することである。
An object of the present invention is to solve the above-mentioned problems, and to provide a heat-storage fiber structure excellent in heat-storage properties and texture (lightness, softness, bulgeness).
Another object of the present invention is to provide a spun yarn used for this heat storage fiber structure and a method for producing the heat storage fiber structure.
Another object of the present invention is to provide a heat-storage spun yarn that can be used for heat-storage fiber structures.
Another object of the present invention is to provide a method for producing this heat storage spun yarn.

上記課題を解決するために、黒鉛珪石の微粉末を含有する黒鉛珪石含有短繊維と、平衡水分率が2%以下である熱可塑性重合体を海成分とし、水溶性熱可塑性ポリビニルアルコール系重合体を島成分とする複合短繊維と、からなる紡績糸とした。 In order to solve the above problems, a water-soluble thermoplastic polyvinyl alcohol-based polymer is prepared by using graphite silica-containing short fibers containing graphite silica fine powder and a thermoplastic polymer having an equilibrium moisture content of 2% or less as a sea component. and a composite staple fiber having island components as a spun yarn.

本願発明者は、黒鉛珪石含有繊維の優れた蓄熱性を維持しつつ風合いを向上させるために鋭意研究開発を重ねた。すると、驚くべきことに、所定の黒鉛珪石含有短繊維と、所定の複合短繊維と、からなる紡績糸を用いることで、上記課題が解決されることを見いだしたのである。
この紡績糸は、繊維構造物などの状態で水(温水や熱水)で処理して、複合短繊維の島成分である水溶性熱可塑性ポリビニルアルコール系重合体を溶解除去することができる。その結果、複合短繊維が中空化した中空短繊維となって、繊維構造物から蓄熱性繊維構造物が得られる。
この蓄熱性繊維構造物は、黒鉛珪石と中空繊維の相乗作用により、蓄熱性と風合いが両立する。また、紡績糸を水で処理する際、短繊維である複合短繊維の両端から水が作用するため、長繊維の場合と比較して短時間で確実に、水溶性熱可塑性ポリビニルアルコール系重合体が溶解除去される。さらに、この蓄熱性繊維構造物は長時間の着用でも蒸れにくい。
The inventors of the present application have devoted themselves to research and development in order to improve the texture while maintaining the excellent heat storage properties of fibers containing graphite silica. Surprisingly, the inventors have found that the above problems can be solved by using a spun yarn composed of predetermined graphite-silica-containing short fibers and predetermined composite short fibers.
This spun yarn can be treated with water (hot water or hot water) in the state of a fiber structure or the like to dissolve and remove the water-soluble thermoplastic polyvinyl alcohol-based polymer, which is the island component of the composite short fibers. As a result, the conjugate short fibers become hollow short fibers, and a heat storage fiber structure is obtained from the fiber structure.
This heat-storage fiber structure achieves both heat-storage and texture due to the synergistic action of graphite silica and hollow fibers. In addition, when the spun yarn is treated with water, water acts from both ends of the composite short fiber, which is a short fiber. is dissolved away. Furthermore, this heat storage fiber structure does not get stuffy even when worn for a long time.

ここで、黒鉛珪石含有短繊維が、芯成分と鞘成分からなる芯鞘構造であり、前記芯成分中にのみ黒鉛珪石の微粉末を含有しており、黒鉛珪石の微粉末の含有量は、黒鉛珪石含有短繊維の0.5~5.0重量%である、紡績糸とすることができる。 Here, the graphite silica-containing short fiber has a core-sheath structure consisting of a core component and a sheath component, and contains fine graphite silica powder only in the core component, and the content of the fine graphite silica powder is It can be a spun yarn that is 0.5 to 5.0% by weight of the graphitic silica-containing staple fiber.

黒鉛珪石含有短繊維が、その芯成分中にのみ黒鉛珪石の微粉末を含有しているため、複合短繊維から水溶性熱可塑性ポリビニルアルコール系重合体を溶解除去する際に、黒鉛珪石含有短繊維から黒鉛珪石の微粉末が脱落しにくい。
また、黒鉛珪石の微粉末の含有量が、黒鉛珪石含有短繊維の0.5~5.0重量%であることで、蓄熱性と風合いを高い次元で両立することができる。
Since the graphite silica-containing short fibers contain graphite silica fine powder only in the core component, when dissolving and removing the water-soluble thermoplastic polyvinyl alcohol polymer from the composite short fibers, the graphite silica-containing short fibers Fine powder of graphite silica is difficult to fall off from.
Further, when the content of graphite silica fine powder is 0.5 to 5.0% by weight of the graphite silica-containing short fiber, both heat storage property and texture can be achieved at a high level.

また、黒鉛珪石含有短繊維が10~30重量%含まれており、複合短繊維が50~90重量%含まれている、紡績糸とすることもできる。 Alternatively, the spun yarn may contain 10 to 30% by weight of short fibers containing graphite silica and 50 to 90% by weight of composite short fibers.

この紡績糸は、蓄熱性と風合いを高い次元で両立することができる。黒鉛珪石含有短繊維が15~30重量%含まれており、複合短繊維が50~70重量%含まれている、紡績糸とすることが好ましい。 This spun yarn can achieve both heat storage and texture at a high level. A spun yarn containing 15 to 30% by weight of short fibers containing graphite silica and 50 to 70% by weight of composite short fibers is preferably used.

また、上記課題は、黒鉛珪石の微粉末を含有する黒鉛珪石含有短繊維と、平衡水分率が2%以下である熱可塑性重合体からなる中空短繊維と、からなる蓄熱性紡績糸を少なくとも一部に含む蓄熱性繊維構造物によっても解決する。 Further, the above object is to provide at least one heat-storage spun yarn comprising graphite silica-containing short fibers containing graphite silica fine powder and hollow short fibers made of a thermoplastic polymer having an equilibrium moisture content of 2% or less. It can also be solved by the heat storage fiber structure included in the part.

蓄熱性繊維構造物を製造する方法としては、上記紡績糸を準備する紡績糸準備工程と、この紡績糸準備工程で準備した紡績糸を少なくとも一部に用いて繊維構造物を製造する繊維構造物製造工程と、この繊維構造物製造工程で得られた繊維構造物を水で処理して複合短繊維から水溶性熱可塑性ポリビニルアルコール系重合体を溶解除去することで、複合短繊維を中空化した中空短繊維とする、複合短繊維中空化工程と、を備える方法とすることができる。水には温水や熱水が含まれる。 A method for producing a heat-accumulating fibrous structure includes a spun yarn preparing step of preparing the spun yarn, and a fibrous structure using at least a part of the spun yarn prepared in the spun yarn preparing step. The fiber structure obtained in the manufacturing process and the fiber structure manufacturing process is treated with water to dissolve and remove the water-soluble thermoplastic polyvinyl alcohol-based polymer from the composite short fibers, thereby hollowing the composite short fibers. A method comprising a composite short fiber hollowing step of forming hollow short fibers. Water includes warm water and hot water.

また、上記課題は、黒鉛珪石の微粉末を含有する黒鉛珪石含有短繊維と、平衡水分率が2%以下である熱可塑性重合体からなる中空短繊維と、からなる蓄熱性紡績糸によっても解決する。 Moreover, the above-mentioned problems are also solved by a heat-storage spun yarn composed of graphite silica-containing short fibers containing graphite silica fine powder and hollow short fibers made of a thermoplastic polymer having an equilibrium moisture content of 2% or less. do.

さらに、上記課題は、黒鉛珪石の微粉末を含有する黒鉛珪石含有短繊維と、平衡水分率が2%以下である熱可塑性重合体を海成分とし、水溶性熱可塑性ポリビニルアルコール系重合体を島成分とする複合短繊維から前記水溶性熱可塑性ポリビニルアルコール系重合体を溶解除去して得られる中空短繊維と、からなる蓄熱性紡績糸によっても解決する。 Furthermore, the above-mentioned problem is to solve the above problem by using graphite silica-containing short fibers containing fine powder of graphite silica, a thermoplastic polymer having an equilibrium moisture content of 2% or less as a sea component, and a water-soluble thermoplastic polyvinyl alcohol polymer as an island component. The problem can also be solved by a heat-storage spun yarn comprising hollow short fibers obtained by dissolving and removing the water-soluble thermoplastic polyvinyl alcohol-based polymer from the component composite short fibers.

このとき、黒鉛珪石含有短繊維が、芯成分と鞘成分からなる芯鞘構造であり、前記芯成分中にのみ黒鉛珪石の微粉末を含有しており、黒鉛珪石の微粉末の含有量は、黒鉛珪石含有短繊維の0.5~5.0重量%である、蓄熱性紡績糸とすることができる。 At this time, the graphite silica-containing short fiber has a core-sheath structure consisting of a core component and a sheath component, and contains fine graphite silica powder only in the core component, and the content of the fine graphite silica powder is A heat-accumulating spun yarn containing 0.5 to 5.0% by weight of the short fiber containing graphite silica can be obtained.

上記蓄熱性紡績糸を少なくとも一部に含む、蓄熱性繊維構造物とすることもできる。 It is also possible to provide a heat storage fibrous structure at least partially including the heat storage spun yarn.

蓄熱性紡績糸の製造方法としては、上記紡績糸を準備する紡績糸準備工程と、この紡績糸準備工程で準備した紡績糸を水で処理して複合短繊維から水溶性熱可塑性ポリビニルアルコール系重合体を溶解除去することで、複合短繊維を中空化した中空短繊維とする複合短繊維中空化工程と、を備える方法とすることができる。 The method for producing the heat-accumulating spun yarn includes a spun yarn preparation step for preparing the spun yarn, and the spun yarn prepared in this spun yarn preparation step is treated with water to convert the composite staple fiber into a water-soluble thermoplastic polyvinyl alcohol polymer. and a composite short fiber hollowing step of hollowing the composite short fibers into hollow short fibers by dissolving and removing the united fibers.

本発明により、蓄熱性や風合いに優れた蓄熱性繊維構造物などを提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a heat-storage fiber structure having excellent heat-storage properties and texture.

黒鉛珪石含有短繊維の断面形状の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of the cross-sectional shape of short fibers containing graphite silica. 複合短繊維の断面形状の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a cross-sectional shape of a composite staple fiber; 中空短繊維の断面形状の一例を示す断面図である。FIG. 2 is a cross-sectional view showing an example of a cross-sectional shape of short hollow fibers.

以下、紡績糸、蓄熱性繊維構造物および蓄熱性繊維構造物の製造方法、ならびに蓄熱性紡績糸および蓄熱性紡績糸の製造方法を例示説明する。まず、紡績糸を例示説明する。紡績糸は、黒鉛珪石含有短繊維と複合短繊維とを含む。
なお、以下の実施形態はあくまで本発明を例示説明するものであって、本発明は、以下の具体的な実施形態に限定されるものではない。
Hereinafter, a spun yarn, a heat storage fiber structure, a method for producing a heat storage fiber structure, a heat storage spun yarn, and a method for producing a heat storage spun yarn will be illustrated and explained. First, the spun yarn is illustrated and explained. The spun yarn contains graphite silica-containing staple fibers and composite staple fibers.
It should be noted that the following embodiments are for illustration and explanation of the present invention to the last, and the present invention is not limited to the following specific embodiments.

[黒鉛珪石含有短繊維]
黒鉛珪石含有短繊維は、黒鉛珪石の微粉末を含有する短繊維である。黒鉛珪石含有短繊維は、黒鉛珪石含有繊維を短繊維化して得られる。黒鉛珪石含有繊維は、例えば、前述した特開2017‐020141号公報に記載されている。
[Short fibers containing graphite silica]
Short fibers containing graphite silica are short fibers containing fine powder of graphite silica. Graphite-containing short fibers are obtained by making graphite-silica-containing fibers into short fibers. Graphite-containing fibers are described, for example, in JP-A-2017-020141 mentioned above.

1.黒鉛珪石
黒鉛珪石は、数億年に亘り海底に堆積した珪藻類が地表に隆起したものであると考えられている。黒鉛珪石は、SiOを主成分とし、黒鉛結晶(通常は約5%)を含んでいる。その他にも、アルミニウム、カリウム、チタンおよび二酸化鉄およびマグネシウムなどを、黒鉛珪石は含んでいる。黒鉛珪石はブラックシリカと称される場合がある。
1. Graphite Silica Graphite is believed to be diatoms that have accumulated on the seafloor over hundreds of millions of years and rise to the surface. Graphitic silica is based on SiO 2 and contains graphite crystals (usually about 5%). In addition, graphite silica contains aluminum, potassium, titanium and iron dioxide and magnesium. Graphite silica is sometimes referred to as black silica.

2.黒鉛珪石の微粉末化
黒鉛珪石を微粉末化する。このとき、平均粒径(d50:累積50%粒径)が3μm以下になるように黒鉛珪石を微粉末化することが好ましい。
2. Pulverization of graphite silica The graphite silica is pulverized. At this time, it is preferable to pulverize the graphite silica so that the average particle size (d50: cumulative 50% particle size) is 3 μm or less.

3.繊維化(長繊維化)
上記黒鉛珪石の微粉末を所定量含有する黒鉛珪石含有繊維(長繊維)を製造する。
3. Fiberization (long fiber)
A graphite silica-containing fiber (long fiber) containing a predetermined amount of fine powder of graphite silica is produced.

黒鉛珪石含有繊維を構成するポリマー、すなわち黒鉛珪石の微粉末を練りこむポリマーは、特に制限されない。紡糸時の曵糸性や糸物性を考慮すると、ポリエチレンテレフタレート、ナイロン6、ナイロン66等が好ましい。また芯鞘型の繊維とする場合には、例えば、上記ポリマーから2種類を選び、いずれかを芯成分のポリマーとし、他方を鞘成分のポリマーとすることができる。 The polymer constituting the graphite silica-containing fiber, that is, the polymer into which graphite silica fine powder is kneaded is not particularly limited. Polyethylene terephthalate, nylon 6, nylon 66, and the like are preferred in consideration of the threadability and yarn physical properties during spinning. In the case of a core-sheath type fiber, for example, two types of the above polymers can be selected, one of which can be used as the core component polymer and the other can be used as the sheath component polymer.

黒鉛珪石含有繊維の表面付近に黒鉛珪石粒子が多く存在していると、複合短繊維から水溶性熱可塑性ポリビニルアルコール系重合体を溶解除去する際、水処理温度や時間によっては、黒鉛珪石の微粉末が繊維から脱落する場合があって好ましくない。そのため、黒鉛珪石を芯成分のポリマーに添加し、その周りを鞘成分のポリマーで覆った、いわゆる芯鞘型の繊維とすることが好ましい。 If many graphite silica particles are present near the surface of graphite silica-containing fibers, when dissolving and removing the water-soluble thermoplastic polyvinyl alcohol-based polymer from the composite staple fibers, depending on the water treatment temperature and time, the graphite silica particles may become fine. The powder may fall off from the fibers, which is not preferable. Therefore, it is preferable to form a so-called core-sheath type fiber in which graphite silica is added to the core component polymer and the periphery is covered with the sheath component polymer.

芯鞘型の複合短繊維とする場合には、鞘成分と芯成分の比率(重量比率)としては、4:1~1:4の範囲が好ましく、3:1~1:3の範囲がより好ましく、2:1~1:1の範囲が最も好ましい。また、芯成分は繊維中に一芯である必要はなく、2以上の多芯であってもよい。さらに、芯成分の一部が繊維表面に露出していてもよいが、芯成分が完全に鞘成分に覆われていることが好ましい。 In the case of core-sheath type composite short fibers, the ratio (weight ratio) of the sheath component to the core component is preferably in the range of 4:1 to 1:4, more preferably in the range of 3:1 to 1:3. Preferably, the range of 2:1 to 1:1 is most preferred. Moreover, the core component does not have to be one core in the fiber, and may be two or more cores. Furthermore, a part of the core component may be exposed on the fiber surface, but it is preferable that the core component is completely covered with the sheath component.

黒鉛珪石の微粉末を熱可塑性重合体に添加する方法は特に制限されない。均一分散させるという面からは、二軸押出機を用いてマスターチップ化する方法が好ましい。
黒鉛珪石の微粉末の添加時期も特に制限されない。重合初期に反応系に添加し、直接紡糸することができる。また、黒鉛珪石の微粉末を溶融状態にある重合体に混練する、いわゆる後添加方式とすることもできる。さらに、黒鉛珪石の微粉末を高濃度に含有させたマスターチップを用いる、いわゆるマスターバッチ方式とすることもできる。
The method of adding the graphite silica fine powder to the thermoplastic polymer is not particularly limited. A method of making master chips using a twin-screw extruder is preferable from the viewpoint of uniform dispersion.
The addition timing of the graphite silica fine powder is not particularly limited. It can be added to the reaction system at the initial stage of polymerization and directly spun. Also, a so-called post-addition system in which fine powder of graphite silica is kneaded with a polymer in a molten state may be employed. Furthermore, a so-called masterbatch system can be used in which a master chip containing a high concentration of fine powder of graphite silica is used.

黒鉛珪石の微粉末の添加量は、好ましくは黒鉛珪石含有繊維(黒鉛珪石含有短繊維)の0.5~8.0重量%であり、より好ましくは黒鉛珪石含有繊維の0.5~5.0重量%、さらに好ましくは黒鉛珪石含有繊維の0.5~4.0重量%である。 The amount of graphite silica fine powder added is preferably 0.5 to 8.0% by weight of the graphite silica-containing fiber (graphite silica-containing short fiber), more preferably 0.5 to 5.0% by weight of the graphite silica-containing fiber. 0% by weight, more preferably 0.5 to 4.0% by weight of the graphite silica-containing fiber.

黒鉛珪石含有繊維として繊維化するには、上記材料を用いて、通常の繊維製造工程をそのまま用いることが可能である。繊維の太さとしては、0.5~15デシテックスの範囲が好ましい。 In order to fiberize graphite-silica containing fibers, it is possible to use the above-mentioned materials and use the normal fiber manufacturing process as it is. The fiber thickness is preferably in the range of 0.5 to 15 decitex.

黒鉛珪石含有繊維の断面形状は特に制限されない。丸断面のほか、例えば、三~六角断面等の多角断面、T字型断面、U字型断面とすることができる。 The cross-sectional shape of the graphite silica-containing fiber is not particularly limited. In addition to the circular cross section, for example, a polygonal cross section such as a triangular to hexagonal cross section, a T-shaped cross section, and a U-shaped cross section can be used.

4.短繊維化
得られた黒鉛珪石含有繊維を短繊維化して黒鉛珪石含有短繊維とする。黒鉛珪石含有繊維は、従来公知の方法で短繊維化することができる。黒鉛珪石含有短繊維の繊維長は、好ましくは25~150mmであり、より好ましくは35~100mm、最も好ましくは、40~60mmである。捲縮数は、例えば3.3デシテックスの場合、12~15個/inch、捲縮率は概ね10%とすることが好ましい。
4. Making into Short Fibers The obtained graphite-silica stone-containing fibers are made into short fibers to obtain graphite-silica stone-containing short fibers. The fibers containing graphite silica can be made into short fibers by a conventionally known method. The fiber length of the graphite silica-containing short fibers is preferably 25-150 mm, more preferably 35-100 mm, and most preferably 40-60 mm. The number of crimps is preferably 12 to 15/inch for 3.3 decitex, and the crimp rate is preferably approximately 10%.

[複合短繊維]
次に、複合短繊維について説明する。複合短繊維は、平衡水分率が2%以下である熱可塑性重合体を海成分とし、水溶性熱可塑性ポリビニルアルコール系重合体を島成分とする。複合短繊維は、複合繊維を短繊維化して得られる。複合繊維は、前述した特許第4514977号公報に開示されている。島成分の材料、海成分の材料および繊維化については、特許第4514977号公報に記載されている内容を適用可能である。
[Composite staple fiber]
Next, the composite short fibers will be described. The composite short fibers contain a thermoplastic polymer having an equilibrium moisture content of 2% or less as a sea component, and a water-soluble thermoplastic polyvinyl alcohol polymer as an island component. Composite short fibers are obtained by making composite fibers into short fibers. Composite fibers are disclosed in the aforementioned Japanese Patent No. 4,514,977. The contents described in Japanese Patent No. 4514977 can be applied to the island component material, the sea component material and fiberization.

海成分および島成分の形状は特に制限されない。島成分の数は複合短繊維の断面において1個以上存在していればよい。島成分の数は、例えば、10個以上、さらには30個以上、特に50個以上とすることができる。島成分の数の上限は特に制限されないが、繊維強度を考慮すると、好ましくは1000個以下、さらに好ましくは600個以下とすることができる。 The shapes of the sea component and the island component are not particularly limited. One or more island components may be present in the cross section of the composite staple fiber. The number of island components can be, for example, 10 or more, further 30 or more, particularly 50 or more. Although the upper limit of the number of island components is not particularly limited, considering the fiber strength, it is preferably 1000 or less, more preferably 600 or less.

島成分と海成分の複合比率は特に制限されない。中空短繊維の中空部の数と中空率をどの程度に設定するかに応じて複合比率を変更することができる。島成分の比率が小さすぎると軽量化の効果も少なくなる。一方、中空部の比率が大きすぎると強度を確保しにくくなる。海成分と島成分の複合比率(重量比)は、海:島=98:2~35:65、さらには95:5~40:60とすることが好ましく、70:30~50:50とすることが最も好ましい。
また、複合短繊維の断面形状は特に制限されない。複合短繊維の断面形状は、例えば、円形状、偏平形状、楕円形状、多角形状とすることができる。
また、複合短繊維は各種添加剤を含んでもよい。添加剤としては、例えば、蛍光増白剤、安定剤、難燃剤、着色剤を挙げることができる。
The composite ratio of the island component and the sea component is not particularly limited. The composite ratio can be changed according to the number of hollow portions of the hollow short fibers and the degree of hollowness to be set. If the ratio of the island component is too small, the effect of weight reduction is also reduced. On the other hand, if the ratio of the hollow portion is too large, it becomes difficult to secure the strength. The composite ratio (weight ratio) of the sea component and the island component is preferably sea:island=98:2 to 35:65, more preferably 95:5 to 40:60, and 70:30 to 50:50. is most preferred.
Moreover, the cross-sectional shape of the composite staple fiber is not particularly limited. The cross-sectional shape of the conjugate staple fiber can be circular, flat, elliptical, or polygonal, for example.
In addition, the composite short fibers may contain various additives. Additives include, for example, optical brighteners, stabilizers, flame retardants, and colorants.

1.島成分
複合短繊維の島成分に使用される水溶性熱可塑性ポリビニルアルコール系重合体(以降、PVAと称する場合がある)について説明する。PVAには、ポリビニルアルコールのホモポリマーのほか、例えば、共重合、末端変性、および後反応により官能基を導入した変性ポリビニルアルコールも包含される。
1. Island Component The water-soluble thermoplastic polyvinyl alcohol-based polymer (hereinafter sometimes referred to as PVA) used for the island component of the composite staple fiber will be described. PVA includes homopolymers of polyvinyl alcohol as well as modified polyvinyl alcohol into which functional groups have been introduced by copolymerization, terminal modification, and post-reaction, for example.

PVAの粘度平均重合度は200~500が好ましく、230~470がより好ましく、250~450がさらに好ましい。粘度平均重合度500以下の低重合度のPVAを用いることによってPVAの溶解速度が速くなる。また、粘度平均重合度500以下の低重合度のPVAを用いることによって溶解時における複合短繊維の収縮を小さくすることができる。粘度平均重合度はJIS‐K6726に準じて測定する。 The viscosity average degree of polymerization of PVA is preferably 200-500, more preferably 230-470, even more preferably 250-450. By using PVA with a low degree of polymerization having a viscosity-average degree of polymerization of 500 or less, the dissolution rate of PVA is increased. In addition, by using PVA with a low degree of polymerization having a viscosity average degree of polymerization of 500 or less, shrinkage of the short composite fibers during dissolution can be reduced. The viscosity average degree of polymerization is measured according to JIS-K6726.

PVAの鹸化度は、90~99.99モル%であることが好ましい。鹸化度が90モル%未満の場合には、共重合モノマーの種類によっては、PVAの水溶性が低下する場合がある。 The saponification degree of PVA is preferably 90 to 99.99 mol %. If the degree of saponification is less than 90 mol %, the water solubility of PVA may decrease depending on the type of copolymerizable monomer.

PVAの融点(Tm)は160~230℃であることが好ましく、170~227℃がより好ましく、175~224℃がさらに好ましく、180~220℃が最も好ましい。融点が160℃未満の場合にはPVAの結晶性が低下し、複合繊維の繊維強度および熱安定性が悪くなって繊維化できない場合がある。一方、融点が230℃を越えると紡糸温度が高くなり、紡糸温度がPVAの分解温度に近づくために安定的に繊維化することができない場合がある。
なお、PVAの融点はDSCを用いて測定する。具体的には、窒素中で昇温速度10℃/分で250℃まで昇温後、室温まで冷却し、昇温速度10℃/分で250℃まで再度昇温した場合の吸熱ピークのピークトップの温度を測定し、この温度をPVAの融点とする。
The melting point (Tm) of PVA is preferably 160 to 230°C, more preferably 170 to 227°C, even more preferably 175 to 224°C, most preferably 180 to 220°C. If the melting point is less than 160° C., the crystallinity of PVA is lowered, and the fiber strength and thermal stability of the conjugated fiber are deteriorated, and fiberization may not be possible. On the other hand, when the melting point exceeds 230° C., the spinning temperature becomes high, and the spinning temperature approaches the decomposition temperature of PVA, which may prevent stable fiberization.
The melting point of PVA is measured using DSC. Specifically, after heating to 250°C at a heating rate of 10°C/min in nitrogen, cooling to room temperature, and then heating again to 250°C at a heating rate of 10°C/min, the peak top of the endothermic peak. is measured, and this temperature is taken as the melting point of PVA.

PVAは、エチレン単位が4~15モル%、好ましくは6~13モル%導入されたエチレン変性PVAを使用することができる。このようなPVAは繊維物性が高くなる。 Ethylene-modified PVA into which 4 to 15 mol %, preferably 6 to 13 mol % of ethylene units are introduced can be used as PVA. Such PVA has high fibrous physical properties.

PVAの種類や複合繊維の製造条件を変更することにより、島成分であるPVAの溶解温度が30℃~100℃の複合繊維を得ることができる。PVAの溶解温度は40℃以上であることが好ましい。 By changing the type of PVA and the manufacturing conditions of the conjugate fiber, it is possible to obtain a conjugate fiber in which the island component PVA has a melting temperature of 30°C to 100°C. The melting temperature of PVA is preferably 40° C. or higher.

2.海成分
複合短繊維の海成分を構成する熱可塑性重合体は、平衡水分率が2%以下であれば特に制限されない。例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン等のポリオレフィン系重合体やポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート、ポリプロピレンテレフタレート等のポリエステル、ポリ乳酸、ポリフェニレンスルフィド、ポリアリレート、ポリカーボネート、ポリメチルメタクリレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリウレタン、ポリブタジエン、水添ポリブタジエン、ポリイソプレン、水添ポリイソプレン、芳香族ビニルモノマーとジエン系モノマーとからの共重合体、またはその水添物等を挙げることができる。
また、これらの重合体は共重合などで変性されていてもよい。ポリエステル系においては、イソフタル酸、5-ソジウムスルホイソフタル酸、セバチン酸、アジピン酸等で共重合することが、PVAを溶解除去しやすくなるため好ましい。さらに海成分は各種添加剤を含んでいてもよい。
なお、平衡水分率は、JIS L1015-1992の7.3「平衡水分率」の測定法に準拠して測定した値である。測定の際の水分平衡は、温度20℃±2℃、湿度65%RH±2%RHの条件下でのものである。
2. Sea Component The thermoplastic polymer that constitutes the sea component of the conjugate staple fiber is not particularly limited as long as it has an equilibrium moisture content of 2% or less. For example, polyolefin polymers such as polyethylene, polypropylene, and polymethylpentene; polyesters such as polyethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate, and polypropylene terephthalate; Examples include vinyl chloride, polyvinylidene chloride, polyurethane, polybutadiene, hydrogenated polybutadiene, polyisoprene, hydrogenated polyisoprene, copolymers of aromatic vinyl monomers and diene monomers, and hydrogenated products thereof.
Moreover, these polymers may be modified by copolymerization or the like. In a polyester system, copolymerization with isophthalic acid, 5-sodium sulfoisophthalic acid, sebacic acid, adipic acid or the like is preferable because it facilitates dissolution and removal of PVA. Furthermore, the sea component may contain various additives.
The equilibrium moisture content is a value measured according to the method for measuring 7.3 "equilibrium moisture content" of JIS L1015-1992. The water balance in the measurement is under the conditions of a temperature of 20° C.±2° C. and a humidity of 65% RH±2% RH.

3.複合繊維の繊維化(長繊維化)
複合繊維を繊維化する方法として、例えば、複合紡糸を用いることができる。複合紡糸の場合は、PVAと熱可塑性重合体とをそれぞれ別の押し出し機で溶融混練した後、PVAが島成分となり熱可塑性重合体が海成分となるようにして海島型複合紡糸ノズルから吐出させて巻き取ることで繊維化することが好ましい。
3. Composite fiber fiberization (long fiber)
Composite spinning, for example, can be used as a method for fiberizing composite fibers. In the case of composite spinning, the PVA and the thermoplastic polymer are melt-kneaded in separate extruders, and then extruded from a sea-island type composite spinning nozzle so that the PVA serves as an island component and the thermoplastic polymer serves as a sea component. It is preferable to fiberize by winding up.

4.複合繊維の短繊維化(複合短繊維)
得られた複合繊維を短繊維化して複合短繊維とする。従来公知の方法で短繊維化することができる。複合短繊維の繊維長は、好ましくは25~150mmであり、より好ましくは35~100mm、最も好ましくは、40~60mmである。捲縮数は、例えば3.3デシテックスの場合には、12~15個/inch、捲縮率は概ね10%とすることが好ましい。
4. Shortening of composite fibers (short composite fibers)
The obtained composite fibers are made into short fibers to obtain composite short fibers. It can be made into short fibers by a conventionally known method. The fiber length of the conjugate short fibers is preferably 25-150 mm, more preferably 35-100 mm, and most preferably 40-60 mm. For example, in the case of 3.3 decitex, the number of crimps is preferably 12 to 15/inch, and the crimp rate is preferably about 10%.

[紡績糸]
上記黒鉛珪石含有短繊維と上記複合短繊維を混紡して紡績糸を得る。混紡方法は特に制限されない。例えば、黒鉛珪石含有短繊維と複合短繊維をカード(梳綿機)に通して所定の割合で混紡することで紡績糸を得ることができる。ここで、黒鉛珪石含有短繊維と複合短繊維に加えて、他の繊維を混紡することもできる。例えば、アクリル短繊維を用いることができる。
混紡の際、黒鉛珪石含有短繊維を10~30重量%、複合短繊維を50~90重量%とすることが、風合い(軽量感、ソフト感、ふくらみ感)や蓄熱性の面から好ましい。アクリル短繊維を混紡する場合には、紡績糸全体に対して35重量%以下が好ましく、20重量%以下がより好ましい。
[Spun Yarn]
A spun yarn is obtained by blending the graphite silica-containing staple fibers and the composite staple fibers. The blending method is not particularly limited. For example, a spun yarn can be obtained by passing graphitic silica-containing short fibers and composite short fibers through a card (carding machine) and blending them at a predetermined ratio. Here, in addition to the graphite silica-containing short fibers and composite short fibers, other fibers may be blended. For example, short acrylic fibers can be used.
In the blend spinning, it is preferable to use 10 to 30% by weight of graphite-silica-containing staple fibers and 50 to 90% by weight of composite staple fibers from the viewpoint of texture (lightness, softness, bulgeness) and heat storage properties. When acrylic short fibers are blended, the amount is preferably 35% by weight or less, more preferably 20% by weight or less, based on the total spun yarn.

[蓄熱性繊維構造物の製造方法]
次に、蓄熱性繊維構造物の製造方法について例示説明する。蓄熱性繊維構造物の製造方法は、紡績糸準備工程と、繊維構造物製造工程と、複合短繊維中空化工程とを備える。
[Method for producing heat storage fiber structure]
Next, a method for producing a heat-storage fiber structure will be described by way of example. A method for producing a heat-storage fiber structure includes a spun yarn preparation step, a fiber structure production step, and a composite short fiber hollowing step.

紡績糸準備工程では前述した紡績糸を準備する。次の繊維構造物製造工程では、紡績糸準備工程で準備した紡績糸を少なくとも一部に用いて繊維構造物を製造する。
繊維構造物には、織編物、不織布、紙、人工皮革、詰物材はもちろんのこと、交織物、交編物、繊維積層体、並びにこれらから構成される衣類、リビング資材、産業資材、メディカル用品等の各種最終製品も含まれる。これらの繊維構造物は、例えば、従来公知の方法で製造することができる。
The spun yarn described above is prepared in the spun yarn preparation step. In the subsequent fiber structure production step, the spun yarn prepared in the spun yarn preparation step is used at least in part to produce a fiber structure.
Textile structures include woven and knitted fabrics, non-woven fabrics, paper, artificial leather, and filling materials, as well as interwoven fabrics, interwoven fabrics, fiber laminates, clothing made from these, living materials, industrial materials, medical supplies, etc. Also includes various final products of These fiber structures can be produced, for example, by conventionally known methods.

複合短繊維中空化工程では、繊維構造物製造工程で得られた繊維構造物を水(温水)で処理して複合短繊維から水溶性熱可塑性ポリビニルアルコール系重合体(PVA)を溶解除去する。その結果、紡績糸中の複合短繊維が中空化される(中空短繊維)。 In the composite staple fiber hollowing step, the fiber structure obtained in the fiber structure manufacturing step is treated with water (hot water) to dissolve and remove the water-soluble thermoplastic polyvinyl alcohol polymer (PVA) from the composite staple fiber. As a result, the composite staple fibers in the spun yarn are hollowed (hollow staple fibers).

PVAを溶解除去するための水処理温度はPVAの溶解温度などに応じて適宜調整すればよい。水温が高い程、PVAを溶解除去するために必要な時間が短くなる。水温は60℃以上、好ましくは80℃以上である。海成分となる熱可塑性重合体のガラス転移点が70℃以上であれば、100℃以上の高温高圧下での水処理が最も好ましい。水処理の方法としては、例えば、水中に繊維構造物を浸漬することができる。水処理に用いる水は、アルカリ水溶液または酸性水溶液でもよいし、界面活性剤等を含んでいてもよい。 The water treatment temperature for dissolving and removing PVA may be appropriately adjusted according to the dissolution temperature of PVA. The higher the water temperature, the shorter the time required to dissolve and remove the PVA. The water temperature is 60°C or higher, preferably 80°C or higher. If the glass transition point of the thermoplastic polymer to be the sea component is 70° C. or higher, water treatment at a temperature of 100° C. or higher and under high pressure is most preferable. As a water treatment method, for example, the fiber structure can be immersed in water. Water used for water treatment may be an alkaline aqueous solution or an acidic aqueous solution, and may contain a surfactant or the like.

水処理の処理時間は、水温、複合繊維の繊度、島成分の割合、島成分の分布状態などに応じて適宜調節することができる。 The treatment time of the water treatment can be appropriately adjusted depending on the water temperature, the fineness of the composite fiber, the ratio of the island component, the state of distribution of the island component, and the like.

水処理によって複合短繊維中のPVAが選択的に除去される。これによって紡績糸中の複合短繊維が中空化され(中空短繊維)蓄熱性繊維構造物が製造される。 Water treatment selectively removes PVA in the short composite fibers. As a result, the conjugate short fibers in the spun yarn are hollowed (hollow short fibers) to produce a heat-storage fiber structure.

中空短繊維の断面における中空部の面積割合(以降、中空率と称する場合がある)は2%以上であることが好ましい。中空率が2%よりも低いと、軽量感およびふくらみ感が不十分な場合がある。中空率は、好ましくは5%以上、より好ましくは20%以上、さらに好ましくは30%以上である。
中空率が大き過ぎると繊維強度が不足する場合がある。中空率は、好ましくは70%以下、より好ましくは65%以下、さらに好ましくは50%以下である。
It is preferable that the area ratio of the hollow portion in the cross section of the hollow short fiber (hereinafter sometimes referred to as the hollow ratio) is 2% or more. If the hollowness is less than 2%, the feeling of lightness and swelling may be insufficient. The hollowness is preferably 5% or more, more preferably 20% or more, still more preferably 30% or more.
If the hollowness is too large, the fiber strength may be insufficient. The hollowness is preferably 70% or less, more preferably 65% or less, still more preferably 50% or less.

[蓄熱性紡績糸の製造方法]
以上の説明では、繊維構造物を水処理して複合短繊維からPVAを溶解除去する例を挙げた。しかし、紡績糸を水処理して複合短繊維からPVAを溶解除去することもできる。PVAを溶解除去して中空化した複合短繊維は蓄熱性紡績糸となる。蓄熱性紡績糸の製造方法は、紡績糸準備工程と、複合短繊維中空化工程とを備える。
[Method for producing heat storage spun yarn]
In the above description, an example of dissolving and removing PVA from the composite short fibers by water-treating the fiber structure was given. However, the spun yarn can also be treated with water to dissolve and remove the PVA from the composite short fibers. Composite short fibers hollowed out by dissolving and removing PVA become heat-storage spun yarns. A method for producing a heat storage spun yarn includes a spun yarn preparation step and a composite short fiber hollowing step.

紡績糸準備工程では前述した紡績糸を準備する。次の複合短繊維中空化工程では、紡績糸準備工程で準備した紡績糸を水で処理して複合短繊維からPVAを溶解除去する。これによって、複合短繊維が中空化した中空短繊維となる。 The spun yarn described above is prepared in the spun yarn preparation step. In the next composite staple fiber hollowing step, the spun yarn prepared in the spun yarn preparation step is treated with water to dissolve and remove PVA from the composite staple fiber. As a result, the composite short fibers become hollow short fibers.

上記蓄熱性紡績糸を用いて蓄熱性繊維構造物を製造することができる。得られた蓄熱性繊維構造物はPVAが溶解除去されているため、基本的に水処理の必要がない。 A heat-storage fiber structure can be produced using the heat-storage spun yarn. Since PVA is dissolved and removed from the obtained heat-storage fiber structure, water treatment is basically unnecessary.

次に、実施例を用いて本発明を具体的に説明するが、本発明はこれらに制限されるものではない。実施例中の比率および%は、ことわりのない限り重量に関するものである。 EXAMPLES Next, the present invention will be specifically described using Examples, but the present invention is not limited to these. The ratios and percentages in the examples relate to weight unless otherwise indicated.

[実施例1]
黒鉛珪石の微粉末(平均粒子径0.6μm)を10重量%添加したポリエステルを芯成分とし、ポリエステルを鞘成分とした芯鞘構造の黒鉛珪石含有繊維(鞘/芯の比率=2/1、83dtex/24fの延伸系)を得た。これを合糸して40万デニールの繊維トウにし、押込捲縮機を用いて捲縮をかけて51mmにカットし、単糸繊度3デニールの黒鉛珪石含有短繊維(捲縮数12.0個/インチ)を得た。
一方、エチレン変性PVAを島成分として、酸化チタン0.045重量%含有イソフタル酸6モル%変性ポリエチレンテレフタレート(極限粘度〔η〕=0.68、平衡水分率0.4%)を海成分として用い、PVAのゾーン最高温度230℃、PVAの溶融滞留が極力生じない複合紡糸部品を使用して紡糸温度260℃、紡糸速度1800m/分で紡出した後、この未延伸糸を83℃の熱ローラー及び140℃の熱プレートに接触させ、延伸倍率2.3倍で延伸することにより83dtex/24fの複合繊維を得た。得られた複合繊維を合糸して40万デニールの繊維トウにして、押込捲縮機を用いて捲縮をかけて51mmにカットし、単糸繊度3デニールの複合短繊維(捲縮数12.0個/インチ)を得た。
上記黒鉛珪石含有短繊維と上記複合短繊維をカード(梳綿機)に通して30:70の割合で混紡し、20番手の紡績糸を得た。
得られた紡績糸を用いて天竺編物を作成し、この天竺編物を炭酸ナトリウムを2g/リットルの割合で含む水溶液中に80℃で30分間浸漬して糊抜きした後、170℃で約40秒間プレセットを行なった。次にイントールMTコンク(アニオン活性剤、明成化学社製)1g/リットルを含む水溶液にて浴比50:1、温度120℃、時間40分間の熱水処理を行なった。十分に水洗して天笠編物(蓄熱性繊維構造物)を得た。
複合短繊維の島成分であるPVAは、ほぼ完全に溶解除去されており、複合短繊維が中空短繊維となっていることを確認した。また、プレセットや熱水処理において黒鉛珪石の微粉末の脱落は確認できなかった。
[Example 1]
Graphite-containing fiber with a core-sheath structure in which polyester to which 10% by weight of graphite silica fine powder (average particle size 0.6 μm) is added is used as a core component, and polyester is used as a sheath component (ratio of sheath/core = 2/1, A stretched system of 83 dtex/24 f) was obtained. This was combined into a fiber tow of 400,000 denier, crimped using an indentation crimper and cut into 51 mm, and a short fiber containing graphite silica with a single filament fineness of 3 denier (the number of crimps was 12.0). / inch).
On the other hand, ethylene-modified PVA was used as the island component, and polyethylene terephthalate modified with 6 mol% isophthalic acid containing 0.045% by weight of titanium oxide (intrinsic viscosity [η] = 0.68, equilibrium moisture content 0.4%) was used as the sea component. After spinning at a spinning temperature of 260° C. and a spinning speed of 1800 m/min using a composite spinning part in which the PVA zone maximum temperature is 230° C. and the PVA melt retention is minimized, the undrawn yarn is transferred to a hot roller at 83° C. and a hot plate at 140° C. and drawn at a draw ratio of 2.3 to obtain a composite fiber of 83 dtex/24 f. The resulting conjugated fibers are combined into a 400,000 denier fiber tow, crimped using a press crimper and cut to 51 mm, and conjugated staple fibers with a single filament fineness of 3 denier (the number of crimps is 12). .0 pieces/inch).
The graphite silica-containing staple fibers and the composite staple fibers were passed through a card (carding machine) and blended at a ratio of 30:70 to obtain a 20 count spun yarn.
The obtained spun yarn is used to prepare a jersey knitted fabric, and the jersey knitted fabric is immersed in an aqueous solution containing 2 g/liter of sodium carbonate at 80°C for 30 minutes for desizing, and then at 170°C for about 40 seconds. I did a preset. Next, hot water treatment was performed with an aqueous solution containing 1 g/liter of Intoll MT Conc (anionic surfactant, manufactured by Meisei Chemical Co., Ltd.) at a bath ratio of 50:1 at a temperature of 120° C. for 40 minutes. After thoroughly washing with water, a top knitted fabric (heat storage fiber structure) was obtained.
It was confirmed that PVA, which is an island component of the conjugated short fibers, was almost completely dissolved and removed, and the conjugated short fibers became hollow short fibers. In addition, it was not confirmed that the graphite silica fine powder fell off during the presetting or hot water treatment.

得られた天笠編物について風合い(軽量感、ソフト感、ふくらみ感)を下記基準で評価した
[風合い評価]
織物についてパネラー10名で実施し、下記の基準で評価した。
◎:9名以上が軽量感、ソフト感、ふくらみ感共に優れていると判定
○:7~8名が軽量感、ソフト感、ふくらみ感共に優れていると判定
△:5~6名が軽量感、ソフト感、ふくらみ感共に優れていると判定
×:6名以上が軽量感、ソフト感、ふくらみ感共に劣っていると判定
The texture (lightness, softness, bulgeness) of the obtained top hat knitted fabric was evaluated according to the following criteria [texture evaluation]
The woven fabric was tested by 10 panelists and evaluated according to the following criteria.
◎: Judgment that 9 or more people have excellent feeling of lightness, softness, and swelling ○: Judgment that 7-8 people have excellent feeling of lightness, softness, and swelling △: Judgment that 5-6 people have lightness , Judgment that both softness and swelling are excellent ×: Judgment that 6 or more people are inferior in both lightness, softness, and swelling

また、得られた天笠編物について蓄熱性を下記基準で評価した。
[蓄熱性評価]
織物についてパネラー10名で実施し、下記の基準で評価した。
◎:9名以上が蓄熱性に優れていると判定
○:7~8名が蓄熱性に優れていると判定
△:5~6名が蓄熱性に優れていると判定
×:6名以上が蓄熱性に劣っていると判定
In addition, the heat storage property of the obtained top hat knitted fabric was evaluated according to the following criteria.
[Heat storage evaluation]
The woven fabric was tested by 10 panelists and evaluated according to the following criteria.
◎: Judgment that 9 or more people are excellent in heat storage ○: Judgment that 7 to 8 people are excellent in heat storage △: Judgment that 5 to 6 people are excellent in heat storage ×: 6 or more Determined to be inferior in heat storage

評価結果を表1に示す。 Table 1 shows the evaluation results.

Figure 0007323910000001
評価の結果、得られた天竺編物は、風合い(軽量感、ソフト感、ふくらみ感)、蓄熱性ともに優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
Figure 0007323910000001
As a result of the evaluation, the obtained cotton sheeting knitted fabric was excellent in both texture (lightness, softness, bulgeness) and heat storage properties. In addition, it was evaluated that it does not get stuffy even when worn for a long time.

[実施例2]
実施例1の黒鉛珪石含有短繊維において、鞘/芯の比率を、2/1から1/1に変更した。それ以外は、実施例1と同様の材料および条件で、紡績糸および天笠編物を得た。なお、鞘/芯の比率を、2/1から1/1に変更することによって、繊維中の黒鉛珪石含有割合が3.3重量%から5.0重量%に増加している。
本実施例においても、複合短繊維の島成分であるPVAは、ほぼ完全に溶解除去されており、複合短繊維が中空短繊維となっていることを確認した。また、プレセットや熱水処理において黒鉛珪石の微粉末の脱落は確認できなかった。
得られた天竺編物は、風合い(軽量感、ソフト感、ふくらみ感)、蓄熱性ともに優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
[Example 2]
In the short fibers containing graphite silica of Example 1, the sheath/core ratio was changed from 2/1 to 1/1. Other than that, the same materials and conditions as in Example 1 were used to obtain a spun yarn and a top knitted fabric. By changing the sheath/core ratio from 2/1 to 1/1, the content of graphite silica in the fiber is increased from 3.3% by weight to 5.0% by weight.
Also in this example, it was confirmed that the PVA, which is the island component of the conjugated short fibers, was almost completely dissolved and removed, and the conjugated short fibers became hollow short fibers. In addition, it was not confirmed that fine powder of graphite silica was dropped off during presetting or hot water treatment.
The obtained cotton sheeting knitted fabric was excellent in both texture (lightness, softness and bulgeness) and heat storage properties. In addition, it was evaluated that it does not get stuffy even when worn for a long time.

[実施例3]
実施例2の黒鉛珪石含有短繊維において、黒鉛珪石含有割合(芯成分中)を10重量%から5重量%に変更した。また、実施例2の複合短繊維において、海成分をPBT(ポリブチレンテレフタレート)に変更した。海成分に用いたPBTの平衡水分率は2%以下である。さらに、その他の繊維としてアクリル短繊維(繊維長51mm)を用いた。黒鉛珪石含有短繊維を15重量%、複合短繊維を50重量%、アクリル短繊維を35重量%の割合で混紡して紡績糸を得た。上記以外は、実施例2と同様の材料および条件で、天笠編物を得た。
本実施例においても、複合短繊維の島成分であるPVAは、ほぼ完全に溶解除去されており、複合短繊維が中空短繊維となっていることを確認した。また、プレセットや熱水処理において黒鉛珪石の微粉末の脱落は確認できなかった。
得られた天竺編物は、風合い(軽量感、ソフト感、ふくらみ感)、蓄熱性ともに優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
[Example 3]
In the graphite silica-containing short fibers of Example 2, the graphite silica content ratio (in the core component) was changed from 10% by weight to 5% by weight. Also, in the composite short fibers of Example 2, the sea component was changed to PBT (polybutylene terephthalate). The PBT used for the sea component has an equilibrium moisture content of 2% or less. Furthermore, short acrylic fibers (fiber length: 51 mm) were used as other fibers. A spun yarn was obtained by blending 15% by weight of short fibers containing graphite silica, 50% by weight of composite short fibers, and 35% by weight of acrylic short fibers. A top hat knitted fabric was obtained using the same materials and conditions as in Example 2 except for the above.
Also in this example, it was confirmed that the PVA, which is the island component of the conjugated short fibers, was almost completely dissolved and removed, and the conjugated short fibers became hollow short fibers. In addition, it was not confirmed that fine powder of graphite silica was dropped off during presetting or hot water treatment.
The obtained cotton sheeting knitted fabric was excellent in both texture (lightness, softness and bulgeness) and heat storage properties. In addition, it was evaluated that it does not get stuffy even when worn for a long time.

[実施例4]
実施例1の黒鉛珪石含有短繊維において、芯成分を、ポリエチレンテレフタレートからナイロン6に変更した。また、実施例1の複合短繊維において、海成分をPBT(ポリブチレンテレフタレート)に変更した。さらに、その他の繊維としてアクリル短繊維(繊維長51mm)を用いた。黒鉛珪石含有短繊維を30重量%、複合短繊維を50重量%、アクリル短繊維を20重量%の割合で混紡して紡績糸を得た。それ以外は、実施例1と同様の材料および条件で、天笠編物を得た。
本実施例においても、複合短繊維の島成分であるPVAは、ほぼ完全に溶解除去されており、複合短繊維が中空短繊維となっていることを確認した。また、プレセットや熱水処理において黒鉛珪石の微粉末の脱落は確認できなかった。
得られた天竺編物は、風合い(軽量感、ソフト感、ふくらみ感)、蓄熱性ともに優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
[Example 4]
In the short fibers containing graphite silica of Example 1, the core component was changed from polyethylene terephthalate to nylon 6. In addition, in the composite short fibers of Example 1, the sea component was changed to PBT (polybutylene terephthalate). Furthermore, short acrylic fibers (fiber length: 51 mm) were used as other fibers. A spun yarn was obtained by blending 30% by weight of short fibers containing graphite silica, 50% by weight of composite short fibers, and 20% by weight of acrylic short fibers. Other than that, the same materials and conditions as in Example 1 were used to obtain a top knitted fabric.
Also in this example, it was confirmed that the PVA, which is the island component of the conjugated short fibers, was almost completely dissolved and removed, and the conjugated short fibers became hollow short fibers. In addition, it was not confirmed that fine powder of graphite silica was dropped off during presetting or hot water treatment.
The obtained cotton sheeting knitted fabric was excellent in both texture (lightness, softness and bulgeness) and heat storage properties. In addition, it was evaluated that it does not get stuffy even when worn for a long time.

[実施例5]
実施例2の黒鉛珪石含有短繊維において、黒鉛珪石含有割合(芯成分中)を10重量%から2重量%に変更した。上記以外は、実施例2と同様の材料および条件で、天笠編物を得た。
本実施例においても、複合短繊維の島成分であるPVAは、ほぼ完全に溶解除去されており、複合短繊維が中空短繊維となっていることを確認した。また、プレセットや熱水処理において黒鉛珪石の微粉末の脱落は確認できなかった。
得られた天竺編物は、風合い(軽量感、ソフト感、ふくらみ感)、蓄熱性ともに優れていた。また、長時間の着用でも蒸れにくいとの評価であった。
[Example 5]
In the graphite silica-containing short fibers of Example 2, the graphite silica content ratio (in the core component) was changed from 10% by weight to 2% by weight. A top hat knitted fabric was obtained using the same materials and conditions as in Example 2 except for the above.
Also in this example, it was confirmed that the PVA, which is the island component of the conjugated short fibers, was almost completely dissolved and removed, and the conjugated short fibers became hollow short fibers. In addition, it was not confirmed that fine powder of graphite silica was dropped off during presetting or hot water treatment.
The obtained cotton sheeting knitted fabric was excellent in both texture (lightness, softness and bulgeness) and heat storage properties. In addition, it was evaluated that it does not get stuffy even when worn for a long time.

[比較例1]
実施例2の黒鉛珪石含有短繊維において、黒鉛珪石含有割合(芯成分中)を10重量%から50重量%に変更した。しかし、黒鉛珪石含有繊維の繊維化工程で断線が多発した。また、実施例2の複合短繊維において、海/島の比率(複合比率)を70/30から50/50に変更した。こちらも繊維化工程に難があった。これらのことから、サンプル評価を中止した。
[Comparative Example 1]
In the graphite silica-containing short fibers of Example 2, the graphite silica content ratio (in the core component) was changed from 10% by weight to 50% by weight. However, disconnection frequently occurred during the fiberization process of graphite-silica containing fibers. In the composite short fibers of Example 2, the sea/island ratio (composite ratio) was changed from 70/30 to 50/50. There were also difficulties in the fiberization process. For these reasons, sample evaluation was discontinued.

[比較例2]
実施例2の黒鉛珪石含有短繊維において、黒鉛珪石含有割合(芯成分中)を10重量%から0.5重量%に変更した。それ以外は、実施例2と同様の材料および条件で、紡績糸および天笠編物を得た。
得られた天竺編物は、風合いに優れているものの、蓄熱性が劣っていた。
[Comparative Example 2]
In the graphite silica-containing short fibers of Example 2, the graphite silica content ratio (in the core component) was changed from 10% by weight to 0.5% by weight. Other than that, the same materials and conditions as in Example 2 were used to obtain a spun yarn and top knitted fabric.
The resulting jersey knitted fabric was excellent in texture, but inferior in heat storage properties.

[比較例3]
実施例1において、複合短繊維のかわりにアクリル短繊維(繊維長51mm)を用いて紡績糸および天笠編物を得た。
得られた天竺編物は、蓄熱性に優れているものの、軽量感がなく風合いが劣っていた。しかし、長時間の着用でも蒸れにくいとの評価であった。
[Comparative Example 3]
In Example 1, acrylic staple fibers (fiber length: 51 mm) were used instead of composite staple fibers to obtain a spun yarn and a top knitted fabric.
The resulting jersey knitted fabric had excellent heat storage properties, but lacked a feeling of lightness and was inferior in texture. However, it was evaluated that it does not get stuffy even when worn for a long time.

[比較例4]
実施例1において、黒鉛珪石含有短繊維のかわりにアクリル短繊維(繊維長51mm)を用いて紡績糸および天笠編物を得た。
得られた天竺編物は、軽量感に優れているものの、蓄熱性が大きく劣っていた。
[Comparative Example 4]
In Example 1, acrylic short fibers (fiber length: 51 mm) were used instead of graphite-silica-containing short fibers to obtain a spun yarn and a knitted fabric.
The resulting jersey knitted fabric was excellent in lightness, but was significantly inferior in heat storage properties.

以上、特定の実施形態および実施例を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではなく、当該技術分野における熟練者等により、本出願の願書に添付された特許請求の範囲から逸脱することなく、種々の変更及び修正が可能である。 Although the present invention has been described above with reference to specific embodiments and examples, the present invention is not limited to the above embodiments, and is attached to the application of the present application by those skilled in the art. Various changes and modifications are possible without departing from the scope of the claims.

このようにして得られる本発明の蓄熱性繊維構造物は、蓄熱性や風合い(軽量感、ソフト感、ふくらみ感)に優れており、織編物、不織布、紙、人工皮革、詰物材はもちろん、交織物、交編物、繊維積層体、並びにこれらから構成される衣類、リビング資材、産業資材、メディカル用品等の各種製品として利用することができる。 The heat-storage fiber structure of the present invention obtained in this way is excellent in heat-storage and texture (lightness, softness, bulgeness), and can be used for woven and knitted fabrics, nonwoven fabrics, paper, artificial leather, filling materials, It can be used as a woven fabric, a knitted fabric, a fiber laminate, and various products such as clothing, living materials, industrial materials, medical supplies, etc., composed of these.

1 黒鉛珪石含有短繊維
11 芯成分
12 鞘成分
13 黒鉛珪石の微粉末
2 複合短繊維
21 海成分
22 島成分
3 中空短繊維
30 中空部
1 Short fibers containing graphite silica
11 core components
12 Sheath Component
13 Fine graphite silica powder 2 Composite staple fiber
21 sea component
22 Island component 3 Hollow staple fiber
30 Hollow part

Claims (5)

黒鉛珪石の微粉末を含有する黒鉛珪石含有短繊維と、
平衡水分率が2%以下である熱可塑性重合体を海成分とし、水溶性熱可塑性ポリビニルアルコール系重合体を島成分とする複合短繊維と、からなる紡績糸であって、
前記黒鉛珪石含有短繊維が、
芯成分と鞘成分からなる芯鞘構造であり、前記芯成分中にのみ前記黒鉛珪石の微粉末を含有しており、前記黒鉛珪石の微粉末の含有量は、前記黒鉛珪石含有短繊維の1.0~5.0重量%であり、
前記黒鉛珪石含有短繊維が15~30重量%含まれており、
前記複合短繊維が50~70重量%含まれており、
前記複合短繊維は、その断面において島成分の数が10~600個である、
紡績糸。
graphite silica-containing short fibers containing fine powder of graphite silica;
A spun yarn comprising composite short fibers having a thermoplastic polymer having an equilibrium moisture content of 2% or less as a sea component and a water-soluble thermoplastic polyvinyl alcohol polymer as an island component ,
The short fibers containing graphite silica are
It has a core-sheath structure consisting of a core component and a sheath component, and contains the graphite silica fine powder only in the core component, and the content of the graphite silica fine powder is 1 of the graphite silica-containing short fibers. .0 to 5.0% by weight,
15 to 30% by weight of the short fiber containing graphite silica is contained,
50 to 70% by weight of the composite staple fiber is contained,
The composite staple fiber has 10 to 600 island components in its cross section.
spun yarn.
請求項1に記載の紡績糸を準備する紡績糸準備工程と、
この紡績糸準備工程で準備した紡績糸を少なくとも一部に用いて繊維構造物を製造する繊維構造物製造工程と、
この繊維構造物製造工程で得られた繊維構造物を水で処理して複合短繊維から水溶性熱可塑性ポリビニルアルコール系重合体を溶解除去することで、複合短繊維を中空化した中空短繊維とする、複合短繊維中空化工程と、
を備える蓄熱性繊維構造物の製造方法。
A spun yarn preparing step for preparing the spun yarn according to claim 1 ;
a fiber structure manufacturing step of manufacturing a fiber structure using at least a part of the spun yarn prepared in the spun yarn preparing step;
The fiber structure obtained in this fiber structure manufacturing process is treated with water to dissolve and remove the water-soluble thermoplastic polyvinyl alcohol polymer from the composite short fibers, thereby hollowing the composite short fibers into hollow short fibers. a composite short fiber hollowing step;
A method for producing a heat storage fiber structure.
請求項1に記載の紡績糸を準備する紡績糸準備工程と、
この紡績糸準備工程で準備した紡績糸を水で処理して複合短繊維から水溶性熱可塑性ポリビニルアルコール系重合体を溶解除去することで、複合短繊維を中空化した中空短繊維とする複合短繊維中空化工程と、
を備える蓄熱性紡績糸の製造方法。
A spun yarn preparing step for preparing the spun yarn according to claim 1 ;
The spun yarn prepared in this spun yarn preparation step is treated with water to dissolve and remove the water-soluble thermoplastic polyvinyl alcohol polymer from the composite short fibers, thereby making the composite short fibers into hollow short fibers. a fiber hollowing step;
A method for producing a heat storage spun yarn.
請求項1に記載の紡績糸において、複合短繊維から島成分を除去して中空短繊維とした、蓄熱性紡績糸。2. The heat-storage spun yarn according to claim 1, which is obtained by removing the island component from the composite staple fiber to obtain hollow staple fibers.
請求項4に記載の蓄熱性紡績糸を少なくとも一部に含む、
蓄熱性繊維構造物。
At least a part of which contains the heat storage spun yarn according to claim 4 ,
A heat-storage fiber structure.
JP2019048123A 2019-03-15 2019-03-15 Spun yarn, heat storage fiber structure, method for producing heat storage fiber structure, heat storage spun yarn, and method for producing heat storage spun yarn Active JP7323910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019048123A JP7323910B2 (en) 2019-03-15 2019-03-15 Spun yarn, heat storage fiber structure, method for producing heat storage fiber structure, heat storage spun yarn, and method for producing heat storage spun yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019048123A JP7323910B2 (en) 2019-03-15 2019-03-15 Spun yarn, heat storage fiber structure, method for producing heat storage fiber structure, heat storage spun yarn, and method for producing heat storage spun yarn

Publications (2)

Publication Number Publication Date
JP2020147874A JP2020147874A (en) 2020-09-17
JP7323910B2 true JP7323910B2 (en) 2023-08-09

Family

ID=72429116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019048123A Active JP7323910B2 (en) 2019-03-15 2019-03-15 Spun yarn, heat storage fiber structure, method for producing heat storage fiber structure, heat storage spun yarn, and method for producing heat storage spun yarn

Country Status (1)

Country Link
JP (1) JP7323910B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220741A (en) 2000-03-16 2002-08-09 Kuraray Co Ltd Conjugated fiber, hollow fiber and method for producing hollow fiber using the conjugated fiber
JP2002327344A (en) 2001-04-25 2002-11-15 Kanemasu:Kk Composite fiber structure
JP2003073970A (en) 2001-08-31 2003-03-12 Kuraray Co Ltd Hollow fiber and fiber structure
JP2003247124A (en) 2002-02-18 2003-09-05 Kuraray Co Ltd Polyvinyl alcohol conjugated fiber
JP2006022451A (en) 2004-07-09 2006-01-26 Kuraray Co Ltd Fiber having excellent heat-storing and temperature-keeping properties
WO2006011490A1 (en) 2004-07-28 2006-02-02 Kuraray Co., Ltd. Composite fiber, hollow fiber, and process for producing hollow fiber using said composite fiber
JP2017020141A (en) 2015-07-14 2017-01-26 加茂繊維株式会社 fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002220741A (en) 2000-03-16 2002-08-09 Kuraray Co Ltd Conjugated fiber, hollow fiber and method for producing hollow fiber using the conjugated fiber
JP2002327344A (en) 2001-04-25 2002-11-15 Kanemasu:Kk Composite fiber structure
JP2003073970A (en) 2001-08-31 2003-03-12 Kuraray Co Ltd Hollow fiber and fiber structure
JP2003247124A (en) 2002-02-18 2003-09-05 Kuraray Co Ltd Polyvinyl alcohol conjugated fiber
JP2006022451A (en) 2004-07-09 2006-01-26 Kuraray Co Ltd Fiber having excellent heat-storing and temperature-keeping properties
WO2006011490A1 (en) 2004-07-28 2006-02-02 Kuraray Co., Ltd. Composite fiber, hollow fiber, and process for producing hollow fiber using said composite fiber
JP2017020141A (en) 2015-07-14 2017-01-26 加茂繊維株式会社 fiber

Also Published As

Publication number Publication date
JP2020147874A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
TW500845B (en) Hollow fibers and manufacturing method of hollow fibers
WO2004013388A1 (en) Porous fiber
JP2014534360A (en) Regenerated cellulose fiber
JP5040270B2 (en) Composite processed yarn
JP7323910B2 (en) Spun yarn, heat storage fiber structure, method for producing heat storage fiber structure, heat storage spun yarn, and method for producing heat storage spun yarn
JP6672641B2 (en) Extra fine polyester fiber with uneven surface
JP2004115980A (en) Non-woven fabric and separator for lithium-ion secondary battery
JP3389722B2 (en) Porous hollow fiber for woven or knitted fabric and method for producing the same
JPS63243324A (en) Heat bonding fiber and nonwoven fabric thereof
JP2005133250A (en) Core-sheath conjugate fiber
JP6462368B2 (en) Wet nonwovens and shoji paper and products
JP2013216999A (en) Spun-dyed conjugate fiber having latent crimpability
JP7063037B2 (en) Bulky and lightweight multifilament
JP2010053502A (en) Napped fabric and napped fabric product
JP2011157647A (en) Wiping cloth
JP4292893B2 (en) Polymer alloy crimped yarn
JP2004332186A (en) Nanoporous fiber
JP2703294B2 (en) Polyester conjugate fiber, nonwoven fabric containing the fiber, and method for producing the nonwoven fabric
JP2004270110A (en) Polymer alloy fiber
JP4236775B2 (en) Special polyester-based structurally processed yarn with high void development performance
JP6068868B2 (en) Shortcut fiber for wet nonwoven fabric
JPH09268435A (en) Conjugate fiber for opaque fiber
JPH0681245A (en) Production of fabric comprising splittable conjugate fiber and fabric with excellent touch feel
JP4395948B2 (en) Low shrinkage polyester yarn and polyester blended yarn comprising the same
JP4699072B2 (en) Stretch polyester composite fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230120

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230721

R150 Certificate of patent or registration of utility model

Ref document number: 7323910

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150