JP7320221B2 - 画像処理装置、画像処理方法、画像表示方法、および、プログラム - Google Patents

画像処理装置、画像処理方法、画像表示方法、および、プログラム Download PDF

Info

Publication number
JP7320221B2
JP7320221B2 JP2018155034A JP2018155034A JP7320221B2 JP 7320221 B2 JP7320221 B2 JP 7320221B2 JP 2018155034 A JP2018155034 A JP 2018155034A JP 2018155034 A JP2018155034 A JP 2018155034A JP 7320221 B2 JP7320221 B2 JP 7320221B2
Authority
JP
Japan
Prior art keywords
image
photoacoustic
contrast agent
lymphatic
image processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018155034A
Other languages
English (en)
Other versions
JP2020028390A5 (ja
JP2020028390A (ja
Inventor
大樹 梶田
宣晶 今西
貞和 相磯
萌美 浦野
兼一 長永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luxonus
Original Assignee
Luxonus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luxonus filed Critical Luxonus
Priority to JP2018155034A priority Critical patent/JP7320221B2/ja
Priority to PCT/JP2019/013968 priority patent/WO2020039641A1/ja
Publication of JP2020028390A publication Critical patent/JP2020028390A/ja
Publication of JP2020028390A5 publication Critical patent/JP2020028390A5/ja
Priority to JP2023112970A priority patent/JP2023123874A/ja
Application granted granted Critical
Publication of JP7320221B2 publication Critical patent/JP7320221B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、光音響イメージングにより画像を生成するシステムに用いられる情報処理に関する。
血管やリンパ管等の検査において、造影剤を利用した光音響イメージング(「光超音波イメージング」ともよぶ。)が知られている。特許文献1には、リンパ節やリンパ管などの造影のために用いられる造影剤を評価対象とし、その造影剤が吸収して光音響波を発生する波長の光を出射する光音響画像生成装置が記載されている。
国際公開第2017/002337号
しかしながら、特許文献1に記載の光音響イメージングでは、被検体内部の造影対象の構造(例えば、血管やリンパ管等の走行)を把握しにくい場合がある。
そこで本発明は、光音響イメージングによって造影対象の構造を把握しやすい画像を生成するシステムに用いられる情報処理装置を提供することを目的とする。
本発明は、
被検体への複数回の光照射により発生した光音響波の受信信号に基づいて生成された、前記複数回の光照射のそれぞれに対応する3次元画像データを含む、時系列の3次元画像データを処理する画像処理装置であって、
前記時系列の3次元画像データに基づいてヘモグロビンの光吸収特性とは異なる光吸収特性を有する造影剤が導入された前記被検体内のリンパ管を抽出し、前記リンパ管の複数の個所を設定し、前記複数の個所における前記造影剤の存在を示す3次元画像データの変化情報に基づいて、前記リンパ管を流れるリンパの流れ情報を取得する流れ情報取得手段を有し、
前記リンパの流れ情報は、前記リンパ管における前記リンパの流速、流量及び頻度の少なくともいずれかの情報を含む、
ことを特徴とする画像処理装置を提供する。
本発明は、また、
被検体への複数回の光照射により発生した光音響波の受信信号に基づいて生成された、前記複数回の光照射のそれぞれに対応する3次元画像データを含む、時系列の3次元画像データを処理する画像処理方法であって、
前記時系列の3次元画像データに基づいてヘモグロビンの光吸収特性とは異なる光吸収特性を有する造影剤が導入された前記被検体内のリンパ管を抽出し、前記リンパ管の複数の個所を設定し、前記複数の個所における前記造影剤の存在を示す3次元画像データの変化情報に基づいて、前記リンパ管を流れるリンパの流れ情報を取得する流れ情報取得ステップを有し、
前記リンパの流れ情報は、前記リンパ管における前記リンパの流速、流量及び頻度の少なくともいずれかの情報を含む、
ことを特徴とする画像処理方法を提供する。
本発明は、また、
被検体への複数回の光照射により発生した光音響波の受信信号に基づいて生成された、前記複数回の光照射のそれぞれに対応する3次元画像データを含む、時系列の3次元画像データを処理する画像処理方法をコンピュータに実行させるプログラムであって、
前記画像処理方法は、前記時系列の3次元画像データに基づいてヘモグロビンの光吸収特性とは異なる光吸収特性を有する造影剤が導入された前記被検体内のリンパ管を抽出し、前記リンパ管の複数の個所を設定し、前記複数の個所における前記造影剤の存在を示す3次元画像データの変化情報に基づいて、前記リンパ管を流れるリンパの流れ情報を取得する流れ情報取得ステップを有し、
前記リンパの流れ情報は、前記リンパ管における前記リンパの流速、流量及び頻度の少なくともいずれかの情報を含む、
ことを特徴とするプログラムを提供する。
本発明によれば、光音響イメージングによって造影対象の構造を把握しやすい画像を生成するシステムに用いられる情報処理装置を提供することができる。
本発明の一実施形態に係るシステムのブロック図 本発明の一実施形態に係る画像処理装置とその周辺構成の具体例を示すブロック図 本発明の一実施形態に係る光音響装置の詳細なブロック図 本発明の一実施形態に係るプローブの模式図 本発明の一実施形態に係る画像処理方法のフロー図 本発明の一実施形態に係るリンパの流れ情報取得のフロー図 波長の組み合わせを変化させたときの、造影剤に対応する式(1)の計算値の等高線グラフ ICGの濃度を変化させたときの、造影剤に対応する式(1)の計算値を示す折れ線グラフ オキシヘモグロビンとデオキシヘモグロビンのモラー吸収係数スペクトルを示すグラフ 本発明の一実施形態に係るGUIを示す図 画像処理装置がリンパの流れ情報を取得する方法を説明する図 ICGの濃度を変化させたときの右前腕伸側の分光画像 ICGの濃度を変化させたときの左前腕伸側の分光画像 ICGの濃度を変化させたときの右下腿内側および左下腿内側の分光画像
以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。よって、この発明の範囲を以下の記載に限定する趣旨のものではない。
本発明に係るシステムにより得られる光音響画像は、光エネルギーの吸収量や吸収率を反映している。光音響画像は、光音響波の発生音圧(初期音圧)、光吸収エネルギー密度、及び光吸収係数などの少なくとも1つの被検体情報の空間分布を表す画像である。光音響画像は、2次元の空間分布を表す画像であってもよいし、3次元の空間分布を表す画像(ボリュームデータ)であってもよい。本実施形態に係るシステムは、造影剤が導入された被検体を撮影することにより光音響画像を生成する。なお、造影対象の立体構造を把握するために、光音響画像は、被検体表面から深さ方向の2次元の空間分布を表す画像または3次元の空間分布を表す画像であってもよい。
また、本発明に係るシステムは、複数の波長に対応する複数の光音響画像を用いて被検体の分光画像を生成することができる。本発明の分光画像は、被検体に互いに異なる複数の波長の光を照射することにより発生した光音響波に基づいた、複数の波長のそれぞれに対応する光音響信号を用いて生成された画像である。
なお、分光画像は、複数の波長のそれぞれに対応する光音響信号を用いて生成された、被検体中の特定物質の濃度を示す画像であってもよい。使用する造影剤の光吸収係数スペクトルと、特定物質の光吸収係数スペクトルとが異なる場合、分光画像中の造影剤の画像値と分光画像中の特定物質の画像値とは異なる。よって、分光画像の画像値に応じて造影
剤の領域と特定物質の領域とを区別することができる。なお、特定物質としては、ヘモグロビン、グルコース、コラーゲン、メラニン、脂肪や水など、被検体を構成する物質が挙げられる。この場合にも、特定物質の光吸収係数スペクトルとは異なる光吸収スペクトルを有する造影剤を選択する必要がある。また、特定物質の種類に応じて、異なる算出方法で分光画像を算出してもよい。
以下に述べる実施形態では、酸素飽和度の計算式(1)を用いて算出された画像を分光画像として説明する。本発明者らは、複数の波長のそれぞれに対応する光音響信号に基づいて血中ヘモグロビンの酸素飽和度(酸素飽和度に相関をもつ指標でもよい)を計算する式(1)に対し、光吸収係数の波長依存性がオキシヘモグロビンおよびデオキシヘモグロビンとは異なる傾向を示す造影剤で得られた光音響信号の計測値I(r)を代入した場合に、ヘモグロビンの酸素飽和度が取り得る数値範囲から大きくずれた計算値Is(r)が得られる、ということを見出した。それゆえ、この計算値Is(r)を画像値としてもつ分光画像を生成すれば、被検体内部におけるヘモグロビンの領域(血管領域)と造影剤の存在領域(例えばリンパ管に造影剤が導入された場合であればリンパ管の領域)とを画像上で分離(区別)することが容易となる。
Figure 0007320221000001
ここで、Iλ (r)は第1波長λの光照射により発生した光音響波に基づいた計測値であり、Iλ (r)は第2波長λの光照射により発生した光音響波に基づいた計測値である。εHb λ は第1波長λに対応するデオキシヘモグロビンのモラー吸収係数[mm-1mol-1]であり、εHb λ は第2波長λに対応するデオキシヘモグロビンのモラー吸収係数[mm-1mol-1]である。εHbO λ は第1波長λに対応するオキシヘモグロビンのモラー吸収係数[mm-1mol-1]であり、εHbO λ は第2波長λに対応するオキシヘモグロビンのモラー吸収係数[mm-1mol-1]である。rは位置である。なお、計測値Iλ (r)、Iλ (r)としては、吸収係数μ λ (r)、μ λ (r)を用いてもよいし、初期音圧P λ (r)、P λ (r)を用いてもよい。
ヘモグロビンの存在領域(血管領域)から発生した光音響波に基づいた計測値を式(1)に代入すると、計算値Is(r)として、ヘモグロビンの酸素飽和度(または酸素飽和度に相関をもつ指標)が得られる。一方、造影剤を導入した被検体において、造影剤の存在領域(例えばリンパ管領域)から発生した音響波に基づいた計測値を式(1)に代入すると、計算値Is(r)として、擬似的な造影剤の濃度分布が得られる。なお、造影剤の濃度分布を計算する場合でも、式(1)ではヘモグロビンのモラー吸収係数の数値をそのまま用いればよい。このようにして得られた分光画像Is(r)は、被検体内部のヘモグロビンの存在領域(血管)と造影剤の存在領域(例えばリンパ管)の両方が互いに分離可能(区別可能)な状態で描出された画像となる。
なお、本実施形態では、酸素飽和度を計算する式(1)を用いて分光画像の画像値を計算するが、酸素飽和度以外の指標を分光画像の画像値として計算する場合には、式(1)以外の算出方法を用いればよい。指標およびその算出方法としては、公知のものを利用可能であるため、ここでは詳しい説明を割愛する。
また、本発明に係るシステムは、第1波長λの光照射により発生した光音響波に基づいた第1光音響画像および第2波長λの光照射により発生した光音響波に基づいた第2光音響画像の比を示す画像を分光画像としてもよい。すなわち、第1波長λの光照射により発生した光音響波に基づいた第1光音響画像および第2波長λの光照射により発生した光音響波に基づいた第2光音響画像の比に基づいた画像を分光画像としてよい。なお、式(1)の変形式にしたがって生成される画像も、第1光音響画像および第2光音響画像の比によって表現できるため、第1光音響画像および第2光音響画像の比に基づいた画像(分光画像)といえる。
なお、造影対象の立体構造を把握するために、分光画像は、被検体表面から深さ方向の2次元の空間分布を表す画像または3次元の空間分布を表す画像であってもよい。
以下、本実施形態のシステムの構成及び画像処理方法について説明する。
図1を用いて本実施形態に係るシステムを説明する。図1は、本実施形態に係るシステムの構成を示すブロック図である。本実施形態に係るシステムは、光音響装置1100、記憶装置1200、画像処理装置1300、表示装置1400、及び入力装置1500を備える。装置間のデータの送受信は有線で行われてもよいし、無線で行われてもよい。
光音響装置1100は、造影剤が導入された被検体を撮影することにより光音響画像を生成し、記憶装置1200に出力する。光音響装置1100は、光照射により発生した光音響波を受信することにより得られる受信信号を用いて、被検体内の複数位置のそれぞれに対応する特性値の情報を生成する装置である。すなわち、光音響装置1100は、光音響波に由来した特性値情報の空間分布を医用画像データ(光音響画像)として生成する装置である。
記憶装置1200は、ROM(Read only memory)、磁気ディスクやフラッシュメモリなどの記憶媒体であってもよい。また、記憶装置1200は、PACS(Picture Archiving and Communication System)等のネットワークを介した記憶サーバであってもよい。
画像処理装置1300は、記憶装置1200に記憶された光音響画像や光音響画像の付帯情報等の情報を処理する装置である。
画像処理装置1300の演算機能を担うユニットは、CPUやGPU(Graphics Processing Unit)等のプロセッサ、FPGA(Field Programmable Gate Array)チップ等の演算回路で構成されることができる。これらのユニットは、単一のプロセッサや演算回路から構成されるだけでなく、複数のプロセッサや演算回路から構成されていてもよい。
画像処理装置1300の記憶機能を担うユニットは、ROM(Read only memory)、磁気ディスクやフラッシュメモリなどの非一時記憶媒体で構成することができる。また、記憶機能を担うユニットは、RAM(Random Access Memory)などの揮発性の媒体であってもよい。なお、プログラムが格納される記憶媒体は、非一時記憶媒体である。なお、記憶機能を担うユニットは、1つの記憶媒体から構成されるだけでなく、複数の記憶媒体から構成されていてもよい。
画像処理装置1300の制御機能を担うユニットは、CPUなどの演算素子で構成される。制御機能を担うユニットは、システムの各構成の動作を制御する。制御機能を担うユニットは、入力部からの測定開始などの各種操作による指示信号を受けて、システムの各構成を制御してもよい。また、制御機能を担うユニットは、コンピュータ150に格納されたプログラムコードを読み出し、システムの各構成の作動を制御してもよい。
表示装置1400は、液晶ディスプレイや有機EL(Electro Luminescence)などのディスプレイである。また、表示装置1400は、画像や装置を操作するためのGUIを表示してもよい。
入力装置1500としては、ユーザーが操作可能な、マウスやキーボードなどで構成される操作コンソールを採用することができる。また、表示装置1400をタッチパネルで構成し、表示装置1400を入力装置1500として利用してもよい。
図2は、本実施形態に係る画像処理装置1300の具体的な構成例を示す。本実施形態に係る画像処理装置1300は、CPU1310、GPU1320、RAM1330、ROM1340、外部記憶装置1350から構成される。また、画像処理装置1300には、表示装置1400としての液晶ディスプレイ1410、入力装置1500としてのマウス1510、キーボード1520が接続されている。さらに、画像処理装置1300は、PACS(Picture Archiving and Communication
System)などの記憶装置1200としての画像サーバ1210と接続されている。これにより、画像データを画像サーバ1210上に保存したり、画像サーバ1210上の画像データを液晶ディスプレイ1410に表示したりすることができる。
次に、本実施形態に係るシステムに含まれる装置の構成例を説明する。図3は、本実施形態に係るシステムに含まれる装置の概略ブロック図である。
本実施形態に係る光音響装置1100は、駆動部130、信号収集部140、コンピュータ150、プローブ180、及び導入部190を有する。プローブ180は、光照射部110、及び受信部120を有する。図4は、本実施形態に係るプローブ180の模式図を示す。測定対象は、導入部190により造影剤が導入された被検体100である。駆動部130は、光照射部110と受信部120を駆動し、機械的な走査を行う。光照射部110が光を被検体100に照射し、被検体100内で音響波が発生する。光に起因して光音響効果により発生する音響波を光音響波とも呼ぶ。受信部120は、光音響波を受信することによりアナログ信号としての電気信号(光音響信号)を出力する。
信号収集部140は、受信部120から出力されたアナログ信号をデジタル信号に変換し、コンピュータ150に出力する。コンピュータ150は、信号収集部140から出力されたデジタル信号を、光音響波に由来する信号データとして記憶する。
コンピュータ150は、記憶されたデジタル信号に対して信号処理を行うことにより、光音響画像を生成する。また、コンピュータ150は、得られた光音響画像に対して画像処理を施した後に、光音響画像を表示部160に出力する。表示部160は、光音響画像に基づいた画像を表示する。表示画像は、ユーザーやコンピュータ150からの保存指示に基づいて、コンピュータ150内のメモリや、モダリティとネットワークで接続されたデータ管理システムなどの記憶装置1200に保存される。
また、コンピュータ150は、光音響装置に含まれる構成の駆動制御も行う。また、表示部160は、コンピュータ150で生成された画像の他にGUIなどを表示してもよい。入力部170は、ユーザーが情報を入力できるように構成されている。ユーザーは、入力部170を用いて測定開始や終了、作成画像の保存指示などの操作を行うことができる。
以下、本実施形態に係る光音響装置1100の各構成の詳細を説明する。
(光照射部110)
光照射部110は、光を発する光源111と、光源111から射出された光を被検体1
00へ導く光学系112とを含む。なお、光は、いわゆる矩形波、三角波などのパルス光を含む。
光源111が発する光のパルス幅としては、熱閉じ込め条件および応力閉じ込め条件を考慮すると、100ns以下のパルス幅であることが好ましい。また、光の波長として400nmから1600nm程度の範囲の波長であってもよい。血管を高解像度でイメージングする場合は、血管での吸収が大きい波長(400nm以上、700nm以下)を用いてもよい。生体の深部をイメージングする場合には、生体の背景組織(水や脂肪など)において典型的に吸収が少ない波長(700nm以上、1100nm以下)の光を用いてもよい。
光源111としては、レーザーや発光ダイオードを用いることができる。また、複数波長の光を用いて測定する際には、波長の変更が可能な光源であってもよい。なお、複数波長を被検体に照射する場合、互いに異なる波長の光を発生する複数台の光源を用意し、それぞれの光源から交互に照射することも可能である。複数台の光源を用いた場合もそれらをまとめて光源として表現する。レーザーとしては、固体レーザー、ガスレーザー、色素レーザー、半導体レーザーなど様々なレーザーを使用することができる。例えば、Nd:YAGレーザーやアレキサンドライトレーザーなどのパルスレーザーを光源として用いてもよい。また、Nd:YAGレーザー光を励起光とするTi:saレーザーやOPO(Optical Parametric Oscillators)レーザーを光源として用いてもよい。また、光源111としてフラッシュランプや発光ダイオードを用いてもよい。また、光源111としてマイクロウェーブ源を用いてもよい。
光学系112には、レンズ、ミラー、光ファイバ等の光学素子を用いることができる。乳房等を被検体100とする場合、パルス光のビーム径を広げて照射するために、光学系の光出射部は光を拡散させる拡散板等で構成されていてもよい。一方、光音響顕微鏡においては、解像度を上げるために、光学系112の光出射部はレンズ等で構成し、ビームをフォーカスして照射してもよい。
なお、光照射部110が光学系112を備えずに、光源111から直接被検体100に光を照射してもよい。
(受信部120)
受信部120は、音響波を受信することにより電気信号を出力するトランスデューサ121と、トランスデューサ121を支持する支持体122とを含む。また、トランスデューサ121は、音響波を送信する送信手段としてもよい。受信手段としてのトランスデューサと送信手段としてのトランスデューサとは、単一(共通)のトランスデューサでもよいし、別々の構成であってもよい。
トランスデューサ121を構成する部材としては、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミック材料や、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電膜材料などを用いることができる。また、圧電素子以外の素子を用いてもよい。例えば、静電容量型トランスデューサ(CMUT:Capacitive Micro-machined Ultrasonic Transducers)を用いたトランスデューサなどを用いることができる。なお、音響波を受信することにより電気信号を出力できる限り、いかなるトランスデューサを採用してもよい。また、トランスデューサにより得られる信号は時間分解信号である。つまり、トランスデューサにより得られる信号の振幅は、各時刻にトランスデューサで受信される音圧に基づく値(例えば、音圧に比例した値)を表したものである。
光音響波を構成する周波数成分は、典型的には100KHzから100MHzであり、トランスデューサ121として、これらの周波数を検出することのできるものを採用して
もよい。
支持体122は、機械的強度が高い金属材料などから構成されていてもよい。照射光を被検体に多く入射させるために、支持体122の被検体100側の表面に、鏡面加工もしくは光散乱させる加工が行われていてもよい。本実施形態において支持体122は半球殻形状であり、半球殻上に複数のトランスデューサ121を支持できるように構成されている。この場合、支持体122に配置されたトランスデューサ121の指向軸は半球の曲率中心付近に集まる。そして、複数のトランスデューサ121から出力された信号を用いて画像化したときに曲率中心付近の画質が高くなる。なお、支持体122はトランスデューサ121を支持できる限り、いかなる構成であってもよい。支持体122は、1Dアレイ、1.5Dアレイ、1.75Dアレイ、2Dアレイと呼ばれるような平面又は曲面内に、複数のトランスデューサを並べて配置してもよい。複数のトランスデューサ121が複数の受信手段に相当する。
また、支持体122は音響マッチング材を貯留する容器として機能してもよい。すなわち、支持体122をトランスデューサ121と被検体100との間に音響マッチング材を配置するための容器としてもよい。
また、受信部120が、トランスデューサ121から出力される時系列のアナログ信号を増幅する増幅器を備えてもよい。また、受信部120が、トランスデューサ121から出力される時系列のアナログ信号を時系列のデジタル信号に変換するA/D変換器を備えてもよい。すなわち、受信部120が後述する信号収集部140を備えてもよい。
受信部120と被検体100との間の空間は、光音響波が伝播することができる媒質で満たす。この媒質には、音響波が伝搬でき、被検体100やトランスデューサ121との界面において音響特性が整合し、できるだけ光音響波の透過率が高い材料を採用する。例えば、この媒質には、水、超音波ジェルなどを採用することができる。
図4は、プローブ180の側面図を示す。本実施形態に係るプローブ180は、開口を有する半球状の支持体122に複数のトランスデューサ121が3次元に配置された受信部120を有する。また、支持体122の底部には、光学系112の光射出部が配置されている。
本実施形態においては、図4に示すように被検体100は、保持部200に接触することにより、その形状が保持される。
受信部120と保持部200の間の空間は、光音響波が伝播することができる媒質で満たされる。この媒質には、光音響波が伝搬でき、被検体100やトランスデューサ121との界面において音響特性が整合し、できるだけ光音響波の透過率が高い材料を採用する。例えば、この媒質には、水、超音波ジェルなどを採用することができる。
保持手段としての保持部200は被検体100の形状を測定中に保持するために使用される。保持部200により被検体100を保持することによって、被検体100の動きの抑制および被検体100の位置を保持部200内に留めることができる。保持部200の材料には、ポリカーボネートやポリエチレン、ポリエチレンテレフタレート等、樹脂材料を用いることができる
保持部200は、取り付け部201に取り付けられている。取り付け部201は、被検体の大きさに合わせて複数種類の保持部200を交換可能に構成されていてもよい。例えば、取り付け部201は、曲率半径や曲率中心などの異なる保持部に交換できるように構成されていてもよい。
(駆動部130)
駆動部130は、被検体100と受信部120との相対位置を変更する部分である。駆動部130は、駆動力を発生させるステッピングモータなどのモータと、駆動力を伝達させる駆動機構と、受信部120の位置情報を検出する位置センサとを含む。駆動機構としては、リードスクリュー機構、リンク機構、ギア機構、油圧機構、などを用いることができる。また、位置センサとしては、エンコーダー、可変抵抗器、リニアスケール、磁気センサ、赤外線センサ、超音波センサなどを用いたポテンショメータなどを用いることができる。
なお、駆動部130は被検体100と受信部120との相対位置をXY方向(二次元)に変更させるものに限らず、一次元または三次元に変更させてもよい。
なお、駆動部130は、被検体100と受信部120との相対的な位置を変更できれば、受信部120を固定し、被検体100を移動させてもよい。被検体100を移動させる場合は、被検体100を保持する保持部を動かすことで被検体100を移動させる構成などが考えられる。また、被検体100と受信部120の両方を移動させてもよい。
駆動部130は、相対位置を連続的に移動させてもよいし、ステップアンドリピートによって移動させてもよい。駆動部130は、プログラムされた軌跡で移動させる電動ステージであってもよいし、手動ステージであってもよい。
また、本実施形態では、駆動部130は光照射部110と受信部120を同時に駆動して走査を行っているが、光照射部110だけを駆動したり、受信部120だけを駆動したりしてもよい。
なお、プローブ180が、把持部が設けられたハンドヘルドタイプである場合、光音響装置1100は駆動部130を有していなくてもよい。
(信号収集部140)
信号収集部140は、トランスデューサ121から出力されたアナログ信号である電気信号を増幅するアンプと、アンプから出力されたアナログ信号をデジタル信号に変換するA/D変換器とを含む。信号収集部140から出力されるデジタル信号は、コンピュータ150に記憶される。信号収集部140は、Data Acquisition System(DAS)とも呼ばれる。本明細書において電気信号は、アナログ信号もデジタル信号も含む概念である。なお、フォトダイオードなどの光検出センサが、光照射部110から光射出を検出し、信号収集部140がこの検出結果をトリガーに同期して上記処理を開始してもよい。
(コンピュータ150)
情報処理装置としてのコンピュータ150は、画像処理装置1300と同様のハードウェアで構成されている。すなわち、コンピュータ150の演算機能を担うユニットは、CPUやGPU(Graphics Processing Unit)等のプロセッサ、FPGA(Field Programmable Gate Array)チップ等の演算回路で構成されることができる。これらのユニットは、単一のプロセッサや演算回路から構成されるだけでなく、複数のプロセッサや演算回路から構成されていてもよい。
コンピュータ150の記憶機能を担うユニットは、RAM(Random Access Memory)などの揮発性の媒体であってもよい。なお、プログラムが格納される記憶媒体は、非一時記憶媒体である。なお、コンピュータ150の記憶機能を担うユニットは、1つの記憶媒体から構成されるだけでなく、複数の記憶媒体から構成されていてもよい。
コンピュータ150の制御機能を担うユニットは、CPUなどの演算素子で構成される
。コンピュータ150の制御機能を担うユニットは、光音響装置の各構成の動作を制御する。コンピュータ150の制御機能を担うユニットは、入力部170からの測定開始などの各種操作による指示信号を受けて、光音響装置の各構成を制御してもよい。また、コンピュータ150の制御機能を担うユニットは、記憶機能を担うユニットに格納されたプログラムコードを読み出し、光音響装置の各構成の作動を制御する。すなわち、コンピュータ150は、本実施形態に係るシステムの制御装置として機能することができる。
なお、コンピュータ150と画像処理装置1300は同じハードウェアで構成されていてもよい。1つのハードウェアがコンピュータ150と画像処理装置1300の両方の機能を担っていてもよい。すなわち、コンピュータ150が、画像処理装置1300の機能を担ってもよい。また、画像処理装置1300が、情報処理装置としてのコンピュータ150の機能を担ってもよい。
(表示部160)
表示部160は、液晶ディスプレイや有機EL(Electro Luminescence)などのディスプレイである。また、表示部160は、画像や装置を操作するためのGUIを表示してもよい。
なお、表示部160と表示装置1400は同じディスプレイであってもよい。すなわち、1つのディスプレイが表示部160と表示装置1400の両方の機能を担っていてもよい。
(入力部170)
入力部170としては、ユーザーが操作可能な、マウスやキーボードなどで構成される操作コンソールを採用することができる。また、表示部160をタッチパネルで構成し、表示部160を入力部170として利用してもよい。
なお、入力部170と入力装置1500は同じ装置であってもよい。すなわち、1つの装置が入力部170と入力装置1500の両方の機能を担っていてもよい。
(導入部190)
導入部190は、被検体100の外部から被検体100の内部へ造影剤を導入可能に構成されている。例えば、導入部190は造影剤の容器と被検体に刺す注射針とを含むことができる。しかしこれに限られず、導入部190は、造影剤を被検体100に導入することができる限り種々のものを適用可能である。導入部190は、この場合、例えば、公知のインジェクションシステムやインジェクタなどであってもよい。なお、制御装置としてのコンピュータ150が、導入部190の動作を制御することにより、被検体100に造影剤を導入してもよい。また、ユーザーが導入部190を操作することにより、被検体100に造影剤を導入してもよい。
(被検体100)
被検体100はシステムを構成するものではないが、以下に説明する。本実施形態に係るシステムは、人や動物の悪性腫瘍や血管疾患などの診断や化学治療の経過観察などを目的として使用できる。よって、被検体100としては、生体、具体的には人体や動物の乳房や各臓器、血管網、頭部、頸部、腹部、手指または足指を含む四肢などの診断の対象部位が想定される。例えば、人体が測定対象であれば、オキシヘモグロビンあるいはデオキシヘモグロビンやそれらを含む多く含む血管あるいは腫瘍の近傍に形成される新生血管などを光吸収体の対象としてもよい。また、頸動脈壁のプラークなどを光吸収体の対象としてもよい。また、皮膚等に含まれるメラニン、コラーゲン、脂質などを光吸収体の対象としてもよい。被検体100に導入する造影剤を光吸収体とすることができる。光音響イメージングに用いる造影剤としては、インドシアニングリーン(ICG)、メチレンブルー(MB)などの色素、金微粒子、またはそれらを集積あるいは化学的に修飾した外部から
導入した物質を採用してもよい。また、生体を模したファントムを被検体100としてもよい。
なお、光音響装置の各構成はそれぞれ別の装置として構成されてもよいし、一体となった1つの装置として構成されてもよい。また、光音響装置の少なくとも一部の構成が一体となった1つの装置として構成されてもよい。
なお、本実施形態に係るシステムを構成する各装置は、それぞれが別々のハードウェアで構成されていてもよいし、全ての装置が1つのハードウェアで構成されていてもよい。本実施形態に係るシステムの機能は、いかなるハードウェアで構成されていてもよい。
次に、図5に示すフローチャートを用いて、本実施形態に係る画像生成方法を説明する。なお、図5に示すフローチャートには、本実施形態に係るシステムの動作を示す工程も、医師等のユーザーの動作を示す工程も含まれている。
(S100:検査に関する情報を取得する工程)
光音響装置1100のコンピュータ150は、検査に関する情報を取得する。例えばコンピュータ150は、HIS(Hospitai Information System)やRIS(Radiology Information System)などの院内情報システムから送信された検査オーダー情報を取得する。検査オーダー情報には、検査に用いるモダリティの種類や検査に使用する造影剤などの情報が含まれている。
また、モダリティが光音響イメージングである場合、検査オーダー情報には照射される光に関する情報が含まれる。本発明の主たる実施形態は、単一の波長の光に基づいて流れ情報を算出することが可能であるため、少なくとも単一の波長の情報が取得できればよい。光に関する情報には他に、光のパルス長、繰り返し周波数、強度などを含めることができる。
ここで、下記のフローにより取得されるリンパの流れ情報とは、リンパ管におけるリンパの流れの頻度、流量、流速など、リンパの流れ方に関する種々の情報を含み得る。流れ情報には、画像中の輝度値の時間辺りの標準偏差やピーク・トゥ・ピーク(P-P)を含み得る。流れ情報の表現の方法は任意であり、例えば画像(動画像を含む)による表現方法、物理的な表現方法、文言による表現方法などを採用し得る。
また、本発明において、互いに異なる複数の波長の光を用いて分光画像を生成し、当該分光画像に基づいてリンパの流れ情報を取得する場合、検査オーダー情報はそれぞれの波長の情報を含む必要がある。複数波長を用いる場合、波長を設定するに当たっては、式(1)にしたがって酸素飽和度画像を分光画像として生成する場合に、分光画像中の血管の領域については実際の酸素飽和度に応じた画像値が算出される一方、分光画像中の造影剤の領域については、使用する波長や、造影剤の吸収係数スペクトルによって大きく画像値が変化してしまうことを考慮することが好ましい。すなわち、造影剤の立体構造の把握を容易にするために、分光画像中の造影剤の領域の画像値が、血管の領域の画像値と識別できるような値となるような波長を用いることが好ましい。具体的には、分光画像として式(1)を用いた画像を生成する場合、動静脈の酸素飽和度が概ねパーセント表示が60%~100%に収まることを利用して、分光画像中の造影剤に対応する式(1)の値が60%より小さくなる(例えば負値になる)、または、100%より大きくなるような2波長を用いることが好ましい。例えば、造影剤としてICGを用いる場合、700nm以上、820nmより小さい波長と、820nm以上、1020nm以下の波長の2波長を選択し、式(1)により分光画像を生成することにより、造影剤の領域と血管の領域とを良好に識別することができる。このように、700nm~820nmと、820nm~1020nmの波長を使うことは、本実施形態の好ましい一例である。
またユーザーが、入力部170を用いて、検査に用いるモダリティの種類や、モダリティが光音響イメージングの場合の光に関する情報、検査に使用する造影剤の種類や造影剤の濃度を指示してもよい。この場合、コンピュータ150は、入力部170を介して、検査情報を取得することができる。
図10は、表示部160に表示されるGUIの例を示す。GUIのアイテム2500には、患者ID、検査ID、撮影日時などの検査オーダー情報が表示されている。アイテム2500は、HISやRISなどの外部装置から取得した検査オーダー情報を表示する表示機能や、ユーザーが入力部170を用いて検査オーダー情報を入力することのできる入力機能を備えていてもよい。GUIのアイテム2600には、造影剤の種類、造影剤の濃度などの造影剤に関する情報が表示されている。アイテム2600は、HISやRISなどの外部装置から取得した造影剤に関する情報を表示する表示機能や、ユーザーが入力部170を用いて造影剤に関する情報を入力することのできる入力機能を備えていてもよい。アイテム2600においては、造影剤の種類や濃度などの造影剤に関する情報を複数の選択肢の中からプルダウンなどの方法で入力できてもよい。なお、表示装置1400に図10に示すGUIを表示してもよい。
なお、画像処理装置1300が、ユーザーから造影剤に関する情報の入力指示を受信しなかった場合に、複数の造影剤に関する情報の中からデフォルトで設定された造影剤に関する情報を取得してもよい。本実施形態の場合、造影剤の種類としてICG、造影剤の濃度として1.0mg/mLがデフォルトで設定されている場合を説明する。本実施形態では、GUIのアイテム2600にはデフォルトで設定されている造影剤の種類と濃度が表示されているが、造影剤に関する情報がデフォルトで設定されていなくてもよい。この場合、初期画面ではGUIのアイテム2600に造影剤に関する情報が表示されていなくてもよい。
(S200:造影剤を導入する工程)
導入部190は、被検体に対して造影剤を導入する。ユーザーが、導入部190を用いて被検体に造影剤を導入したときに、ユーザーが入力部170を操作することにより、造影剤が導入されたことを表す信号を入力部170から制御装置としてのコンピュータ150に送信してもよい。また、導入部190が被検体100に造影剤が導入されたことを表す信号をコンピュータ150に送信してもよい。なお、導入部190を用いずに造影剤を被検体に投与してもよい。例えば、被検体としての生体が噴霧された造影剤を吸引することにより、造影剤が投与されてもよい。
造影剤の導入後に被検体100内の造影対象に造影剤が行き渡るまで時間をおいてから後続の処理を実行してもよい。
ここで、ICGを導入した生体に対して光音響装置を用いて撮影することにより得られた分光画像について説明する。図12~図14は、濃度を変えてICGを導入した場合に撮影して得られた分光画像を示す。いずれの撮影においても、手もしくは足の皮下もしくは皮内にICGを1か所につき0.1mL導入した。皮下もしくは皮内に導入されたICGは、リンパ管に選択的に取り込まれるため、リンパ管の内腔が造影される。また、いずれの撮影においても、ICGの導入から5分~60分以内に撮影した。また、いずれの分光画像も、797nmの波長の光と835nmの波長の光とを生体に照射することにより得られた光音響画像から生成された分光画像である。
図12(A)は、ICGを導入しなかった場合の右前腕伸側の分光画像を示す。一方、図12(B)は、2.5mg/mLの濃度のICGを導入したときの右前腕伸側の分光画像を示す。図12(B)中の破線および矢印で示した領域にリンパ管が描出されている。
図13(A)は、1.0mg/mLの濃度のICGを導入したときの左前腕伸側の分光画像を示す。図13(B)は、5.0mg/mLの濃度のICGを導入したときの左前腕伸側の分光画像を示す。図13(B)中の破線および矢印で示した領域にリンパ管が描出されている。
図14(A)は、0.5mg/mLの濃度のICGを導入したときの右下腿内側の分光画像を示す。図14(B)は、5.0mg/mLの濃度のICGを導入したときの左下腿内側の分光画像を示す。図14(B)中の破線および矢印で示した領域にリンパ管が描出されている。
図12~図14に示す分光画像によれば、ICGの濃度を高くすると、分光画像の中のリンパ管の視認性が向上することが理解される。また、図12~図14によれば、ICGの濃度が2.5mg/mL以上の場合にリンパ管が良好に描出できることが理解される。すなわち、ICGの濃度が2.5mg/mL以上である場合に線上のリンパ管を明確に視認することができる。そのため、造影剤としてICGを採用する場合、その濃度は2.5mg/mL以上であってもよい。なお、生体内でのICGの希釈を考慮すると、ICGの濃度は5.0mg/mLより大きくてもよい。ただし、ジアグノグリーンの可溶性を鑑みると、10.0mg/mL以上の濃度で水溶液に溶かすことは困難である。
以上より、生体に導入するICGの濃度としては、2.5mg/mL以上、10.0mg/mL以下がよく、好適には、5.0mg/mL以上、10.0mg/mL以下がよい。
そこで、コンピュータ150は、図10に示すGUIのアイテム2600において造影剤の種類としてICGが入力された場合に、上記数値範囲のICGの濃度を示すユーザーからの指示を選択的に受け付けるように構成されていてもよい。すなわち、この場合、コンピュータ150は、上記数値範囲以外のICGの濃度を示すユーザーからの指示を受け付けないように構成されていてもよい。よって、コンピュータ150は、造影剤の種類がICGであることを示す情報を取得した場合に、2.5mg/mLより小さい、または、10.0mg/mLより大きいICGの濃度を示すユーザーからの指示を受け付けないように構成されていてもよい。また、コンピュータ150は、造影剤の種類がICGであることを示す情報を取得した場合に5.0mg/mLより小さい、または、10.0mg/mLより大きいICGの濃度を示すユーザーからの指示を受け付けないように構成されていてもよい。
コンピュータ150は、ユーザーがGUI上で上記数値範囲以外のICGの濃度を指示できないようにGUIを構成してもよい。すなわち、コンピュータ150は、ユーザーがGUI上で上記数値範囲以外のICGの濃度を指示できないようにGUIを表示させてもよい。例えば、コンピュータ150は、GUI上で上記数値範囲のICGの濃度を選択的に指示できるプルダウンを表示させてもよい。コンピュータ150は、プルダウンの中の上記数値範囲以外のICGの濃度をグレーアウトさせて表示し、グレーアウトされた濃度を選択できないようにGUIを構成してもよい。
また、コンピュータ150は、GUI上で上記数値範囲以外のICGの濃度がユーザーから指示された場合にアラートを通知してもよい。通知方法としては、表示部160へのアラートの表示や、音やランプの点灯などのあらゆる方法を採用することができる。
また、コンピュータ150は、GUI上で造影剤の種類としてICGが選択された場合に、被検体に導入するICGの濃度として上記数値範囲を表示部160に表示させてもよい。
なお、被検体に導入する造影剤の濃度は、ここで示した数値範囲に限らず、目的に応じた好適な濃度を採用することができる。また、ここでは造影剤の種類がICGである場合
の例について説明したが、その他の造影剤においても同様に上記構成を適用することができる。
このようにGUIを構成することにより、被検体に導入する予定の造影剤の種類に応じて、適当な造影剤の濃度をユーザーが被検体に導入するための支援を行うことができる。
次に、波長の組み合わせを変更したときの分光画像中の造影剤に対応する画像値の変化について説明する。図7は、2波長の組み合わせのそれぞれにおける、分光画像中の造影剤に対応する画像値(酸素飽和度値)のシミュレーション結果を示す。図7の縦軸と横軸はそれぞれ第1波長と第2波長を表す。図7には、分光画像中の造影剤に対応する画像値の等値線が示されている。図7(a)~図7(d)はそれぞれ、ICGの濃度が5.04μg/mL、50.4μg/mL、0.5mg/mL、1.0mg/mLのときの分光画像中の造影剤に対応する画像値を示す。図7に示すように、選択する波長の組み合わせによっては、分光画像中の造影剤に対応する画像値が60%~100%となってしまう場合がある。前述したように、このような波長の組み合わせを選択してしまうと、分光画像中の血管の領域と造影剤の領域とを識別することが困難となってしまう。そのため、図7に示す波長の組み合わせにおいて、分光画像中の造影剤に対応する画像値が60%より小さくなる、または、100%より大きくなるような波長の組み合わせを選択することが好ましい。さらには、図7に示す波長の組み合わせにおいて、分光画像中の造影剤に対応する画像値が負値となるような波長の組み合わせを選択することが好ましい。
例えば、ここで第1波長として797nmを選択し、第2波長として835nmを選択した場合を考える。図8は、第1波長として797nmを選択し、第2波長として835nmを選択した場合に、ICGの濃度と分光画像中の造影剤に対応する画像値(式(1)の値)との関係を示すグラフである。図8によれば、第1波長として797nmを選択し、第2波長として835nmを選択した場合、5.04μg/mL~1.0mg/mLのいずれの濃度であっても、分光画像中の造影剤に対応する画像値は負値となる。そのため、このような波長の組み合わせにより生成された分光画像によれば、血管の酸素飽和度値は原理上負値をとることはないため、血管の領域と造影剤の領域とを明確に識別することができる。
なお、これまで造影剤に関する情報に基づいて波長を決定することを説明したが、波長の決定においてヘモグロビンの吸収係数を考慮してもよい。図9は、オキシヘモグロビンのモラー吸収係数(破線)とデオキシヘモグロビンのモラー吸収係数(実線)のスペクトルを示す。図9に示す波長レンジにおいては、797nmを境にオキシヘモグロビンのモラー吸収係数とデオキシヘモグロビンのモラー吸収係数の大小関係が逆転している。すなわち、797nmよりも短い波長においては静脈を把握しやすく、797nmよりも長い波長においては動脈を把握しやすいといえる。ところで、リンパ浮腫の治療においては、リンパ管と静脈との間にバイパスを作製するリンパ管細静脈吻合術が利用されている。この術前検査のために、光音響イメージングによって静脈と造影剤が蓄積したリンパ管との両方を画像化することが考えられる。この場合に、複数の波長の少なくとも1つを797nmよりも小さい波長とすることにより、静脈をより明確に画像化することができる。また、複数の波長の少なくとも1つを、オキシヘモグロビンのモラー吸収係数よりもデオキシヘモグロビンのモラー吸収係数が大きくなる波長とすることが静脈を画像化するうえで有利である。また、2波長に対応する光音響画像から分光画像を生成する場合、2波長のいずれもオキシヘモグロビンのモラー吸収係数よりもデオキシヘモグロビンのモラー吸収係数が大きい波長とすることが、静脈を画像化するうえで有利である。これらの波長を選択することにより、リンパ管細静脈吻合術の術前検査において、造影剤が導入されたリンパ管と静脈との両方を精度良く画像化することができる。
ところで、複数の波長のいずれも血液よりも造影剤の吸収係数が大きい波長であると、造影剤由来のアーチファクトにより血液の酸素飽和度精度が低下してしまう。そこで、造影剤由来のアーチファクトを低減するために、複数の波長の少なくとも1つの波長が、血液の吸収係数に対して造影剤の吸収係数が小さくなる波長であってもよい。
ここでは、式(1)にしたがって分光画像を生成する場合の説明を行ったが、造影剤の条件や照射光の波長によって分光画像中の造影剤に対応する画像値が変化するような分光画像を生成する場合にも適用することができる。
(S300:光を照射する工程)
光照射部110は、S100で取得した情報に基づいて決定された波長を光源111に設定する。光源111は、決定された波長の光を発する。光源111から発生した光は、光学系112を介してパルス光として被検体100に照射される。そして、被検体100の内部でパルス光が吸収され、光音響効果により光音響波が生じる。このとき、導入された造影剤もパルス光を吸収し、光音響波を発生する。光照射部110はパルス光の伝送と併せて信号収集部140へ同期信号を送信してもよい。また、光照射部110は、複数の波長のそれぞれについて、同様に光照射を行う。
ユーザーが、光照射部110の照射条件(照射光の繰り返し周波数や波長など)やプローブ180の位置などの制御パラメータを、入力部170を用いて指定してもよい。コンピュータ150は、ユーザーの指示に基づいて決定された制御パラメータを設定してもよい。また、コンピュータ150が、指定された制御パラメータに基づいて、駆動部130を制御することによりプローブ180を指定の位置へ移動させてもよい。複数位置での撮影が指定された場合には、駆動部130は、まずプローブ180を最初の指定位置へ移動させる。なお、駆動部130は、測定の開始指示がなされたときに、あらかじめプログラムされた位置にプローブ180を移動させてもよい。
(S400:光音響波を受信する工程)
信号収集部140は、光照射部110から送信された同期信号を受信すると、信号収集の動作を開始する。すなわち、信号収集部140は、受信部120から出力された、光音響波に由来するアナログ電気信号を、増幅・AD変換することにより、増幅されたデジタル電気信号を生成し、コンピュータ150へ出力する。コンピュータ150は、信号収集部140から送信された信号を保存する。複数の走査位置での撮影を指定された場合には、指定された走査位置において、S300およびS400の工程を繰り返し実行し、パルス光の照射と音響波に由来するデジタル信号の生成を繰り返す。なお、コンピュータ150は、発光をトリガーとして、発光時の受信部120の位置情報を駆動部130の位置センサからの出力に基づいて取得し、記憶してもよい。
なお、本実施形態では、複数の波長の光のそれぞれを時分割に照射する例を説明したが、複数の波長のそれぞれに対応する信号データを取得できる限り、光の照射方法はこれに限らない。例えば、光照射によって符号化を行う場合に、複数の波長の光がほぼ同時に照射されるタイミングが存在してもよい。
(S500:光音響画像を生成する工程)
光音響画像取得手段としてのコンピュータ150は、記憶された信号データに基づいて、光音響画像を生成する。コンピュータ150は、生成された光音響画像を記憶装置1200に出力し、記憶させる。本実施形態では、被検体への1回の光照射で得られた光音響信号を用いた画像再構成により1つの3次元の光音響画像(ボリュームデータ)が生成される。さらに、複数回の光照射を行い、それぞれの光照射ごとに画像再構成を行うことで、時系列の3次元画像データ(時系列のボリュームデータ)が取得される。複数回の光照
射のそれぞれの光照射ごとに画像再構成して得られた3次元画像データを総称して、複数回の光照射に対応する3次元画像データと呼ぶ。なお、時系列に複数回の光照射が実行されるため、複数回の光照射に対応する3次元画像データが、時系列の3次元画像データを構成する。
信号データを2次元または3次元の空間分布に変換する再構成アルゴリズムとしては、タイムドメインでの逆投影法やフーリエドメインでの逆投影法などの解析的な再構成法やモデルベース法(繰り返し演算法)を採用することができる。例えば、タイムドメインでの逆投影法として、Universal back-projection(UBP)、Filtered back-projection(FBP)、または整相加算(Delay-and-Sum)などが挙げられる。
コンピュータ150は、信号データに対して再構成処理することにより、初期音圧分布情報(複数の位置における発生音圧)を光音響画像として生成する。また、コンピュータ150は、被検体100に照射された光の被検体100の内部での光フルエンス分布を計算し、初期音圧分布を光フルエンス分布で除算することにより、吸収係数分布情報を光音響画像として取得してもよい。光フルエンス分布の計算手法については、公知の手法を適用することができる。また、コンピュータ150は、複数の波長の光のそれぞれに対応する光音響画像を生成することができる。具体的には、コンピュータ150は、第1波長の光照射により得られた信号データに対して再構成処理を行うことにより、第1波長に対応する第1光音響画像を生成することができる。また、コンピュータ150は、第2波長の光照射により得られた信号データに対して再構成処理を行うことにより、第2波長に対応する第2光音響画像を生成することができる。このように、コンピュータ150は、複数の波長の光に対応する複数の光音響画像を生成することができる。
本実施形態では、コンピュータ150は、複数の波長の光のそれぞれに対応する吸収係数分布情報を光音響画像として取得する。第1波長に対応する吸収係数分布情報を第1光音響画像とし、第2波長に対応する吸収係数分布情報を第2光音響画像とする。
なお、本実施形態では、システムが光音響画像を生成する光音響装置1100を含む例を説明したが、光音響装置1100を含まないシステムにも本発明は適用可能である。光音響画像取得手段としての画像処理装置1300が、光音響画像を取得できる限り、いかなるシステムであっても本発明を適用することができる。例えば、光音響装置1100を含まず、記憶装置1200と画像処理装置1300とを含むシステムであっても本発明を適用することができる。この場合、光音響画像取得手段としての画像処理装置1300は、記憶装置1200に予め記憶された光音響画像群の中から指定された光音響画像を読み出すことにより、光音響画像を取得することができる。
(S600:分光画像を生成する工程)
分光画像取得手段としてのコンピュータ150は、複数の波長に対応する複数の光音響画像に基づいて、分光画像を生成する。コンピュータ150は、分光画像を記憶装置1200に出力し、記憶装置1200に記憶させる。前述したように、コンピュータ150は、グルコース濃度、コラーゲン濃度、メラニン濃度、脂肪や水の体積分率など、被検体を構成する物質の濃度に相当する情報を示す画像を分光画像として生成してもよい。また、コンピュータ150は、第1波長に対応する第1光音響画像と第2波長に対応する第2光音響画像との比を表す画像を分光画像として生成してもよい。本実施形態では、コンピュータ150が、第1光音響画像と第2光音響画像とを用いて、式(1)にしたがって酸素飽和度画像を分光画像として生成する例を説明する。
なお、分光画像取得手段としての画像処理装置1300は、記憶装置1200に予め記
憶された分光画像群の中から指定された分光画像を読み出すことにより、分光画像を取得してもよい。また、光音響画像取得手段としての画像処理装置1300は、記憶装置1200に予め記憶された光音響画像群の中から、読み出した分光画像の生成に用いられた複数の光音響画像の少なくとも一つを読み出すことにより、光音響画像を取得してもよい。
複数回の光照射と、それに引き続く音響波受信と画像再構成が行われることにより、複数回の光照射に対応する時系列の3次元画像データが生成される。3次元画像データとしては光音響画像データや分光画像データが利用できる。ここでの光音響画像データは吸収係数等の分布を示す画像データを指し、分光画像データは複数の波長の光が被検体に照射されたときに、それぞれの波長に対応する光音響画像データに基づいて生成される濃度等を示す画像データを指す。
(S700:光音響画像または分光画像に基づいてリンパの流れに関する情報を取得し、利用する工程)
画像処理装置1300は、記憶装置1200から光音響画像または分光画像を読み出し、光音響画像または分光画像に基づいてリンパの流れに関する情報を取得する。なお、上述したように、本ステップの処理は少なくとも一つの波長に由来する光音響画像に基づいて実施することができる。ただし、複数の波長のそれぞれに由来する光音響画像から作成された分光画像を利用することもできる。
図6に示すフローチャートを用いて、本実施形態に係る流れ情報の取得処理の実施方法を説明する。本フローは、図5のステップS700における処理を具体的に説明するものである。以下の説明では、流れ情報取得手段としての画像処理装置1300が主たる情報処理を担う。ただし流れ情報取得手段の構成はこれに限られず、本発明に含まれる情報処理機能を有する構成要素のいずれかが、以下のフローにおける処理を行っていればよい。
(S710:光音響画像または分光画像からリンパ領域を抽出する工程)
ここでは、単一波長に由来する光音響画像に対して画像処理を行う場合について説明する。画像処理装置1300は、図5のステップS500において記憶装置1200に保存された光音響画像を読み出す。読み出す対象となる光音響画像の時間範囲は任意である。一般に、リンパ液の流れは、間欠的に行われ、その周期は数十秒から数分である。比較的長い時間範囲に取得された光音響波に対応する光音響画像を、処理の進行に応じて順次読み出すことが好ましい。時間範囲は例えば、40秒間~2分間と設定してもよい。
続いて画像処理装置1300は、読み出した時系列の光音響画像のそれぞれからリンパの存在する領域を抽出する。抽出方法の一例として、リンパ液の循環がリンパ管の収縮等によって間欠的あるいは周期的に行われることに鑑み、画像処理装置1300が時系列の光音響画像の間での輝度値の変化を検出し、当該輝度値の変化が大きい部分をリンパだと判断する方法がある。なお、時間範囲やリンパ領域であるかどうかの判断基準は例示であり、被検体内のリンパ管の状況や、造影剤や光照射に関する条件に応じて適宜決定されるものである。例えば、所定の時間範囲を1分間とした場合、1分間のうち5秒間、典型的な血管の輝度値と比較して半分以上の値を持つ領域が観察された場合に、当該領域をリンパだと判断してもよい。
なお、分光画像に対して画像処理を行ってリンパ領域を抽出する場合、画像処理装置1300は例えば、酸素飽和度の値に基づいて血液に対応する領域と造影剤に対応する領域とを区別して、リンパ領域を抽出してもよい。
(S720:リンパ領域に基づいてリンパの流れ情報を取得する工程)
画像処理装置1300は、抽出したリンパ領域の情報に基づいてリンパの流れ情報を算出する。本実施形態では、被検体への1回の光照射により、略同時に発生した光音響波に由来する光音響信号を用いて、1つの三次元の光音響画像(1フレームのボリュームデー
タ)が生成される。そのため、1フレームの光音響画像の各位置における被検体情報は、1回の光照射に由来するものとなる。すなわち、1フレームの光音響画像では略同タイミングの状態のリンパが描出される。その結果、本実施形態に係る画像生成方法によれば、画像処理装置1300が時系列の3次元画像データからリンパの流れ情報を取得する際の精度を向上させることができる。また、時系列の3次元画像データ中の複数の位置における画像値の変化は、複数の位置のそれぞれで略同じタイミングの画像値の時間変化を表すものである。そのため、本実施形態に係る画像生成方法によれば、時系列の3次元画像データ中の複数の位置における画像値に基づいて流れ情報を取得する際の精度が向上する。
流れ情報として例えば、画像処理装置1300は、単位時間当たりの輝度値変化の頻度を算出することができる。この場合、画像処理装置1300は、単位時間(例えば10分間)内にリンパ領域の輝度値のピークの数や、輝度値が所定の閾値を超えた回数を算出してもよい。
流れ情報の別の例として、画像処理装置1300は、リンパ液の移動速度を算出してもよい。リンパ液の移動速度は、異なるタイミングで取得された光音響画像間でのリンパ領域の移動距離を算出することにより取得できる。かかる移動速度算出の際、画像処理装置1300は、抽出されたリンパ領域の輝度値分布に基づいてリンパ領域の重心や粒子密度を算出し、それらの値に基づいて重み付けを行うことで、移動速度算出の精度を向上させてもよい。また、時系列の画像から物体の動きを抽出してベクトル化するためのオプティカルフロー推定技術を利用することもできる。
流れ情報のまた別の例として、画像処理装置1300は、リンパ管中を流れるリンパの体積や流量を算出してもよい。その際、画像処理装置1300は、光音響画像中のリンパ管の幅に対してシステム依存の補正を行ってリンパ管の直径を求め、直径の値に基づいて体積や流量を算出することができる。また、流速を測定する際には、光音響画像生成時の再構成の平均化回数を減らし、一定以下の回数としてもよい。
また、画像処理装置1300は、画像中に関連付けられた複数の領域を設定し、当該複数の領域それぞれの輝度値の変化に基づいて流れ情報を取得してもよい。ここで言う複数の領域とは、少なくとも2つ以上の小領域であり、より好ましくは隣接または近接した複数の小領域同士のことを指す。小領域を設定する際には、上記ステップで抽出したリンパ領域の少なくとも一部を含むようにすることが好ましい。より好ましくは、同一のリンパ管上の隣接または近接する位置に(換言すれば、同じリンパ管の上流と下流に)複数の小領域を設定するとよい。
ここでは、図11(a)に示すように、2つの小領域がいずれも同一のリンパ管を含むように設定されたものとする。画像処理装置1300は、第一の小領域2310aおよび第二の小領域2310bのそれぞれの輝度値を時系列に沿って3回算出し、それぞれの輝度値を所定の閾値と比較して、明/暗を判定する。そして、第一の小領域が「明→暗→暗」であり、第二の小領域が「暗→明→暗」であると判定された場合、画像処理装置1300は、第1のタイミングから第2のタイミングにかけて、第一の小領域から第二の小領域に向かう方向にリンパが流れたと判断できる。画像処理装置1300はさらに、2つの小領域間の距離と、各小領域における輝度変化の時間関係に基づいて、リンパの流速を算出することもできる。
なお、小領域の輝度値としては平均輝度値やピーク輝度値など、造影剤の濃度を反映できるものであれば何であれ利用できる。また少なくとも2回以上の輝度値の算出回数とすれば、流れの検出は可能である。
また、画像処理装置1300は、画像中のある特定のリンパ領域である特定領域の輝度変化を時系列に算出した輝度値の時間的な変化の度合いに基づいて、リンパの流速を算出することもできる。すなわち、ある特定領域における輝度値は、特定領域内に存在するリンパの体積を反映していると言える。したがって、特定領域における輝度値の時間変化は、その特定領域内にリンパが流入してから流出するまでのリンパの体積の変化を反映して
いる。よって、輝度値の変化を十分なフレームレートで算出可能であれば、輝度値の時間変化を時間と輝度値の関数として表現したときに、特定領域内にリンパが流入している期間では当該関数が増加傾向になり、リンパが流出していく期間では当該関数が減少傾向となる。そこで画像処理装置1300は、時間ごとの輝度が図11(b)の関数3100のように示される場合に、増加関数である期間の傾き(破線3110)や減少関数である期間の傾き(破線3120)に基づいて、リンパの流速を算出してもよい。なお、一般にリンパは間欠的に流れるため、図11(b)のような輝度波形は周期的に表れることが想定できる。よって、この波形の出現頻度を計測することによってリンパの流れ情報を取得してもよい。
また、画像処理装置1300は、時系列の3次元画像データから抽出した情報に基づく別の演算手法によってもリンパの流速を定量的に取得することができる。ここで、図11(c)の画像は、時系列に取得された3次元画像データのうちの1枚を示す。ただしこの処理においては、リンパ管を強調済みの画像を用いてもよい。まず画像処理装置1300は、リンパ管に相当する領域2320を選択する。
続いて画像処理装置1300は、時系列の3次元画像データから、対象となる時間範囲(例えば1分間)を決定する。そして、決定された時間範囲において、領域2320上の長さ方向の各位置ごとに、時間方向における輝度値の代表値を決定する。ここでは輝度値の代表値として、決定された時間範囲における輝度値の関数の極大値を用いる。図11(d)は横軸として時間を、縦軸として領域2320の長さ方向の各位置を取り、上記で求めた極大値3200をプロットしたグラフである。このグラフは、リンパ管内でのリンパの移動に応じて高輝度を示す位置も移動することを示している。
続いて画像処理装置1300は、プロットされた複数の極大値3200に基づくフィッティングを行って近似関数3210を取得し、近似関数3210の傾きに基づいてリンパの流速を算出する。なお、必ずしも極大値を利用する必要はない。例えば、輝度値に応じたカラースケール表示によりグラフを作成しても良い。また、傾きを算出する際のフィッティング手法として例えば最小二乗法を用いることができるが、これには限定されない。
なお、流れ情報の取得に用いられる時系列の3次元画像データに、少なくとも2波長のそれぞれの光パルスによって生成された3次元画像データが含まれていてもよい。この場合、少なくとも2波長に対応する時系列の3次元画像データの時間変化から流れ情報を演算してもよい。
続いて画像処理装置1300は、算出した流れ情報を記憶装置1200に保存する。ここまでの処理により、本実施形態に係るシステムが被検体内のリンパの流れ情報を算出できるという効果が得られる。
(S730:取得した流れ情報を表示する工程)
続いて、リンパの流れ情報を利用する方法の一例として、流れ情報を表示する方法について説明する。なお、ステップS730からステップS750にかけての処理は、一連の処理として実行されてもよいし、それぞれが独立して実行されてもよい。
表示制御手段としての画像処理装置1300は、流れ情報を用いて画像データを生成して表示装置1400に表示させる。表示方法は任意であるが、ユーザーによる流れ情報の確認を容易にするような方法が好ましい。
表示方法の一例として、画像処理装置1300は、抽出されたリンパ領域の上に、S720で取得された流れの頻度に応じて所定のカラースケールによる色付けを行うことができる。カラースケールとして例えば、流れの頻度が高いリンパ領域ほど赤色に近く、頻度が低いリンパ領域ほど青色に近く表示されるようなものを用いてもよい。この方法によれば、ユーザーがあるリンパ管の流れが活発かどうかを判断する基準を提供することができる。表示方法の別の例として、画像処理装置1300は、あるリンパ領域の輝度を、時系
列の光音響画像における最大輝度値に応じた輝度値で表示してもよい。また、上記のカラースケールを用いた表示と最大輝度値を用いた表示を併用してもよい。
表示方法のまた別の例として、システムが、ユーザーによる入力装置1500を介した位置指定を受け付けて、画像処理装置1300が表示装置1400に指定された位置における流れ情報の算出結果を別途表示させてもよい。
また、システムは、画像情報に代えて、または画像情報とともに、テキストや音声などの形式でユーザーに流れ情報を提示してもよい。画像処理装置1300はまた、リンパの流れる方向をユーザーが理解しやすいようにマーカーや矢印等で表示してもよい。画像処理装置1300はまた、リンパ領域に関心領域を設定し、該関心領域におけるリンパの時間的な変動量を算出して表示してもよい。
(S740:取得した流れ情報のデータを保存する工程)
続いて、リンパの流れ情報を利用する方法の別の例として、取得した流れ情報をユーザーが活用しやすい形式で保存する方法について説明する。上述したように、一般にリンパ管においてリンパが流れている時間は比較的短い。したがって、時系列で複数の光音響画像または分光画像が取得された場合であっても、全ての画像がユーザーによるリンパの流れの確認に必要なわけではない。そこで本ステップでは、画像処理装置1300は、ユーザーによる確認に必要な画像を選択して記憶装置1200に保存する。画像の選択方法として例えば、時間的に隣接する画像同士でリンパ領域での輝度を比較し、リンパの流れがあったと判断できる値以上の輝度変化があった場合に記憶装置1200に保存する方法がある。この方法によれば、ユーザーによる確認の対象となる画像を迅速に表示装置1400に表示できるようになる。また、リンパの流れを確認できない期間のデータを保存しないで済むため、データ容量を圧縮できる。このように圧縮保存されたデータを用いて、画像処理装置1300は、リンパの流れが示された静止画や、リンパの流れが繰り返しループ表示される動画像を生成して表示装置1400に表示させることができる。
なお、リンパ領域の抽出に分光画像を用いることが可能であるのと同様に、本ステップにおいて流れ情報のあるデータを選択する際にも、分光画像の酸素飽和度情報を利用することができる。
なお、本ステップにおいて、リンパの流れがあったと判断できる画像のデータを、メタデータを付与する等の方法によって判別可能としてもよい。この方法によっても、ユーザーによる確認の対象となる画像を迅速に表示装置1400に表示可能になる。
(S750:ユーザーによる診断の支援を実行する工程)
続いて、リンパの流れ情報を利用する方法の別の例として、取得した流れ情報に基づいてユーザーに対して情報を提示し、診断を支援する方法について説明する。本ステップにおいて画像処理装置1300は、上記各ステップで取得された情報に基づいて診断支援情報を算出して表示装置1400に表示する。一例として、画像処理装置1300は、リンパの流れ情報を定量的に分析し、その結果に基づいてリンパ浮腫や糖尿病のステージを診断するための情報を算出し提示する。提示される情報として例えば、ステージのサジェスチョンや推定値などが挙げられる。画像処理装置1300は例えば、流れの頻度や流量、流速などの値とリンパ浮腫のステージとの関係を示すテーブルを記憶装置1400から読み出し、上記ステップにおいて算出された流れ情報と比較することで提示情報を算出する。また、画像処理装置1300が、実際にユーザーが診断した結果と推定されたステージを比較し、正誤判定の結果に基づいて推定用のデータを更新していくことで、推定の精度を高めていくような学習機能を設けることも好ましい。
以上のように、図6の各ステップの処理を実行することで、本実施形態に係るシステムはリンパにおける流れ情報を取得することができる。また、流れ情報を必要に応じてユーザーに表示したり、流れ情報を好ましい形式で保存したり、流れ情報に基づいてユーザー
を支援する情報を生成して提示したりすることが可能になる。
(S800:分光画像を表示する工程)
表示制御手段としての画像処理装置1300は、造影剤に対応する領域とそれ以外の領域とを識別できるように分光画像を表示装置1400に表示させる。なお、レンダリング手法としては、最大値投影法(MIP:Maximum Intensity Projection)、ボリュームレンダリング、及びサーフェイスレンダリングなどのあらゆる方法を採用することができる。ここで、三次元画像を二次元にレンダリングする際の表示領域や視線方向などの設定条件は、観察対象に合わせて任意に指定することができる。
ここでは、照射光の波長として797nmと835nmを設定して得られた光音響波を用いて、式(1)にしたがって分光画像を生成する場合について説明する。図8で示したとおり、これらの2波長を選択した場合、ICGがいかなる濃度であっても、式(1)にしたがって生成される分光画像中の造影剤に対応する画像値は負値となる。
図10に示すように、画像処理装置1300は、分光画像の画像値と表示色との関係を示すカラースケールとしてのカラーバー2400をGUIに表示させる。画像処理装置1300は、造影剤に関する情報(例えば、造影剤の種類がICGであることを示す情報)と、照射光の波長を示す情報とに基づいて、カラースケールに割り当てる画像値の数値範囲を決定してもよい。例えば、画像処理装置1300は、動脈の酸素飽和度、静脈の酸素飽和度、および造影剤に対応する負値の画像値を含む数値範囲を決定してもよい。画像処理装置1300は、-100%~100%の数値範囲を決定し、青から赤に変化するカラーグラデーションに-100%~100%を割り当てたカラーバー2400を設定してもよい。このような表示方法により、動静脈の識別に加え、負値の造影剤に対応する領域も識別することができる。また、画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、造影剤に対応する画像値の数値範囲を示すインジケータ2410を表示させてもよい。ここでは、カラーバー2400において、ICGに対応する画像値の数値範囲として負値の領域をインジケータ2410で示している。このように造影剤に対応する表示色を識別できるようにカラースケールを表示することにより、分光画像中の造影剤に対応する領域を容易に識別することができる。
領域決定手段としての画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、分光画像中の造影剤に対応する領域を決定してもよい。例えば、画像処理装置1300は、分光画像のうち、負値の画像値を有する領域を造影剤に対応する領域として決定してもよい。そして、画像処理装置1300は、造影剤に対応する領域とそれ以外の領域とを識別できるように分光画像を表示装置1400に表示させてもよい。画像処理装置1300は、造影剤に対応する領域とそれ以外の領域との表示色を異ならせる、造影剤に対応する領域を点滅させる、造影剤に対応する領域を示すインジケータ(例えば、枠)を表示させるなどの識別表示を採用することができる。
なお、図10に示すGUIに表示されたICGの表示に対応するアイテム2730を指示することにより、ICGに対応する画像値を選択的に表示させる表示モードに切り替え可能であってもよい。例えば、ユーザーがICGの表示に対応するアイテム2730を選択した場合に、画像処理装置1300が分光画像から画像値が負値のボクセルを選択し、選択されたボクセルを選択的にレンダリングすることにより、ICGの領域を選択的に表示してもよい。同様に、ユーザーが動脈の表示に対応するアイテム2710や静脈の表示に対応するアイテム2720を選択してもよい。ユーザーの指示に基づいて、画像処理装置1300が、動脈に対応する画像値(例えば、90%以上100%以下)や静脈に対応する画像値(例えば、60%以上90%未満)を選択的に表示させる表示モードに切り替えてもよい。動脈に対応する画像値や静脈に対応する画像値の数値範囲については、ユー
ザーの指示に基づいて変更可能であってもよい。
なお、分光画像の画像値に色相、明度、および彩度の少なくとも一つを割り当て、光音響画像の画像値に色相、明度、および彩度の残りのパラメータを割り当てた画像を分光画像として表示させてもよい。例えば、分光画像の画像値に色相および彩度を割り当て、光音響画像の画像値に明度を割り当てた画像を分光画像として表示させてもよい。このとき、造影剤に対応する光音響画像の画像値が、血管に対応する光音響画像の画像値よりも大きい場合や小さい場合、光音響画像の画像値に明度を割り当てると、血管と造影剤の両方を視認することが困難な場合がある。そこで、分光画像の画像値によって、光音響画像の画像値から明度への変換テーブルを変更してもよい。例えば、分光画像の画像値が造影剤に対応する画像値の数値範囲に含まれる場合、光音響画像の画像値に対応する明度を、血管に対応するそれよりも小さくしてもよい。すなわち、造影剤の領域と血管の領域を比べたときに、光音響画像の画像値が同じであれば、血管の領域よりも造影剤の領域の明度を小さくしてもよい。ここで変換テーブルとは、複数の画像値のそれぞれに対応する明度を示すテーブルである。また、分光画像の画像値が造影剤に対応する画像値の数値範囲に含まれる場合、光音響画像の画像値に対応する明度を、血管に対応するそれよりも大きくしてもよい。すなわち、造影剤の領域と血管の領域を比べたときに、光音響画像の画像値が同じであれば、血管の領域よりも造影剤の領域の明度を大きくしてもよい。また、分光画像の画像値によって、光音響画像の画像値を明度に変換しない光音響画像の画像値の数値範囲が異なっていてもよい。
変換テーブルは、造影剤の種類や濃度、また照射光の波長によって適したものに変更してもよい。そこで、画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、光音響画像の画像値から明度への変換テーブルを決定してもよい。画像処理装置1300は、造影剤に対応する光音響画像の画像値が血管に対応するそれよりも大きくなると推定される場合、造影剤に対応する光音響画像の画像値に対応する明度を血管に対応するそれよりも小さくしてもよい。反対に、画像処理装置1300は、造影剤に対応する光音響画像の画像値が血管に対応するそれよりも小さくなると推定される場合、造影剤に対応する光音響画像の画像値に対応する明度を血管に対応するそれよりも大きくしてもよい。
図10に示すGUIは、波長797nmに対応する吸収係数画像(第1光音響画像)2100、波長835nmに対応する吸収係数画像(第2光音響画像)2200、酸素飽和度画像(分光画像)2300を表示する。それぞれの画像がいずれの波長の光によって生成された画像であるかをGUIに表示してもよい。本実施形態では、光音響画像と分光画像の両方を表示しているが、分光画像だけを表示してもよい。また、画像処理装置1300は、ユーザーの指示に基づいて、光音響画像の表示と分光画像の表示とを切り替えてもよい。
なお、表示部160は動画像を表示可能であってもよい。例えば、画像処理装置1300が、第1光音響画像2100、第2光音響画像2200および分光画像2300の少なくともいずれかを時系列に生成し、生成された時系列の画像に基づいて動画像データを生成して表示部160に出力する構成としてもよい。なお、リンパの流れる回数が比較的少ないことに鑑みて、ユーザーの判断時間を短縮するために、静止画または時間圧縮された動画像として表示することも好ましい。また、動画像表示において、リンパが流れる様子を繰り返し表示することもできる。動画像の速度は、予め規定された所定の速度やユーザーに指定された所定の速度であってもよい。
ここで、本実施形態を、光パルスを繰り返し照射し、被検体の特定領域における前記被検体の光吸収体分布の3次元画像を実質的に連続的に取得した画像の表示方法であって、一連の連続して取得した画像を、所定の速度で繰り返し再生表示する画像表示方法として
実施することもできる。
その際、前記特定領域の物質の流れ情報を、前記特定領域と関連付けて、少なくとも輝度表示、カラー表示、グラフ表示、および/または数値表示で同一画面に表示することもできる。
また、少なくとも1つの前記特定領域を強調表示することもできる。
また、流れ情報を動画表示するときに、早送り表示を可能としても良い。
また、動画像を表示可能な表示部160において、動画像のフレームレートを可変にすることも好ましい。フレームレートを可変にするために、図10のGUIに、ユーザーがフレームレートを手動で入力するためのウィンドウや、フレームレートを変更するためのスライドバーなどを追加してもよい。ここで、リンパ液はリンパ管内を間欠的に流れるため、取得された時系列のボリュームデータの中でも、リンパの流れの確認に利用できるのは一部だけである。そのため、リンパの流れの確認する際に実時間表示を行うと効率が低下する場合がある。そこで、表示部160に表示される動画像のフレームレートを可変にすることで、表示される動画像の早送り表示が可能になり、ユーザーがリンパ管内の流体の様子を短時間で確認できるようになる。
また、表示部160は、所定の時間範囲内の動画像を繰り返し表示可能であってもよい。その際、繰り返し表示を行う範囲をユーザーが指定可能とするためのウィンドウやスライドバーなどのGUIを、図10に追加することも好ましい。これにより、例えばリンパ管内を流体が流れる様子をユーザーが把握しやすくなる。
特定領域における流れ情報の表示方法は、上記には限られない。例えば、表示制御手段としての画像処理装置1300は、特定領域における流れ情報を、特定領域と関連付けて、輝度表示、カラー表示、グラフ表示、および数値表示の少なくともいずれかの方法で、表示装置1400の同一画面に表示させてもよい。また、表示制御手段としての画像処理装置1300は、少なくとも1つの前記特定領域を強調表示してもよい。
以上説明したように、画像処理装置1300および情報処理装置としてのコンピュータ150の少なくとも1つは、分光画像取得手段、造影剤情報取得手段、領域決定手段、光音響画像取得手段、および表示制御手段の少なくとも一つを有する装置として機能する。なお、それぞれの手段は、互いに異なるハードウェアで構成されていてもよいし、1つのハードウェアで構成されていてもよい。また、複数の手段が1つのハードウェアで構成されていてもよい。
本実施形態では、造影剤に対応する画像値が負値となる波長を選択することにより、血管と造影剤とを識別できるようにしたが、造影剤に対応する画像値が血管と造影剤とを識別できる限り、造影剤に対応する画像値がいかなる値であってもよい。例えば、造影剤に対応する分光画像(酸素飽和度画像)の画像値が、60%より小さくなるまたは100%より大きくとなる場合などにも、本工程で説明した画像処理を適用することができる。
本実施形態では、複数の波長に対応する光音響画像に基づいた分光画像に画像処理を適用する例を説明したが、1つの波長に対応する光音響画像に本実施形態に係る画像処理を適用してもよい。すなわち、画像処理装置1300は、造影剤に関する情報に基づいて、光音響画像中の造影剤に対応する領域を決定し、造影剤に対応する領域とその領域以外の領域とを識別できるように、光音響画像を表示させてもよい。また、画像処理装置1300は、予め設定された造影剤に対応する画像値の数値範囲を有する領域と、それ以外の領域とを識別できるように、分光画像または光音響画像を表示させてもよい。
本実施形態では、情報処理装置としてのコンピュータ150が複数の波長の光を照射し
て分光画像を生成する例を説明したが、1つの波長の光だけを照射して光音響画像を生成する場合に本実施形態に係る波長の決定方法で波長を決定してもよい。すなわち、コンピュータ150は、造影剤に関する情報に基づいて、照射光の波長を決定してもよい。この場合、コンピュータ150は、光音響画像中の造影剤の領域の画像値が、血管の領域の画像値と識別できるような波長を決定することが好ましい。
なお、光照射部110は、光音響画像中の造影剤の領域の画像値と、血管の領域の画像値とを識別できるように予め設定された波長の光を被検体100に照射してもよい。また、光照射部110は、分光画像中の造影剤の領域の画像値と、血管の領域の画像値とを識別できるように予め設定された複数波長の光を被検体100に照射してもよい。
(その他の実施例)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
1100 光音響装置
1300 画像処理装置

Claims (6)

  1. 被検体への複数回の光照射により発生した光音響波の受信信号に基づいて生成された、前記複数回の光照射のそれぞれに対応する3次元画像データを含む、時系列の3次元画像データを処理する画像処理装置であって、
    前記時系列の3次元画像データに基づいてヘモグロビンの光吸収特性とは異なる光吸収特性を有する造影剤が導入された前記被検体内のリンパ管を抽出し、前記リンパ管の複数の個所を設定し、前記複数の個所における前記造影剤の存在を示す3次元画像データの変化情報に基づいて、前記リンパ管を流れるリンパの流れ情報を取得する流れ情報取得手段を有し、
    前記リンパの流れ情報は、前記リンパ管における前記リンパの流速、流量及び頻度の少なくともいずれかの情報を含む、
    ことを特徴とする画像処理装置。
  2. 前記流れ情報取得手段は、前記複数の個所における前記造影剤の存在を示す時系列の3次元画像データの変化情報に基づいて、時系列に前記リンパの流れ情報を算出する、
    ことを特徴とする請求項1に記載の画像処理装置。
  3. 前記リンパの流れ情報を数値で表示装置に表示させる表示制御部をさらに有する、
    ことを特徴とする請求項1または2に記載の画像処理装置。
  4. 前記時系列の3次元画像データに基づく動画像を、表示装置に繰り返し表示させる表示制御部をさらに有する、
    ことを特徴とする請求項1または2に記載の画像処理装置。
  5. 被検体への複数回の光照射により発生した光音響波の受信信号に基づいて生成された、前記複数回の光照射のそれぞれに対応する3次元画像データを含む、時系列の3次元画像データを処理する画像処理方法であって、
    前記時系列の3次元画像データに基づいてヘモグロビンの光吸収特性とは異なる光吸収
    特性を有する造影剤が導入された前記被検体内のリンパ管を抽出し、前記リンパ管の複数の個所を設定し、前記複数の個所における前記造影剤の存在を示す3次元画像データの変化情報に基づいて、前記リンパ管を流れるリンパの流れ情報を取得する流れ情報取得ステップを有し、
    前記リンパの流れ情報は、前記リンパ管における前記リンパの流速、流量及び頻度の少なくともいずれかの情報を含む、
    ことを特徴とする画像処理方法。
  6. 被検体への複数回の光照射により発生した光音響波の受信信号に基づいて生成された、前記複数回の光照射のそれぞれに対応する3次元画像データを含む、時系列の3次元画像データを処理する画像処理方法をコンピュータに実行させるプログラムであって、
    前記画像処理方法は、前記時系列の3次元画像データに基づいてヘモグロビンの光吸収特性とは異なる光吸収特性を有する造影剤が導入された前記被検体内のリンパ管を抽出し、前記リンパ管の複数の個所を設定し、前記複数の個所における前記造影剤の存在を示す3次元画像データの変化情報に基づいて、前記リンパ管を流れるリンパの流れ情報を取得する流れ情報取得ステップを有し、
    前記リンパの流れ情報は、前記リンパ管における前記リンパの流速、流量及び頻度の少なくともいずれかの情報を含む、
    ことを特徴とするプログラム。
JP2018155034A 2018-08-21 2018-08-21 画像処理装置、画像処理方法、画像表示方法、および、プログラム Active JP7320221B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018155034A JP7320221B2 (ja) 2018-08-21 2018-08-21 画像処理装置、画像処理方法、画像表示方法、および、プログラム
PCT/JP2019/013968 WO2020039641A1 (ja) 2018-08-21 2019-03-29 画像処理装置、画像処理方法、画像表示方法、および、プログラム
JP2023112970A JP2023123874A (ja) 2018-08-21 2023-07-10 光音響イメージングシステム、光音響イメージングシステムの制御方法、および、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018155034A JP7320221B2 (ja) 2018-08-21 2018-08-21 画像処理装置、画像処理方法、画像表示方法、および、プログラム

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023112970A Division JP2023123874A (ja) 2018-08-21 2023-07-10 光音響イメージングシステム、光音響イメージングシステムの制御方法、および、プログラム

Publications (3)

Publication Number Publication Date
JP2020028390A JP2020028390A (ja) 2020-02-27
JP2020028390A5 JP2020028390A5 (ja) 2021-10-28
JP7320221B2 true JP7320221B2 (ja) 2023-08-03

Family

ID=69593073

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018155034A Active JP7320221B2 (ja) 2018-08-21 2018-08-21 画像処理装置、画像処理方法、画像表示方法、および、プログラム
JP2023112970A Pending JP2023123874A (ja) 2018-08-21 2023-07-10 光音響イメージングシステム、光音響イメージングシステムの制御方法、および、プログラム

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023112970A Pending JP2023123874A (ja) 2018-08-21 2023-07-10 光音響イメージングシステム、光音響イメージングシステムの制御方法、および、プログラム

Country Status (2)

Country Link
JP (2) JP7320221B2 (ja)
WO (1) WO2020039641A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479935B2 (ja) * 2020-05-26 2024-05-09 キヤノンメディカルシステムズ株式会社 体液解析装置、体液解析装置の制御方法、およびプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210456A (ja) 2002-01-21 2003-07-29 Toshiba Corp 時系列画像の処理装置
JP2011189175A (ja) 2011-05-31 2011-09-29 Toshiba Corp 超音波診断装置
JP2017108964A (ja) 2015-12-17 2017-06-22 キヤノン株式会社 被検体情報取得装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3863414B2 (ja) * 2001-11-22 2006-12-27 株式会社東芝 超音波診断装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003210456A (ja) 2002-01-21 2003-07-29 Toshiba Corp 時系列画像の処理装置
JP2011189175A (ja) 2011-05-31 2011-09-29 Toshiba Corp 超音波診断装置
JP2017108964A (ja) 2015-12-17 2017-06-22 キヤノン株式会社 被検体情報取得装置

Also Published As

Publication number Publication date
JP2023123874A (ja) 2023-09-05
WO2020039641A1 (ja) 2020-02-27
JP2020028390A (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
US20210169397A1 (en) Image processing apparatus, image processing method, and non-transitory computer-readable medium
JP2023123874A (ja) 光音響イメージングシステム、光音響イメージングシステムの制御方法、および、プログラム
US20180228377A1 (en) Object information acquiring apparatus and display method
JP2019024733A (ja) 画像処理装置、画像処理方法、プログラム
JP2018126389A (ja) 情報処理装置、情報処理方法、およびプログラム
JP7108985B2 (ja) 画像処理装置、画像処理方法、プログラム
JP7205821B2 (ja) システム
JP6882108B2 (ja) 画像生成装置、画像生成方法、及びプログラム
JP7144805B2 (ja) 画像処理装置、画像処理方法、プログラム
JP7142832B2 (ja) 画像処理装置、画像処理方法、プログラム
JP7125709B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP7118718B2 (ja) 被検体情報取得装置、被検体情報処理方法、およびプログラム
JP7226728B2 (ja) 画像処理装置、画像処理方法、プログラム
JP7013215B2 (ja) 情報処理装置、情報処理方法、プログラム
JP7187336B2 (ja) 情報処理装置、情報処理方法、およびプログラム
WO2020039640A1 (ja) 情報処理装置、システム、情報処理方法、プログラム
JP2020028668A (ja) 画像処理装置、画像処理方法、プログラム
JP7314371B2 (ja) 被検体情報取得装置、被検体情報処理方法、およびプログラム
JP7277212B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2019000387A (ja) 情報処理装置、情報処理方法、及びプログラム
JP2020028670A (ja) 画像処理装置、システム、画像処理方法、プログラム
US20180299763A1 (en) Information processing apparatus, object information acquiring apparatus, and information processing method
JP2020162746A (ja) 画像処理装置、画像処理方法及びプログラム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230713

R150 Certificate of patent or registration of utility model

Ref document number: 7320221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150