JP7142832B2 - 画像処理装置、画像処理方法、プログラム - Google Patents

画像処理装置、画像処理方法、プログラム Download PDF

Info

Publication number
JP7142832B2
JP7142832B2 JP2018157798A JP2018157798A JP7142832B2 JP 7142832 B2 JP7142832 B2 JP 7142832B2 JP 2018157798 A JP2018157798 A JP 2018157798A JP 2018157798 A JP2018157798 A JP 2018157798A JP 7142832 B2 JP7142832 B2 JP 7142832B2
Authority
JP
Japan
Prior art keywords
image
photoacoustic
contrast agent
light
subject
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018157798A
Other languages
English (en)
Other versions
JP2020028671A (ja
JP2020028671A5 (ja
Inventor
大樹 梶田
宣晶 今西
貞和 相磯
萌美 浦野
兼一 長永
一仁 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luxonus
Original Assignee
Luxonus
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luxonus filed Critical Luxonus
Priority to JP2018157798A priority Critical patent/JP7142832B2/ja
Priority to PCT/JP2019/032564 priority patent/WO2020040174A1/ja
Publication of JP2020028671A publication Critical patent/JP2020028671A/ja
Publication of JP2020028671A5 publication Critical patent/JP2020028671A5/ja
Application granted granted Critical
Publication of JP7142832B2 publication Critical patent/JP7142832B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Description

本発明は、光音響イメージングにより生成された画像に対する画像処理に関する。
血管やリンパ管等の検査において、造影剤を利用した光音響イメージング(「光超音波イメージング」ともよぶ。)が知られている。特許文献1には、リンパ節やリンパ管などの造影のために用いられる造影剤を評価対象とし、その造影剤が吸収して光音響波を発生する波長の光を出射する光音響画像生成装置が記載されている。
国際公開第2017/002337号
リンパ浮腫の外科的治療法として、リンパ管静脈吻合術(LVA:Lymphatico-Venous Anastomosis)が知られている。LVAは、リンパ管と静脈とを吻合してリンパ液のバイパスを形成し、溜まったリンパ液を静脈に流すことによって、リンパ浮腫を改善する治療法である。
従来、LVAの効果判定は、術後の経過観察において患部のむくみが改善したかどうかを調べるという方法が一般的である。しかしながら、医療現場においては、LVAの効果をより直接的あるいは定量的に評価することのできる方法が要望されている。
そこで本発明は、光音響イメージングによってLVAの効果判定に有用な情報を生成するための技術を提供することを目的とする。
本発明の一実施形態に係る画像処理装置は、リンパ管静脈吻合術の前に被検体への光照射により発生した光音響波に基づいて生成された第1画像、および、リンパ管静脈吻合術の後に被検体への光照射により発生した光音響波に基づいて生成された第2画像を取得する画像取得手段と、前記第1画像および前記第2画像をそれぞれ解析することにより、前記第1画像の特徴量および前記第2画像の特徴量を算出する特徴量算出手段と、前記第1画像の特徴量および前記第2画像の特徴量に基づいて、リンパ管静脈吻合術が前記被検体に与えた変化を示す評価情報を生成する評価手段と、を有する。
本発明によれば、光音響イメージングによってLVAの効果判定に有用な情報を生成するための技術を提供することができる。
本発明の一実施形態に係るシステムのブロック図 本発明の一実施形態に係る画像処理装置とその周辺構成の具体例を示すブロック図 本発明の一実施形態に係る光音響装置の詳細なブロック図 本発明の一実施形態に係るプローブの模式図 本発明の一実施形態に係る画像処理方法のフロー図 ICGの濃度を変化させたときの吸収係数スペクトルを示すグラフ 波長の組み合わせを変化させたときの、造影剤に対応する式(1)の計算値の等高線グラフ ICGの濃度を変化させたときの、造影剤に対応する式(1)の計算値を示す折れ線グラフ オキシヘモグロビンとデオキシヘモグロビンのモラー吸収係数スペクトルを示すグラフ 本発明の一実施形態に係るGUIを示す図 ICGの濃度を変化させたときの右前腕伸側の分光画像 ICGの濃度を変化させたときの左前腕伸側の分光画像 ICGの濃度を変化させたときの右下腿内側および左下腿内側の分光画像 LVAの効果判定処理のフロー図 前処理の一例を模式的に示す図 評価情報出力画面の一例を示す図
以下に図面を参照しつつ、本発明の好適な実施の形態について説明する。ただし、以下に記載されている構成部品の寸法、材質、形状およびそれらの相対配置などは、発明が適用される装置の構成や各種条件により適宜変更されるべきものである。よって、この発明の範囲を以下の記載に限定する趣旨のものではない。
本発明に係るシステムにより得られる光音響画像は、光エネルギーの吸収量や吸収率を反映している。光音響画像は、光音響波の発生音圧(初期音圧)、光吸収エネルギー密度、及び光吸収係数などの少なくとも1つの被検体情報の空間分布を表す画像である。光音響画像は、2次元の空間分布を表す画像であってもよいし、3次元の空間分布を表す画像(ボリュームデータ)であってもよい。本実施形態に係るシステムは、造影剤が導入された被検体を撮影することにより光音響画像を生成する。なお、造影対象の立体構造を把握するために、光音響画像は、被検体表面から深さ方向の2次元の空間分布を表す画像または3次元の空間分布を表す画像であってもよい。
また、本発明に係るシステムは、複数の波長に対応する複数の光音響画像を用いて被検体の分光画像を生成することができる。本発明の分光画像は、被検体に互いに異なる複数の波長の光を照射することにより発生した光音響波に基づいた、複数の波長のそれぞれに対応する光音響信号を用いて生成された画像である。
なお、分光画像は、複数の波長のそれぞれに対応する光音響信号を用いて生成された、被検体中の特定物質の濃度を示す画像であってもよい。使用する造影剤の光吸収係数スペクトルと、特定物質の光吸収係数スペクトルとが異なる場合、分光画像中の造影剤の画像値と分光画像中の特定物質の画像値とは異なる。よって、分光画像の画像値に応じて造影剤の領域と特定物質の領域とを区別することができる。なお、特定物質としては、ヘモグロビン、グルコース、コラーゲン、メラニン、脂肪や水など、被検体を構成する物質が挙げられる。この場合にも、特定物質の光吸収係数スペクトルとは異なる光吸収スペクトルを有する造影剤を選択する必要がある。また、特定物質の種類に応じて、異なる算出方法で分光画像を算出してもよい。
以下に述べる実施形態では、酸素飽和度の計算式(1)を用いて算出された画像を分光画像として説明する。本発明者らは、複数の波長のそれぞれに対応する光音響信号に基づいて血中ヘモグロビンの酸素飽和度(酸素飽和度に相関をもつ指標でもよい)を計算する式(1)に対し、光吸収係数の波長依存性がオキシヘモグロビンおよびデオキシヘモグロビンとは異なる傾向を示す造影剤で得られた光音響信号の計測値I(r)を代入した場合に、ヘモグロビンの酸素飽和度が取り得る数値範囲から大きくずれた計算値Is(r)が得られる、ということを見出した。それゆえ、この計算値Is(r)を画像値としてもつ
分光画像を生成すれば、被検体内部におけるヘモグロビンの領域(血管領域)と造影剤の存在領域(例えばリンパ管に造影剤が導入された場合であればリンパ管の領域)とを画像上で分離(区別)することが容易となる。
Figure 0007142832000001
ここで、Iλ (r)は第1波長λの光照射により発生した光音響波に基づいた計測値であり、Iλ (r)は第2波長λの光照射により発生した光音響波に基づいた計測値である。εHb λ は第1波長λに対応するデオキシヘモグロビンのモラー吸収係数[mm-1mol-1]であり、εHb λ は第2波長λに対応するデオキシヘモグロビンのモラー吸収係数[mm-1mol-1]である。εHbO λ は第1波長λに対応するオキシヘモグロビンのモラー吸収係数[mm-1mol-1]であり、εHbO λ は第2波長λに対応するオキシヘモグロビンのモラー吸収係数[mm-1mol-1]である。rは位置である。なお、計測値Iλ (r)、Iλ (r)としては、吸収係数μ λ (r)、μ λ (r)を用いてもよいし、初期音圧P λ (r)、P λ (r)を用いてもよい。
ヘモグロビンの存在領域(血管領域)から発生した光音響波に基づいた計測値を式(1)に代入すると、計算値Is(r)として、ヘモグロビンの酸素飽和度(または酸素飽和度に相関をもつ指標)が得られる。一方、造影剤を導入した被検体において、造影剤の存在領域(例えばリンパ管領域)から発生した音響波に基づいた計測値を式(1)に代入すると、計算値Is(r)として、擬似的な造影剤の濃度分布が得られる。なお、造影剤の濃度分布を計算する場合でも、式(1)ではヘモグロビンのモラー吸収係数の数値をそのまま用いればよい。このようにして得られた分光画像Is(r)は、被検体内部のヘモグロビンの存在領域(血管)と造影剤の存在領域(例えばリンパ管)の両方が互いに分離可能(区別可能)な状態で描出された画像となる。
なお、本実施形態では、酸素飽和度を計算する式(1)を用いて分光画像の画像値を計算するが、酸素飽和度以外の指標を分光画像の画像値として計算する場合には、式(1)以外の算出方法を用いればよい。指標およびその算出方法としては、公知のものを利用可能であるため、ここでは詳しい説明を割愛する。
また、本発明に係るシステムは、第1波長λの光照射により発生した光音響波に基づいた第1光音響画像および第2波長λの光照射により発生した光音響波に基づいた第2光音響画像の比を示す画像を分光画像としてもよい。すなわち、第1波長λの光照射により発生した光音響波に基づいた第1光音響画像および第2波長λの光照射により発生した光音響波に基づいた第2光音響画像の比に基づいた画像を分光画像としてよい。なお、式(1)の変形式にしたがって生成される画像も、第1光音響画像および第2光音響画像の比によって表現できるため、第1光音響画像および第2光音響画像の比に基づいた画像(分光画像)といえる。
なお、造影対象の立体構造を把握するために、分光画像は、被検体表面から深さ方向の2次元の空間分布を表す画像または3次元の空間分布を表す画像であってもよい。
以下、本実施形態のシステムの構成及び画像処理方法について説明する。
図1を用いて本実施形態に係るシステムを説明する。図1は、本実施形態に係るシステムの構成を示すブロック図である。本実施形態に係るシステムは、光音響装置1100、記憶装置1200、画像処理装置1300、表示装置1400、及び入力装置1500を備える。装置間のデータの送受信は有線で行われてもよいし、無線で行われてもよい。
光音響装置1100は、造影剤が導入された被検体を撮影することにより光音響画像を生成し、記憶装置1200に出力する。光音響装置1100は、光照射により発生した光音響波を受信することにより得られる受信信号を用いて、被検体内の複数位置のそれぞれに対応する特性値の情報を生成する装置である。すなわち、光音響装置1100は、光音響波に由来した特性値情報の空間分布を医用画像データ(光音響画像)として生成する装置である。
記憶装置1200は、ROM(Read only memory)、磁気ディスクやフラッシュメモリなどの記憶媒体であってもよい。また、記憶装置1200は、PACS(Picture Archiving and Communication System)等のネットワークを介した記憶サーバであってもよい。
画像処理装置1300は、記憶装置1200に記憶された光音響画像や光音響画像の付帯情報等の情報を処理する装置である。
画像処理装置1300の演算機能を担うユニットは、CPUやGPU(Graphics Processing Unit)等のプロセッサ、FPGA(Field Programmable Gate Array)チップ等の演算回路で構成されることができる。これらのユニットは、単一のプロセッサや演算回路から構成されるだけでなく、複数のプロセッサや演算回路から構成されていてもよい。
画像処理装置1300の記憶機能を担うユニットは、ROM(Read only memory)、磁気ディスクやフラッシュメモリなどの非一時記憶媒体で構成することができる。また、記憶機能を担うユニットは、RAM(Random Access Memory)などの揮発性の媒体であってもよい。なお、プログラムが格納される記憶媒体は、非一時記憶媒体である。なお、記憶機能を担うユニットは、1つの記憶媒体から構成されるだけでなく、複数の記憶媒体から構成されていてもよい。
画像処理装置1300の制御機能を担うユニットは、CPUなどの演算素子で構成される。制御機能を担うユニットは、システムの各構成の動作を制御する。制御機能を担うユニットは、入力部からの測定開始などの各種操作による指示信号を受けて、システムの各構成を制御してもよい。また、制御機能を担うユニットは、コンピュータ150に格納されたプログラムコードを読み出し、システムの各構成の作動を制御してもよい。
表示装置1400は、液晶ディスプレイや有機EL(Electro Luminescence)などのディスプレイである。また、表示装置1400は、画像や装置を操作するためのGUIを表示してもよい。
入力装置1500としては、ユーザーが操作可能な、マウスやキーボードなどで構成される操作コンソールを採用することができる。また、表示装置1400をタッチパネルで構成し、表示装置1400を入力装置1500として利用してもよい。
図2は、本実施形態に係る画像処理装置1300の具体的な構成例を示す。本実施形態に係る画像処理装置1300は、CPU1310、GPU1320、RAM1330、ROM1340、外部記憶装置1350から構成される。また、画像処理装置1300には、表示装置1400としての液晶ディスプレイ1410、入力装置1500としてのマウス1510、キーボード1520が接続されている。さらに、画像処理装置1300は、PACS(Picture Archiving and Communication
System)などの記憶装置1200としての画像サーバ1210と接続されている。これにより、画像データを画像サーバ1210上に保存したり、画像サーバ1210上の画像データを液晶ディスプレイ1410に表示したりすることができる。
次に、本実施形態に係るシステムに含まれる装置の構成例を説明する。図3は、本実施形態に係るシステムに含まれる装置の概略ブロック図である。
本実施形態に係る光音響装置1100は、駆動部130、信号収集部140、コンピュータ150、プローブ180、及び導入部190を有する。プローブ180は、光照射部110、及び受信部120を有する。図4は、本実施形態に係るプローブ180の模式図を示す。測定対象は、導入部190により造影剤が導入された被検体100である。駆動部130は、光照射部110と受信部120を駆動し、機械的な走査を行う。光照射部110が光を被検体100に照射し、被検体100内で音響波が発生する。光に起因して光音響効果により発生する音響波を光音響波とも呼ぶ。受信部120は、光音響波を受信することによりアナログ信号としての電気信号(光音響信号)を出力する。
信号収集部140は、受信部120から出力されたアナログ信号をデジタル信号に変換し、コンピュータ150に出力する。コンピュータ150は、信号収集部140から出力されたデジタル信号を、光音響波に由来する信号データとして記憶する。
コンピュータ150は、記憶されたデジタル信号に対して信号処理を行うことにより、光音響画像を生成する。また、コンピュータ150は、得られた光音響画像に対して画像処理を施した後に、光音響画像を表示部160に出力する。表示部160は、光音響画像に基づいた画像を表示する。表示画像は、ユーザーやコンピュータ150からの保存指示に基づいて、コンピュータ150内のメモリや、モダリティとネットワークで接続されたデータ管理システムなどの記憶装置1200に保存される。
また、コンピュータ150は、光音響装置に含まれる構成の駆動制御も行う。また、表示部160は、コンピュータ150で生成された画像の他にGUIなどを表示してもよい。入力部170は、ユーザーが情報を入力できるように構成されている。ユーザーは、入力部170を用いて測定開始や終了、作成画像の保存指示などの操作を行うことができる。
以下、本実施形態に係る光音響装置1100の各構成の詳細を説明する。
(光照射部110)
光照射部110は、光を発する光源111と、光源111から射出された光を被検体100へ導く光学系112とを含む。なお、光は、いわゆる矩形波、三角波などのパルス光を含む。
光源111が発する光のパルス幅としては、熱閉じ込め条件および応力閉じ込め条件を考慮すると、100ns以下のパルス幅であることが好ましい。また、光の波長として400nmから1600nm程度の範囲の波長であってもよい。血管を高解像度でイメージングする場合は、血管での吸収が大きい波長(400nm以上、700nm以下)を用いてもよい。生体の深部をイメージングする場合には、生体の背景組織(水や脂肪など)において典型的に吸収が少ない波長(700nm以上、1100nm以下)の光を用いてもよい。
光源111としては、レーザーや発光ダイオードを用いることができる。また、複数波長の光を用いて測定する際には、波長の変更が可能な光源であってもよい。なお、複数波長を被検体に照射する場合、互いに異なる波長の光を発生する複数台の光源を用意し、そ
れぞれの光源から交互に照射することも可能である。複数台の光源を用いた場合もそれらをまとめて光源として表現する。レーザーとしては、固体レーザー、ガスレーザー、色素レーザー、半導体レーザーなど様々なレーザーを使用することができる。例えば、Nd:YAGレーザーやアレキサンドライトレーザーなどのパルスレーザーを光源として用いてもよい。また、Nd:YAGレーザー光を励起光とするTi:saレーザーやOPO(Optical Parametric Oscillators)レーザーを光源として用いてもよい。また、光源111としてフラッシュランプや発光ダイオードを用いてもよい。また、光源111としてマイクロウェーブ源を用いてもよい。
光学系112には、レンズ、ミラー、光ファイバ等の光学素子を用いることができる。乳房等を被検体100とする場合、パルス光のビーム径を広げて照射するために、光学系の光出射部は光を拡散させる拡散板等で構成されていてもよい。一方、光音響顕微鏡においては、解像度を上げるために、光学系112の光出射部はレンズ等で構成し、ビームをフォーカスして照射してもよい。
なお、光照射部110が光学系112を備えずに、光源111から直接被検体100に光を照射してもよい。
(受信部120)
受信部120は、音響波を受信することにより電気信号を出力するトランスデューサ121と、トランスデューサ121を支持する支持体122とを含む。また、トランスデューサ121は、音響波を送信する送信手段としてもよい。受信手段としてのトランスデューサと送信手段としてのトランスデューサとは、単一(共通)のトランスデューサでもよいし、別々の構成であってもよい。
トランスデューサ121を構成する部材としては、PZT(チタン酸ジルコン酸鉛)に代表される圧電セラミック材料や、PVDF(ポリフッ化ビニリデン)に代表される高分子圧電膜材料などを用いることができる。また、圧電素子以外の素子を用いてもよい。例えば、静電容量型トランスデューサ(CMUT:Capacitive Micro-machined Ultrasonic Transducers)を用いたトランスデューサなどを用いることができる。なお、音響波を受信することにより電気信号を出力できる限り、いかなるトランスデューサを採用してもよい。また、トランスデューサにより得られる信号は時間分解信号である。つまり、トランスデューサにより得られる信号の振幅は、各時刻にトランスデューサで受信される音圧に基づく値(例えば、音圧に比例した値)を表したものである。
光音響波を構成する周波数成分は、典型的には100KHzから100MHzであり、トランスデューサ121として、これらの周波数を検出することのできるものを採用してもよい。
支持体122は、機械的強度が高い金属材料などから構成されていてもよい。照射光を被検体に多く入射させるために、支持体122の被検体100側の表面に、鏡面加工もしくは光散乱させる加工が行われていてもよい。本実施形態において支持体122は半球殻形状であり、半球殻上に複数のトランスデューサ121を支持できるように構成されている。この場合、支持体122に配置されたトランスデューサ121の指向軸は半球の曲率中心付近に集まる。そして、複数のトランスデューサ121から出力された信号を用いて画像化したときに曲率中心付近の画質が高くなる。なお、支持体122はトランスデューサ121を支持できる限り、いかなる構成であってもよい。支持体122は、1Dアレイ、1.5Dアレイ、1.75Dアレイ、2Dアレイと呼ばれるような平面又は曲面内に、複数のトランスデューサを並べて配置してもよい。複数のトランスデューサ121が複数の受信手段に相当する。
また、支持体122は音響マッチング材を貯留する容器として機能してもよい。すなわち、支持体122をトランスデューサ121と被検体100との間に音響マッチング材を配置するための容器としてもよい。
また、受信部120が、トランスデューサ121から出力される時系列のアナログ信号を増幅する増幅器を備えてもよい。また、受信部120が、トランスデューサ121から出力される時系列のアナログ信号を時系列のデジタル信号に変換するA/D変換器を備えてもよい。すなわち、受信部120が後述する信号収集部140を備えてもよい。
受信部120と被検体100との間の空間は、光音響波が伝播することができる媒質で満たす。この媒質には、音響波が伝搬でき、被検体100やトランスデューサ121との界面において音響特性が整合し、できるだけ光音響波の透過率が高い材料を採用する。例えば、この媒質には、水、超音波ジェルなどを採用することができる。
図4は、プローブ180の側面図を示す。本実施形態に係るプローブ180は、開口を有する半球状の支持体122に複数のトランスデューサ121が3次元に配置された受信部120を有する。また、支持体122の底部には、光学系112の光射出部が配置されている。
本実施形態においては、図4に示すように被検体100は、保持部200に接触することにより、その形状が保持される。
受信部120と保持部200の間の空間は、光音響波が伝播することができる媒質で満たされる。この媒質には、光音響波が伝搬でき、被検体100やトランスデューサ121との界面において音響特性が整合し、できるだけ光音響波の透過率が高い材料を採用する。例えば、この媒質には、水、超音波ジェルなどを採用することができる。
保持手段としての保持部200は被検体100の形状を測定中に保持するために使用される。保持部200により被検体100を保持することによって、被検体100の動きの抑制および被検体100の位置を保持部200内に留めることができる。保持部200の材料には、ポリカーボネートやポリエチレン、ポリエチレンテレフタレート等、樹脂材料を用いることができる。
保持部200は、取り付け部201に取り付けられている。取り付け部201は、被検体の大きさに合わせて複数種類の保持部200を交換可能に構成されていてもよい。例えば、取り付け部201は、曲率半径や曲率中心などの異なる保持部に交換できるように構成されていてもよい。
(駆動部130)
駆動部130は、被検体100と受信部120との相対位置を変更する部分である。駆動部130は、駆動力を発生させるステッピングモータなどのモータと、駆動力を伝達させる駆動機構と、受信部120の位置情報を検出する位置センサとを含む。駆動機構としては、リードスクリュー機構、リンク機構、ギア機構、油圧機構、などを用いることができる。また、位置センサとしては、エンコーダー、可変抵抗器、リニアスケール、磁気センサ、赤外線センサ、超音波センサなどを用いたポテンショメータなどを用いることができる。
なお、駆動部130は被検体100と受信部120との相対位置をXY方向(二次元)に変更させるものに限らず、一次元または三次元に変更させてもよい。
なお、駆動部130は、被検体100と受信部120との相対的な位置を変更できれば、受信部120を固定し、被検体100を移動させてもよい。被検体100を移動させる
場合は、被検体100を保持する保持部を動かすことで被検体100を移動させる構成などが考えられる。また、被検体100と受信部120の両方を移動させてもよい。
駆動部130は、相対位置を連続的に移動させてもよいし、ステップアンドリピートによって移動させてもよい。駆動部130は、プログラムされた軌跡で移動させる電動ステージであってもよいし、手動ステージであってもよい。
また、本実施形態では、駆動部130は光照射部110と受信部120を同時に駆動して走査を行っているが、光照射部110だけを駆動したり、受信部120だけを駆動したりしてもよい。
なお、プローブ180が、把持部が設けられたハンドヘルドタイプである場合、光音響装置1100は駆動部130を有していなくてもよい。
(信号収集部140)
信号収集部140は、トランスデューサ121から出力されたアナログ信号である電気信号を増幅するアンプと、アンプから出力されたアナログ信号をデジタル信号に変換するA/D変換器とを含む。信号収集部140から出力されるデジタル信号は、コンピュータ150に記憶される。信号収集部140は、Data Acquisition System(DAS)とも呼ばれる。本明細書において電気信号は、アナログ信号もデジタル信号も含む概念である。なお、フォトダイオードなどの光検出センサが、光照射部110から光射出を検出し、信号収集部140がこの検出結果をトリガーに同期して上記処理を開始してもよい。
(コンピュータ150)
情報処理装置としてのコンピュータ150は、画像処理装置1300と同様のハードウェアで構成されている。すなわち、コンピュータ150の演算機能を担うユニットは、CPUやGPU(Graphics Processing Unit)等のプロセッサ、FPGA(Field Programmable Gate Array)チップ等の演算回路で構成されることができる。これらのユニットは、単一のプロセッサや演算回路から構成されるだけでなく、複数のプロセッサや演算回路から構成されていてもよい。
コンピュータ150の記憶機能を担うユニットは、RAM(Random Access Memory)などの揮発性の媒体であってもよい。なお、プログラムが格納される記憶媒体は、非一時記憶媒体である。なお、コンピュータ150の記憶機能を担うユニットは、1つの記憶媒体から構成されるだけでなく、複数の記憶媒体から構成されていてもよい。
コンピュータ150の制御機能を担うユニットは、CPUなどの演算素子で構成される。コンピュータ150の制御機能を担うユニットは、光音響装置の各構成の動作を制御する。コンピュータ150の制御機能を担うユニットは、入力部170からの測定開始などの各種操作による指示信号を受けて、光音響装置の各構成を制御してもよい。また、コンピュータ150の制御機能を担うユニットは、記憶機能を担うユニットに格納されたプログラムコードを読み出し、光音響装置の各構成の作動を制御する。すなわち、コンピュータ150は、本実施形態に係るシステムの制御装置として機能することができる。
なお、コンピュータ150と画像処理装置1300は同じハードウェアで構成されていてもよい。1つのハードウェアがコンピュータ150と画像処理装置1300の両方の機能を担っていてもよい。すなわち、コンピュータ150が、画像処理装置1300の機能を担ってもよい。また、画像処理装置1300が、情報処理装置としてのコンピュータ150の機能を担ってもよい。
(表示部160)
表示部160は、液晶ディスプレイや有機EL(Electro Luminescence)などのディスプレイである。また、表示部160は、画像や装置を操作するためのGUIを表示してもよい。
なお、表示部160と表示装置1400は同じディスプレイであってもよい。すなわち、1つのディスプレイが表示部160と表示装置1400の両方の機能を担っていてもよい。
(入力部170)
入力部170としては、ユーザーが操作可能な、マウスやキーボードなどで構成される操作コンソールを採用することができる。また、表示部160をタッチパネルで構成し、表示部160を入力部170として利用してもよい。
なお、入力部170と入力装置1500は同じ装置であってもよい。すなわち、1つの装置が入力部170と入力装置1500の両方の機能を担っていてもよい。
(導入部190)
導入部190は、被検体100の外部から被検体100の内部へ造影剤を導入可能に構成されている。例えば、導入部190は造影剤の容器と被検体に刺す注射針とを含むことができる。しかしこれに限られず、導入部190は、造影剤を被検体100に導入することができる限り種々のものを適用可能である。導入部190は、この場合、例えば、公知のインジェクションシステムやインジェクタなどであってもよい。なお、制御装置としてのコンピュータ150が、導入部190の動作を制御することにより、被検体100に造影剤を導入してもよい。また、ユーザーが導入部190を操作することにより、被検体100に造影剤を導入してもよい。
(被検体100)
被検体100はシステムを構成するものではないが、以下に説明する。本実施形態に係るシステムは、人や動物の悪性腫瘍や血管疾患などの診断や化学治療の経過観察などを目的として使用できる。よって、被検体100としては、生体、具体的には人体や動物の乳房や各臓器、血管網、頭部、頸部、腹部、手指または足指を含む四肢などの診断の対象部位が想定される。例えば、人体が測定対象であれば、オキシヘモグロビンあるいはデオキシヘモグロビンやそれらを含む多く含む血管あるいは腫瘍の近傍に形成される新生血管などを光吸収体の対象としてもよい。また、頸動脈壁のプラークなどを光吸収体の対象としてもよい。また、皮膚等に含まれるメラニン、コラーゲン、脂質などを光吸収体の対象としてもよい。さらに、被検体100に導入する造影剤を光吸収体とすることができる。光音響イメージングに用いる造影剤としては、インドシアニングリーン(ICG)、メチレンブルー(MB)などの色素、金微粒子、及びそれらの混合物、またはそれらを集積あるいは化学的に修飾した外部から導入した物質を採用してもよい。また、生体を模したファントムを被検体100としてもよい。
なお、光音響装置の各構成はそれぞれ別の装置として構成されてもよいし、一体となった1つの装置として構成されてもよい。また、光音響装置の少なくとも一部の構成が一体となった1つの装置として構成されてもよい。
なお、本実施形態に係るシステムを構成する各装置は、それぞれが別々のハードウェアで構成されていてもよいし、全ての装置が1つのハードウェアで構成されていてもよい。本実施形態に係るシステムの機能は、いかなるハードウェアで構成されていてもよい。
次に、図5に示すフローチャートを用いて、本実施形態に係る画像生成方法を説明する。なお、図5に示すフローチャートには、本実施形態に係るシステムの動作を示す工程も、医師等のユーザーの動作を示す工程も含まれている。
(S100:検査オーダー情報を取得する工程)
光音響装置1100のコンピュータ150は、HIS(Hospitai Information System)やRIS(Radiology Information
System)などの院内情報システムから送信された検査オーダー情報を取得する。検査オーダー情報には、検査に用いるモダリティの種類や検査に使用する造影剤などの情報が含まれている。
(S200:ユーザーの指示または検査オーダー情報に基づいて造影剤に関する情報を取得する工程)
造影剤情報取得手段としてのコンピュータ150は、造影剤に関する情報を取得する。ユーザーは、入力部170を用いて、検査に使用する造影剤の種類や造影剤の濃度を指示してもよい。この場合、コンピュータ150は、入力部170を介して、造影剤に関する情報を取得することができる。また、コンピュータ150は、S100で取得した検査オーダー情報に造影剤に関する情報が含まれている場合、検査オーダー情報から造影剤に関する情報を読み出すことにより、取得してもよい。コンピュータ150は、ユーザーの指示と検査オーダー情報との少なくとも一つに基づいて、造影剤に関する情報を取得してもよい。例えば、造影剤の条件を示す造影剤に関する情報としては、造影剤の種類や造影剤の濃度などが挙げられる。
図10は、表示部160に表示されるGUIの例を示す。GUIのアイテム2500には、患者ID、検査ID、撮影日時などの検査オーダー情報が表示されている。アイテム2500は、HISやRISなどの外部装置から取得した検査オーダー情報を表示する表示機能や、ユーザーが入力部170を用いて検査オーダー情報を入力することのできる入力機能を備えていてもよい。GUIのアイテム2600には、造影剤の種類、造影剤の濃度などの造影剤に関する情報が表示されている。アイテム2600は、HISやRISなどの外部装置から取得した造影剤に関する情報を表示する表示機能や、ユーザーが入力部170を用いて造影剤に関する情報を入力することのできる入力機能を備えていてもよい。アイテム2600においては、造影剤の種類や濃度などの造影剤に関する情報を複数の選択肢の中からプルダウンなどの方法で入力できてもよい。なお、画像処理装置1300が表示装置1400に図10に示すGUIを表示してもよい。
なお、画像処理装置1300が、ユーザーから造影剤に関する情報の入力指示を受信しなかった場合に、複数の造影剤に関する情報の中からデフォルトで設定された造影剤に関する情報を取得してもよい。本実施形態の場合、造影剤の種類としてICG、造影剤の濃度として1.0mg/mLがデフォルトで設定されている場合を説明する。本実施形態では、GUIのアイテム2600にはデフォルトで設定されている造影剤の種類と濃度が表示されているが、造影剤に関する情報がデフォルトで設定されていなくてもよい。この場合、初期画面ではGUIのアイテム2600に造影剤に関する情報が表示されていなくてもよい。
(S300:造影剤を導入する工程)
導入部190は、被検体に対して造影剤を導入する。ユーザーが、導入部190を用いて被検体に造影剤を導入したときに、ユーザーが入力部170を操作することにより、造影剤が導入されたことを表す信号を入力部170から制御装置としてのコンピュータ150に送信してもよい。また、導入部190が被検体100に造影剤が導入されたことを表す信号をコンピュータ150に送信してもよい。なお、導入部190を用いずに造影剤を被検体に投与してもよい。例えば、被検体としての生体が噴霧された造影剤を吸引することにより、造影剤が投与されてもよい。
造影剤の導入後に被検体100内の造影対象に造影剤が行き渡るまで時間をおいてから
後述するS400を実行してもよい。
(S400:照射光の波長を決定する工程)
波長決定手段としてのコンピュータ150は、S200で取得された造影剤に関する情報に基づいて、照射光の波長を決定する。本実施形態では、分光画像を生成するために、コンピュータ150が造影剤に関する情報に基づいて複数の波長を決定する。以下、分光画像中の造影剤に対応する領域を識別しやすくするための波長の組み合わせについて説明する。
本実施形態では、後述するS800において、式(1)にしたがった画像を分光画像として生成する場合を考える。式(1)によれば、分光画像中の血管の領域については、実際の酸素飽和度に応じた画像値が算出される。しかし、分光画像中の造影剤の領域については、使用する波長によって大きく画像値が変化してしまう。さらに、分光画像中の造影剤の領域については、造影剤の吸収係数スペクトルによっても大きく画像値が変動してしまう。その結果、分光画像中の造影剤の領域の画像値が、血管の領域の画像値と識別できないような値となってしまう場合がある。一方、造影剤の三次元分布を把握するためには、分光画像中の造影剤の領域の画像値が、血管の領域の画像値と識別できるような値であることが好ましい。
そこで、本発明者は、検査に使用する造影剤の条件に応じて、照射光の波長を適応的に変更することにより、分光画像中の造影剤の領域の画像値を制御することを着想した。すなわち、情報処理装置が、造影剤に関する情報に基づいて、分光画像中の造影剤の領域と血管の領域を識別できるような照射光の波長を決定することを本発明者は考案した。
具体的には、分光画像として式(1)を用いた画像を生成する場合、動静脈の酸素飽和度が概ねパーセント表示で60%~100%に収まることを利用して照射光の波長を決定してもよい。すなわち、情報処理装置としてのコンピュータ150が、造影剤に関する情報に基づいて、分光画像中の造影剤に対応する式(1)の値が60%より小さくなる、または、100%より大きくなるような2波長を決定してもよい。また、コンピュータ150が、造影剤に関する情報に基づいて、分光画像中の造影剤に対応する領域の画像値とそれ以外の領域の画像値との符号が逆となるような2波長を決定してもよい。例えば、造影剤としてICGを用いる場合、700nm以上、820nmより小さい波長と、820nm以上、1020nm以下の波長の2波長を選択し、式(1)により分光画像を生成することにより、造影剤の領域と血管の領域とを良好に識別することができる。
次に、造影剤に関する情報として造影剤の濃度を変化させたときの造影剤に対応する画像値の変化について説明する。図6は、造影剤としてのICGの濃度を変えたときの吸収係数スペクトルの変化を示したスペクトル図である。図6において下から順に、ICGの濃度が5.04μg/mL、50.4μg/mL、0.5mg/mL、1.0mg/mLの場合のスペクトル図を示している。図6に示すように、造影剤の濃度が高くなるにつれて光の吸収度合いが高くなることが理解される。また、造影剤の濃度に応じて2波長に対応する吸収係数の比が変化するため、造影剤の濃度に応じて、分光画像中の造影剤に対応する画像値が変化してしまうことが理解される。造影剤の濃度が変化したときと同様に、造影剤の種類が変化したときにも、2波長に対応する吸収係数の比が変化する。そのため、造影剤の種類に応じても、分光画像中の造影剤に対応する画像値が変化してしまうことが理解される。
ここで、ICGを導入した生体に対して光音響装置を用いて撮影することにより得られた分光画像について説明する。図11~図13は、濃度を変えてICGを導入した場合に撮影して得られた分光画像を示す。いずれの撮影においても、手もしくは足の皮下もしく
は皮内にICGを1か所につき0.1mL導入した。皮下もしくは皮内に導入されたICGは、リンパ管に選択的に取り込まれるため、リンパ管の内腔が造影される。また、いずれの撮影においても、ICGの導入から5分~60分以内に撮影した。また、いずれの分光画像も、797nmの波長の光と835nmの波長の光とを生体に照射することにより得られた光音響画像から生成された分光画像である。
図11(A)は、ICGを導入しなかった場合の右前腕伸側の分光画像を示す。一方、図11(B)は、2.5mg/mLの濃度のICGを導入したときの右前腕伸側の分光画像を示す。図11(B)中の破線および矢印で示した領域にリンパ管が描出されている。
図12(A)は、1.0mg/mLの濃度のICGを導入したときの左前腕伸側の分光画像を示す。図12(B)は、5.0mg/mLの濃度のICGを導入したときの左前腕伸側の分光画像を示す。図12(B)中の破線および矢印で示した領域にリンパ管が描出されている。
図13(A)は、0.5mg/mLの濃度のICGを導入したときの右下腿内側の分光画像を示す。図13(B)は、5.0mg/mLの濃度のICGを導入したときの左下腿内側の分光画像を示す。図13(B)中の破線および矢印で示した領域にリンパ管が描出されている。
図11~図13に示す分光画像によれば、ICGの濃度を高くすると、分光画像の中のリンパ管の視認性が向上することが理解される。また、図11~図13によれば、ICGの濃度が2.5mg/mL以上の場合にリンパ管が良好に描出できることが理解される。すなわち、ICGの濃度が2.5mg/mL以上である場合に線上のリンパ管を明確に視認することができる。そのため、造影剤としてICGを採用する場合、その濃度は2.5mg/mL以上であってもよい。なお、生体内でのICGの希釈を考慮すると、ICGの濃度は5.0mg/mLより大きくてもよい。ただし、ジアグノグリーンの可溶性を鑑みると、10.0mg/mL以上の濃度で水溶液に溶かすことは困難である。
以上より、生体に導入するICGの濃度としては、2.5mg/mL以上、10.0mg/mL以下がよく、好適には、5.0mg/mL以上、10.0mg/mL以下がよい。
そこで、コンピュータ150は、図10に示すGUIのアイテム2600において造影剤の種類としてICGが入力された場合に、上記数値範囲のICGの濃度を示すユーザーからの指示を選択的に受け付けるように構成されていてもよい。すなわち、この場合、コンピュータ150は、上記数値範囲以外のICGの濃度を示すユーザーからの指示を受け付けないように構成されていてもよい。よって、コンピュータ150は、造影剤の種類がICGであることを示す情報を取得した場合に、2.5mg/mLより小さい、または、10.0mg/mLより大きいICGの濃度を示すユーザーからの指示を受け付けないように構成されていてもよい。また、コンピュータ150は、造影剤の種類がICGであることを示す情報を取得した場合に5.0mg/mLより小さい、または、10.0mg/mLより大きいICGの濃度を示すユーザーからの指示を受け付けないように構成されていてもよい。
コンピュータ150は、ユーザーがGUI上で上記数値範囲以外のICGの濃度を指示できないようにGUIを構成してもよい。すなわち、コンピュータ150は、ユーザーがGUI上で上記数値範囲以外のICGの濃度を指示できないようにGUIを表示させてもよい。例えば、コンピュータ150は、GUI上で上記数値範囲のICGの濃度を選択的に指示できるプルダウンを表示させてもよい。コンピュータ150は、プルダウンの中の上記数値範囲以外のICGの濃度をグレーアウトさせて表示し、グレーアウトされた濃度を選択できないようにGUIを構成してもよい。
また、コンピュータ150は、GUI上で上記数値範囲以外のICGの濃度がユーザーから指示された場合にアラートを通知してもよい。通知方法としては、表示部160へのアラートの表示や、音やランプの点灯などのあらゆる方法を採用することができる。
また、コンピュータ150は、GUI上で造影剤の種類としてICGが選択された場合に、被検体に導入するICGの濃度として上記数値範囲を表示部160に表示させてもよい。
なお、被検体に導入する造影剤の濃度は、ここで示した数値範囲に限らず、目的に応じた好適な濃度を採用することができる。また、ここでは造影剤の種類がICGである場合の例について説明したが、その他の造影剤においても同様に上記構成を適用することができる。
このようにGUIを構成することにより、被検体に導入する予定の造影剤の種類に応じて、適当な造影剤の濃度をユーザーが被検体に導入するための支援を行うことができる。
次に、波長の組み合わせを変更したときの分光画像中の造影剤に対応する画像値の変化について説明する。図7は、2波長の組み合わせのそれぞれにおける、分光画像中の造影剤に対応する画像値(酸素飽和度値)のシミュレーション結果を示す。図7の縦軸と横軸はそれぞれ第1波長と第2波長を表す。図7には、分光画像中の造影剤に対応する画像値の等値線が示されている。図7(a)~図7(d)はそれぞれ、ICGの濃度が5.04μg/mL、50.4μg/mL、0.5mg/mL、1.0mg/mLのときの分光画像中の造影剤に対応する画像値を示す。図7に示すように、選択する波長の組み合わせによっては、分光画像中の造影剤に対応する画像値が60%~100%となってしまう場合がある。前述したように、このような波長の組み合わせを選択してしまうと、分光画像中の血管の領域と造影剤の領域とを識別することが困難となってしまう。そのため、図7に示す波長の組み合わせにおいて、分光画像中の造影剤に対応する画像値が60%より小さくなる、または、100%より大きくなるような波長の組み合わせを選択することが好ましい。さらには、図7に示す波長の組み合わせにおいて、分光画像中の造影剤に対応する画像値が負値となるような波長の組み合わせを選択することが好ましい。
例えば、ここで第1波長として797nmを選択し、第2波長として835nmを選択した場合を考える。図8は、第1波長として797nmを選択し、第2波長として835nmを選択した場合に、ICGの濃度と分光画像中の造影剤に対応する画像値(式(1)の値)との関係を示すグラフである。図8によれば、第1波長として797nmを選択し、第2波長として835nmを選択した場合、5.04μg/mL~1.0mg/mLのいずれの濃度であっても、分光画像中の造影剤に対応する画像値は負値となる。そのため、このような波長の組み合わせにより生成された分光画像によれば、血管の酸素飽和度値は原理上負値をとることはないため、血管の領域と造影剤の領域とを明確に識別することができる。
なお、これまで造影剤に関する情報に基づいて波長を決定することを説明したが、波長の決定においてヘモグロビンの吸収係数を考慮してもよい。図9は、オキシヘモグロビンのモラー吸収係数(破線)とデオキシヘモグロビンのモラー吸収係数(実線)のスペクトルを示す。図9に示す波長レンジにおいては、797nmを境にオキシヘモグロビンのモラー吸収係数とデオキシヘモグロビンのモラー吸収係数の大小関係が逆転している。すなわち、797nmよりも短い波長においては静脈を把握しやすく、797nmよりも長い波長においては動脈を把握しやすいといえる。ところで、リンパ浮腫の治療においては、リンパ管と静脈との間にバイパスを作製するリンパ管静脈吻合術(LVA)が利用されている。本実施形態では、LVAの術前検査、術後検査、および効果判定のために、光音響イメージングによって血管像(特に静脈像)と造影剤が蓄積したリンパ管像との両方を含む画像を生成する。この場合に、複数の波長の少なくとも1つを797nmよりも小さい
波長とすることにより、静脈をより明確に画像化することができる。また、複数の波長の少なくとも1つを、オキシヘモグロビンのモラー吸収係数よりもデオキシヘモグロビンのモラー吸収係数が大きくなる波長とすることが静脈を画像化するうえで有利である。また、2波長に対応する光音響画像から分光画像を生成する場合、2波長のいずれもオキシヘモグロビンのモラー吸収係数よりもデオキシヘモグロビンのモラー吸収係数が大きい波長とすることが、静脈を画像化するうえで有利である。これらの波長を選択することにより、静脈と造影剤が導入されたリンパ管との両方を精度良く画像化することができる。
ところで、複数の波長のいずれも血液よりも造影剤の吸収係数が大きい波長であると、造影剤由来のアーチファクトにより血液の酸素飽和度精度が低下してしまう。そこで、造影剤由来のアーチファクトを低減するために、複数の波長の少なくとも1つの波長が、血液の吸収係数に対して造影剤の吸収係数が小さくなる波長であってもよい。
ここでは、式(1)にしたがって分光画像を生成する場合の説明を行ったが、造影剤の条件や照射光の波長によって分光画像中の造影剤に対応する画像値が変化するような分光画像を生成する場合にも適用することができる。
(S500:光を照射する工程)
光照射部110は、S400で決定された波長を光源111に設定する。光源111は、S400で決定された波長の光を発する。光源111から発生した光は、光学系112を介してパルス光として被検体100に照射される。そして、被検体100の内部でパルス光が吸収され、光音響効果により光音響波が生じる。このとき、導入された造影剤もパルス光を吸収し、光音響波を発生する。光照射部110はパルス光の伝送と併せて信号収集部140へ同期信号を送信してもよい。また、光照射部110は、複数の波長のそれぞれについて、同様に光照射を行う。
ユーザーが、光照射部110の照射条件(照射光の繰り返し周波数や波長など)やプローブ180の位置などの制御パラメータを、入力部170を用いて指定してもよい。コンピュータ150は、ユーザーの指示に基づいて決定された制御パラメータを設定してもよい。また、コンピュータ150が、指定された制御パラメータに基づいて、駆動部130を制御することによりプローブ180を指定の位置へ移動させてもよい。複数位置での撮影が指定された場合には、駆動部130は、まずプローブ180を最初の指定位置へ移動させる。なお、駆動部130は、測定の開始指示がなされたときに、あらかじめプログラムされた位置にプローブ180を移動させてもよい。
(S600:光音響波を受信する工程)
信号収集部140は、光照射部110から送信された同期信号を受信すると、信号収集の動作を開始する。すなわち、信号収集部140は、受信部120から出力された、光音響波に由来するアナログ電気信号を、増幅・AD変換することにより、増幅されたデジタル電気信号を生成し、コンピュータ150へ出力する。コンピュータ150は、信号収集部140から送信された信号を保存する。複数の走査位置での撮影を指定された場合には、指定された走査位置において、S500およびS600の工程を繰り返し実行し、パルス光の照射と音響波に由来するデジタル信号の生成を繰り返す。なお、コンピュータ150は、発光をトリガーとして、発光時の受信部120の位置情報を駆動部130の位置センサからの出力に基づいて取得し、記憶してもよい。
なお、本実施形態では、複数の波長の光のそれぞれを時分割に照射する例を説明したが、複数の波長のそれぞれに対応する信号データを取得できる限り、光の照射方法はこれに限らない。例えば、光照射によって符号化を行う場合に、複数の波長の光がほぼ同時に照射されるタイミングが存在してもよい。
(S700:光音響画像を生成する工程)
光音響画像取得手段としてのコンピュータ150は、記憶された信号データに基づいて、光音響画像を生成する。コンピュータ150は、生成された光音響画像を記憶装置1200に出力し、記憶させる。
信号データを2次元または3次元の空間分布に変換する再構成アルゴリズムとしては、タイムドメインでの逆投影法やフーリエドメインでの逆投影法などの解析的な再構成法やモデルベース法(繰り返し演算法)を採用することができる。例えば、タイムドメインでの逆投影法として、Universal back-projection(UBP)、Filtered back-projection(FBP)、または整相加算(Delay-and-Sum)などが挙げられる。
本実施形態では、被検体への1回の光照射で得られた光音響信号を用いた画像再構成により1つの3次元の光音響画像(ボリュームデータ)が生成される。さらに、複数回の光照射を行い、光照射ごとに画像再構成を行うことで、時系列の3次元画像データ(時系列のボリュームデータ)が取得される。複数回の光照射の光照射ごとに画像再構成して得られた3次元画像データを総称して、複数回の光照射に対応する3次元画像データと呼ぶ。なお、時系列に複数回の光照射が実行されるため、複数回の光照射に対応する3次元画像データが、時系列の3次元画像データを構成する。
コンピュータ150は、信号データに対して再構成処理することにより、初期音圧分布情報(複数の位置における発生音圧)を光音響画像として生成する。また、コンピュータ150は、被検体100に照射された光の被検体100の内部での光フルエンス分布を計算し、初期音圧分布を光フルエンス分布で除算することにより、吸収係数分布情報を光音響画像として取得してもよい。光フルエンス分布の計算手法については、公知の手法を適用することができる。また、コンピュータ150は、複数の波長の光のそれぞれに対応する光音響画像を生成することができる。具体的には、コンピュータ150は、第1波長の光照射により得られた信号データに対して再構成処理を行うことにより、第1波長に対応する第1光音響画像を生成することができる。また、コンピュータ150は、第2波長の光照射により得られた信号データに対して再構成処理を行うことにより、第2波長に対応する第2光音響画像を生成することができる。このように、コンピュータ150は、複数の波長の光に対応する複数の光音響画像を生成することができる。なお、3波長以上の光を用いて測定を行った場合も同様に、3波長以上の光のそれぞれに対応する3以上の光音響画像を生成することができる。
本実施形態では、コンピュータ150は、複数の波長の光のそれぞれに対応する吸収係数分布情報を光音響画像として取得する。第1波長に対応する吸収係数分布情報を第1光音響画像とし、第2波長に対応する吸収係数分布情報を第2光音響画像とする。
なお、本実施形態では、システムが光音響画像を生成する光音響装置1100を含む例を説明したが、光音響装置1100を含まないシステムにも本発明は適用可能である。光音響画像取得手段としての画像処理装置1300が、光音響画像を取得できる限り、いかなるシステムであっても本発明を適用することができる。例えば、光音響装置1100を含まず、記憶装置1200と画像処理装置1300とを含むシステムであっても本発明を適用することができる。この場合、光音響画像取得手段としての画像処理装置1300は、記憶装置1200に予め記憶された光音響画像群の中から指定された光音響画像を読み出すことにより、光音響画像を取得することができる。
(S800:分光画像を生成する工程)
分光画像取得手段としてのコンピュータ150は、複数の波長に対応する複数の光音響画像に基づいて、分光画像を生成する。コンピュータ150は、分光画像を記憶装置12
00に出力し、記憶装置1200に記憶させる。前述したように、コンピュータ150は、グルコース濃度、コラーゲン濃度、メラニン濃度、脂肪や水の体積分率など、被検体を構成する物質の濃度に相当する情報を示す画像を分光画像として生成してもよい。また、コンピュータ150は、第1波長に対応する第1光音響画像と第2波長に対応する第2光音響画像との比を表す画像を分光画像として生成してもよい。本実施形態では、コンピュータ150が、第1光音響画像と第2光音響画像とを用いて、式(1)にしたがって酸素飽和度画像を分光画像として生成する例を説明する。
なお、分光画像取得手段としての画像処理装置1300は、記憶装置1200に予め記憶された分光画像群の中から指定された分光画像を読み出すことにより、分光画像を取得してもよい。また、光音響画像取得手段としての画像処理装置1300は、記憶装置1200に予め記憶された光音響画像群の中から、読み出した分光画像の生成に用いられた複数の光音響画像の少なくとも一つを読み出すことにより、光音響画像を取得してもよい。
(S900:分光画像を表示する工程)
表示制御手段としての画像処理装置1300は、S200で取得した造影剤に関する情報に基づいて、造影剤に対応する領域とそれ以外の領域とを識別できるように分光画像を表示装置1400に表示させる。なお、レンダリング手法としては、最大値投影法(MIP:Maximum Intensity Projection)、ボリュームレンダリング、及びサーフェイスレンダリングなどのあらゆる方法を採用することができる。ここで、三次元画像を二次元にレンダリングする際の表示領域や視線方向などの設定条件は、観察対象に合わせて任意に指定することができる。
ここでは、S400で797nmと835nmを設定し、S800で式(1)にしたがって分光画像を生成する場合について説明する。図8で示したとおり、これらの2波長を選択した場合、ICGがいかなる濃度であっても、式(1)にしたがって生成される分光画像中の造影剤に対応する画像値は負値となる。
図10に示すように、画像処理装置1300は、分光画像の画像値と表示色との関係を示すカラースケールとしてのカラーバー2400をGUIに表示させる。画像処理装置1300は、造影剤に関する情報(例えば、造影剤の種類がICGであることを示す情報)と、照射光の波長を示す情報とに基づいて、カラースケールに割り当てる画像値の数値範囲を決定してもよい。例えば、画像処理装置1300は、式(1)による動脈の酸素飽和度、静脈の酸素飽和度、および造影剤に対応する負値の画像値を含む数値範囲を決定してもよい。画像処理装置1300は、-100%~100%の数値範囲を決定し、青から赤に変化するカラーグラデーションに-100%~100%を割り当てたカラーバー2400を設定してもよい。このような表示方法により、動静脈の識別に加え、負値の造影剤に対応する領域も識別することができる。また、画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、造影剤に対応する画像値の数値範囲を示すインジケータ2410を表示させてもよい。ここでは、カラーバー2400において、ICGに対応する画像値の数値範囲として負値の領域をインジケータ2410で示している。このように造影剤に対応する表示色を識別できるようにカラースケールを表示することにより、分光画像中の造影剤に対応する領域を容易に識別することができる。
領域決定手段としての画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、分光画像中の造影剤に対応する領域を決定してもよい。例えば、画像処理装置1300は、分光画像のうち、負値の画像値を有する領域を造影剤に対応する領域として決定してもよい。そして、画像処理装置1300は、造影剤に対応する領域とそれ以外の領域とを識別できるように分光画像を表示装置1400に表示させてもよい。画像処理装置1300は、造影剤に対応する領域とそれ以外の領域との表示色を異な
らせる、造影剤に対応する領域を点滅させる、造影剤に対応する領域を示すインジケータ(例えば、枠)を表示させるなどの識別表示を採用することができる。
なお、図10に示すGUIに表示されたICGの表示に対応するアイテム2730を指示することにより、ICGに対応する画像値を選択的に表示させる表示モードに切り替え可能であってもよい。例えば、ユーザーがICGの表示に対応するアイテム2730を選択した場合に、画像処理装置1300が分光画像から画像値が負値のボクセルを選択し、選択されたボクセルを選択的にレンダリングすることにより、ICGの領域を選択的に表示してもよい。同様に、ユーザーが動脈の表示に対応するアイテム2710や静脈の表示に対応するアイテム2720を選択してもよい。ユーザーの指示に基づいて、画像処理装置1300が、動脈に対応する画像値(例えば、90%以上100%以下)や静脈に対応する画像値(例えば、60%以上90%未満)を選択的に表示させる表示モードに切り替えてもよい。動脈に対応する画像値や静脈に対応する画像値の数値範囲については、ユーザーの指示に基づいて変更可能であってもよい。
なお、分光画像の画像値に色相、明度、および彩度の少なくとも一つを割り当て、光音響画像の画像値に色相、明度、および彩度の残りのパラメータを割り当てた画像を分光画像として表示させてもよい。例えば、分光画像の画像値に色相および彩度を割り当て、光音響画像の画像値に明度を割り当てた画像を分光画像として表示させてもよい。このとき、造影剤に対応する光音響画像の画像値が、血管に対応する光音響画像の画像値よりも大きい場合や小さい場合、光音響画像の画像値に明度を割り当てると、血管と造影剤の両方を視認することが困難な場合がある。そこで、分光画像の画像値によって、光音響画像の画像値から明度への変換テーブルを変更してもよい。例えば、分光画像の画像値が造影剤に対応する画像値の数値範囲に含まれる場合、光音響画像の画像値に対応する明度を、血管に対応するそれよりも小さくしてもよい。すなわち、造影剤の領域と血管の領域を比べたときに、光音響画像の画像値が同じであれば、血管の領域よりも造影剤の領域の明度を小さくしてもよい。ここで変換テーブルとは、複数の画像値のそれぞれに対応する明度を示すテーブルである。また、分光画像の画像値が造影剤に対応する画像値の数値範囲に含まれる場合、光音響画像の画像値に対応する明度を、血管に対応するそれよりも大きくしてもよい。すなわち、造影剤の領域と血管の領域を比べたときに、光音響画像の画像値が同じであれば、血管の領域よりも造影剤の領域の明度を大きくしてもよい。また、分光画像の画像値によって、光音響画像の画像値を明度に変換しない光音響画像の画像値の数値範囲が異なっていてもよい。
変換テーブルは、造影剤の種類や濃度、また照射光の波長によって適したものに変更してもよい。そこで、画像処理装置1300は、造影剤に関する情報と、照射光の波長を示す情報とに基づいて、光音響画像の画像値から明度への変換テーブルを決定してもよい。画像処理装置1300は、造影剤に対応する光音響画像の画像値が血管に対応するそれよりも大きくなると推定される場合、造影剤に対応する光音響画像の画像値に対応する明度を血管に対応するそれよりも小さくしてもよい。反対に、画像処理装置1300は、造影剤に対応する光音響画像の画像値が血管に対応するそれよりも小さくなると推定される場合、造影剤に対応する光音響画像の画像値に対応する明度を血管に対応するそれよりも大きくしてもよい。
図10に示すGUIは、波長797nmに対応する吸収係数画像(第1光音響画像)2100、波長835nmに対応する吸収係数画像(第2光音響画像)2200、酸素飽和度画像(分光画像)2300を表示する。それぞれの画像がいずれの波長の光によって生成された画像であるかをGUIに表示してもよい。本実施形態では、光音響画像と分光画像の両方を表示しているが、分光画像だけを表示してもよい。また、画像処理装置1300は、ユーザーの指示に基づいて、光音響画像の表示と分光画像の表示とを切り替えても
よい。
なお、表示部160は動画像を表示可能であってもよい。例えば、画像処理装置1300が、第1光音響画像2100、第2光音響画像2200および分光画像2300の少なくともいずれかを時系列に生成し、生成された時系列の画像に基づいて動画像データを生成して表示部160に出力する構成としてもよい。なお、リンパの流れる回数が比較的少ないことに鑑みて、ユーザーの判断時間を短縮するために、静止画または時間圧縮された動画像として表示することも好ましい。また、動画像表示において、リンパが流れる様子を繰り返し表示することもできる。動画像の速度は、予め規定された所定の速度やユーザーに指定された所定の速度であってもよい。
また、動画像を表示可能な表示部160において、動画像のフレームレートを可変にすることも好ましい。フレームレートを可変にするために、図10のGUIに、ユーザーがフレームレートを手動で入力するためのウィンドウや、フレームレートを変更するためのスライドバーなどを追加してもよい。ここで、リンパ液はリンパ管内を間欠的に流れるため、取得された時系列のボリュームデータの中でも、リンパの流れの確認に利用できるのは一部だけである。そのため、リンパの流れの確認する際に実時間表示を行うと効率が低下する場合がある。そこで、表示部160に表示される動画像のフレームレートを可変にすることで、表示される動画像の早送り表示が可能になり、ユーザーがリンパ管内の流体の様子を短時間で確認できるようになる。
また、表示部160は、所定の時間範囲内の動画像を繰り返し表示可能であってもよい。その際、繰り返し表示を行う範囲をユーザーが指定可能とするためのウィンドウやスライドバーなどのGUIを、図10に追加することも好ましい。これにより、例えばリンパ管内を流体が流れる様子をユーザーが把握しやすくなる。
以上説明したように、画像処理装置1300および情報処理装置としてのコンピュータ150の少なくとも1つは、分光画像取得手段、造影剤情報取得手段、領域決定手段、光音響画像取得手段、および表示制御手段の少なくとも一つを有する装置として機能する。なお、それぞれの手段は、互いに異なるハードウェアで構成されていてもよいし、1つのハードウェアで構成されていてもよい。また、複数の手段が1つのハードウェアで構成されていてもよい。
本実施形態では、造影剤に対応する式(1)による値が負値となる波長を選択することにより、血管と造影剤とを識別できるようにしたが、造影剤に対応する画像値が血管と造影剤とを識別できる限り、造影剤に対応する画像値がいかなる値であってもよい。例えば、造影剤に対応する分光画像(酸素飽和度画像)の画像値が、60%より小さくなるまたは100%より大きくとなる場合などにも、本工程で説明した画像処理を適用することができる。
本実施形態では、造影剤としてICGを用いる場合の例を説明したが、ICG以外のいかなる造影剤に本実施形態に係る画像処理を適用してもよい。また、画像処理装置1300は、複数種類の造影剤のうち、被検体100に導入した造影剤の種類の情報に基づいて、造影剤の種類に応じた画像処理を実行してもよい。
本実施形態では、複数の造影剤に関する情報のうち、取得された造影剤に関する情報に基づいて画像処理方法を決定する場合について説明した。ただし、撮影に使用される造影剤の条件が一意に決定されている場合は、その造影剤の条件に対応した画像処理が予め設定されていてもよい。この場合も、上述した本実施形態に係る画像処理を適用することができる。
本実施形態では、複数の波長に対応する光音響画像に基づいた分光画像に画像処理を適用する例を説明したが、1つの波長に対応する光音響画像に本実施形態に係る画像処理を適用してもよい。すなわち、画像処理装置1300は、造影剤に関する情報に基づいて、光音響画像中の造影剤に対応する領域を決定し、造影剤に対応する領域とその領域以外の領域とを識別できるように、光音響画像を表示させてもよい。また、画像処理装置1300は、予め設定された造影剤に対応する画像値の数値範囲を有する領域と、それ以外の領域とを識別できるように、分光画像または光音響画像を表示させてもよい。
本実施形態では、情報処理装置としてのコンピュータ150が複数の波長の光を照射して分光画像を生成する例を説明したが、1つの波長の光だけを照射して光音響画像を生成する場合に本実施形態に係る波長の決定方法で波長を決定してもよい。すなわち、コンピュータ150は、造影剤に関する情報に基づいて、照射光の波長を決定してもよい。この場合、コンピュータ150は、光音響画像中の造影剤の領域の画像値が、血管の領域の画像値と識別できるような波長を決定することが好ましい。
なお、光照射部110は、光音響画像中の造影剤の領域の画像値と、血管の領域の画像値とを識別できるように予め設定された波長の光を被検体100に照射してもよい。また、光照射部110は、分光画像中の造影剤の領域の画像値と、血管の領域の画像値とを識別できるように予め設定された複数波長の光を被検体100に照射してもよい。
(LVAの効果判定)
次に、本実施形態のシステムで得られた画像を用いて、LVAの効果判定を行う方法を説明する。ここでは、LVAの術前と術後にそれぞれ同じ被検体に対する光音響測定が実施され、図5で説明した処理によって術前の画像(第1画像とよぶ)と術後の画像(第2画像とよぶ)が生成されているものとする。なお、第1画像および第2画像は、付帯情報または当該被検体のカルテ情報に紐づけて記憶装置1200に保存されているとよい。付帯情報またはカルテ情報は、例えば、被検体の情報、光音響測定の情報(造影剤の種類および濃度、測定光の波長、測定日時など)、LVAの情報(手術日時、患部、吻合部位の位置など)を含んでいるとよい。第1画像と第2画像のそれぞれは、各波長の光音響画像と分光画像の少なくともいずれか、または両方を含んでいるとよい。光音響画像と分光画像は別々の画像データ(ファイル)でもよいし、光音響画像の画像値をもつチャネルと分光画像の画像値(例えば、式(1)で計算された値)をもつチャネルを含む1つの画像データでもよい。
図14は、画像処理装置1300によって実行される効果判定処理のフローチャートの一例である。
(S140:画像取得工程)
画像取得手段としての画像処理装置1300は、LVAの術前に被検体から得られた第1画像のデータと、LVAの術後に同じ被検体から得られた第2画像データとを、記憶装置1200から取得する。例えば、ユーザーが、入力装置1500を用いて、効果判定の対象とする被検体あるいは手術を指示すると、画像処理装置1300が記憶装置1200に記憶された画像群の付帯情報またはカルテ情報を参照し、対応する第1画像と第2画像のデータを読み込むとよい。例えば、画像処理装置1300は、カルテ情報を参照してLVAを行った日時を読み出し、画像群の付帯情報を参照してLVAを行った日時の前後に撮影された画像を第1画像と第2画像として読み込む。
(S141:前処理工程)
前処理手段としての画像処理装置1300は、第1画像と第2画像の条件をそろえるための前処理を行う。第1画像と第2画像はまったく異なるタイミング(術前と術後)に撮
影された画像であるため、第1画像と第2画像の測定条件は完全には一致しない。例えば、被検体の姿勢の違いなどに起因し、第1画像と第2の画像の測定視野(測定範囲)にずれが生じる。また、測定時の環境、被検体の状態、造影剤の状態などによって、第1画像と第2画像の間で輝度レベル等に差が生じる可能性もある。したがって、第1画像と第2画像の画像特徴を比較するに際しては、測定条件の違いに起因する画像情報の差を出来る限り除去することが、比較結果の信頼性向上の点から望ましい。S141の前処理はそのような目的で、後段の特徴量算出処理に先立ち行われる。なお、前処理は、第1画像と第2画像の両方にかけてもよいし、一方の画像のみにかけてもよい。前処理は特徴量を算出する上で必須の処理ではないため、実行されなくてもよい。
画像処理装置1300は、前処理として、第1画像と第2の画像の位置合わせを行う処理を行うとよい。2つの画像の位置合わせは、例えば、各画像に共通に表れている構造物の形状等の類似性に基づいて行うことができる。この場合に、画像処理装置1300は、各画像における血管像に基づいて第1画像と第2画像の位置合わせを行うことが好ましい。なぜなら、LVAの術前と術後でリンパ管に生じる形状や本数の変化は、静脈に生じる変化よりも大きいからである。さらに好ましくは、血管像のなかでも、静脈像に基づいて2つの画像の位置合わせを行うとよい。動脈はポンピングの影響などにより形状が変化し得るのに対し、静脈の形状変化はきわめて小さいからである。
光音響画像においては、血管とリンパ管の画像値(輝度)がそれ以外の組織の画像値に比べて有意に大きい。したがって、光音響画像の画像値が所定の閾値より大きい領域(画素群)を抽出することによって、第1画像や第2画像における前景(血管像およびリンパ管像)と背景(それ以外の組織)とを分離することができる。また、分光画像においては、静脈と動脈とリンパ管の間で画像値(式(1)で計算された値)の数値範囲が異なる。したがって、分光画像の画像値を参照することにより、第1画像や第2画像における前景領域をさらに静脈像と動脈像とリンパ管像に分離することができる。例えば前述の例であれば、画像処理装置1300は、分光画像における画像値が60%以上90%未満の領域(画素群)を静脈像、画像値が90%以上100%以下の領域(画素群)を動脈像、それ以外の領域をリンパ管像もしくは吻合位置の下流側の静脈像として抽出してもよい。
画像処理装置1300は、前処理として、第1画像と第2画像のそれぞれから、後段の特徴量算出に用いる像を選択的に分離(抽出)処理を行うとよい。例えば、リンパ管像に関する特徴量を算出したい場合であれば、第1画像と第2画像のそれぞれからリンパ管像の領域を選択的に分離すればよい。あるいは、血管像に関する特徴量を算出した場合であれば、第1画像と第2画像のそれぞれから静脈像もしくは動脈像またはその両方を分離すればよい。各像の分離は、上述のとおり、光音響画像の画像値(輝度)と分光画像の画像値(式(1)で計算された値)に基づいて行うことができる。
図15に、前処理の一例を模式的に示す。第1画像と第2画像は同じ被検体の同じ部位を撮影したものであるが、2つの画像の視野範囲はややずれており、リンパ管像にも違いがあることがわかる。そこで、各画像に含まれている静脈像に基づき2つの画像の位置合わせが行われる。この例では、第1画像と第2画像の対応する位置に比較領域(特徴量の算出および比較の対象となる領域)が設定されている。なお、画像処理装置1300は、第1画像と第2画像のいずれか又は両方を平行移動・回転・変形することにより、2つの画像の画像座標系そのものを一致させてもよい。次に、画像処理装置1300は、各画像(の比較領域)から、特徴量算出に用いる像を選択的に分離する。図15は、各画像の比較領域内からリンパ管像を選択的に分離した例を示している。このような前処理を施すことにより、2つの画像の間の画像特徴の比較を精度良く行うことができる。
(S142:特徴量算出工程)
特徴量算出手段としての画像処理装置1300は、第1画像および第2画像をそれぞれ解析することにより、各画像の特徴量を算出する。特徴量の算出には、S141の前処理で得られた画像を用いるとよい。特徴量としては、LVAの術前と術後で変化し得る画像特徴に関連するものであれば、どのような指標を用いてもよい。例えば、画像処理装置1300は、第1画像および第2画像をそれぞれ解析することにより、第1画像および第2画像に含まれる血管像およびリンパ管像の少なくとも一つから特徴量を算出する。
本発明者らの被験者実験において、LVAの術前と術後で、リンパ管像に有意な変化があるという所見が得られた。具体的には、術後に、リンパ管の本数やリンパ管の形状の複雑さの増加がみられた。したがって、リンパ管像から算出される特徴量を用いることで、LVAによる効果を評価することができると期待できる。リンパ管の本数の増加を評価するための特徴量(指標)としては、例えば、リンパ管の密度や、リンパ管の蛇行率などを用いることができる。リンパ管の密度としては、単位面積あたりのリンパ管の本数をカウントしてもよいし、画像中のリンパ管像の面積の割合を計算してもよい。リンパ管の蛇行率は、例えば、リンパ管上の2点間の直線距離と管路長(リンパ管に沿った長さ)の比から計算すればよい。
また本発明者らの被験者実験において術前の画像に比べて術後の画像の方が血管像がシャープに見えるという所見が得られた。したがって、血管像から算出される特徴量を用いても、LVAによる効果を評価することができると期待できる。血管像のシャープさを評価するための特徴量(指標)としては、例えば、血管像のコントラスト、空間微分値(エッジ強度)、空間周波数などを用いることができる。
(S143:評価工程)
評価手段としての画像処理装置1300は、第1画像から得られた特徴量と第2画像から得られた特徴量に基づいて、LVAが被検体に与えた変化を示す評価情報を生成する。例えば、画像処理装置1300は、第2画像(術後の画像)の特徴量と第1画像(術前の画像)の特徴量の差又は比を評価情報として求めてもよい。また、画像処理装置1300は、2つの特徴量の差又は比が所定の条件を満足するか否か(例えば、所定の閾値を超えるか否か、あるいは、所定の数値範囲内か外か)を判定することで、LVAの効果の程度(効果あり/なし、効果大/中/小など)を評価情報として求めてもよい。
(S144:情報出力工程)
情報出力手段としての画像処理装置1300は、S143で得られた評価情報を出力する。画像処理装置1300は、S143で得られた評価情報を表示装置に出力することにより、評価情報を表示装置に表示させてもよい。よって、画像処理装置1300は、評価情報の表示を制御する表示制御手段ともいえる。
また、画像処理装置1300は、S143で得られた評価情報を記憶装置1200に出力することにより、評価情報を記憶装置1200に記憶させてもよい。また、画像処理装置1300は、第1画像および第2画像の少なくとも一つと、評価情報とを関連づけて記憶装置1200に記憶させてもよい。例えば、画像処理装置1300は、評価情報を第1画像および第2画像の少なくとも一つの付帯情報とすることにより関連づけて記憶させてもよい。第1画像および第2画像の少なくとも一つがDICOMに準拠した画像である場合、画像処理装置1300は、評価情報をDICOMタグに書き込むことにより関連付けて記憶させてもよい。以上より、画像処理装置1300は、評価情報の記憶を制御する記憶制御手段ともいえる。なお、画像処理装置1300が評価情報を記憶させる手段は、記憶装置1200に限らず、いかなる記憶手段であってもよい。
図16は、表示装置に出力される評価情報出力画面の一例である。図16の例では、効果判定に用いた第1画像(術前の画像)と第2画像(術後の画像)と共に評価情報が表示されている。このような画面を見ることで、ユーザーはLVAの効果を直接的かつ定量的
に評価することが可能となる。
なお、本実施形態では、術前と術後の画像特徴を比較することによりLVAの効果判定を行ったが、他の方法によりLVAの効果判定を行ってもよい。例えば、LVAによりリンパ管が静脈に吻合されると静脈にリンパ液が流入するため、吻合位置の上流側の静脈像(造影剤を含むリンパ液が混合されていない血液の像)と下流側の静脈像(血液と造影剤を含むリンパ液が混合した像)の間で画像特徴が変化する。したがって、画像処理装置1300は、分光画像から、吻合位置の上流側の静脈像の画像値(式(1)で計算された値)と吻合位置の下流側の静脈像の画像値を取得し、2つの画像値の差又は比に基づいてLVAの効果判定を行ってもよい。また、吻合位置の上流側の静脈像、下流側の静脈像、吻合位置のリンパ管領域の分光画像の画像値を用いて、その差や比、さらには算出される混合比に基づいてLVAの効果判定を行ってもよい。また、分光画像の画像値でなく、光音響画像の画像値を用いて、その差または比に基づいてLVAの効果判定を行ってもよい。
なお、吻合位置は、ユーザーが画像上で指定してもよいし、画像処理装置1300が画像の付帯情報又はカルテ情報から吻合位置の情報を取得してもよい。また、画像処理装置1300が第2画像(術後の画像)の中の血管像およびリンパ管像から算出された特徴量と、第1画像(術前の画像)の中の血管像およびリンパ管像から算出された特徴量とに基づいて吻合位置を同定してもよい。例えば、画像処理装置1300が第2画像の中の血管像およびリンパ管像から算出された特徴量と、第1画像の中の血管像およびリンパ管像から算出された特徴量との差または比に基づいて吻合位置を同定する。
また、記憶制御手段としての画像処理装置1300が、評価情報と、第2画像中のLVAの吻合位置の情報とを関連づけて記憶装置に1200記憶させてもよい。例えば、吻合位置取得手段としての画像処理装置1300が、ユーザーの指示または画像解析に基づいて、LVAの吻合位置の情報を取得する。そして、第2画像(術後の画像)がDICOMに準拠した画像である場合、画像処理装置1300は、評価情報とLVAの吻合位置の情報とを第2画像のDICOMタグに書き込むことにより関連付けて記憶させてもよい。
(その他の実施例)
また、本発明は、以下の処理を実行することによっても実現される。即ち、上述した実施形態の機能を実現するソフトウェア(プログラム)を、ネットワーク又は各種記憶媒体を介してシステム或いは装置に供給し、そのシステム或いは装置のコンピュータ(またはCPUやMPU等)がプログラムを読み出して実行する処理である。
1100 光音響装置
1200 記憶装置
1300 画像処理装置
1400 表示装置
1500 入力装置

Claims (3)

  1. リンパ管静脈吻合術の前に被検体への光照射により発生した光音響波に基づいて生成された第1画像、および、リンパ管静脈吻合術の後に前記被検体への光照射により発生した光音響波に基づいて生成された第2画像を取得する画像取得手段と、
    前記第1画像および前記第2画像をそれぞれ解析することにより、前記第1画像の特徴量および前記第2画像の特徴量を算出する特徴量算出手段と、
    前記第1画像の特徴量および前記第2画像の特徴量に基づいて、リンパ管静脈吻合術が前記被検体に与えた変化を示す評価情報を生成する評価手段と、
    を有することを特徴とする画像処理装置。
  2. リンパ管静脈吻合術の前に被検体への光照射により発生した光音響波に基づいて生成された第1画像、および、リンパ管静脈吻合術の後に前記被検体への光照射により発生した光音響波に基づいて生成された第2画像を取得し、
    前記第1画像および前記第2画像をそれぞれ解析することにより、前記第1画像の特徴量および前記第2画像の特徴量を算出し、
    前記第1画像の特徴量および前記第2画像の特徴量に基づいて、リンパ管静脈吻合術が前記被検体に与えた変化を示す評価情報を生成する
    ことを特徴とする画像処理方法。
  3. 請求項に記載の画像処理方法をコンピュータに実行させるためのプログラム。
JP2018157798A 2018-08-24 2018-08-24 画像処理装置、画像処理方法、プログラム Active JP7142832B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018157798A JP7142832B2 (ja) 2018-08-24 2018-08-24 画像処理装置、画像処理方法、プログラム
PCT/JP2019/032564 WO2020040174A1 (ja) 2018-08-24 2019-08-21 画像処理装置、画像処理方法、プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018157798A JP7142832B2 (ja) 2018-08-24 2018-08-24 画像処理装置、画像処理方法、プログラム

Publications (3)

Publication Number Publication Date
JP2020028671A JP2020028671A (ja) 2020-02-27
JP2020028671A5 JP2020028671A5 (ja) 2021-10-28
JP7142832B2 true JP7142832B2 (ja) 2022-09-28

Family

ID=69593262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018157798A Active JP7142832B2 (ja) 2018-08-24 2018-08-24 画像処理装置、画像処理方法、プログラム

Country Status (2)

Country Link
JP (1) JP7142832B2 (ja)
WO (1) WO2020040174A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527324A (ja) 2009-05-19 2012-11-08 エンドラ,インコーポレイテッド 組織を分析するための熱音響システム
JP2013224289A (ja) 2011-10-15 2013-10-31 Canon Inc 粒子及び前記粒子を有する光音響イメージング用造影剤、センチネルリンパ節用造影剤
JP2014031363A (ja) 2012-07-10 2014-02-20 Canon Inc 粒子及び前記粒子を有する光音響用造影剤

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016005547A (ja) * 2014-05-27 2016-01-14 公立大学法人横浜市立大学 リンパ管位置検出用ワイヤ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527324A (ja) 2009-05-19 2012-11-08 エンドラ,インコーポレイテッド 組織を分析するための熱音響システム
JP2013224289A (ja) 2011-10-15 2013-10-31 Canon Inc 粒子及び前記粒子を有する光音響イメージング用造影剤、センチネルリンパ節用造影剤
JP2014031363A (ja) 2012-07-10 2014-02-20 Canon Inc 粒子及び前記粒子を有する光音響用造影剤

Also Published As

Publication number Publication date
JP2020028671A (ja) 2020-02-27
WO2020040174A1 (ja) 2020-02-27

Similar Documents

Publication Publication Date Title
JP6576424B2 (ja) 表示制御装置、画像表示方法、及びプログラム
US20210169397A1 (en) Image processing apparatus, image processing method, and non-transitory computer-readable medium
JP2023123874A (ja) 光音響イメージングシステム、光音響イメージングシステムの制御方法、および、プログラム
JP2019024733A (ja) 画像処理装置、画像処理方法、プログラム
JP7108985B2 (ja) 画像処理装置、画像処理方法、プログラム
JP6882108B2 (ja) 画像生成装置、画像生成方法、及びプログラム
JP7205821B2 (ja) システム
JP2018187394A (ja) 表示制御装置、画像表示方法、及びプログラム
JP7142832B2 (ja) 画像処理装置、画像処理方法、プログラム
JP7144805B2 (ja) 画像処理装置、画像処理方法、プログラム
JP7125709B2 (ja) 画像処理装置、画像処理方法およびプログラム
JP7013215B2 (ja) 情報処理装置、情報処理方法、プログラム
JP7226728B2 (ja) 画像処理装置、画像処理方法、プログラム
JP7187336B2 (ja) 情報処理装置、情報処理方法、およびプログラム
WO2018230409A1 (ja) 情報処理装置、情報処理方法、及びプログラム
WO2020039640A1 (ja) 情報処理装置、システム、情報処理方法、プログラム
JP7277212B2 (ja) 画像処理装置、画像処理方法及びプログラム
JP2020028668A (ja) 画像処理装置、画像処理方法、プログラム
JP2020028670A (ja) 画像処理装置、システム、画像処理方法、プログラム
JP6929048B2 (ja) 表示制御装置、表示方法、及びプログラム
JP2020162746A (ja) 画像処理装置、画像処理方法及びプログラム

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20181102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20181102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20210812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220901

R150 Certificate of patent or registration of utility model

Ref document number: 7142832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150