JP7309646B2 - bus duct - Google Patents

bus duct Download PDF

Info

Publication number
JP7309646B2
JP7309646B2 JP2020052548A JP2020052548A JP7309646B2 JP 7309646 B2 JP7309646 B2 JP 7309646B2 JP 2020052548 A JP2020052548 A JP 2020052548A JP 2020052548 A JP2020052548 A JP 2020052548A JP 7309646 B2 JP7309646 B2 JP 7309646B2
Authority
JP
Japan
Prior art keywords
housing
bus duct
magnetic
conductors
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020052548A
Other languages
Japanese (ja)
Other versions
JP2021153354A (en
Inventor
研吾 後藤
隆 佐藤
深大 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Equipment Systems Co Ltd
Original Assignee
Hitachi Industrial Equipment Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Equipment Systems Co Ltd filed Critical Hitachi Industrial Equipment Systems Co Ltd
Priority to JP2020052548A priority Critical patent/JP7309646B2/en
Priority to PCT/JP2020/033135 priority patent/WO2021192353A1/en
Publication of JP2021153354A publication Critical patent/JP2021153354A/en
Application granted granted Critical
Publication of JP7309646B2 publication Critical patent/JP7309646B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/20Bus-bar or other wiring layouts, e.g. in cubicles, in switchyards
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G5/00Installations of bus-bars
    • H02G5/06Totally-enclosed installations, e.g. in metal casings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Installation Of Bus-Bars (AREA)
  • Patch Boards (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

本発明は、バスダクトに関するものである。 The present invention relates to bus ducts.

スイッチギヤは遮断器と電力系統、負荷とを電気的に接続している。この接続に放熱性能が高いバスバーが用いられるが、バスバーの電流により周囲の電子機器などに電磁波が流入するのを防止することや、感電防止のためにバスバーの周囲には金属製の筐体が配置される。 The switchgear electrically connects the circuit breaker, the power system, and the load. A busbar with high heat dissipation performance is used for this connection, but a metal housing is used around the busbar to prevent electromagnetic waves from flowing into surrounding electronic devices due to the current of the busbar and to prevent electric shock. placed.

金属製の筐体は、通常コストの低い鋼材が採用されるが、鋼材は磁性体であるため、バスバーに流れる電流により周囲に配置される筐体に鉄損が発生し、筐体の温度が上昇する。筐体の温度が上昇すると、筐体に触れた人がやけどをするリスクや、導体温度の上昇を招き、導体の抵抗の増加など特性が悪化する可能性がある。これらを改善するため技術として、例えば特許文献1がある。 Metal chassis are usually made of low-cost steel, but since steel is a magnetic material, the current that flows through the busbars causes iron loss in the surrounding chassis, which increases the temperature of the chassis. Rise. If the temperature of the housing rises, there is a risk that a person who touches the housing will be burned, and the temperature of the conductor will rise, which can lead to deterioration in characteristics such as an increase in the resistance of the conductor. As a technique for improving these, there is Patent Document 1, for example.

特許文献1では、導体の周囲に鋼板の箱状体を形成し、その一部を非磁性体である合成樹脂板とすることで、鉄損を抑制し、筐体の温度上昇を抑制している。 In Patent Document 1, a box-shaped steel plate is formed around a conductor, and a part of the box is made of a synthetic resin plate that is a non-magnetic material, thereby suppressing iron loss and suppressing the temperature rise of the housing. there is

特開平11-289611Japanese Patent Laid-Open No. 11-289611

特許文献1では、筐体をヤング率の低い合成樹脂板で形成しているため、バスダクトに短絡電流を流した際に、短絡電流と筐体に流れる渦電流との間で大きな電磁反発力が発生した際、筐体が機械的に保持できない可能性があった。 In Patent Document 1, since the housing is made of a synthetic resin plate with a low Young's modulus, when a short-circuit current flows through the bus duct, a large electromagnetic repulsion occurs between the short-circuit current and the eddy current flowing in the housing. When it occurred, there was a possibility that the housing could not be held mechanically.

さらに、一般的に合成樹脂は金属と比較して熱伝導率が低く、放熱性が悪化するために温度が上昇する可能性があった。 Furthermore, synthetic resins generally have lower thermal conductivity than metals, and there is a possibility that the temperature will rise due to poor heat dissipation.

本発明の目的は、筐体の鉄損を増大させることなく放熱性能を向上し、筐体の機械強度を保持できるバスダクトを提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a bus duct capable of improving the heat radiation performance without increasing the iron loss of the housing and maintaining the mechanical strength of the housing.

本発明の好ましい一例としては、筐体と、前記筐体内に配置された導体とを有し、前記
筐体は、ステンレス鋼鉄材を含み、前記ステンレス鋼と前記鉄材の間には金属の異種金属間腐食防止部を有するバスダクトである。
A preferred example of the present invention includes a housing and a conductor arranged in the housing, the housing containing stainless steel and an iron material , and a different kind of metal between the stainless steel and the iron material. A bus duct having an intermetallic corrosion prevention part.

本発明によれば、筐体の鉄損を増大させることなく放熱性能を向上し、筐体の機械強度を保持することが可能になる。 According to the present invention, it is possible to improve the heat radiation performance without increasing the iron loss of the housing and maintain the mechanical strength of the housing.

実施例1におけるバスダクトを示す図である。4 is a diagram showing a bus duct in Example 1. FIG. 実施例1におけるバスダクトの筐体を示す図である。4 is a diagram showing a housing of the bus duct in Example 1. FIG. 磁性体金属筐体と導体周囲の磁束の流れを示す図である。FIG. 4 is a diagram showing the flow of magnetic flux around a magnetic metal housing and a conductor; 非磁性金属と磁性体金属を組み合わせた筐体と導体周囲の磁束の流れを示す図である。FIG. 4 is a diagram showing the flow of magnetic flux around a housing and conductors made of a combination of non-magnetic metal and magnetic metal. 筐体の固定具の構成を示す図である。It is a figure which shows the structure of the fixture of a housing|casing. 筐体の磁性体や非磁性体の寸法を示す図である。It is a figure which shows the dimension of the magnetic material of a housing|casing, and a non-magnetic material. 実施例1におけるバスダクトと重力方向の関係を示す図である。4 is a diagram showing the relationship between the bus duct and the direction of gravity in Embodiment 1. FIG. 実施例2における突起を有する筐体を持つバスダクト構造を示す図である。FIG. 10 is a diagram showing a bus duct structure having a housing with protrusions in Example 2; 実施例2における黒色塗装された非磁性体を有するバスダクト構造を示す図である。FIG. 10 is a diagram showing a bus duct structure having a black-painted non-magnetic material in Example 2; 実施例3における複数の導体と筐体の位置関係を示す図である。FIG. 10 is a diagram showing the positional relationship between a plurality of conductors and a housing in Example 3; 実施例3の変形例で三角形状に並べた複数の導体と筐体の位置関係を示す図である。FIG. 11 is a diagram showing the positional relationship between a plurality of conductors arranged in a triangular shape and a housing in a modified example of the third embodiment; 実施例3の変形例で斜めに並べた複数の導体と筐体の位置関係を示す図である。FIG. 11 is a diagram showing the positional relationship between a plurality of obliquely arranged conductors and a housing in a modified example of the third embodiment; 実施例4におけるバスダクトを示す図である。FIG. 10 is a diagram showing a bus duct in Example 4;

以下に、本発明の実施例について図面を用いて説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図1に示す実施例1は、筐体2と、筐体2内に配置された導体100で構成されるバスダクト1を示している。バスダクトは、例えばビルや工場などの電力需要に対応できる電力幹線システムである。図2は筐体2を示す図である。筐体2は磁性体102の面と非磁性体103の面、異種金属間腐食防止部104を有する。導体100には導体電流199が流れる。 Embodiment 1 shown in FIG. 1 shows a bus duct 1 composed of a housing 2 and conductors 100 arranged in the housing 2 . A bus duct is a power trunk line system that can meet the power demand of, for example, a building or a factory. FIG. 2 is a diagram showing the housing 2. As shown in FIG. The housing 2 has a magnetic material 102 surface, a non-magnetic material 103 surface, and a dissimilar metal corrosion prevention portion 104 . Conductor current 199 flows through conductor 100 .

導体電流は交流であるため、電流方向は図に示すように紙面に対して垂直となる双方向に流れる。例えば、磁性体102は低コストの筐体材料である鋼材で、非磁性体103は非磁性ステンレス鋼、異種金属間腐食防止部104は絶縁体などで構成される。図3と比較して実施例1によれば筐体の損失を抑制できることを説明する。 Since the conductor current is alternating current, the current flows in both directions perpendicular to the plane of the paper as shown in the figure. For example, the magnetic body 102 is made of steel, which is a low-cost housing material, the non-magnetic body 103 is made of non-magnetic stainless steel, and the intermetallic corrosion prevention section 104 is made of an insulator or the like. It will be explained that the loss of the housing can be suppressed according to the first embodiment in comparison with FIG.

図3は、導体100と金属の磁性体102でのみ構成される筐体のバスダクトを示しており、本実施例と比較するための比較例を示す図である。各導体に同位相の電流199を流した際、導体付近に磁束が発生する。この磁束は、導体周囲に空気を介した磁束201や筐体内のみを通る磁束200に分かれる。 FIG. 3 shows a bus duct of a housing composed only of a conductor 100 and a metal magnetic body 102, and is a diagram showing a comparative example for comparison with the present embodiment. When a current 199 of the same phase is passed through each conductor, a magnetic flux is generated near the conductors. This magnetic flux is divided into a magnetic flux 201 passing through the air around the conductor and a magnetic flux 200 passing only inside the housing.

磁気抵抗の大きい空気を介する磁束201と比較して、鋼材で構成された筐体内のみを通る磁束200は大きい。これらの磁束が大きくなると筐体の鉄損が増加し、温度上昇が高くなる。式(1)に示すように、電流が高周波になると周波数の二乗で計算される渦電流損が増大し、鉄損Wがより大きくなる。 The magnetic flux 200 passing only through the housing made of steel is large compared to the magnetic flux 201 passing through the air, which has a large magnetic resistance. As these magnetic fluxes increase, the core loss of the housing increases, resulting in a higher temperature rise. As shown in formula (1), when the current becomes high frequency, the eddy current loss calculated by the square of the frequency increases, and the iron loss W becomes larger.

Figure 0007309646000001
Figure 0007309646000001

図4は、鉄損を低減するために、筐体内のみを通る磁束200を低減した構成例を示し、本実施例と比較するための比較例を示す図である。筐体は磁性体102と非磁性体103で構成される。非磁性体103の磁気抵抗は磁性体102よりも非常に高いため、磁性体102でのみ構成される場合と比較して筐体に流入する磁束が小さくなり、鉄損を低減することができる。 FIG. 4 shows a configuration example in which magnetic flux 200 passing only through the housing is reduced in order to reduce iron loss, and shows a comparative example for comparison with the present embodiment. The housing is composed of a magnetic material 102 and a non-magnetic material 103 . Since the magnetic resistance of the non-magnetic material 103 is much higher than that of the magnetic material 102, the magnetic flux flowing into the housing becomes smaller than when the case is composed only of the magnetic material 102, and iron loss can be reduced.

しかしながら、磁性体102と非磁性体103が異なる金属である場合、接触面に水蒸気など水分が含まれると異種金属間腐食が発生し、筐体の機械強度の劣化が発生する。そこで、図1に示すように、磁性体102と非磁性体103の間に絶縁材からなる異種金属間腐食防止部104を構成することで、異種金属間腐食を防止することができる。 However, if the magnetic material 102 and the non-magnetic material 103 are made of different metals, corrosion between dissimilar metals occurs when moisture such as water vapor is contained in the contact surfaces, resulting in deterioration of the mechanical strength of the housing. Therefore, as shown in FIG. 1, by forming a dissimilar metal corrosion prevention portion 104 made of an insulating material between the magnetic material 102 and the non-magnetic material 103, it is possible to prevent dissimilar metal corrosion.

次に、筐体の電磁反発力について説明する。導体に電流が流れた際、筐体に磁束が流入するが、その磁束を打ち消すように筐体には渦電流が発生する。その渦電流と導体電流により、筐体と導体には電磁反発力が発生する。 Next, the electromagnetic repulsive force of the housing will be described. When current flows through the conductor, magnetic flux flows into the housing, but eddy currents are generated in the housing to negate the magnetic flux. The eddy current and conductor current generate an electromagnetic repulsive force between the housing and the conductor.

例えば、導体電流が短絡電流のような非常に大きな電流が流れる場合、電磁反発力はより大きくなる。筐体に大きな電磁反発力が発生すると筐体に歪みが生じる。そこで、筐体に大きな電磁反発力が生じても機械的強度を保持することができるヤング率の高い材料を非磁性体103として用いることで、高い機械的強度を持つ筐体とすることができる。 For example, when a very large current such as a short circuit current flows through the conductor, the electromagnetic repulsion becomes larger. When a large electromagnetic repulsive force is generated in the housing, the housing is distorted. Therefore, by using a material with a high Young's modulus as the nonmagnetic material 103, which can maintain mechanical strength even when a large electromagnetic repulsive force is generated in the housing, the housing can have high mechanical strength. .

本実施例1では、磁性体102と非磁性体103の間に絶縁材を設けることを記載したが、磁性体102と非磁性体103のイオン化傾向の中間にある材料を異種金属間腐食防止部104に用いてもよい。その場合でも、異種金属間の腐食を防止することができる。 In the first embodiment, an insulating material is provided between the magnetic material 102 and the non-magnetic material 103. However, a material having an ionization tendency intermediate between that of the magnetic material 102 and the non-magnetic material 103 is used as the anti-corrosion part between dissimilar metals. 104 may be used. Even in that case, corrosion between dissimilar metals can be prevented.

例えば、磁性体102が鉄材である金属で構成され、非磁性体103がステンレス鋼であるSUS304などの金属で構成される場合に、異種金属間腐食防止部104をニッケルなどの材料とする。異種金属間腐食防止部104を金属とすることで、筐体をすべて導電性とすることでノイズの放射量を低減することができる。ただし、導体電流が商用周波数のような低い周波数であれば、他の機器に与える影響は小さいため、非磁性体は金属と同程度のヤング率を持つ材料であれば金属でなくてもよい。 For example, when the magnetic body 102 is made of a metal such as iron and the non-magnetic body 103 is made of a metal such as SUS304 which is stainless steel, the intermetallic corrosion prevention section 104 is made of a material such as nickel. By making the dissimilar metal corrosion prevention part 104 metal, the amount of noise radiation can be reduced by making the entire housing conductive. However, if the conductor current has a low frequency such as a commercial frequency, the effect on other devices is small, so the non-magnetic material need not be a metal as long as it has a Young's modulus similar to that of metal.

尚、図5に示すように、本実施例では、磁性体102と非磁性体103と異種金属間腐食防止部104との間を固定するため、ねじなどの固定具301が利用される。固定具301が磁性体の場合、固定具301を介して、磁性体金属と非磁性体金属の接触ができるため、磁性体の固定具301に異種金属間腐食防止用のメッキ等が施してある。そのような構成にすることで磁性体金属と非磁性体金属の接触を避け、異種金属間腐食を防ぐことができる。 As shown in FIG. 5, in this embodiment, fasteners 301 such as screws are used to fix the magnetic substance 102, the non-magnetic substance 103 and the intermetallic corrosion prevention portion 104 together. If the fixture 301 is a magnetic material, the magnetic metal and the non-magnetic metal can be brought into contact with each other through the fixture 301. Therefore, the magnetic fixture 301 is plated to prevent corrosion between dissimilar metals. . By adopting such a configuration, it is possible to avoid contact between the magnetic metal and the non-magnetic metal, and prevent corrosion between dissimilar metals.

さらに、本実施例では3本の導体100を用いて説明したが、導体の導体電流199の位相は同相であっても、三相であっても同様の効果が得られ、相数には依存しない。また、三本の導体で説明をしたが、少なくとも一本の導体があれば同様の効果が得られる。 Furthermore, in this embodiment, three conductors 100 are used for explanation, but the same effect can be obtained whether the phases of the conductor currents 199 of the conductors are the same phase or three phases, and it depends on the number of phases. do not. Also, although three conductors have been described, the same effect can be obtained with at least one conductor.

ここで、筐体は一部の非磁性体と記載したが、図6を用いて、非磁性体103の幅(磁路長)501と磁気抵抗の関係について説明する。筐体の磁気抵抗は式(2)に示すように導体材料の透磁率、磁路断面積、磁路長で計算される。 Here, although the housing is described as a part of the non-magnetic material, the relationship between the width (magnetic path length) 501 of the non-magnetic material 103 and the magnetic resistance will be described with reference to FIG. The magnetic resistance of the housing is calculated from the magnetic permeability of the conductor material, the cross-sectional area of the magnetic path, and the length of the magnetic path, as shown in Equation (2).

Figure 0007309646000002
Figure 0007309646000002

本実施例に示す筐体の磁気抵抗は、磁性体102の長さ(磁路長)503、504、505で決まる磁性体の磁路長合計506と、非磁性体103の幅501と異種金属間腐食防止部104の幅(磁路長)502を用いて式(3)で計算される。 The magnetic resistance of the housing shown in this embodiment is determined by the lengths (magnetic path lengths) 503, 504, and 505 of the magnetic material 102, the total magnetic path length 506 of the magnetic material, the width 501 of the non-magnetic material 103, and the dissimilar metal. Using the width (magnetic path length) 502 of the anti-corrosion portion 104, it is calculated by Equation (3).

Figure 0007309646000003
Figure 0007309646000003

一般に、非磁性体金属の透磁率μ2は異種金属間腐食部μ3とほぼ同等であり、磁性体金属の透磁率μ1の1/5000程度の大きさである。そのため、式(3)は式(4)のように表すことができ、筐体がすべて磁性体金属で構成される場合の磁気抵抗よりも高い磁気抵抗を持つことが分かる。 In general, the magnetic permeability μ2 of a non-magnetic metal is approximately the same as the corrosion portion μ3 between dissimilar metals, and is about 1/5000 of the magnetic permeability μ1 of a magnetic metal. Therefore, Equation (3) can be expressed as Equation (4), and it can be seen that the magnetoresistance is higher than that in the case where the housing is entirely made of magnetic metal.

Figure 0007309646000004
Figure 0007309646000004

なお、図6に示す磁束の経路を用いて非磁性体幅501と磁気抵抗の関係を示したが、磁束の経路は図6に示すように筐体の中央部を通らなくてもよい。さらに、磁性体長さ506が非磁性体幅501よりも長い構成で説明したが、非磁性体幅501が磁性体長さ506より長い場合には、より鉄損を低減することができる。 Although the magnetic flux path shown in FIG. 6 is used to show the relationship between the non-magnetic material width 501 and the magnetic resistance, the magnetic flux path does not have to pass through the central portion of the housing as shown in FIG. Furthermore, although the configuration in which the magnetic body length 506 is longer than the non-magnetic body width 501 has been described, iron loss can be further reduced if the non-magnetic body width 501 is longer than the magnetic body length 506 .

ただし、一般的に磁性体である鋼材などに対し、非磁性体であるステンレス鋼などは値段が高く、筐体コストを向上する可能性があるため、鉄損の大きさに応じ、非磁性体幅を決定するのがよい。例えば、非磁性体幅501と異種金属間腐食防止部104の幅502の合計値が磁性体の合計磁路長506の1/5000の場合、磁気抵抗は式(5)のように表すことができる。この場合には筐体をすべて磁性体とした場合の磁気抵抗の2倍の磁気抵抗となり、磁束を1/2に低減し、式(1)から渦電流損は1/4に低減することができる。 However, stainless steel, which is a non-magnetic material, is generally more expensive than steel, which is a magnetic material, and may increase the housing cost. Width should be determined. For example, when the total value of the width 501 of the non-magnetic material and the width 502 of the corrosion prevention portion 104 between dissimilar metals is 1/5000 of the total magnetic path length 506 of the magnetic material, the magnetic resistance can be expressed as in Equation (5). can. In this case, the magnetic resistance is double the magnetic resistance when the entire housing is made of magnetic material, and the magnetic flux is reduced to 1/2. can.

Figure 0007309646000005
Figure 0007309646000005

また、図7は実施例1のバスダクトと重力方向601の関係を示す。一般にバスダクト1はバスダクト室の上部に配置され、バスダクト室下部に電子部品などが配置される。その電子部品に対して、バスダクト1内の導体からの電磁波を抑制するために、電子部品に近い側、つまり重力方向601には磁束を吸収する磁性体102を配置する。一方、バスダクト1の上部は天井の場合が多いので重力方向と反対方向には磁束が通過する非磁性体を構成することが望ましい。さらに、筐体の温度の上昇によって発生する自然対流は重力と反対方向に流れるため、対流による放熱効果が最も高い重力と反対方向に、一般的には磁性体に比べて熱伝導性の低い非磁性体を配置する構成が望ましい。 Also, FIG. 7 shows the relationship between the bus duct of the first embodiment and the direction of gravity 601 . In general, the bus duct 1 is arranged in the upper part of the bus duct room, and electronic parts and the like are arranged in the lower part of the bus duct room. In order to suppress electromagnetic waves from conductors in the bus duct 1 with respect to the electronic parts, a magnetic body 102 that absorbs magnetic flux is arranged on the side close to the electronic parts, that is, in the direction of gravity 601 . On the other hand, since the upper part of the bus duct 1 is often the ceiling, it is desirable to construct a non-magnetic material through which the magnetic flux passes in the direction opposite to the direction of gravity. Furthermore, since the natural convection generated by the rise in the temperature of the housing flows in the direction opposite to gravity, non-magnetic materials, which generally have lower thermal conductivity than magnetic A configuration in which a magnetic body is arranged is desirable.

実施例1によれば、筐体の鉄損を増大させることなく放熱性能を向上し、筐体の機械強度を保持することが可能になる。 According to the first embodiment, it is possible to improve the heat radiation performance without increasing the iron loss of the housing and maintain the mechanical strength of the housing.

図8に示す実施例2のバスダクト1は、磁性体102と非磁性体103、異種金属間腐食防止部104で構成される筐体と、筐体内に配置された導体100で構成されるバスダクトを示しており、非磁性体103には表面積を増大させるための突起401が設けられる。 The bus duct 1 of the second embodiment shown in FIG. 8 includes a housing composed of a magnetic material 102, a non-magnetic material 103, and a corrosion prevention portion 104 between dissimilar metals, and a bus duct composed of a conductor 100 arranged in the housing. As shown, the non-magnetic body 103 is provided with protrusions 401 to increase its surface area.

一般的に磁性体金属、例えば鋼材の熱伝導率に対し、非磁性金属、例えばステンレス鋼の熱伝導率は低いため、筐体の放熱性能が低い。この熱伝導の低さを補うために、対流と輻射による放熱性能を向上させ、非磁性体103に突起401を設けることで表面積を増大させた構造である。 In general, non-magnetic metals, such as stainless steel, have lower thermal conductivity than magnetic metals, such as steel. In order to compensate for this low heat conduction, the heat dissipation performance is improved by convection and radiation, and the non-magnetic body 103 is provided with projections 401 to increase the surface area.

突起401の代わりに非磁性体103の外側に凹部を設けることで、非磁性体103の外側の表面積を増大させて、放熱性能を向上させるようにしてもよい。 Instead of the projections 401, recesses may be provided on the outside of the non-magnetic body 103 to increase the surface area of the outside of the non-magnetic body 103 and improve the heat dissipation performance.

尚、突起401を筐体面の内側(導体側)に配置しても同様の効果が得られるが、突起形状が金属である場合、導体間との距離が近くなり、絶縁破壊が発生する可能性があるため、筐体外側に突起部を設けることが望ましい。また、筐体面の非磁性体103の内側に凹部を設けることで、放熱性能を向上させるようにしてもよい。 The same effect can be obtained by arranging the projection 401 inside the housing surface (on the conductor side), but if the projection shape is made of metal, the distance between the conductors becomes short, and there is a possibility that dielectric breakdown may occur. Therefore, it is desirable to provide a protrusion on the outside of the housing. Also, heat radiation performance may be improved by providing a concave portion inside the non-magnetic material 103 on the housing surface.

また、本実施例では非磁性体103に突起401を設ける構成としたが、磁性体102に突起もしくは凹部を設ける構成でも同様の効果が得られる。 Further, in this embodiment, the projection 401 is provided on the non-magnetic material 103, but the same effect can be obtained by providing the magnetic material 102 with a projection or recess.

本実施例2では対流、輻射による放熱性能を向上させるために突起401を備えた構成で説明した。さらに、変形例として、図9に示すように、バスダクトの筐体2における黒色塗装105がされた非磁性体としてもよい。そのような構成によれば、対流による放熱性能は向上できないが、輻射による放熱性能を向上させることができる。 In the second embodiment, the structure provided with the projections 401 for improving the heat dissipation performance due to convection and radiation has been described. Furthermore, as a modification, as shown in FIG. 9, the bus duct housing 2 may be made of a non-magnetic material with a black coating 105 . According to such a configuration, the heat dissipation performance by convection cannot be improved, but the heat dissipation performance by radiation can be improved.

実施例2によれば、実施例1に示したように、筐体の鉄損を増大させることなく、筐体の機械強度を保持することが可能になるとともに、さらにバスダクトの放熱性能を向上させることができる。 According to the second embodiment, as shown in the first embodiment, it is possible to maintain the mechanical strength of the housing without increasing the iron loss of the housing, and further improve the heat dissipation performance of the bus duct. be able to.

図10は実施例3のバスダクトの構成を示す図である。バスダクトは、磁性体102と非磁性体103、異種金属間腐食防止部104で構成される筐体2と、筐体2内に配置された導体100A、100B、100Cで構成される。図10に示すように、筐体2と導体100A、100B、100Cの位置関係について、導体100Aは、他の導体100B、100Cと筐体2との距離を比べると、最も筐体2との距離が短い位置に配置されている。その導体100Aに最も近い筐体2の面は非磁性体103で構成されている。 FIG. 10 is a diagram showing the configuration of the bus duct of Example 3. FIG. The bus duct is composed of a housing 2 composed of a magnetic material 102 , a non-magnetic material 103 , and an intermetallic corrosion prevention section 104 , and conductors 100 A, 100 B, and 100 C arranged in the housing 2 . As shown in FIG. 10, regarding the positional relationship between housing 2 and conductors 100A, 100B, and 100C, conductor 100A is closest to housing 2 when the distances between other conductors 100B and 100C and housing 2 are compared. is placed in the shortest position. The surface of the housing 2 closest to the conductor 100A is composed of a non-magnetic material 103. As shown in FIG.

実施例3によれば、実施例1で述べた磁束の中で空気を介する磁束201の影響を低減し、鉄損を抑制することができる。尚、導体100A、100B、100Cと筐体2の配置関係は絶縁距離によって決定され、導体100A、100B、100Cと筐体2の距離が相対的に近い配置となる筐体に非磁性体が配置されればよい。さらに、図10を用いて説明をしたが、図11や図12のような導体配置でも同様の効果が得られる。 According to the third embodiment, among the magnetic fluxes described in the first embodiment, the influence of the magnetic flux 201 passing through the air can be reduced, and iron loss can be suppressed. The arrangement relationship between the conductors 100A, 100B, 100C and the housing 2 is determined by the insulation distance, and the non-magnetic material is arranged in the housing where the distances between the conductors 100A, 100B, 100C and the housing 2 are relatively short. I wish I could. Furthermore, although the description has been made using FIG. 10, the same effect can be obtained with the conductor arrangement as shown in FIGS.

図11は、三角形状に並べた配置の導体100A、100B、100Cと筐体2の位置関係を示す図である。図12は、斜めに並べた配置の導体100A、100B、100Cと筐体2の位置関係を示す図である。図11と図12のいずれの場合でも、導体100Aが他の導体100B、100Cに比べて最も筐体2に近い位置に配置されている。その導体100Aとの距離が最も近い位置にある筐体2に非磁性体103が配置されている。 FIG. 11 is a diagram showing the positional relationship between the conductors 100A, 100B, and 100C arranged in a triangle and the housing 2. As shown in FIG. FIG. 12 is a diagram showing the positional relationship between the conductors 100A, 100B, and 100C arranged obliquely and the housing 2. As shown in FIG. 11 and 12, the conductor 100A is arranged closest to the housing 2 compared to the other conductors 100B and 100C. A non-magnetic material 103 is arranged in the housing 2 that is closest to the conductor 100A.

実施例3によれば、実施例1に示したように放熱性能を向上し、筐体の機械強度を保持することが可能になるとともに、磁束の中で空気を介する磁束201の影響を低減し、さらに、鉄損を抑制することができる。 According to the third embodiment, as shown in the first embodiment, it is possible to improve the heat radiation performance, maintain the mechanical strength of the housing, and reduce the influence of the magnetic flux 201 passing through the air in the magnetic flux. Furthermore, iron loss can be suppressed.

図13は実施例4のバスダクトを示す図である。バスダクトは、磁性体102と非磁性体103、異種金属間腐食防止部104から構成される筐体2と、筐体2内に配置された導体101A、101B、101Cから構成される。導体101A、101B、101Cには、それぞれ凹部402が設けられている。 FIG. 13 is a diagram showing a bus duct of Example 4. FIG. The bus duct is composed of a housing 2 composed of a magnetic material 102 , a non-magnetic material 103 , and an intermetallic corrosion prevention section 104 , and conductors 101 A, 101 B, and 101 C arranged within the housing 2 . A recess 402 is provided in each of the conductors 101A, 101B, and 101C.

導体に交流電流が通流した際、表皮効果により電流表面に電流が集中するが、導体に凹部があると、導体の電流密度分布を制御することが可能となる。例えば、図13に示すように三相の導体101A、101B、101Cそれぞれが対向する面と反対側に、凹部402を設けることで、凹部402と逆方向に電流集中が発生する。三相電流が作る磁束の合計は、導体間距離によって影響を受け、導体間距離が長いと相殺効果が小さく、導体間距離が短いと相殺効果が高まる。 When an alternating current flows through a conductor, the current concentrates on the surface of the current due to the skin effect. If the conductor has recesses, it is possible to control the current density distribution of the conductor. For example, as shown in FIG. 13, current concentration occurs in the direction opposite to the concave portion 402 by providing the concave portion 402 on the side opposite to the surface facing each of the three-phase conductors 101A, 101B, and 101C. The total magnetic flux produced by the three-phase current is affected by the distance between the conductors. If the distance between the conductors is long, the cancellation effect is small, and if the distance between the conductors is short, the cancellation effect increases.

実施例4によれば、凹部402を有する導体101A、101B、101Cを配置することで、電流密度が高い領域を三相の導体101A、101B、101Cそれぞれの対向面にすることができ、導体間距離を短くした場合と同様の効果が得られる。 According to the fourth embodiment, by arranging the conductors 101A, 101B, and 101C having the recesses 402, regions with high current densities can be the surfaces facing the three-phase conductors 101A, 101B, and 101C, respectively. The same effect as when the distance is shortened can be obtained.

1…バスダクト
2…筐体
100、100A、100B、100C…導体
101A、101B、101C…凹部を有する導体
102…磁性体
103…非磁性体
104…異種金属間腐食防止部
199…導体電流
301…固定具
401…突起
Reference Signs List 1 Bus duct 2 Casings 100, 100A, 100B, 100C Conductors 101A, 101B, 101C Conductors having recesses 102 Magnetic substance 103 Non-magnetic substance 104 Corrosion prevention part between dissimilar metals 199 Conductor current 301 Fixed Tool 401 ... Protrusion

Claims (7)

筐体と、
前記筐体内に配置された導体とを有し、
前記筐体は、
ステンレス鋼鉄材を含み、ステンレス鋼鉄材の間に金属の異種金属間腐食防止部を有するバスダクト。
a housing;
a conductor disposed within the housing;
The housing is
A bus duct containing stainless steel and iron material and having a dissimilar metal corrosion prevention part between the stainless steel and iron material .
請求項1に記載のバスダクトにおいて、
前記ステンレス鋼は重力と反対方向に配置され、
前記鉄材は、重力方向に配置されるバスダクト。
The bus duct according to claim 1,
said stainless steel is arranged in a direction opposite to gravity,
The iron material is a bus duct arranged in the direction of gravity.
請求項1に記載のバスダクトにおいて、
前記ステンレス鋼は突起を有するバスダクト。
The bus duct according to claim 1,
The stainless steel bus duct having protrusions.
請求項1に記載のバスダクトにおいて、
前記ステンレス鋼は黒色塗装がされたバスダクト。
The bus duct according to claim 1,
The stainless steel is a bus duct painted black.
請求項1に記載のバスダクトにおいて、
複数の前記導体のうち、前記筐体との距離が最も短い第1の導体がある場合には、前記第1の導体に最も近い位置にある前記筐体は前記ステンレス鋼であるバスダクト。
The bus duct according to claim 1,
The bus duct, wherein when there is a first conductor closest to the case among the plurality of conductors, the case closest to the first conductor is the stainless steel .
請求項1に記載のバスダクトにおいて、
前記鉄材と前記ステンレス鋼と前記異種金属管腐食防止部を固定する固定具を有し、前記固定具は、異種金属間腐食防止用のメッキが施されるバスダクト。
The bus duct according to claim 1,
A bus duct having a fixture for fixing the iron material , the stainless steel , and the dissimilar metal pipe corrosion prevention part, wherein the fixture is plated for preventing corrosion between dissimilar metals.
請求項1に記載のバスダクトにおいて、
複数の前記導体は、前記導体それぞれが対向する面と反対側に凹部を有するバスダクト。
The bus duct according to claim 1,
The bus duct, wherein each of the plurality of conductors has a concave portion on a side opposite to a surface facing each of the conductors.
JP2020052548A 2020-03-24 2020-03-24 bus duct Active JP7309646B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020052548A JP7309646B2 (en) 2020-03-24 2020-03-24 bus duct
PCT/JP2020/033135 WO2021192353A1 (en) 2020-03-24 2020-09-01 Bus duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052548A JP7309646B2 (en) 2020-03-24 2020-03-24 bus duct

Publications (2)

Publication Number Publication Date
JP2021153354A JP2021153354A (en) 2021-09-30
JP7309646B2 true JP7309646B2 (en) 2023-07-18

Family

ID=77887416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052548A Active JP7309646B2 (en) 2020-03-24 2020-03-24 bus duct

Country Status (2)

Country Link
JP (1) JP7309646B2 (en)
WO (1) WO2021192353A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS477698U (en) * 1971-02-19 1972-09-28
JPS51112096U (en) * 1975-03-06 1976-09-10
JPS52143640U (en) * 1976-04-26 1977-10-31
JPS58218804A (en) * 1982-06-15 1983-12-20 吉田 稔 Device for grounding bus duct
JP6329445B2 (en) * 2014-07-01 2018-05-23 関電プラント株式会社 Piping internal inspection device

Also Published As

Publication number Publication date
JP2021153354A (en) 2021-09-30
WO2021192353A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
JP5923916B2 (en) Contactless power supply
US20070247266A1 (en) Compact Dry Transformer
US20230215613A1 (en) Thermal management of electromagnetic device
JP7309646B2 (en) bus duct
JPH10189351A (en) Insulated transformer
US10748700B2 (en) Coil structure and magnetic component
JP6234615B1 (en) Magnetic parts
JP2010171313A (en) Stationary induction electrical apparatus
US10262784B2 (en) Ceramic insulated transformer
JP2008177325A (en) Stationary induction apparatus
JP2006294787A (en) Reactor
CN106711132B (en) Power semiconductor device
JP2011193658A (en) Conductor for gas-insulating bus
JP2004166366A (en) Polyphase current transformer for distribution board
CN112635177A (en) Transformer magnetic leakage shielding system and transformer
JP2008041929A (en) Stationary induction electric appliance
JP7151927B1 (en) power converter
WO2019044835A1 (en) Heat-sink-mounted inductor
WO2019092800A1 (en) Transformer and power conversion device
JP5084910B2 (en) Gas insulated switchgear
JP2021072683A (en) Switch gear
US20220277881A1 (en) Transformer
JP7437193B2 (en) reactor
JP7122137B2 (en) Electric unit for wireless power supply
WO2020183939A1 (en) Electromagnetic shield member and wire harness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230705

R150 Certificate of patent or registration of utility model

Ref document number: 7309646

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150