JP7304029B2 - Method for preventing elution of heavy metals from incinerated ash - Google Patents

Method for preventing elution of heavy metals from incinerated ash Download PDF

Info

Publication number
JP7304029B2
JP7304029B2 JP2019037451A JP2019037451A JP7304029B2 JP 7304029 B2 JP7304029 B2 JP 7304029B2 JP 2019037451 A JP2019037451 A JP 2019037451A JP 2019037451 A JP2019037451 A JP 2019037451A JP 7304029 B2 JP7304029 B2 JP 7304029B2
Authority
JP
Japan
Prior art keywords
elution
mass
parts
heavy metals
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019037451A
Other languages
Japanese (ja)
Other versions
JP2020138175A (en
Inventor
英典 礒田
泰二 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2019037451A priority Critical patent/JP7304029B2/en
Publication of JP2020138175A publication Critical patent/JP2020138175A/en
Application granted granted Critical
Publication of JP7304029B2 publication Critical patent/JP7304029B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/30Landfill technologies aiming to mitigate methane emissions

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、各産業より発生する焼却灰からの重金属類の溶出を効果的に防止できる溶出防止方法に関する。 TECHNICAL FIELD The present invention relates to an elution prevention method capable of effectively preventing elution of heavy metals from incineration ash generated from various industries.

都市ごみや産業廃棄物は各種の焼却炉で燃焼され、ばいじんや飛灰等の焼却灰として減容化し、そのほとんどが管理型最終処分場で埋立処分されている。近年、環境保全の観点から、大気、土壌、水質への環境汚染物質の拡散防止が最重要視されることから、重金属類等を含む環境汚染物質は焼却灰や残渣等に高濃度に濃縮される傾向にある。その焼却灰や残渣等を産業廃棄物として埋立処分する場合には、産業廃棄物に含まれる金属等の検定方法(環境庁告示第13号)に準拠して溶出試験を行い、重金属類等の溶出量が埋立処分判定基準値を満足しなければならない。
都市ごみや産業廃棄物の焼却灰からは、鉛やカドミウムをはじめとした重金属類が溶出する恐れがあり、近年、カドミウムについては環境保全の観点から基準値が0.3mg/Lから0.09mg/Lに強化された。一般に焼却灰からの重金属類の溶出防止対策にはセメントやキレート剤による薬剤処理が行われている。しかしながら、セメントによる固化処理を行うことによって焼却灰が高アルカリ性となり、鉛の溶出量が増加するケースがある。またキレート剤はジチオカルバミン酸系やピペラジン系のキレート剤が主に用いられるが、有機系であることから単独処理だけでは埋立処分後の安定性に問題がある。このため、埋立後も重金属類が再溶出することなく、安定的に処理されることが望まれている。具体的には表1に示すように焼却灰からの重金属類(鉛、カドミウム、砒素、セレン、6価クロム、総水銀)の溶出量を埋立処分判定基準値以下にする必要がある。
Municipal waste and industrial waste are burned in various incinerators and reduced in volume as incineration ash such as soot and fly ash, most of which is landfilled at controlled final disposal sites. In recent years, from the perspective of environmental conservation, the prevention of the diffusion of environmental pollutants into the atmosphere, soil, and water is of utmost importance. tend to When the incinerated ash and residue are to be landfilled as industrial waste, an elution test shall be performed in accordance with the method for examining metals, etc. contained in industrial waste (Environment Agency Notification No. 13), and heavy metals, etc. The amount of elution must satisfy the landfill disposal criteria.
Heavy metals such as lead and cadmium may be eluted from the incineration ash of municipal waste and industrial waste. /L. Chemical treatment using cement or a chelating agent is generally used to prevent the elution of heavy metals from incinerated ash. However, there are cases where the incineration ash becomes highly alkaline and the amount of lead elution increases due to the solidification treatment with cement. Dithiocarbamic acid-based or piperazine-based chelating agents are mainly used as chelating agents, but since they are organic, there is a problem in stability after landfill disposal if they are treated alone. For this reason, it is desired that heavy metals are not re-eluted even after landfilling, and that the landfill is stably treated. Specifically, as shown in Table 1, the amount of heavy metals (lead, cadmium, arsenic, selenium, hexavalent chromium, total mercury) eluted from incinerated ash must be kept below the landfill disposal criteria.

Figure 0007304029000001
Figure 0007304029000001

前記6種の重金属類のうち、鉛は両性元素といわれており、pHが酸性あるいはアルカリ性の領域で溶出量が増加する傾向があり、カドミウム等、その他の重金属類とは異なる溶出挙動を示すことが知られている。一般に清掃工場等の焼却場では、都市ごみ等の焼却によって発生する酸性ガス(塩化水素や硫黄酸化物)の排出対策のため、集塵装置内に消石灰等の排ガス対策用の薬剤が噴霧される。このため、焼却灰のpHは高アルカリ性となり、鉛が溶出しやすくなる。一方、産業廃棄物の種類や焼却炉によっては、消石灰等の排ガス対策用の薬剤噴霧量が少量であったり、あるいは噴霧しない場合もあり、その焼却灰のpHは酸性から中性領域(pH3~8程度)を示すこともある。
このように焼却灰のpHが一定ではなく、広範囲(pH3~13)となる場合もあり、特に、低pH(pH5以下)や高pH(pH12以上)を示す焼却灰は重金属類の溶出量が高くなるため、溶出抑制が困難になる。さらに、鉛と共にカドミウムや、砒素、セレン、6価クロム、水銀という溶出挙動が異なる重金属類が焼却灰に含まれる場合は、それら複数の重金属類の溶出を同時に抑制することは極めて困難であった。
Among the six types of heavy metals, lead is said to be an amphoteric element, and the amount of lead tends to increase in the acidic or alkaline pH range. It has been known. Generally, in incineration plants such as waste incineration plants, chemicals such as slaked lime are sprayed into dust collectors to reduce the emission of acid gases (hydrogen chloride and sulfur oxides) generated by the incineration of municipal waste. . Therefore, the pH of the incineration ash becomes highly alkaline, and lead is easily eluted. On the other hand, depending on the type of industrial waste and the incinerator, the amount of sprayed chemicals such as slaked lime for exhaust gas countermeasures may be small or may not be sprayed, and the pH of the incinerated ash is in the acidic to neutral range (pH 3- 8) may be indicated.
In this way, the pH of the incineration ash is not constant and may be in a wide range (pH 3 to 13).In particular, the incineration ash that exhibits a low pH (pH 5 or less) or a high pH (pH 12 or more) has a large amount of heavy metals eluted. Since it becomes high, it becomes difficult to suppress elution. Furthermore, when incineration ash contains heavy metals with different elution behaviors such as cadmium, arsenic, selenium, hexavalent chromium, and mercury together with lead, it is extremely difficult to simultaneously suppress the elution of these heavy metals. .

このような状況において、各種焼却灰や有害廃棄物における重金属類の様々な溶出抑制方法が提案されている。すなわち、都市ごみや産業廃棄物等の焼却プラントから排出される焼却灰中に含有される鉛、水銀、クロム、カドミウム、亜鉛、銅等の重金属類をキレート剤であるピペラジンカルボジチオ酸又はその塩で固定化する技術(特許文献1)、都市ごみ焼却灰に含まれる水銀、鉛、カドミウム、銅、ひ素、ニッケル、クロム等の重金属を、多糖類、キレート剤及び硫化物と混合することで固定する重金属捕集剤(特許文献2)、焼却灰等に含まれるダイオキシン類及びカドミウムや鉛等の重金属類をキレート剤と混合することで溶出を防止する処理方法(特許文献3)、アロフェン含有火山灰を原料とし、乾燥・粒度調整・鉛吸着特性確認試験を実施することで、焼却灰中の鉛を不溶化する技術(特許文献4)、汚染土壌や焼却灰にチオ硫酸化合物を添加するとともに焼却灰を加熱することで、焼却灰などに含まれる砒素やセレンなどの重金属類を不溶化する装置に関する技術(特許文献5)、重金属等の有害物質を含有する焼却灰や汚泥、土壌等に対してセメントを添加し、撹拌造粒機により造粒物前駆体を作製し、さらに有害物を不溶化する物質を含有するコーティング材で被覆することによって封じ込める有害物の不溶化処理方法(特許文献6)、下水汚泥焼却灰にポルトランドセメントのような固化材及び水を添加混合し、転動造粒法又は圧縮造粒法により造粒した後、該造粒物の表面にアスファルト・水エマルジョンを用いてアスファルト皮膜を形成させることで、砒素などの重金属類の溶出を物理的に抑制する技術(特許文献7)、鉄粉、酸化カルシウム、酸化アルミニウムを必須成分として含む有害元素の溶出抑制剤を用いることで、フライアッシュからのふっ素、ほう素及び砒素やセレンなどの重金属類の溶出を抑制する技術(特許文献8)が報告されている。 Under such circumstances, various methods for suppressing elution of heavy metals in various incinerated ash and hazardous wastes have been proposed. That is, piperazine carbodithioic acid or a salt thereof, which is a chelating agent for heavy metals such as lead, mercury, chromium, cadmium, zinc, and copper contained in incineration ash discharged from incineration plants for municipal waste and industrial waste. (Patent Document 1), heavy metals such as mercury, lead, cadmium, copper, arsenic, nickel, and chromium contained in municipal waste incineration ash are fixed by mixing with polysaccharides, chelating agents, and sulfides. A heavy metal scavenger (Patent Document 2), a treatment method for preventing elution by mixing dioxins and heavy metals such as cadmium and lead contained in incinerated ash with a chelating agent (Patent Document 3), allophane-containing volcanic ash is used as a raw material, and by conducting drying, particle size adjustment, and lead adsorption property confirmation tests, a technology to make lead in ash insoluble (Patent Document 4), a thiosulfate compound is added to contaminated soil and ash, and ash (Patent Document 5), technology related to equipment that insolubilizes heavy metals such as arsenic and selenium contained in incineration ash by heating, cement for incineration ash, sludge, soil, etc. containing harmful substances such as heavy metals is added, a granule precursor is produced by a stirring granulator, and a harmful substance insolubilization method (Patent Document 6), sewage sludge After adding and mixing a solidifying material such as Portland cement and water to the incinerated ash and granulating it by a rolling granulation method or a compression granulation method, an asphalt film is applied to the surface of the granules using an asphalt/water emulsion. By using a technology to physically suppress the elution of heavy metals such as arsenic (Patent Document 7), and an elution inhibitor of harmful elements containing iron powder, calcium oxide, and aluminum oxide as essential ingredients, fly A technique for suppressing the elution of fluorine, boron, arsenic, selenium, and other heavy metals from ash has been reported (Patent Document 8).

特開1996-224560号公報JP-A-1996-224560 特開1998-113677号公報JP-A-1998-113677 特開2002-052373号公報Japanese Patent Application Laid-Open No. 2002-052373 特開2016-077940号公報JP 2016-077940 A 特開2006-000746号公報Japanese Patent Application Laid-Open No. 2006-000746 特開2004-008945号公報JP 2004-008945 A 特開1995-060222号公報JP-A-1995-060222 特開2005-279413号公報JP-A-2005-279413

しかしながら、これら従来の重金属類の溶出防止技術は、キレート剤が有機物であるため長期安定性に問題があり再溶出が起こる可能性がある、焼却灰の重金属類溶出量が高い場合は溶出抑制効果が不十分であったり、薬剤添加量が多くなる、高価な成分を使用する、溶出防止剤製造工程や溶出防止処理工程の煩雑化、特殊な撹拌造粒機や加熱装置など大がかりな装置を使用する、さらに一部の有害物質だけの溶出抑制ができる手段にすぎず、前記鉛と他の重金属とを含む複数の重金属類の溶出を同時に抑制できるものではない等の課題があった。
従って本発明の課題は、各産業より発生する焼却灰に含まれる鉛と、カドミウム、砒素、セレン、6価クロム及び総水銀から選ばれる1種以上とを含む重金属類の溶出量を埋立処分判定基準値未満に低減できる経済的かつ効率的な処理技術を提供することである。
However, these conventional heavy metal elution prevention technologies have problems with long-term stability because the chelating agent is an organic substance, and re-elution may occur. is insufficient, the amount of chemicals added is large, expensive ingredients are used, the elution inhibitor manufacturing process and elution prevention treatment process are complicated, and large-scale equipment such as special stirring granulators and heating devices are used. Furthermore, there are problems such as that it is only a means capable of suppressing the elution of only some of the harmful substances, and that the elution of a plurality of heavy metals including lead and other heavy metals cannot be suppressed at the same time.
Therefore, the object of the present invention is to determine landfill disposal by determining the amount of elution of heavy metals including lead contained in incineration ash generated from each industry and one or more selected from cadmium, arsenic, selenium, hexavalent chromium and total mercury. The object is to provide an economical and efficient treatment technology that can reduce emissions below the standard value.

そこで本発明者は、検討を重ねた結果、重金属類として、鉛と、カドミウム、砒素、セレン、6価クロム及び総水銀から選ばれる1種以上とを含む焼却灰を処理するに際し、カルシウムアルミネート、硫酸アルミニウム、硫酸第一鉄及びアルカリ金属リン酸塩を含有する組成物と、キレート剤を組合わせて使用することで、焼却灰のpHが酸性から強アルカリ性を示す広範囲であっても前記2種以上の重金属類の溶出量を同時に埋立処分判定基準値未満に低減できることを見出し、本発明を完成させるに至った。 Therefore, as a result of repeated studies, the present inventors have found that when treating incineration ash containing lead as heavy metals and one or more selected from cadmium, arsenic, selenium, hexavalent chromium and total mercury, calcium aluminate , aluminum sulfate, ferrous sulfate and an alkali metal phosphate, and a chelating agent are used in combination, even if the pH of the incinerated ash is in a wide range from acidic to strongly alkaline, the above 2 The present inventors have found that the amount of eluted heavy metals above the species can be simultaneously reduced to less than the landfill disposal criterion value, and have completed the present invention.

すなわち、本発明は、次の〔1〕~〔4〕を提供するものである。 That is, the present invention provides the following [1] to [4] .

[1]カルシウムアルミネート100質量部、硫酸アルミニウム5~100質量部、硫酸第一鉄20~200質量部、及びアルカリ金属リン酸塩0.5~10質量部を含有する溶出防止剤と、キレート剤を組み合わせて、焼却灰に添加することを特徴とし、
前記焼却灰が、鉛と、カドミウム及び総水銀から選ばれる1種以上とを含む重金属類の溶出量が埋立処分判定基準を超える焼却灰であって、
前記焼却灰100質量部に対して、溶出防止剤を1~10質量部及びキレート剤を固形分換算で0.5~3質量部添加する、
焼却灰からの鉛と、カドミウム及び総水銀から選ばれる1種以上の金属とを含む重金属類の溶出防止方法。
[2]前記溶出防止剤が、さらに、消石灰を100~1200質量部を含有するものである[1]記載の溶出防止方法。
[3]前記キレート剤が、ジチオカルバミン酸系キレート剤である[1]又は[2]記載の溶出防止方法。
[4]前記カルシウムアルミネートが、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6~2.6の非晶質カルシウムアルミネートとを含むものである[1]~[3]のいずれか1記載の溶出防止方法。
[1] An elution inhibitor containing 100 parts by mass of calcium aluminate, 5 to 100 parts by mass of aluminum sulfate, 20 to 200 parts by mass of ferrous sulfate, and 0.5 to 10 parts by mass of an alkali metal phosphate, and a chelate characterized by combining agents and adding them to incinerated ash,
The incineration ash is an incineration ash in which the elution amount of heavy metals containing lead and at least one selected from cadmium and total mercury exceeds the landfill disposal criteria,
1 to 10 parts by mass of an elution inhibitor and 0.5 to 3 parts by mass of a chelating agent in terms of solid content are added to 100 parts by mass of the incinerated ash,
A method for preventing elution of heavy metals containing lead and one or more metals selected from cadmium and total mercury from incineration ash.
[2] The elution prevention method according to [1], wherein the elution prevention agent further contains 100 to 1200 parts by mass of slaked lime.
[3] The elution prevention method according to [1] or [2], wherein the chelating agent is a dithiocarbamic acid chelating agent.
[4] The calcium aluminate is a crystalline calcium aluminate having an equimolar ratio of CaO and Al 2 O 3 and a molar ratio of CaO to Al 2 O 3 is CaO/Al 2 O 3 =1.6 to 2. The method for preventing elution according to any one of [1] to [3], which comprises the amorphous calcium aluminate of .6.

本発明によれば、低pH(pH5以下)や高pH(pH12以上)を示す焼却灰であっても、経済的かつ効率的な処方で焼却灰に含まれる、鉛と、カドミウム、砒素、セレン、6価クロム及び総水銀から選ばれる金属を含む複数の重金属類の溶出量を埋立処分判定基準値未満に低減させることができる。本発明は最終処分場の円滑な管理運営に極めて有用な技術である。 According to the present invention, even if the incineration ash exhibits a low pH (pH 5 or less) or a high pH (pH 12 or more), lead, cadmium, arsenic, and selenium are contained in the incineration ash in an economical and efficient formulation. , hexavalent chromium and total mercury elution amount can be reduced below the landfill disposal criteria. INDUSTRIAL APPLICABILITY The present invention is an extremely useful technology for smooth management and operation of final disposal sites.

本発明の溶出防止剤に用いるカルシウムアルミネートは、基本的にはCaO原料とAl23原料を熱処理することにより得られる物質である。カルシウムアルミネートは化学成分としてCaOとAl23からなる結晶質やガラス化が進んだ構造の水和活性物質であれば良く、CaOとAl23に加えて他の化学成分が加わった化合物、固溶体、ガラス質物質又はこれらの混合物等でもよい。前者(結晶質)としては例えば12CaO・7Al23、CaO・Al23、3CaO・Al23、CaO・2Al23、11CaO・7Al23・CaF2、Na2O・8CaO・3Al23等が挙げられ、後者(ガラス質)としては、例えば、12CaO・7Al23、CaO・Al23等が挙げられる。 Calcium aluminate used in the elution inhibitor of the present invention is basically a substance obtained by heat-treating a CaO raw material and an Al 2 O 3 raw material. Calcium aluminate may be any hydration-active substance having a crystalline or vitrified structure composed of CaO and Al 2 O 3 as chemical components, and other chemical components are added in addition to CaO and Al 2 O 3 . It may be a compound, solid solution, vitreous substance, or mixture thereof. Examples of the former (crystalline) include 12CaO.7Al 2 O 3 , CaO.Al 2 O 3 , 3CaO.Al 2 O 3 , CaO.2Al 2 O 3 , 11CaO.7Al 2 O 3 .CaF 2 , Na 2 O. 8CaO.3Al 2 O 3 and the like, and examples of the latter (vitreous) include 12CaO.7Al 2 O 3 and CaO.Al 2 O 3 .

さらに、本発明で用いるカルシウムアルミネートとしては、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.7の非晶質カルシウムアルミネートとを含むものが好ましい。 Furthermore, the calcium aluminate used in the present invention includes crystalline calcium aluminate having an equimolar ratio of CaO and Al 2 O 3 and CaO/Al 2 O 3 having a molar ratio of CaO and Al 2 O 3 of 1.5. 7 amorphous calcium aluminates are preferred.

CaOとAl23が等モル比の結晶質カルシウムアルミネートは、前記のようなCaO源とAl23源をそれぞれCaO換算及びAl23換算して等モル比となるよう混合したものを、例えば1600℃で加熱し、これを徐冷すれば得られる。また、徐冷は加熱装置内での自然放冷が一般的に採用できるが、加熱装置の構造上急激な温度低下が起こる場合は、概ね10℃/分以下の降温速度になるよう加熱調整するのが好ましい。CaO源は特に限定されないが、例えば石灰石粉、消石灰や生石灰粉を好適に挙げることができ、Al23源は例えばボーキサイト粉、水酸化アルミニウム、炭酸アルミニウム、アルミ残灰、アルミナ粉末等を好適に挙げることができる。該結晶質カルシウムアルミネートのブレーン比表面積は、3000~10000cm2/gが好ましく、これと共に使用する非結晶質カルシウムアルミネートのブレーン比表面積と概ね同じものとするのが好ましい。 A crystalline calcium aluminate having an equimolar ratio of CaO and Al 2 O 3 was obtained by mixing the CaO source and the Al 2 O 3 source as described above so as to obtain an equimolar ratio in terms of CaO and Al 2 O 3 . It can be obtained by heating the material at, for example, 1600° C. and then slowly cooling it. For slow cooling, natural cooling in the heating device can generally be adopted, but if the temperature drops rapidly due to the structure of the heating device, the heating should be adjusted so that the temperature drop rate is approximately 10°C/min or less. is preferred. The CaO source is not particularly limited, but suitable examples thereof include limestone powder, slaked lime powder and quicklime powder. Preferred Al 2 O 3 sources include bauxite powder, aluminum hydroxide, aluminum carbonate, aluminum residual ash, alumina powder and the like. can be mentioned. The Blaine specific surface area of the crystalline calcium aluminate is preferably 3,000 to 10,000 cm 2 /g, and is preferably approximately the same as the Blaine specific surface area of the amorphous calcium aluminate used therewith.

CaOとAl23の含有モル比がCaO/Al23=1.7の非晶質カルシウムアルミネートは、CaO源とAl23源をそれぞれCaO換算及びAl23換算して当該モル比の範囲に混合したものを、例えば1400~1900℃で加熱溶融し、これを急冷することによって得られる。急冷は、例えば溶融物の該加熱温度からの炉外取り出し、水中急冷、冷却ガスの吹き付け等の公知の急冷手法で行うことができる。また前記非晶質カルシウムアルミネートは、粉砕・分級・篩い分け等を適宜行うことによって粒度を調整し、ブレーン比表面積で3000~10000cm2/gにしたものを用いるのが好ましい。なお、CaO源及びAl23源は、前記結晶質カルシウムアルミネートの場合と同じものが使用できる。 Amorphous calcium aluminate having a molar ratio of CaO to Al 2 O 3 of CaO/Al 2 O 3 =1.7 is obtained by converting the CaO source and the Al 2 O 3 source into CaO and Al 2 O 3 respectively. It can be obtained by heating and melting, for example, 1400 to 1900° C., and then quenching the mixture in the molar ratio range. The quenching can be performed by a known quenching method such as removing the melt from the heating temperature outside the furnace, quenching in water, or blowing a cooling gas. It is preferable to use the amorphous calcium aluminate having a Blaine specific surface area of 3,000 to 10,000 cm 2 /g by appropriately adjusting the particle size by pulverizing, classifying, sieving, and the like. The same CaO source and Al 2 O 3 source as those used for the crystalline calcium aluminate can be used.

本発明で用いるカルシウムアルミネートは、前記のCaOとAl23が等モル比の結晶質カルシウムアルミネートと、前記のCaOとAl23の含有モル比がCaO/Al23=1.7の非晶質カルシウムアルミネートを任意の割合で配合し混合物として用いても、あるいはそれぞれ単独で用いても、前記複数の重金属類を含む焼却灰に対する溶出防止効果を良好に発揮することができる。 The calcium aluminate used in the present invention includes crystalline calcium aluminate having an equimolar ratio of CaO and Al 2 O 3 and CaO/Al 2 O 3 having a molar ratio of CaO/Al 2 O 3 =1. Even if the amorphous calcium aluminate of .7 is blended in an arbitrary ratio and used as a mixture, or if each is used alone, the elution prevention effect on the incineration ash containing the above-mentioned plurality of heavy metals can be exhibited satisfactorily. can.

本発明に用いる硫酸アルミニウムは、化学成分としてAl2(SO43・nH2Oで表される水和物、あるいはAl2(SO43で表される無水塩の何れでも良い。好ましくは、前記複数の重金属類の溶出防止効果に優れていることからnが14~18の水和物が良い。
本発明の溶出防止剤中の硫酸アルミニウムの含有量は、前記複数の重金属類の溶出防止効果の観点から、カルシウムアルミネート100質量部に対して5~100質量部であることが好ましく、5~80質量部であることがより好ましく、5~50質量部であることがさらに好ましい。
Aluminum sulfate used in the present invention may be either a hydrate represented by Al 2 (SO 4 ) 3.nH 2 O or an anhydrous salt represented by Al 2 (SO 4 ) 3 as a chemical component. Hydrates with n of 14 to 18 are preferred because they are excellent in preventing the elution of the heavy metals.
The content of aluminum sulfate in the elution inhibitor of the present invention is preferably 5 to 100 parts by mass with respect to 100 parts by mass of calcium aluminate, from the viewpoint of the elution preventing effect of the plurality of heavy metals. It is more preferably 80 parts by mass, and even more preferably 5 to 50 parts by mass.

本発明においては、還元成分として取扱いが容易で、比較的安価であることから硫酸第一鉄が好適に使用できる。硫酸第一鉄としては、結晶水を7つ有する硫酸第一鉄七水和物と結晶水を1つ有する硫酸第一鉄一水和物があるが、保存安定性が高い硫酸第一鉄一水和物を用いるのがより好ましい。
本発明の溶出防止剤中の硫酸第一鉄の含有量は、前記複数の重金属類の溶出防止効果の観点から、カルシウムアルミネート100質量部に対して20~200質量部であることが好ましく、50~200質量部であることがより好ましく、50~150質量部であることがさらに好ましい。
In the present invention, ferrous sulfate can be suitably used as a reducing component because it is easy to handle and relatively inexpensive. Ferrous sulfate includes ferrous sulfate heptahydrate, which has seven waters of crystallization, and ferrous sulfate monohydrate, which has one water of crystallization. More preferably, hydrates are used.
The content of ferrous sulfate in the elution inhibitor of the present invention is preferably 20 to 200 parts by mass with respect to 100 parts by mass of calcium aluminate from the viewpoint of the elution prevention effect of the plurality of heavy metals. It is more preferably 50 to 200 parts by mass, even more preferably 50 to 150 parts by mass.

本発明に用いるアルカリ金属リン酸塩としては、リン酸ナトリウムやリン酸カリウムなどの易溶性の塩が挙げられる。本発明では、アルカリ金属リン酸塩を配合することにより、前記複数の重金属類の良好な溶出防止効果が得られる。アルカリ金属リン酸塩としては下記式(1)~(3)で表されるリン酸カリウムが好ましく、溶出抑制効果に優れていることから下記式(2)で表されるリン酸二水素カリウムがより好ましい。 Alkali metal phosphates used in the present invention include readily soluble salts such as sodium phosphate and potassium phosphate. In the present invention, by blending an alkali metal phosphate, a good elution prevention effect of the plurality of heavy metals can be obtained. As the alkali metal phosphate, potassium phosphate represented by the following formulas (1) to (3) is preferable, and potassium dihydrogen phosphate represented by the following formula (2) is preferable because of its excellent elution suppression effect. more preferred.

2HPO4 (1)
KH2PO4 (2)
3PO4 (3)
K2HPO4 ( 1)
KH2PO4 ( 2)
K3PO4 ( 3)

本発明の溶出防止剤中のアルカリ金属リン酸塩の含有量は、前記複数の重金属類の溶出防止効果の観点から、カルシウムアルミネート100質量部に対して0.5~10質量部であることが好ましく、0.5~8質量部であることがより好ましく、0.5~5質量部であることがさらに好ましい。 The content of the alkali metal phosphate in the elution inhibitor of the present invention is 0.5 to 10 parts by mass with respect to 100 parts by mass of calcium aluminate from the viewpoint of the elution-preventing effect of the plurality of heavy metals. is preferable, 0.5 to 8 parts by mass is more preferable, and 0.5 to 5 parts by mass is even more preferable.

本発明においては、溶出防止剤中に、さらに消石灰を組み合わせて使用すると、特に酸性の焼却灰を対象とした場合でも鉛やカドミウム等の重金属類の溶出量を十分に低減できる。
本発明に用いる消石灰は、化学式Ca(OH)2で表されるカルシウムの水酸化物を主成分とするものであれば好適に使用できる。溶出防止効果を良好に発揮させるためには、ふるい径600μmを全通する消石灰が特に好ましい。
本発明の溶出防止剤中の消石灰の含有量は、酸性の焼却灰を対象とした場合の前記複数の重金属類の溶出防止効果の観点から、カルシウムアルミネート100質量部に対して100~1200質量部であることが好ましく、200~1200質量部であることがより好ましく、200~1000質量部であることがさらに好ましい。
In the present invention, when slaked lime is used in combination with the elution inhibitor, the elution amount of heavy metals such as lead and cadmium can be sufficiently reduced even in the case of acidic incineration ash.
The slaked lime used in the present invention can be suitably used as long as it contains calcium hydroxide represented by the chemical formula Ca(OH) 2 as a main component. Slaked lime that can pass through a sieve with a diameter of 600 μm is particularly preferable in order to exhibit the elution prevention effect well.
The content of slaked lime in the elution inhibitor of the present invention is 100 to 1200 parts by mass with respect to 100 parts by mass of calcium aluminate from the viewpoint of the elution prevention effect of the plurality of heavy metals when targeting acidic incineration ash. parts, more preferably 200 to 1200 parts by mass, even more preferably 200 to 1000 parts by mass.

また、溶出防止剤には、溶出防止効果を損なわない限り、還元剤、セメント等の固化材、高炉スラグやタンカル粉末等の増量材などを配合しても良い。 In addition, the elution inhibitor may be blended with a reducing agent, a solidifying agent such as cement, an extender such as blast furnace slag or tankl powder, etc., as long as the elution prevention effect is not impaired.

本発明においては、前記溶出防止剤とともに、キレート剤を組合わせて用いる。キレート剤を併用することにより、重金属類の溶出量が高く溶出抑制が困難な低pH(pH5以下)や高pH(pH12以上)を示す焼却灰を対象とする場合においても、重金属類の溶出抑制を確実にすることが可能となる。
本発明で用いるキレート剤としては、特に制限されないが、ジチオカルバミン酸系キレート剤、ピペラジン系キレート剤等が挙げられる。より具体的には、例えば、ジチオカルバミン酸塩、ジアルキルジチオカルバミン酸塩、シクロアルキルジチオカルバミン酸塩、ピペラジンジチオカルバミン酸塩、テトラエチレンペンタミンジチオカルバミン酸塩、ポリアミンのジチオカルバミン酸塩等が挙げられる。
これらのキレート剤は、液体又は粉末のいずれでも使用することができる。
また、これらのキレート剤の市販品を用いることができる。
In the present invention, a chelating agent is used in combination with the elution inhibitor. By using a chelating agent together, heavy metals can be prevented from eluting even in the case of incineration ash with low pH (pH 5 or less) or high pH (pH 12 or more), where the amount of heavy metals eluted is high and it is difficult to suppress elution. can be ensured.
The chelating agent used in the present invention is not particularly limited, but includes dithiocarbamic acid chelating agents, piperazine chelating agents, and the like. More specific examples include dithiocarbamate, dialkyldithiocarbamate, cycloalkyldithiocarbamate, piperazine dithiocarbamate, tetraethylenepentamine dithiocarbamate, polyamine dithiocarbamate, and the like.
These chelating agents can be used in either liquid or powder form.
In addition, commercially available products of these chelating agents can be used.

本発明において、溶出防止の対象とする焼却灰は、鉛と、カドミウム、砒素、6価クロム、セレン及び総水銀から選ばれる1種以上の金属とを含む焼却灰であり、これら複数の重金属類の溶出量が埋立処分判定基準を超える焼却灰であるのがより好ましい。このような複数の重金属類を含む焼却灰としては、都市ごみ焼却灰、産業廃棄物焼却灰、下水汚泥焼却灰、バイオマスボイラー焼却灰、災害廃棄物焼却灰等の焼却灰類などが挙げられる。都市ごみ焼却灰は、一般家庭などから排出された都市ごみなどを減量化・安定化させるために焼却処理がなされたものである。産業廃棄物焼却灰は、自動車シュレッダーダスト(ASR)や建設系廃棄物等を燃焼焼却あるいは溶融処理した際に発生する焼却灰である。下水汚泥焼却灰は、下水汚泥を脱水し、さらに減量化・安定化させるために焼却処理がなされたものである。バイオマスボイラー焼却灰は、間伐材や剪定枝等の木質チップやペレット、もみ殻、コーヒーかすペレット等を燃料として燃焼した際に発生する焼却灰である。災害廃棄物焼却灰は、東日本大震災や熊本地震等の大規模自然災害で発生した可燃性災害廃棄物を焼却・減容化する際に発生した焼却灰である。 In the present invention, the incineration ash to be prevented from elution is incineration ash containing lead and one or more metals selected from cadmium, arsenic, hexavalent chromium, selenium and total mercury, and a plurality of these heavy metals. It is more preferable that the incineration ash has an elution amount exceeding the landfill disposal criteria. Incineration ash containing multiple heavy metals includes incineration ash such as municipal waste incineration ash, industrial waste incineration ash, sewage sludge incineration ash, biomass boiler incineration ash, and disaster waste incineration ash. Municipal waste incineration ash is incinerated to reduce and stabilize municipal waste discharged from general households. Industrial waste incineration ash is incineration ash generated when automobile shredder dust (ASR), construction waste, or the like is incinerated or melted. Sewage sludge incineration ash is incinerated to dehydrate sewage sludge and further reduce and stabilize it. Biomass boiler incineration ash is incineration ash generated when wood chips such as thinned wood and pruned branches, pellets, rice husks, coffee grounds pellets, etc. are burned as fuel. Incinerated disaster waste ash is incinerated ash generated when combustible disaster waste generated by large-scale natural disasters such as the Great East Japan Earthquake and the Kumamoto Earthquake is incinerated and reduced in volume.

本発明においては、前記複数の重金属類を含む焼却灰、特に前記複数の重金属類が埋立処分判定基準を超える焼却灰に、溶出防止剤とキレート剤を添加すれば良く、同時に水を加えて混合するのが好ましい。
焼却灰に対する溶出防止剤の添加量は、重金属類の含有量によるが、焼却灰100質量部に対して1~10質量部とするのが好ましく、経済性、均一混合性及び溶出防止性能の面から、2~8質量部とするのがより好ましく、3~5質量部とするのがさらに好ましい。
また、焼却灰に対するキレート剤の添加量は、焼却灰100質量部に対して固形分換算で0.5~3質量部とするのが好ましく、経済性及び溶出防止性能の面から、1~2質量部とするのがより好ましい。
さらに、添加する水の量は、特に規定はなく、溶出防止剤及びキレート剤を添加した焼却灰が水と均一に混合され、粒状化あるいは団粒化する程度であればよい。
In the present invention, an elution inhibitor and a chelating agent may be added to the incinerated ash containing the plurality of heavy metals, particularly the incinerated ash in which the plurality of heavy metals exceeds the landfill disposal criteria, and water is added and mixed at the same time. preferably.
The amount of the elution inhibitor added to the incinerated ash depends on the content of heavy metals, but is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the incinerated ash, in terms of economy, uniform mixing and elution prevention performance. Therefore, it is more preferably 2 to 8 parts by mass, more preferably 3 to 5 parts by mass.
In addition, the amount of the chelating agent added to the incinerated ash is preferably 0.5 to 3 parts by mass in terms of solid content per 100 parts by mass of the incinerated ash. Parts by mass are more preferable.
Furthermore, the amount of water to be added is not particularly limited as long as the incinerated ash to which the elution inhibitor and chelating agent are added is uniformly mixed with water and granulated or aggregated.

溶出抑制対象となる焼却灰と、溶出防止剤、キレート剤及び水との混合方法は特に制限されず、パン型ミキサーや強制二軸ミキサーなどの一般的なミキサーを用いて、焼却灰と、溶出防止剤、キレート剤、水を混合して、重金属類の溶出防止処理を行うことができる。
このように溶出防止処理された焼却灰は、前記複数の重金属類の溶出性が前記埋立処分判定基準未満に防止されているので、そのまま埋立処分することができる。
The method of mixing the incinerated ash, which is the target of elution suppression, with the elution inhibitor, chelating agent, and water is not particularly limited. An inhibitor, a chelating agent, and water can be mixed to prevent elution of heavy metals.
The incineration ash thus treated to prevent elution can be directly landfilled because the elution of the plurality of heavy metals is prevented below the landfill disposal criteria.

次に実施例を挙げて本発明をさらに詳細に説明する。 The present invention will now be described in more detail with reference to examples.

(溶出防止剤)
CaO源に石灰石(CaO含有量;56質量%)、Al23源にバン土頁岩(Al23含有量;88質量%)のそれぞれ粗砕粒(粒径約1mm以下)を用い、以下のA1、A2で表すカルシウムアルミネートの粉末を作製した。その作製方法は、CaO源とAl23源を所定のモル比に配合したものを、電気炉で1800℃(±50℃)に加熱し、60分間保持した後、加熱を停止して炉内で自然放冷して得た(A1)。同様に1800℃(±50℃)に加熱し、60分間保持した後、温度1800℃の電気炉から加熱物を常温下に取り出し、取り出し後は直ちに加熱物表面に流量約100cc/秒で窒素ガスを吹き付けて急冷して得た(A2)。得られた冷却物はボールミルで粉砕し、ブレーン比表面積が5000±500cm2/gとなるよう粉砕時間を変えて粉末度を調整した。
A1;CaO/Al23=モル比1.0の結晶質カルシウムアルミネート
A2;CaO/Al23=モル比1.7の非晶質カルシウムアルミネート
(elution inhibitor)
Limestone (CaO content: 56 % by mass) is used as the CaO source, and coarsely crushed granules (particle size of about 1 mm or less) are used as the Al 2 O 3 source. Calcium aluminate powders represented by A1 and A2 were prepared. The manufacturing method is to mix a CaO source and an Al 2 O 3 source at a predetermined molar ratio, heat it to 1800 ° C. (± 50 ° C.) in an electric furnace, hold it for 60 minutes, then stop heating and turn it into a furnace. (A1). Similarly, after heating to 1800 ° C. (± 50 ° C.) and holding for 60 minutes, the heated object is taken out from the electric furnace at a temperature of 1800 ° C. to room temperature, and immediately after taking out, nitrogen gas is applied to the heated object surface at a flow rate of about 100 cc / sec. (A2) was obtained by spraying and quenching. The obtained cooled product was pulverized by a ball mill, and the fineness was adjusted by changing the pulverization time so that the Blaine specific surface area was 5000±500 cm 2 /g.
A1; CaO/ Al2O3 = crystalline calcium aluminate with a molar ratio of 1.0 A2; CaO / Al2O3 = amorphous calcium aluminate with a molar ratio of 1.7

A1~A2のカルシウムアルミネートと次に示すB~Eから選定される材料を用い、表2に示す配合割合でヘンシェル型ミキサーを用いて3分間乾式混合し、溶出防止剤を作製した。
B;硫酸アルミニウム14-18水和物:関東化学社製 粉末試薬
C;硫酸第一鉄1水和物:富士チタン工業社製
D;リン酸二水素カリウム:関東化学社製 粉末試薬
E;消石灰:関東化学社製 粉末試薬
F;キレート剤:ジエチルジチオカルバミン酸系キレート剤(市販品)
Calcium aluminates A1 to A2 and materials selected from B to E shown below were dry-mixed for 3 minutes using a Henschel mixer at the blending ratios shown in Table 2 to prepare dissolution inhibitors.
B; aluminum sulfate 14-18 hydrate: manufactured by Kanto Chemical Co., Ltd. powder reagent C; ferrous sulfate monohydrate: manufactured by Fuji Titanium Industry D; potassium dihydrogen phosphate: manufactured by Kanto Chemical Co., Ltd. powder reagent E; slaked lime : Powder reagent F manufactured by Kanto Kagaku Co., Ltd.; Chelating agent: diethyldithiocarbamic acid-based chelating agent (commercially available)

Figure 0007304029000002
Figure 0007304029000002

(焼却灰)
重金属類を含む焼却灰として焼却灰1(清掃工場A)、焼却灰2(清掃工場B)、焼却灰3(産業廃棄物焼却処理場)の3種類を使用した。これら焼却灰について、鉛、カドミウム、砒素、セレン、6価クロム及び総水銀の溶出量、同法による溶出試験の検液のpHを測定した。測定結果を表3に示す。
(Incineration ash)
As incineration ash containing heavy metals, three types of incineration ash 1 (incineration plant A), incineration ash 2 (incineration plant B), and incineration ash 3 (industrial waste incineration plant) were used. For these incinerated ash, the eluted amounts of lead, cadmium, arsenic, selenium, hexavalent chromium and total mercury, and the pH of the test solution in the elution test by the same method were measured. Table 3 shows the measurement results.

Figure 0007304029000003
Figure 0007304029000003

(溶出量の測定)
表3に示す焼却灰に、表2の溶出防止剤とキレート剤及び水を表5に示す配合割合(キレート剤は、固形分換算量)で加え、モルタルミキサーで3分間混合して砂粒状となるように混合物を調整した。該混合物を20℃の温度で7日間密封養生した後に、環境庁告示第13号に準じた方法で鉛、カドミウム、砒素、セレン、6価クロム、総水銀の溶出量を測定した。溶出量の測定結果を表5に示す。
(Measurement of elution amount)
To the incinerated ash shown in Table 3, the elution inhibitor, chelating agent, and water shown in Table 2 were added at the mixing ratio shown in Table 5 (the chelating agent is the solid content equivalent), and mixed with a mortar mixer for 3 minutes to form sand granules. The mixture was adjusted so that After the mixture was sealed and cured at a temperature of 20° C. for 7 days, the eluted amounts of lead, cadmium, arsenic, selenium, hexavalent chromium, and total mercury were measured by a method according to Notification No. 13 of the Environment Agency. Table 5 shows the measurement results of the elution amount.

(環境庁告示第13号に準じた溶出量測定方法)
(1)7日間密封養生後した試料を解砕し、ふるい0.5~5mm通過分を採取混合した。
(2)容積1000mLのポリ容器に試料50gを計りとり、溶媒(純水)500gを加え、振とう機(振とう回数200回/分)で6時間振とうした。
(3)振とう後、遠心分離を行い、試料液の上澄みを孔径1.0μmのメンブレンフィルターでろ過して検液とした。
(4)採取した検液の成分及びpHを表4に示す方法で測定した。
(Method for measuring the amount of elution according to Notification No. 13 of the Environment Agency)
(1) After sealed curing for 7 days, the sample was pulverized, and the portion that passed through a sieve of 0.5 to 5 mm was collected and mixed.
(2) 50 g of a sample was weighed into a plastic container having a capacity of 1000 mL, 500 g of a solvent (pure water) was added, and the mixture was shaken for 6 hours with a shaker (200 shakes/minute).
(3) After shaking, centrifugation was performed, and the supernatant of the sample solution was filtered through a membrane filter with a pore size of 1.0 µm to obtain a test solution.
(4) The components and pH of the sampled test solution were measured by the methods shown in Table 4.

Figure 0007304029000004
Figure 0007304029000004

Figure 0007304029000005
Figure 0007304029000005

表5の結果より、本発明の溶出防止剤とキレート剤を混合した焼却灰(実施例1~22)は、いずれも、鉛、カドミウム、砒素、セレン、6価クロム、総水銀の溶出量が埋立処分判定基準(環境庁告示第13号)の規定値以下に抑制されており、高アルカリ性領域(pH12以上)においても、鉛の溶出防止効果が良好に発揮されていることが分かる。またカルシウムアルミネートとして、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.7の非晶質カルシウムアルミネートをそれぞれ単独で配合したもの、あるいは任意に混合して配合した溶出防止剤(No.2~4、No.14)でも、キレート剤と併用することによって前記6種の重金属類に対する溶出抑制効果が高いことが判明した。これに対し、本発明以外の溶出防止剤とキレート剤を併用した場合(比較例1~7)、あるいはキレート剤単独で使用した場合(比較例8~9)は、前記6種の重金属類のいずれかの溶出量が埋立処分判定基準値を超過しており、溶出防止効果は不十分であった。 From the results in Table 5, the incineration ash mixed with the elution inhibitor and chelating agent of the present invention (Examples 1 to 22) all had lead, cadmium, arsenic, selenium, hexavalent chromium, and total mercury elution. It can be seen that the elution prevention effect of lead is well exhibited even in the high alkaline region (pH 12 or higher), as it is suppressed to the prescribed value or less of the landfill disposal criteria (Environment Agency Notification No. 13). As calcium aluminate, crystalline calcium aluminate having an equimolar ratio of CaO and Al 2 O 3 and amorphous calcium having a molar ratio of CaO and Al 2 O 3 of CaO/Al 2 O 3 =1.7 Elution inhibitors (Nos. 2 to 4, No. 14) containing aluminate alone or arbitrarily mixed together suppress the elution of the six heavy metals by using them together with a chelating agent. It turned out to be highly effective. On the other hand, when an elution inhibitor other than the present invention and a chelating agent were used together (Comparative Examples 1 to 7), or when a chelating agent was used alone (Comparative Examples 8 to 9), the six heavy metals The elution amount of either exceeded the landfill disposal judgment standard value, and the elution prevention effect was insufficient.

Claims (4)

カルシウムアルミネート100質量部、硫酸アルミニウム5~100質量部、硫酸第一鉄20~200質量部、及びアルカリ金属リン酸塩0.5~10質量部を含有する溶出防止剤と、キレート剤を組み合わせて、焼却灰に添加することを特徴とし、
前記焼却灰が、鉛と、カドミウム及び総水銀から選ばれる1種以上の金属とを含む重金属類の溶出量が埋立処分判定基準を超える焼却灰であって、
前記焼却灰100質量部に対して、溶出防止剤を1~10質量部及びキレート剤を固形分換算で0.5~3質量部添加する、
焼却灰からの鉛と、カドミウム及び総水銀から選ばれる1種以上の金属とを含む重金属類の溶出防止方法。
A combination of an elution inhibitor containing 100 parts by mass of calcium aluminate, 5 to 100 parts by mass of aluminum sulfate, 20 to 200 parts by mass of ferrous sulfate, and 0.5 to 10 parts by mass of an alkali metal phosphate, and a chelating agent and is added to the incinerated ash,
The incineration ash is an incineration ash in which the elution amount of heavy metals containing lead and one or more metals selected from cadmium and total mercury exceeds the landfill disposal criteria,
1 to 10 parts by mass of an elution inhibitor and 0.5 to 3 parts by mass of a chelating agent in terms of solid content are added to 100 parts by mass of the incinerated ash,
A method for preventing elution of heavy metals containing lead and one or more metals selected from cadmium and total mercury from incineration ash.
前記溶出防止剤が、さらに、消石灰を100~1200質量部を含有するものである請求項1記載の溶出防止方法。 The elution prevention method according to claim 1, wherein the elution prevention agent further contains 100 to 1200 parts by mass of slaked lime. 前記キレート剤が、ジチオカルバミン酸系キレート剤である請求項1又は2記載の溶出防止方法。 The method for preventing elution according to claim 1 or 2, wherein the chelating agent is a dithiocarbamic acid chelating agent. 前記カルシウムアルミネートが、CaOとAl23が等モル比の結晶質カルシウムアルミネートと、CaOとAl23の含有モル比がCaO/Al23=1.6~2.6の非晶質カルシウムアルミネートとを含むものである請求項1~3のいずれか1項記載の溶出防止方法。 The calcium aluminate is a crystalline calcium aluminate having an equimolar ratio of CaO and Al 2 O 3 and a molar ratio of CaO to Al 2 O 3 is CaO/Al 2 O 3 =1.6 to 2.6. The method for preventing elution according to any one of claims 1 to 3, which further comprises amorphous calcium aluminate.
JP2019037451A 2019-03-01 2019-03-01 Method for preventing elution of heavy metals from incinerated ash Active JP7304029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019037451A JP7304029B2 (en) 2019-03-01 2019-03-01 Method for preventing elution of heavy metals from incinerated ash

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019037451A JP7304029B2 (en) 2019-03-01 2019-03-01 Method for preventing elution of heavy metals from incinerated ash

Publications (2)

Publication Number Publication Date
JP2020138175A JP2020138175A (en) 2020-09-03
JP7304029B2 true JP7304029B2 (en) 2023-07-06

Family

ID=72279680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019037451A Active JP7304029B2 (en) 2019-03-01 2019-03-01 Method for preventing elution of heavy metals from incinerated ash

Country Status (1)

Country Link
JP (1) JP7304029B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129035A (en) 2001-08-07 2003-05-08 Kurita Water Ind Ltd Heavy metal immobilizing agent and method for improving stability of the same
JP2004209372A (en) 2002-12-27 2004-07-29 Ebara Corp Heavy metal elution inhibitor and heavy metal elution inhibiting method
JP2005021732A (en) 2003-06-30 2005-01-27 Denki Kagaku Kogyo Kk Arsenic and/or selenium collection material
JP2009028594A (en) 2007-07-25 2009-02-12 Nihon Hels Industry Corp Method of manufacturing granular product utilizing coal ash containing harmful chemical substance and granular product and resource material obtained thereby
JP2013193039A (en) 2012-03-21 2013-09-30 Swing Corp Heavy metal fixing agent used for incineration fly ash and stabilization treatment method of the incineration fly ash
JP2014004514A (en) 2012-06-22 2014-01-16 Taiheiyo Material Kk Agent for preventing elution of harmful substance and method for preventing elution using the same
JP2014133865A (en) 2012-12-13 2014-07-24 Taiheiyo Material Kk Agent for preventing elution of harmful substance and method for preventing elution using the same
JP2017145294A (en) 2016-02-16 2017-08-24 太平洋マテリアル株式会社 Agent and method for inhibiting the elution of harmful material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062275B2 (en) * 1987-05-11 1994-01-12 大阪市 Method of detoxifying fly ash

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003129035A (en) 2001-08-07 2003-05-08 Kurita Water Ind Ltd Heavy metal immobilizing agent and method for improving stability of the same
JP2004209372A (en) 2002-12-27 2004-07-29 Ebara Corp Heavy metal elution inhibitor and heavy metal elution inhibiting method
JP2005021732A (en) 2003-06-30 2005-01-27 Denki Kagaku Kogyo Kk Arsenic and/or selenium collection material
JP2009028594A (en) 2007-07-25 2009-02-12 Nihon Hels Industry Corp Method of manufacturing granular product utilizing coal ash containing harmful chemical substance and granular product and resource material obtained thereby
JP2013193039A (en) 2012-03-21 2013-09-30 Swing Corp Heavy metal fixing agent used for incineration fly ash and stabilization treatment method of the incineration fly ash
JP2014004514A (en) 2012-06-22 2014-01-16 Taiheiyo Material Kk Agent for preventing elution of harmful substance and method for preventing elution using the same
JP2014133865A (en) 2012-12-13 2014-07-24 Taiheiyo Material Kk Agent for preventing elution of harmful substance and method for preventing elution using the same
JP2017145294A (en) 2016-02-16 2017-08-24 太平洋マテリアル株式会社 Agent and method for inhibiting the elution of harmful material

Also Published As

Publication number Publication date
JP2020138175A (en) 2020-09-03

Similar Documents

Publication Publication Date Title
JP2005040685A (en) Heavy metal adsorbent material and heavy metal treatment method
JP2008273994A (en) Composition for insolubilizing harmful substance
JP6157947B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP2017145294A (en) Agent and method for inhibiting the elution of harmful material
KR100613113B1 (en) Exhaust gas treating agent, process for producing the same, and method of treating exhaust gas
JP5976437B2 (en) Earthwork materials
JP7304029B2 (en) Method for preventing elution of heavy metals from incinerated ash
JP3877712B2 (en) Arsenic and / or selenium collector
JP6077765B2 (en) Anti-elution agent for harmful substances and elution prevention method using the same
JP2019157053A (en) Elution preventive agent for heavy metals from incineration ash and elution preventive method using same
WO1997012662A1 (en) Waste gas and dust treatment method
JP5877049B2 (en) Anti-elution agent for harmful substances
JP5836096B2 (en) Earthwork materials
JP2001205047A (en) Method for treating waste gas and soot dust
JP2003290741A (en) Harmful heavy metal reducing material and harmful heavy metal reducing method using the same
EP2133310A1 (en) Gypsum stabilisation method
JP6002496B2 (en) Earthwork materials
JP2001149743A (en) Waste gas treating agent and waste gas treating method
JP5599574B2 (en) Soil improver from incinerated ash and method for producing the same
JP2003181243A (en) Method of treating waste gas, soot and dust
JP3804950B2 (en) Hazardous heavy metal collector
JP5976415B2 (en) Earthwork materials
JP4374602B2 (en) Heavy metal immobilizing agent and waste treatment method thereof
JPH1071381A (en) Waste treatment agent and waste treatment method
JPH09108646A (en) Treatment of waste and waste treating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230306

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230308

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230329

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230616

R150 Certificate of patent or registration of utility model

Ref document number: 7304029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150