JP2009028594A - Method of manufacturing granular product utilizing coal ash containing harmful chemical substance and granular product and resource material obtained thereby - Google Patents

Method of manufacturing granular product utilizing coal ash containing harmful chemical substance and granular product and resource material obtained thereby Download PDF

Info

Publication number
JP2009028594A
JP2009028594A JP2007193154A JP2007193154A JP2009028594A JP 2009028594 A JP2009028594 A JP 2009028594A JP 2007193154 A JP2007193154 A JP 2007193154A JP 2007193154 A JP2007193154 A JP 2007193154A JP 2009028594 A JP2009028594 A JP 2009028594A
Authority
JP
Japan
Prior art keywords
coal ash
granular product
arsenic
selenium
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007193154A
Other languages
Japanese (ja)
Other versions
JP5205844B2 (en
Inventor
Noriya Ozaki
紀哉 尾崎
Mamoru Kaneko
護 金子
Masanori Ochi
正紀 越智
Katsuya Chiba
克哉 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYOUEI KK
OCHI KENSETSU KK
Nihon HELS Industry Corp
Original Assignee
KYOUEI KK
OCHI KENSETSU KK
Nihon HELS Industry Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYOUEI KK, OCHI KENSETSU KK, Nihon HELS Industry Corp filed Critical KYOUEI KK
Priority to JP2007193154A priority Critical patent/JP5205844B2/en
Publication of JP2009028594A publication Critical patent/JP2009028594A/en
Application granted granted Critical
Publication of JP5205844B2 publication Critical patent/JP5205844B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a treatment method enabling one-process treatment of coal ash possibly containing at least one of hexavalent chromium, arsenic, selenium, fluorine and boron and fixing of these harmful substances in a hardly leaching-out state. <P>SOLUTION: A method of manufacturing a granular product utilizing coal ash comprises adding a reducing agent, lime, cement, a heavy-metal-fixing agent and water to coal ash possibly containing the harmful substance(s), e.g. hexavalent chromium and kneading and granulating the resultant mixture. The granular product and a resource material comprising the product are also provided. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、石炭を燃料として用いる火力発電施設で発生したフライアッシュ等の石炭灰を利用してリサイクル資材として有用な粒状物を製造する方法、こうして製造した粒状物、及び該粒状物からなる資源材に関する。   The present invention relates to a method for producing a granular material useful as a recycling material using coal ash such as fly ash generated in a thermal power generation facility using coal as a fuel, the granular material thus produced, and a resource comprising the granular material Regarding materials.

火力発電では経済的かつ効率的な発電をするため、世界各地の産炭地から採取されたさまざまな種類の石炭(炭種)を燃焼している。このため、炭種によっては六価クロム、ヒ素、セレン、フッ素、ホウ素を含んでいることがあり、燃焼によってこれらの有害化学物質を含んだ石炭灰が生成しうる。これらの有害化学物質は土壌等の環境汚染の原因となりうるため規制する必要がある。そのため現在、「土壌汚染に係る環境基準(平成3年8月23日、環境庁告示第46号)」が規定されている。したがって、有害化学物質の含有量が該環境基準を超える場合には該基準を満たすように経済性を考慮して化学的に安定化した状態に処理する方法が求められている。   Thermal power generation burns various types of coal (coal species) collected from coal production sites around the world in order to generate economically and efficiently. For this reason, some coal types may contain hexavalent chromium, arsenic, selenium, fluorine, and boron, and coal ash containing these harmful chemical substances can be generated by combustion. These harmful chemical substances need to be regulated because they can cause environmental pollution of the soil. Therefore, the “Environmental Standard for Soil Contamination (August 23, 1991, Environment Agency Notification No. 46)” is stipulated. Therefore, when the content of harmful chemical substances exceeds the environmental standard, there is a demand for a method of processing in a chemically stabilized state in consideration of economy so as to satisfy the standard.

有害化学物質を処理するのに最も良い方法は、石炭灰を酸やアルカリで洗浄して有害化学物質を除去することである。しかしこの方法では石炭灰の洗浄、石炭灰の中和処理、有害化学物質を含んだ排水処理の設置など工程が複雑になるため、施設が巨大化する。それゆえ広大な土地が必要であり、処理施設の建設から維持管理の工数も増えるため、石炭灰のリサイクル製品が高価なものになる。   The best way to treat toxic chemicals is to remove the toxic chemicals by washing coal ash with acid or alkali. However, this method complicates the processes such as washing of coal ash, neutralization of coal ash, and installation of wastewater treatment containing toxic chemicals, resulting in a huge facility. Therefore, vast land is required, and the number of man-hours for maintenance from construction of the treatment facilities increases, so that recycled products of coal ash become expensive.

ペーパースラッジを焼却する際に石炭を助燃用に使用することがあるが、その場合に生じるペーパースラッジ焼却灰にも上記の有害化学物質が含まれている。このようなペーパースラッジ焼却灰に水、生石灰、及びセメントを加え、混合、造粒した後、オートクレーブ等で高温高圧下で水蒸気養生を行うことにより水熱固化反応を起こさせて固化体を製造する方法が知られている(特許文献1)。この方法は前記有害化学物質の溶出抑制にも効果があるとされているが、オートクレーブ等の装置を用いて高温高圧下での養生を行う必要があるという不利がある。   When incinerating paper sludge, coal is sometimes used for auxiliary combustion, and the above-mentioned harmful chemical substances are also contained in the paper sludge incineration ash generated in that case. Water, quicklime, and cement are added to such paper sludge incineration ash, mixed, granulated, and then subjected to steam curing under high temperature and high pressure in an autoclave to produce a hydrothermal solidification reaction to produce a solidified body. A method is known (Patent Document 1). Although this method is said to be effective in suppressing elution of the harmful chemical substances, there is a disadvantage that it is necessary to perform curing under high temperature and high pressure using an apparatus such as an autoclave.

特開2005−313032JP 2005-313032 A

また、これらの規制対象有害化学物質の処理方法としては、各有害化学物質を個別に処理する方法や技術が文献などで公表されている。しかし、このような個別処理方法を組み合せることは工程が複雑になりコストも上昇するため、フライアッシュのリサイクル技術としては不適である。そこで、一工程でこれら複数の有害化学物質すべてを処理することができる処理方法や、この方法を適用して製造したフライアッシュリサイクル製品が求められている。   In addition, as a method for treating these regulated hazardous chemical substances, methods and techniques for individually treating each hazardous chemical substance have been published in the literature. However, combining such individual processing methods is not suitable as a fly ash recycling technique because it complicates the process and increases the cost. Accordingly, there is a need for a treatment method that can treat all of these plurality of harmful chemical substances in one step, and a fly ash recycled product manufactured by applying this method.

そこで、本発明の課題は、六価クロム、ヒ素、セレン、フッ素、及びホウ素の少なくとも1種類を含む可能性のある石炭灰をオートクレーブのような特別な装置も水熱反応も不要であり、単純な一工程でも処理することができ、これら有害化学物質を溶出しがたい状態で固定化することができる処理方法を提供することである。   Therefore, the problem of the present invention is that a special apparatus such as an autoclave and a hydrothermal reaction are not required for coal ash that may contain at least one kind of hexavalent chromium, arsenic, selenium, fluorine, and boron, and simple. It is an object of the present invention to provide a treatment method that can be processed even in a single step and that can immobilize these harmful chemical substances in a state where it is difficult to elute them.

本発明は、かかる課題を解決する手段として、
六価クロム、ヒ素、セレン、ホウ素、及びフッ素の少なくとも1種類を含む可能性のある石炭灰に、還元剤、石灰、セメント、重金属固定剤及び水を添加し、混練し、造粒することを特徴とする石炭灰の処理方法を提供する。
The present invention provides a means for solving such a problem,
Adding a reducing agent, lime, cement, heavy metal fixative and water to coal ash which may contain at least one of hexavalent chromium, arsenic, selenium, boron and fluorine, kneading and granulating A method for treating coal ash is provided.

本発明は、かかる課題を解決する手段として、
六価クロム、ヒ素、セレン、ホウ素、及びフッ素の少なくとも1種類を含む可能性のある石炭灰に、還元剤、石灰、セメント、キレート剤及び水を添加し、混練し、造粒することを特徴とする石炭灰の処理方法を提供する。
The present invention provides a means for solving such a problem,
It is characterized by adding reducing agent, lime, cement, chelating agent and water to coal ash which may contain at least one of hexavalent chromium, arsenic, selenium, boron and fluorine, kneading and granulating A method for treating coal ash is provided.

本発明は、また、上記処理方法により得られる粒状物を提供する。   This invention also provides the granular material obtained by the said processing method.

本発明は、さらに、該粒状物からなる資源材を提供する。   The present invention further provides a resource material comprising the granular material.

本発明によれば、六価クロム、ヒ素、セレン、フッ素、及びホウ素を含む石炭灰をオートクレーブのような特別な装置も水熱反応も不要であり、単純な一工程でも処理することができ、しかもこれら有害物質を溶出しがたい状態で固定化することができる。該方法により得られる粒状物は安全な資源材として有用である。   According to the present invention, a special apparatus such as an autoclave and a hydrothermal reaction are not required for coal ash containing hexavalent chromium, arsenic, selenium, fluorine, and boron, and can be processed even in a simple process. In addition, these harmful substances can be immobilized in a state where it is difficult to elute them. The granular material obtained by this method is useful as a safe resource material.

本発明の処理方法は洗浄除去する方法ではないため排水は発生せず、この他の廃棄物も発生しない。加熱することもないため、製造する際に消費するエネルギーは造粒撹拌機の動力だけである。また、消石灰や鉄粉、硫酸第一鉄は価格が安く、特に鉄粉は酸化されていなければ廃棄物からの流用も可能である。   Since the treatment method of the present invention is not a method of washing and removing, no waste water is generated and no other waste is generated. Since it is not heated, the energy consumed in production is only the power of the granulation stirrer. In addition, slaked lime, iron powder, and ferrous sulfate are inexpensive, and in particular, if iron powder is not oxidized, it can be used from waste.

この方法で製造した粒状物は、「土壌汚染に係る環境基準」で定められた方法で溶出試験並びに分析を行うと、六価クロム、ヒ素、セレン、フッ素、ホウ素について環境基準を満たす。また、水に晒して振とう撹拌しても粒子が崩れたり再泥化したりすることがないため、粒状物を例えば埋め戻し材に使用しても水の濁りをもたらすこともない。   Granules produced by this method satisfy the environmental standards for hexavalent chromium, arsenic, selenium, fluorine, and boron when subjected to a dissolution test and analysis by the method specified in “Environmental standards for soil contamination”. Moreover, even if it exposes to water and shakes and stirs, a particle | grain does not collapse or re-mud, and even if it uses a granular material for a backfill material, for example, it does not cause the turbidity of water.

本発明の方法で処理される「石炭灰」としては、フライアッシュ、シンダアッシュ、及びクリンカアッシュが挙げられる。本発明の方法は中でもフライアッシュの処理方法として特に有用である。   “Coal ash” treated by the method of the present invention includes fly ash, cinder ash, and clinker ash. The method of the present invention is particularly useful as a method for treating fly ash.

「土壌汚染に係る環境基準」で定められた有害化学物質は27項目あるが、フライアッシュに含まれているのは六価クロム、ヒ素、セレン、フッ素、ホウ素であり、他の22項目が含まれている事例はほとんどない。このため、上記5項目の有害元素を無害化できれば石炭灰の再利用上は十分である。以下、有害元素ごとに詳しく説明する。   There are 27 hazardous chemical substances defined in the “Environmental Standards Concerning Soil Contamination”, but fly ash contains hexavalent chromium, arsenic, selenium, fluorine and boron, and includes the other 22 items. There are almost no examples. For this reason, if the above five harmful elements can be rendered harmless, it is sufficient for the reuse of coal ash. Hereinafter, each harmful element will be described in detail.

・六価クロム
六価クロムは還元剤により無害な三価クロムに還元される。六価クロムの還元剤として最適なものは、還元性の高い有機化合物及び無機化合物である。好ましい還元性有機化合物としては、例えば、デキストリン、少糖類、単糖類のような還元性末端基を有する炭水化物、アルコール性水酸基を有する有機化合物が挙げられ、好ましい具体例としては、単糖類としてグルコース、フルクトース、少糖類としてマルトース、ラクトースなどが挙げられる。またアルコール性水酸基を有する有機化合物として、メタノール、エタノール、1−プロパノール、1−ブタノール、2−メチル−1−プロパノールなどの第1級アルコールが好ましい。また、2−プロパノールや2−ブタノールなどのような第2級アルコールも挙げられる。好ましい還元性無機化合物としては、例えば、鉄粉、硫酸第一鉄、亜硫酸水素ナトリウムが挙げられる。これらの還元剤の中でも、還元後にヒ素やセレンを吸着する作用を有する点で、特に鉄粉末及び硫酸第一鉄が好ましい。
-Hexavalent chromium Hexavalent chromium is reduced to harmless trivalent chromium by a reducing agent. The most suitable reducing agent for hexavalent chromium is a highly reducing organic compound and inorganic compound. Preferred reducing organic compounds include, for example, carbohydrates having a reducing end group such as dextrin, oligosaccharide, and monosaccharide, and organic compounds having an alcoholic hydroxyl group. Preferred specific examples include glucose, Examples of fructose and oligosaccharide include maltose and lactose. Further, as the organic compound having an alcoholic hydroxyl group, primary alcohols such as methanol, ethanol, 1-propanol, 1-butanol, and 2-methyl-1-propanol are preferable. Secondary alcohols such as 2-propanol and 2-butanol are also included. Preferable reducing inorganic compounds include, for example, iron powder, ferrous sulfate, and sodium bisulfite. Among these reducing agents, iron powder and ferrous sulfate are particularly preferable in that they have an action of adsorbing arsenic and selenium after reduction.

鉄粉は六価クロムやヒ素、セレンなどと十分に反応するように出来る限り粒径が細かく、比表面積が大きいものが望ましい。硫酸第一鉄は水に溶解するため、混練の際に添加した水によって六価クロムやヒ素、セレンとの反応の場が形成されて素早い反応が期待できる。相対的には、鉄粉はセレンにとりより有効で、硫酸第一鉄はヒ素にとりより有効であるので、両者を併用することが望ましい。   The iron powder is preferably as fine as possible and has a large specific surface area so that it can sufficiently react with hexavalent chromium, arsenic, selenium and the like. Since ferrous sulfate dissolves in water, a reaction field with hexavalent chromium, arsenic, and selenium is formed by the water added during kneading, and a quick reaction can be expected. In comparison, iron powder is more effective for selenium and ferrous sulfate is more effective for arsenic, so it is desirable to use both in combination.

三価クロムは人体にとっては必須栄養素で、インシュリンの働きに関与しているといわれており、欠乏すると糖尿病を発症しやすくなる。しかしながら腸管での吸収性が非常に悪く、過剰症例もないため、三価クロムが環境中に拡散しても人の健康に害を与えるなどの影響はまずないと考えられる。また、地球表面の自然界では、三価クロムが六価クロムに酸化されることもほとんどないと考えられる。クロムが酸化される条件を考慮すると、酸化力が強い酸(王水など)や摂氏1000度以上の強い熱を与えた場合など、人為的なものが考えられる。従って、六価クロムが完全に還元されて一定限度(例えば、土壌環境基準の規制値以下、具体的には0.05ppm以下)に低減できれば処理の目的は達成できたと言える。   Trivalent chromium is an essential nutrient for the human body, and is said to be involved in the function of insulin. However, absorption in the intestinal tract is very poor, and there are no excess cases. Therefore, even if trivalent chromium diffuses into the environment, it is unlikely that it will cause any harm to human health. In addition, in the natural world on the earth's surface, it is considered that trivalent chromium is hardly oxidized to hexavalent chromium. Considering the conditions under which chromium is oxidized, an artificial thing such as an acid having strong oxidizing power (such as aqua regia) or a strong heat of 1000 degrees Celsius or more can be considered. Therefore, it can be said that the purpose of the treatment can be achieved if hexavalent chromium is completely reduced and can be reduced to a certain limit (for example, below the regulation value of the soil environment standard, specifically 0.05 ppm or less).

しかしながら、周辺環境への影響や風評などを考慮しなければならない場合には、上記の還元処理を施した後、さらに三価クロムなどの金属類が溶出しないようにする必要がある。この場合の処理には、重金属固定剤による固定化処理が有効である。重金属固定剤としては、例えば有機系重金属固定剤及び無機系重金属固定剤が挙げられる。   However, when it is necessary to consider the influence on the surrounding environment and reputation, it is necessary to further prevent metals such as trivalent chromium from eluting after the reduction treatment. For the treatment in this case, an immobilization treatment with a heavy metal fixing agent is effective. Examples of the heavy metal fixing agent include organic heavy metal fixing agents and inorganic heavy metal fixing agents.

有機系重金属固定剤の代表例は重金属固定作用を有する有機キレート剤(以下、単にキレート剤という)であり、該キレート剤としては、例えば、ジエチルジチオカルバミン酸やジブチルジチオカルバミン酸などのジアルキルジチオカルバミン酸のナトリウム塩やカリウム塩、ポリエチレンイミンやポリアミンをシントンとした高分子系ジチオカルバミン酸のナトリウム塩やカリウム塩、ピロリジンやピペラジン、モルホリンなど複素環アミンをシントンにしたジチオカルバミン酸のナトリウム塩やカリウム塩など、あらゆるジチオカルバミン酸塩化合物が挙げられる。さらに、キサントゲン酸塩も挙げられる。これらのキレート剤は、水溶液、粉体または顆粒、スラリーなどどのような形態であっても効果が得られるが、ハンドリングの良さを考慮すると水溶液製品が最適である。特にジエチルジチオカルバミン酸カリウムは薬液の濃度を60%まで高くすることができ、また金属との反応が非常に早いことから、最適である。 A typical example of an organic heavy metal fixing agent is an organic chelating agent having a heavy metal fixing action (hereinafter simply referred to as a chelating agent). Examples of the chelating agent include sodium dialkyldithiocarbamic acid such as diethyldithiocarbamic acid and dibutyldithiocarbamic acid. All dithiocarbamines such as salts and potassium salts, sodium and potassium salts of high molecular weight dithiocarbamic acid with synthons of polyethyleneimine and polyamine, and sodium and potassium salts of dithiocarbamic acid with synthons of heterocyclic amines such as pyrrolidine, piperazine and morpholine And acid salt compounds. Furthermore, xanthate is also mentioned. These chelating agents can be effective in any form such as an aqueous solution, powder or granule, and slurry, but an aqueous solution product is optimal in view of good handling. In particular, potassium diethyldithiocarbamate is optimal because the concentration of the chemical solution can be increased to 60% and the reaction with the metal is very fast.

ジチオカルバミン酸塩でキレート化した金属化合物は水に溶解しないため、水による環境中への拡散が小さい。したがって、本発明により処理後に粒状物を土中に埋設すると三価クロムは固定化された状態で土中に留まり、溶出は起らない。   Since metal compounds chelated with dithiocarbamate do not dissolve in water, diffusion into the environment by water is small. Therefore, when the granular material is embedded in the soil after the treatment according to the present invention, the trivalent chromium remains in the fixed state in the soil and no elution occurs.

無機重金属固定剤としては、例えば、ケイ酸、リン酸、硫化ナトリウム(NaS)、水硫化ナトリウム(NaSH)等が挙げられる。
これらの重金属固定剤のなかでも、有機キレート剤が好ましい。
Examples of the inorganic heavy metal fixing agent include silicic acid, phosphoric acid, sodium sulfide (Na 2 S), sodium hydrosulfide (NaSH), and the like.
Of these heavy metal fixing agents, organic chelating agents are preferred.

・ヒ素、セレン及びフッ素
排水処理ではヒ素とセレンの除去には鉄粉、鉄塩やカルシウム塩による共沈法が用いられてきた。フッ素は石灰のカルシウムと結合して水に不溶なフッ化カルシウム(蛍石の成分)を形成する。また、石灰はヒ素及びセレンを吸着する。上記の六価クロムの処理で鉄粉または硫酸第一鉄は還元剤として用いた場合には、還元後の鉄成分にヒ素、セレンが吸着する。したがって、六価クロム、ヒ素、セレンの処理に鉄粉または硫酸第一鉄を用い、またヒ素、セレン、フッ素の処理に石灰(消石灰、生石灰)、特に消石灰を用いて処理することが有効である。消石灰は水酸化カルシウム並びに酸化カルシウムが含まれていれば反応するため、どのような等級のものでも良く、安価なもので良い。
・ Arsenic, selenium, and fluorine In wastewater treatment, coprecipitation with iron powder, iron salt, and calcium salt has been used to remove arsenic and selenium. Fluorine combines with lime calcium to form calcium fluoride (fluorite component) that is insoluble in water. Lime also adsorbs arsenic and selenium. When iron powder or ferrous sulfate is used as a reducing agent in the above hexavalent chromium treatment, arsenic and selenium are adsorbed on the reduced iron component. Therefore, it is effective to use iron powder or ferrous sulfate for the treatment of hexavalent chromium, arsenic and selenium, and to treat arsenic, selenium and fluorine with lime (slaked lime, quicklime), especially slaked lime. . Since slaked lime reacts as long as it contains calcium hydroxide and calcium oxide, it may be of any grade and inexpensive.

さらに前述のキレート剤は鉄と共沈したヒ素やセレンを固定化することが出来るため、さらに安定した溶出防止効果が得られる。特にジエチルジチオカルバミン酸塩は効果が高く、クロムとヒ素にも直接反応しうる。   Furthermore, since the aforementioned chelating agent can immobilize arsenic and selenium co-precipitated with iron, a more stable elution preventing effect can be obtained. In particular, diethyldithiocarbamate is highly effective and can react directly with chromium and arsenic.

・ホウ素
ホウ素は単体として存在することはなく、フライアッシュ中ではホウ酸塩またはホウ化物を形成していると考えられる。遊離ホウ酸やホウ酸のアルカリ金属塩は水溶性であり、それ以外のホウ化物やホウ酸塩は非水溶性である。水溶性のホウ酸塩を非水溶性にするには金属などと溶融や強熱処理しなければならず、常温常圧条件ではすぐに反応しない。このため、セメントによる固化を行って溶出を防ぐ。
Boron Boron does not exist as a simple substance, and it is considered that borate or boride is formed in fly ash. Free boric acid and alkali metal salts of boric acid are water-soluble, and other borides and borates are water-insoluble. In order to make a water-soluble borate water-insoluble, it must be melted or heat-treated with a metal or the like, and does not react immediately at room temperature and pressure. For this reason, solidification with cement is performed to prevent elution.

本発明で用いるセメントはどのような種類でも良いが、普通ポルトランドセメントに比べて六価クロムの含有量が少なく、価格や性能も同等である高炉セメントを用いることが好ましい。   The cement used in the present invention may be of any type, but it is preferable to use a blast furnace cement that has a lower hexavalent chromium content and is equivalent in price and performance compared to ordinary Portland cement.

本発明の処理方法において、各処理剤の割合は、通常、フライアッシュ100重量部当り、セメント2〜15重量部(好ましくは、5〜10重量部)、還元剤2〜5重量部(好ましくは、2〜3重量部)、石灰2〜15重量部(好ましくは、5〜10重量部)、水10〜20重量部(好ましくは、15〜20重量部)、重金属固定剤0.5〜2重量部(好ましくは、1〜1.5重量部)でよい。   In the treatment method of the present invention, the ratio of each treatment agent is usually 2 to 15 parts by weight (preferably 5 to 10 parts by weight) and 2 to 5 parts by weight (preferably a reducing agent) per 100 parts by weight of fly ash. 2 to 3 parts by weight), lime 2 to 15 parts by weight (preferably 5 to 10 parts by weight), water 10 to 20 parts by weight (preferably 15 to 20 parts by weight), heavy metal fixing agent 0.5 to 2 Part by weight (preferably 1 to 1.5 parts by weight) may be used.

本発明の処理方法の実施は、上記に掲げた有害化学物質を処理するための化学反応が起こるように、石炭灰と、セメント、還元剤(好ましくは、鉄粉及び/または硫酸第一鉄)、石灰(好ましくは、消石灰)、水、重金属固定剤を、例えば造粒撹拌機に投入して数分間混練した後、所望の粒径に造粒して養生する。水熱反応は不要である。   Implementation of the treatment method of the present invention is carried out so that the chemical reaction for treating the harmful chemical substances listed above occurs, coal ash, cement, reducing agent (preferably iron powder and / or ferrous sulfate). Then, lime (preferably slaked lime), water, and heavy metal fixing agent are put into, for example, a granulating stirrer and kneaded for several minutes, and then granulated to a desired particle size and cured. Hydrothermal reaction is not necessary.

本発明の処理方法を実施する際の具体的な混合あるいは混練の手順は様々に可能である。例えば、造粒撹拌機に、まず初めに、フライアッシュ、セメント及び石灰の粉体材料を投入する。還元剤が粉末状である場合にはこれもさらに一緒に投入する。次に、これらの粉体材料を攪拌下混合して混合粉体とする。混合時間は制限されないが、通常2.5〜5分程度でよい。次に、該混合粉体に重金属固定剤及び水を添加する。重金属固定剤と水は混合薬液の状態で造粒撹拌機に投入してもよい。その後、2.5分〜5分程度の時間混練し、造粒する。その後常温常圧の条件下で1週間にわたって養生して粒状物を完成する。   Various specific mixing or kneading procedures are possible when carrying out the treatment method of the present invention. For example, first, powder materials such as fly ash, cement, and lime are charged into a granulator. If the reducing agent is in powder form, it is also added together. Next, these powder materials are mixed with stirring to obtain a mixed powder. The mixing time is not limited, but it may usually be about 2.5 to 5 minutes. Next, a heavy metal fixing agent and water are added to the mixed powder. The heavy metal fixing agent and water may be added to the granulation stirrer in the state of a mixed chemical solution. Thereafter, the mixture is kneaded and granulated for about 2.5 minutes to 5 minutes. After that, it is cured for one week under normal temperature and pressure conditions to complete the granular material.

材料の添加順序は、別の例では、フライアッシュ、セメント、石灰、還元剤及び水を造粒撹拌機投入し、混練し、得られた混練物に重金属固定剤を添加する手順でもよい。その他、さまざまなバリエーションが許容される。   In another example, the order of adding the materials may be a procedure in which fly ash, cement, lime, reducing agent and water are put into a granulation stirrer and kneaded, and a heavy metal fixing agent is added to the obtained kneaded product. Various other variations are acceptable.

上記の処理方法により得られた粒状物の形状及び寸法にはなんら制約はなく、リサイクルの用途に合わせて選択すればよい。不規則形状が一般的であるが規則性のある形状、例えば球状、角状でもよい。適用上特定の形状が求められない場合には不規則形状でよいし、特定の規則的形状が望ましい場合には造粒の際に又は造粒後に所要の形状に成型すればよい。粒径は通常0.5mm〜40mmであり、好ましくは2mm〜20mmである。   There is no restriction | limiting in the shape and dimension of the granular material obtained by said processing method, What is necessary is just to select according to the use of recycling. Irregular shapes are common, but regular shapes such as spherical and square shapes may be used. When a specific shape is not required for application, it may be an irregular shape, and when a specific regular shape is desired, it may be formed into a required shape during granulation or after granulation. The particle size is usually 0.5 mm to 40 mm, preferably 2 mm to 20 mm.

こうして得られた粒状物はリサイクル資材として使用することができ、例えば、埋め戻し材、路盤材、盛土材等の資源材として利用することができる。   The granular material thus obtained can be used as a recycled material, and can be used as a resource material such as a backfill material, a roadbed material, and a banking material.

有害化学物質処理と埋め戻し材を製造するために最適な条件を確認するため、以下のような方法で実証実験を行った。   In order to confirm the optimum conditions for producing toxic chemicals and backfilling materials, the following experiment was conducted.

(1)フライアッシュの処理:
表1に記載のように、対照、比較例1−6、実施例1−8の各例において、各材料を表に示した割合で使用した。
(1) Treatment of fly ash:
As described in Table 1, in each example of the control, Comparative Examples 1-6 and Example 1-8, each material was used in the ratio shown in the table.

−表1の説明−
〔使用材料の量〕
表1において各材料の量は次のように記載されている。
-Description of Table 1-
[Amount of material used]
In Table 1, the amount of each material is described as follows.

フライアッシュ(FAとも略す)を100重量部として、これに添加する高炉セメント、消石灰、還元剤(鉄成分)、キレート剤及び水をFA量に対する相対量(重量部)で表す。   The fly ash (abbreviated as FA) is 100 parts by weight, and the blast furnace cement, slaked lime, reducing agent (iron component), chelating agent and water added to the fly ash are expressed as relative amounts (parts by weight) to the FA amount.

〔添加順序〕
「1」は、第一段階の添加と攪拌の段階を示す。「2」は、第二段階の添加と攪拌の段階を示す。
[Addition order]
“1” indicates the stage of addition and stirring in the first stage. “2” indicates the stage of addition and stirring in the second stage.

したがって、表1の記載から、例えば、実施例1では、FA、セメント、鉄粉及び石灰を第一段階で造粒撹拌機に投入し、攪拌して粉体混合物を得、その後の第二段階で水とキレート剤とを水溶液状態で投入し、攪拌により混練し造粒することが分る。また、実施例3では、FA、セメント、鉄粉、石灰及び水を第一段階で造粒撹拌機に投入し、攪拌して混練し混練物を得、その後の第二段階でキレート剤を投入し、攪拌により混練し造粒したことが分る。   Therefore, from the description in Table 1, for example, in Example 1, FA, cement, iron powder and lime are charged into the granulation stirrer in the first stage and stirred to obtain a powder mixture, and then the second stage. Thus, it is understood that water and a chelating agent are added in an aqueous solution state, and are kneaded and granulated by stirring. In Example 3, FA, cement, iron powder, lime and water are added to the granulation stirrer in the first stage, and are kneaded and kneaded to obtain a kneaded product, and then the chelating agent is added in the second stage. And kneaded and granulated by stirring.

〔攪拌時間〕
「一回目」とは、第一段階における攪拌時間を示す。「二回目」とは、第二段階における攪拌時間を示す。
[Stirring time]
“First time” indicates the stirring time in the first stage. “Second time” indicates the stirring time in the second stage.

〔使用材料〕
・フライアッシュ(FA):表2に示す有害化学物質を含有するフライアッシュを使用した。なお、表2に示す有害化学物質の溶出量は、「土壌汚染に係る環境基準(平成3年8月23日環境庁告示第46号)」に定められた、表3に示す分析方法によって測定した値である。また、含有量は上述の表4に記載の方法に従って測定した値である。
[Materials used]
Fly ash (FA): Fly ash containing harmful chemical substances shown in Table 2 was used. In addition, the leaching amount of harmful chemical substances shown in Table 2 was measured by the analysis method shown in Table 3 defined in “Environmental Standards Concerning Soil Contamination (August 23, 1991, Environmental Agency Notification No. 46)” It is the value. The content is a value measured according to the method described in Table 4 above.

表2に示された結果を見ると、原料のフライアッシュは有害化学物質の溶出量がすべて規制値(後述の表6参照)を上回っている。すなわち、無処理で土中に埋めるとこれらの有害化学物質が環境中に拡散し、土壌や地下水を汚染する虞がある。   Looking at the results shown in Table 2, the amount of elution of harmful chemical substances in the raw fly ash exceeds the regulation value (see Table 6 described later). That is, when buried in the soil without treatment, these harmful chemical substances may diffuse into the environment and contaminate the soil and groundwater.

Figure 2009028594
Figure 2009028594

サンプル番号0の「対照」は水の添加量を決めるために行ったサンプルである。   The “control” of sample number 0 is a sample that was used to determine the amount of water added.

Figure 2009028594
Figure 2009028594

Figure 2009028594
Figure 2009028594

Figure 2009028594
Figure 2009028594

・セメント:高炉セメント
・キレート剤:ジチオカルバミン酸塩系キレート剤(商品名「メタルブロッカー」、日本ヘルス工業(株)製)
・消石灰:市販の園芸用消石灰
・ Cement: Blast furnace cement ・ Chelating agent: Dithiocarbamate chelating agent (trade name “Metal Blocker”, manufactured by Nippon Health Industry Co., Ltd.)
・ Slaked lime: Commercial slaked lime

上記のようにして、造粒撹拌機にて材料を混練して造粒後、常温常圧の条件下で1週間にわたって養生させて粒状物を完成させた。   As described above, the materials were kneaded with a granulation stirrer, granulated, and then cured for one week under normal temperature and pressure conditions to complete a granular material.

(2)粒状物からの溶出試験:
上記のようにして各実施例及び各比較例のおける処理で得られた粒状物について有害化学物質の溶出量を「土壌の汚染に係る環境基準(平成3年8月23日環境庁告示第46号)」に定められ、前述の表3に示す分析方法により測定した。
(2) Dissolution test from granular materials:
For the particulate matter obtained by the treatment in each Example and each Comparative Example as described above, the elution amount of harmful chemical substances was determined as “Environmental Standard on Soil Contamination (August 23, 1991, Environment Agency Notification No. 46 No.) ”and measured by the analysis method shown in Table 3 above.

測定の結果を表5に示す。なお、「土壌の汚染に係る環境基準(平成3年8月23日環境庁告示第46号)」による有害化学物質の溶出量規制値は表6に示すとおりである。   Table 5 shows the measurement results. In addition, the elution amount regulation value of hazardous chemical substances according to “Environmental standards for soil contamination (August 23, 1991, Environment Agency Notification No. 46)” is as shown in Table 6.

Figure 2009028594
Figure 2009028594

Figure 2009028594
Figure 2009028594

(単位:mg/L)。                                                     (Unit: mg / L).

上記表5に示された結果から、サンプルNo.0(「対照」)では消石灰や鉄を添加していないが、全ての有害化学物質が規制値を下回った。しかし、長期的にはこれらの化学物質が溶出する可能性がある。また、消石灰を添加したサンプルNo.5以降(比較例5,6及び実施例1−8)では、フッ素、ホウ素とも規制値を大きく下回った。このことから、消石灰がホウ素の固定化にも寄与していることが分る。   From the results shown in Table 5 above, Sample No. At 0 (“control”), no slaked lime or iron was added, but all hazardous chemicals were below regulatory limits. However, in the long term, these chemical substances may be eluted. Sample No. with slaked lime added. In 5 and later (Comparative Examples 5 and 6 and Examples 1-8), both fluorine and boron were significantly below the regulation values. From this, it can be seen that slaked lime contributes to the fixation of boron.

各例のサンプルを製造後3ヶ月間放置した後、幾つかの例について、再び上記と同様の方法で溶出試験を行った。結果を表7に示す。   After the samples of each example were allowed to stand for 3 months after production, some examples were again subjected to a dissolution test in the same manner as described above. The results are shown in Table 7.

Figure 2009028594
Figure 2009028594

表7に示された結果から、対照及び比較例4ではセレンの溶出量が高まったが、実施例1、4及び7では溶出量は規制値を超えず、長期的安定性が高いことが判明した。   From the results shown in Table 7, the elution amount of selenium increased in the control and comparative example 4, but the elution amount did not exceed the regulation value in Examples 1, 4 and 7, and the long-term stability was high. did.

(3)土質試験:
次に上記で得られた実施例3の粒状物を埋め戻し材としての土質試験に供した。
(3) Soil test:
Next, the granular material of Example 3 obtained above was subjected to a soil test as a backfill material.

〔土質試験の方法〕
土質区分判定のための指標を得る際は、表8に示す土質区分判定のための調査試験方法を標準とする。
[Method of soil test]
When obtaining indices for determining soil classification, the survey test method for determining soil classification shown in Table 8 is used as a standard.

Figure 2009028594

*「JGS」は、地盤工学会基準を表す。
Figure 2009028594

* “JGS” represents the Geotechnical Society standard.

その結果、表9に示す結果が得られた。   As a result, the results shown in Table 9 were obtained.

Figure 2009028594
Figure 2009028594

上記において、コーン指数が2120+であることは、土質区分基準において「第2種建設発生土の第2種改良土」に分類され、砂質度、礫質土及びこれらに準じるものに該当する。   In the above, the corn index of 2120+ is classified as “Second-class improved soil of second-class construction soil” in the soil classification criteria, and corresponds to sandiness, gravelly soil, and the like. .

用途は国土交通省が出した「発生土利用基準について(平成18年8月10日発出)」における「適用用途標準」で定められているが、これによると、上記実施例1−8の製品は工作物の埋め戻し、建築物の埋め戻し、土木構造物への埋め戻賦道路用盛土、河川築堤(高規格堤防、一般堤防)、土地造成(宅地、公園・緑地)、鉄道盛土、空港盛土、水面埋立てに利用できる。   The use is defined in the “Applicable standard” in “Regarding the use of generated soil (issued on August 10, 2006)” issued by the Ministry of Land, Infrastructure, Transport and Tourism. Is backfilling of works, backfilling of buildings, backfilling for civil engineering structures, river embankment (high standard embankment, general embankment), land preparation (residential land, park / green space), railway embankment, airport It can be used for embankment and landfill.

Claims (3)

六価クロム、ヒ素、セレン、フッ素、及びホウ素の少なくとも1種類を含む可能性のある石炭灰に、還元剤、石灰、セメント、重金属固定剤及び水を添加し、混練し、造粒することを特徴とする石炭灰を利用する粒状物の製造方法。 Adding a reducing agent, lime, cement, heavy metal fixative and water to coal ash which may contain at least one of hexavalent chromium, arsenic, selenium, fluorine and boron, kneading and granulating A method for producing a granular material using coal ash as a feature. 請求項1に記載の製造方法により得られる粒状物。 The granular material obtained by the manufacturing method of Claim 1. 請求項2に記載の粒状物からなる資源材。 A resource material comprising the granular material according to claim 2.
JP2007193154A 2007-07-25 2007-07-25 Method for producing granular material using coal ash containing harmful chemical substances, and granular material and resource material obtained by the method Active JP5205844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007193154A JP5205844B2 (en) 2007-07-25 2007-07-25 Method for producing granular material using coal ash containing harmful chemical substances, and granular material and resource material obtained by the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007193154A JP5205844B2 (en) 2007-07-25 2007-07-25 Method for producing granular material using coal ash containing harmful chemical substances, and granular material and resource material obtained by the method

Publications (2)

Publication Number Publication Date
JP2009028594A true JP2009028594A (en) 2009-02-12
JP5205844B2 JP5205844B2 (en) 2013-06-05

Family

ID=40399739

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007193154A Active JP5205844B2 (en) 2007-07-25 2007-07-25 Method for producing granular material using coal ash containing harmful chemical substances, and granular material and resource material obtained by the method

Country Status (1)

Country Link
JP (1) JP5205844B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119057A (en) * 2011-12-07 2013-06-17 Taiheiyo Materials Corp Agent for preventing leaching of toxic substance
JP2013139545A (en) * 2011-12-07 2013-07-18 Taiheiyo Materials Corp Civil engineering material
JP2014024746A (en) * 2012-06-22 2014-02-06 Taiheiyo Material Kk Civil engineering material
JP2014136180A (en) * 2013-01-16 2014-07-28 Kanazawa Hodo:Kk Method for recycling burned ash
JP2014198301A (en) * 2013-03-29 2014-10-23 日本製紙株式会社 Method of treating combustion ash
JP2015182057A (en) * 2014-03-26 2015-10-22 王子ホールディングス株式会社 Treating method of combustion ash and utilization of the same
JP2016087514A (en) * 2014-10-31 2016-05-23 太平洋マテリアル株式会社 Coal ash treatment agent
JP2018158340A (en) * 2017-03-23 2018-10-11 中国電力株式会社 Coal ash granule and method for producing coal ash granule
JP2020138175A (en) * 2019-03-01 2020-09-03 太平洋マテリアル株式会社 Heavy metal analogs elution prevention method for incineration ash
JP2021151947A (en) * 2020-03-18 2021-09-30 昌敏 遠藤 Method for producing inorganic industrial waste recycled product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246348A (en) * 2000-03-07 2001-09-11 Kurita Water Ind Ltd Method of treating ash containing selenium
JP2005138074A (en) * 2003-11-10 2005-06-02 Kawasaki Heavy Ind Ltd Material obtained by stabilizing waste
JP2005279413A (en) * 2004-03-29 2005-10-13 Kanazawa Univ Elution inhibiter for hazardous element and fly ash subjected to elution inhibiting treatment of hazardous element using the same
JP2007119341A (en) * 2005-09-30 2007-05-17 Ube Ind Ltd Coal ash granulated sand and method of manufacturing coal ash granulated sand

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001246348A (en) * 2000-03-07 2001-09-11 Kurita Water Ind Ltd Method of treating ash containing selenium
JP2005138074A (en) * 2003-11-10 2005-06-02 Kawasaki Heavy Ind Ltd Material obtained by stabilizing waste
JP2005279413A (en) * 2004-03-29 2005-10-13 Kanazawa Univ Elution inhibiter for hazardous element and fly ash subjected to elution inhibiting treatment of hazardous element using the same
JP2007119341A (en) * 2005-09-30 2007-05-17 Ube Ind Ltd Coal ash granulated sand and method of manufacturing coal ash granulated sand

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119057A (en) * 2011-12-07 2013-06-17 Taiheiyo Materials Corp Agent for preventing leaching of toxic substance
JP2013139545A (en) * 2011-12-07 2013-07-18 Taiheiyo Materials Corp Civil engineering material
JP2014024746A (en) * 2012-06-22 2014-02-06 Taiheiyo Material Kk Civil engineering material
JP2014024745A (en) * 2012-06-22 2014-02-06 Taiheiyo Material Kk Civil engineering material
JP2014136180A (en) * 2013-01-16 2014-07-28 Kanazawa Hodo:Kk Method for recycling burned ash
JP2014198301A (en) * 2013-03-29 2014-10-23 日本製紙株式会社 Method of treating combustion ash
JP2015182057A (en) * 2014-03-26 2015-10-22 王子ホールディングス株式会社 Treating method of combustion ash and utilization of the same
JP2016087514A (en) * 2014-10-31 2016-05-23 太平洋マテリアル株式会社 Coal ash treatment agent
JP2018158340A (en) * 2017-03-23 2018-10-11 中国電力株式会社 Coal ash granule and method for producing coal ash granule
JP7059742B2 (en) 2017-03-23 2022-04-26 中国電力株式会社 Manufacturing method of coal ash granules for environmental restoration materials
JP2020138175A (en) * 2019-03-01 2020-09-03 太平洋マテリアル株式会社 Heavy metal analogs elution prevention method for incineration ash
JP7304029B2 (en) 2019-03-01 2023-07-06 太平洋マテリアル株式会社 Method for preventing elution of heavy metals from incinerated ash
JP2021151947A (en) * 2020-03-18 2021-09-30 昌敏 遠藤 Method for producing inorganic industrial waste recycled product

Also Published As

Publication number Publication date
JP5205844B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5205844B2 (en) Method for producing granular material using coal ash containing harmful chemical substances, and granular material and resource material obtained by the method
O'Day et al. Mineral-based amendments for remediation
Davidovits Environmentally driven geopolymer cement applications
Hendrych et al. Stabilisation/solidification of landfill leachate concentrate and its residue obtained by partial evaporation
JP2005146275A (en) Agent for improving, solidifying, and stabilizing soil and its quality
JP2012076009A (en) Method of producing granulated and solidified body from biomass incineration ash
JP2006273921A (en) Soil improving material, soil improving method, sludge ash for preventing dissolution of heavy metal in soil, and sludge ash for shortening curing period for developing strength
JP2007268513A (en) Method for treating waste
Banerjee et al. Management of arsenic-laden water plant sludge by stabilization
JP2004050158A (en) Heavy metal immobilizing material and method for treating contaminated soil
WO2009116184A1 (en) Method of reclaiming incinerated ash from solidified fuel from refuse, woody biomass fuel, solidified fuel from sludge, etc. as well as other waste and contaminated soil incinerated ash
Lu et al. Reduction and Stabilization Remediation of Hexavalent Chromium (Cr6+)-contaminated Soil.
JP2008255171A (en) Fixing agent for inorganic harmful component
JP4431664B2 (en) A leaching inhibitor for harmful elements, fly ash that has been used to suppress the leaching of harmful elements
JPWO2008152855A1 (en) Soil improvement method and land shielding method
JP2007216069A (en) Treating method of contaminated soil
JP5077777B2 (en) Elution reduction material and elution reduction treatment method
Ramakrishnaiah et al. Stabilization of metal-laden soils using different additives-a review of technologies
JP4774416B2 (en) Treatment method of contaminated soil
Zhou et al. Study on the stabilization/solidification of lead-contaminated soil using alkali-activated cementing materials with rich-silicon materials
JP2007083183A (en) Insolubilization treatment of soil contaminated with heavy metal and so on
JP2004313826A (en) Harmful substance catching material
Teng et al. Analysis of composition characteristics and treatment techniques of municipal solid waste incineration fly ash in China
JP3854337B2 (en) Solidification agent and solidification product for incineration ash
Zhang et al. Mineralogy optimization for immobilization of potentially toxic elements and halides in Co-disposed flue gas desulfurization brines and bituminous coal fly ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120810

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120810

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120914

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5205844

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250