JP7303259B2 - 複数の導体ループを備える、虹彩アパーチャのためのマイクロ波結合装置 - Google Patents

複数の導体ループを備える、虹彩アパーチャのためのマイクロ波結合装置 Download PDF

Info

Publication number
JP7303259B2
JP7303259B2 JP2021130159A JP2021130159A JP7303259B2 JP 7303259 B2 JP7303259 B2 JP 7303259B2 JP 2021130159 A JP2021130159 A JP 2021130159A JP 2021130159 A JP2021130159 A JP 2021130159A JP 7303259 B2 JP7303259 B2 JP 7303259B2
Authority
JP
Japan
Prior art keywords
microwave
coupling device
coupling
conductor
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021130159A
Other languages
English (en)
Other versions
JP2022033007A (ja
Inventor
プリセカル アイオン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Biospin GmbH
Original Assignee
Bruker Biospin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Biospin GmbH filed Critical Bruker Biospin GmbH
Publication of JP2022033007A publication Critical patent/JP2022033007A/ja
Application granted granted Critical
Publication of JP7303259B2 publication Critical patent/JP7303259B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/345Constructional details, e.g. resonators, specially adapted to MR of waveguide type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/06Cavity resonators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3692Electrical details, e.g. matching or coupling of the coil to the receiver involving signal transmission without using electrically conductive connections, e.g. wireless communication or optical communication of the MR signal or an auxiliary signal other than the MR signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/04Coupling devices of the waveguide type with variable factor of coupling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34046Volume type coils, e.g. bird-cage coils; Quadrature bird-cage coils; Circularly polarised coils
    • G01R33/34069Saddle coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

本発明は、第1のマイクロ波構造体、詳細にはマイクロ波導波管からのマイクロ波放射を、第2のマイクロ波構造体、詳細にはマイクロ波共振空洞に結合させるための結合装置に関し、第1及び第2のマイクロ波構造体は共通の壁を共有し、結合装置が、第1のマイクロ波構造体の側に位置する壁の虹彩開口を介して結合をするものである。詳細には、結合装置は、基本的に円筒形状である。
このような結合装置は、特許文献1から知られている。
電子常磁性共鳴(=EPR)分光法は、常磁性磁気モーメントを有する、特に不対電子を有する試料を調べるための強力なツールである。EPR分光法では、試料は通常、マイクロ波共振空洞内で一定の周波数のマイクロ波放射を受け、背景磁場が掃引される。試料によるマイクロ波の吸収が測定され、特にその化学状態及び分子環境に関する試料の特性評価に用いられる。
マイクロ波放射をマイクロ波共振器に導入するために、マイクロ波放射は通常、マイクロ波導波管に供給され、マイクロ波導波管は、共通の壁をマイクロ波空洞と共有する。この壁は、マイクロ波放射がマイクロ波共振器に結合され得る(及びマイクロ波共振器から放出され得る)、虹彩開口と呼ばれる開口を備える。
EPR分光実験では、共振空洞の電磁損失が重要である。電磁損失は、いわゆる品質係数(又はQ値)によって特徴付けられる。品質係数は、マイクロ波共振空洞自体、特にその壁(「内部Q値」、寄与QINT)、さらに虹彩開口、特にそのサイズ(寄与QIRIS)に依存する。QINT及びQIRISから、いわゆる非結合品質係数Qが得られる。品質係数は、導波管内の虹彩開口の前に金属結合装置を配置することによっても影響を受け得る。このようにして、虹彩開口近傍の磁場強度は影響を受け、特に増加する可能性があり、これによって、マイクロ波導波管とマイクロ波共振空洞との間の結合(結合係数βの寄与)を増加させる。結果として、いわゆる負荷品質係数Qは、マイクロ波空洞に起因するものとすることができる。例えば、非特許文献1と比較。
所望のEPR測定のタイプに応じて、異なる値の負荷品質係数Qが望まれる。CW-EPR(連続波EPR)分光法では、試料の信号はQに比例するため、高い値のQが望ましい。対照的に、パルスEPR分光法では、デッドタイムを最小限に抑えるために、低い値のQが望ましい。さらに、一部の測定では、結合条件を、特に不足結合、臨界結合、及び過結合の間で変更することが望ましい。結果として、EPR測定システム用のプローブヘッドは、様々なタイプのEPR測定のために最適化された測定条件を可能にするために、高ダイナミックレンジを備える必要がある。
負荷品質係数を変更するために、虹彩開口部の前の位置(虹彩開口部に近い磁場強度を最大にするため)と虹彩開口部から離れた位置(虹彩開口部に近い磁場強度を最小にするため)との間で移動可能な結合装置を使用することが知られている。実際には、結合装置を後退させて、虹彩開口部の近くで実質的にゼロの磁場強度を達成することができる。対照的に、結合装置が虹彩開口の近くに配置された状態で、最大結合係数に対応する虹彩開口近傍で達成可能な最大磁場強度Bmaxは制限され、これによって、(虹彩開口の所与のサイズに対して)下限Q及びダイナミックレンジが決定されることになる。
特許文献1は、同軸線からマイクロ波空洞への結合部を記載しており、金属スタッドが誘電体ねじに配置される。該部におけるスタッドの位置は、ねじを回すことによって調整可能である。
特許文献2は、例えば患者の歯に配置するための検出ポートを有する円筒形の電子常磁性共鳴プローブヘッドを記載している。結合及び調整ユニットは、結合孔の前に配置される。結合定数を調整するために、結合及び調整ユニットは、ねじ状の非金属調整ボルトの端部に取り付けられた金属キャップを備える。
米国特許第3,896,400号 中国特許第103 033 526号
J.Gao、「Analytic Formulae for the Coupling Coefficient β between a Waveguide and a Travelling Wave Structure」、Nuclear Instruments and Methods in Physics Research A 330(1993)、p.306~309and PAC 1993,page 868-870.
本発明の目的は、結合係数をより大きくすることができる、特に、ダイナミックレンジをより大きくすることができる結合装置を提供することである。
発明の簡単な説明
この目的は、本発明によれば、冒頭で紹介されたような結合装置によって達成され、
結合装置は、N≧3、好ましくは3≦N≦20であるN個の導電性の導体ループを備え、
導体ループは、z軸に沿って同軸に配列され、
軸方向に隣接する導体ループは誘電体によって分離されている。
本発明によれば、結合装置は、第1及び第2のマイクロ波構造体の共通の壁における虹彩開口の近くに配置されると、マイクロ波磁場を歪ませることができる。
結合装置は、例えば完全な金属スタッドと比較して同様の方法で、基本的にz方向に沿って延びる磁力線を、結合装置の内部領域から結合装置の外側にシフト(再分配)することができる、すなわち、結合装置がない状況(又は結合装置が虹彩開口から後退している状況)と比較して虹彩開口の近くにシフトすることができる。
しかしながら、追加で、基本的にz軸に垂直に伝播するマイクロ波磁力線は、z軸の方向に分離された導体ループ間においての結合装置の内部に向かって侵入することができる。導体ループを分離する誘電体は、この「半径方向の」マイクロ波磁場を遮断しないか、若しくは、少なくともわずかしか遮断しない。この効果は、さらなるマイクロ波磁力線を虹彩開口の近傍に再分配するために利用され得、したがってそこでの磁場強度を増加させ、そして、したがって、本発明の結合装置によって確立される結合係数を増加させる。より具体的には、結合装置の、虹彩開口から離れた方の側面に近い磁力線は、導体ループ間の誘電体軸方向ギャップを使用して、歪められて結合装置の内部容積内にループし(リンケージを形成し)、その結果、結合装置の虹彩開口に面する側に誘導された二次ループが生じ、これによって、そこで達成可能な磁場強度に寄与する。本発明の結合装置では、全金属スタッド又は軸方向に穿孔されたスタッドと比較して、虹彩開口近傍でより高いBmax値を達成することができる。
本発明の結合装置によると、結合装置を虹彩開口部の前に配置して、特に低いQ値を達成することができる。次に、虹彩開口部の前の結合装置の位置(中央)と虹彩開口部から後退した位置(ここでは実質的にマイクロ波共振空洞/第2の構造の寸法及び虹彩開口部の寸法のみが品質係数に関連する)との間で切り替えると、特に高いQ値のダイナミックレンジが達成され得る。
導体ループは、z方向に沿って配列され、使用時には、典型的には第1及び第2のマイクロ波構造体の共通の壁と平行であり、典型的には虹彩開口の長軸とも平行である。結合装置は、典型的には、基本的に円筒形状であるが、特に(z軸に垂直な)断面が楕円形又は長方形の、非円筒形状を有してもよい。
典型的には、結合装置は、z軸に沿って中央が空洞のボアを有する(そこでは誘電体として空気又は真空状態を有する)。代替として、z軸に沿った中央領域は固体誘電体で充填されていてもよい。
導体ループは、典型的にはz方向に沿って等間隔に配置されるが、間隔は不均一に選択されてもよい。ループは、典型的には環状であるが、螺旋状であってもよいし、又は両方が組み合わされてもよい。導体ループは、典型的には、銀又はアルミニウムなどの非磁性金属で作製される。
誘電体は電気絶縁体であり、1つ又は複数のプラスチック材料及び/又は1つ又は複数のセラミック材料及び/又はガス及び/又は空気及び/又は真空から構成され得る。誘電体は、空気及び真空を含め、異なる(誘電体、非金属)材料の異なるセクションから構成され得る。
本発明の好ましい実施形態
本発明の結合装置の好ましい実施形態では、導体ループ及び誘電体が、z軸に沿ったマイクロ波磁場の軸方向の伝搬(軸方向伝搬)がカットオフ条件を下回るように選択され、寸法決めされ、配置されており、そのため、z軸に平行なマイクロ波磁力線は結合装置の内部容積に入ることができない。z軸に平行なマイクロ波磁力線が結合装置の内部容積に入ることができない場合、z軸に平行な磁力線は、結合装置の外側、すなわち虹彩開口近傍に集中せざるを得ない。これにより、マイクロ波磁力線の再分配が特に効率的になり、虹彩開口近傍で特に高いBmax値(したがって、高結合係数)が達成され得る。カットオフ条件は、少なくとも結合装置が使用されるときのマイクロ波放射周波数で満たされるべきである。少なくとも1GHz~300GHzの間隔のマイクロ波放射周波数で満たされる。
別の好ましい実施形態では、導体ループ及び誘電体は、軸方向に隣接するループ間から結合装置の内部容積内へのマイクロ波磁場の伝搬が可能となるように選択され、寸法決めされ、配置されており、そのため、個々の導体ループの周りの局所的なマイクロ波磁力線ループが、結合装置を介して第1のマイクロ波構造体内のマイクロ波磁場と第2のマイクロ波構造体内のマイクロ波磁場とを連結するために形成され得る。局所磁力線ループは、第1のマイクロ波構造体内において例えばxz平面内で円形に走るマイクロ波磁場の歪みとしてそれらの原点を有する側である、虹彩開口に面する側とは反対の側と、結合装置の外側にあるそれらの部分が高いBmax値に寄与し得る側である、虹彩開口部に面する側との両方に、対称的に構築される。したがって、このようにして、Bmax及び結合係数をこのように大きくすることができる。この(追加の)リンケージ条件は、少なくとも、結合装置が使用されるときのマイクロ波放射周波数において満たされるべきである。少なくとも1GHz~300GHzの間隔のマイクロ波放射周波数で満たされる。
好ましい実施形態では、導体ループは、連続的な螺旋導体構造体の導体巻線として形成される。これは、単一の誘電体支持構造体とその周りに巻き付けられた単一の螺旋ワイヤとを用いて、実施するのが比較的簡単である。なお、所望であれば、連続的な螺旋導体構造体は、強固な(solid)支持構造なしで自立支持式に構築されてもよいことに留意されたい。
別の好ましい実施形態では、導体ループは、互いに電気的に絶縁された閉じた導体リングとして形成される。それぞれが典型的にはz軸に垂直な平面内に配置される閉じたリングは、z軸に平行に延びる磁力線を放出するのに特に効率的であり、実装が簡単である。
非常に好ましい実施形態では、結合装置が、導体ループが配置された支持構造体を備え、支持構造体は、誘電体から作製される。支持構造体によって、特に(負荷された)品質係数Qを変更するために結合装置を移動させるときに、結合装置の取り扱いが単純化される。支持構造体によって、導体リングの電気絶縁を容易にすることができたり、支持構造体を導体巻線間の望ましくない非円周方向の軸方向短絡を回避するのに役立てたりすることができる。支持構造体は、その外面に金属コーティングが施された円筒形状であってよく、特に、複数の別個の閉じたリングを形成していてもよい。支持構造体は、金属材料が配置又は堆積されるねじ形状溝(「ねじ山」)を有する円筒形状であってよく、特に、誘電性ねじに巻かれた金属ワイヤを用いてもよい。支持構造体は、1部品構造であってよく、又は、例えば、リング型導体ループを形成する軸方向に積層されたスロット付き金属ディスクを分離する複数の誘電体ディスクからなる、複数部品の支持構造体であってもよい。
この実施形態の好ましいさらなる発展形態では、結合装置が、支持構造体をz軸に沿って移動させるための移動機構を備える。このようにして、マイクロ波結合アセンブリを様々な用途、特にCW-EPRやパルスEPR、又は異なる結合条件に適応させるために、結合係数を好都合な方法で変更することができる。この移動機構により、結合装置は、虹彩開口の前に又はそこから離れるように移動できる。並進運動が好ましい。あらゆる形状(楕円形、長方形、円形)の結合装置を使用することができ、不正確な製造に起因して生じ得る不正確な形状に関してはそれほど重要ではないためである。通常、円形(ねじ)運動には、ループ及び誘電性支持構造体の両方において非常に正確な円筒形状が要求される。
好ましい実施形態では、導体ループの配列がz軸に沿って長さLを有し、配列がz軸に垂直な平面内で最大外径MODを有し、0.5≦L/MOD≦10である。この範囲の形状により、高い結合係数を達成することができ、半径方向に入るマイクロ波磁力線へのアクセスを容易に達成することができる。
特に好ましい実施形態では、導体ループの配列がz軸に沿って長さLを有し、導体ループの各々がz軸に垂直な平面内で最小内径MIDを有し、L>2*MIDである。これは、結合装置内のカットオフ(エバネッセント)条件を効率的に達成し、結果として、磁力線を結合装置の内部から外部に集中的にシフト(再分配)させることで、虹彩開口近傍で高い結合係数又はBmaxを達成するのに有用である。
さらに好ましい実施形態は、導体ループが、マイクロ波放射の表皮深さをδとすると、局所的な軸方向延長部HringがHring≧3*δである導体ストライプから作製される。これは、特に金属リングを導体ループとした場合に、マイクロ波磁場を、導体ループの容積を通り結合装置へ十分に侵入させる(高いエバネッセント場減衰が達成されるまで)のに有用、したがって、カットオフ挙動を強制的に行わせるのに有用である。表皮深さ条件は、少なくとも、結合装置が使用されるときのマイクロ波放射周波数において満たされるべきである。少なくとも1GHz~300GHzの間隔のマイクロ波放射周波数で満たされる。典型的には、導体ストライプ(導体材料片)は、その(局所的な進行方向に垂直な断面における)全周に亘って連続的に導電性を有する。
隣接する導体ループを分離する誘電体の局所的な軸方向の延長部Hdielが、Hdiel≧RWring/(3*εdiel)となるように選択され、導体ループは、局所的な半径方向幅RWringを有する導体ストライプから作製され、誘電体は、相対誘電率(relative electric permittivity)εdielを有することを特徴とする実施形態がさらに好ましい。これにより、導体ループ間の結合装置内へのマイクロ波磁場の効率的な半径方向の伝搬が確立される。比誘電率εdielは、導体ループ間で軸方向に測定される。なお、典型的には、Hdielは少なくとも100μm、多くの場合において少なくとも500μmであることに留意されたい。
また、本発明の範囲内には、マイクロ波結合アセンブリがあり、このマイクロ波結合アセンブリは、
-第1のマイクロ波構造体、詳細には、マイクロ波導波管と、
-第2のマイクロ波構造体、詳細には、マイクロ波共振空洞であって、第1及び第2のマイクロ波構造体が共通の壁を共有する第2のマイクロ波構造体と、
-第1のマイクロ波構造体と第2のマイクロ波構造体とを接続する、共通の壁内の虹彩開口と、
-第1のマイクロ波構造体内において虹彩開口の前に位置する、上述された本発明の結合装置と、を備える。このマイクロ波結合アセンブリを用いると、高(最大)結合係数(低いQ値に対応する)及びQ値が取り得る広いダイナミックレンジの両方を達成することができる。結合装置は、少なくとも電気絶縁を確実にするために、第1のマイクロ波構造体の壁から最適かつ十分に距離をとって配置されるべきである。典型的には、虹彩開口と結合装置との間の距離は、(x方向に)0.1mm~2mm、好ましくは0.2mm~0.5mmの範囲である。この範囲では、最新技術の2倍の結合効率を達成することができる。しかしながら、ここでは、製造公差が制限要因となり得る。虹彩開口は、典型的には、z軸に平行に配向された長軸に沿ってその最長直径を有する。虹彩開口は、典型的には、長方形又は楕円形である。
本発明のマイクロ波結合アセンブリの好ましい実施形態では、導体ループの配列は、z軸に沿って長さLを有し、虹彩開口は、z軸に沿って延長部ILDを有し、ここで、0.2*ILD≦L≦2*ILDである。このようにして、最大限に高い結合効率を達成することができる。
別の好ましい実施形態では、マイクロ波結合アセンブリは、第1のマイクロ波構造体内で結合装置をz軸に沿って移動させるための移動装置を備え、特に、移動装置は、ねじ又はガイド部材を備える。移動装置を有することによって、CW-EPRやパルスEPRなどの様々な用途、又は様々な結合条件に適応するために、虹彩開口に対する結合装置の位置を都合よく変更することができる。移動機構は電動式であってもよい。移動装置によって、結合装置又はその導体ループの配列はそれぞれ、特に、虹彩開口の前の中心に位置する第1の位置と、虹彩開口から完全に後退した(虹彩開口部と重ならない)第2の位置との間で移動することができる。
さらに、本発明の範囲内にはプローブヘッドがあり、このプローブヘッドは、電子常磁性共鳴(=EPR)測定システム用のプローブヘッドであって、上述の本発明のマイクロ波結合アセンブリを備え、第2のマイクロ波構造体は、EPR試料用の少なくとも1つの開口部と試料ホルダとを備えるマイクロ波共振空洞であり、第1の構造体は、マイクロ波導波管である。このプローブヘッドは、極めて低いか又は高いQ値を達成するために使用することができ、同時に、選択された虹彩の寸法に対するQ値の広いダイナミックレンジを可能にする。
最後に、本発明の範囲内には、EPR測定における、上述の本発明のプローブヘッドの使用法も含まれ、
EPR試料は、マイクロ波共振空洞内の試料ホルダに配置され、
マイクロ波放射はマイクロ波導波管に供給され、結合装置によって補助された虹彩開口を介してマイクロ波共振空洞に結合され、
虹彩開口の前のマイクロ波放射の磁力線は、z軸に平行であり、
z軸に沿ったマイクロ波磁場の軸方向の伝搬は、結合装置のカットオフ条件を下回っているため、z軸に平行なマイクロ波磁力線は結合装置の内部容積に侵入せず、
軸方向に隣接するループ間で結合装置の内部容積へのマイクロ波磁場の伝搬が起こるので、局所的なマイクロ波磁力線ループが、個々の導体ループの周りに形成されて、結合装置を介して第1のマイクロ波構造体のマイクロ波磁場と第2のマイクロ波構造体のマイクロ波磁場とを連結する。この使用法により、特にパルスEPRで、特に高い結合係数が達成され得る。一般的に、効率的なリンケージのために、軸方向に隣接するループ間の結合装置の内部容積へのマイクロ波磁場伝搬を最大化することが望ましい。マイクロ波放射は、(一定の)周波数1GHz~300GHzで選択される。なお、マイクロ波共振空洞を静磁場中に配置し、静磁場を測定点間で掃引し、各測定点(磁場点)において試料の(共振)マイクロ波吸収が測定される。導波管内のマイクロ波主伝搬はZ軸に垂直である。長方形導波管におけるTE10伝搬モードが好ましい。
さらなる利点は、明細書及び添付の図面から引き出すことができる。上述及び後述の特徴は、本発明に従って個別に又は任意の組み合わせで集合的に使用することができる。言及された実施形態は、網羅的な列挙として理解されるべきではなく、本発明の説明のための例示的性質を有する。
本発明を図面に示す。
導波管と、マイクロ波空洞と、結合装置を有さない虹彩開口とを有する最新技術の結合アセンブリの概略断面図を示す。 導波管と、マイクロ波空洞と、従来の結合装置を有する虹彩開口とを有する最新技術の結合アセンブリの概略断面図を示す。 閉じた導体リングとして形成された複数の導体ループを有する、本発明の結合装置の概略側面図を示す。 ソレノイドの導体巻線として形成された複数の導体ループを有する、本発明の結合装置の概略側面図を示す。 導波管と、マイクロ波空洞と、虹彩開口と、4つの導体ループを有する本発明の結合装置とを有する、本発明に係る結合アセンブリの一例の概略断面図を示す。 複数の閉じた導体リングを有する、本発明に係る結合装置の概略分解図を示す。 螺旋状の導体構造体を有する、本発明に係る結合装置の概略分解図を示す。 本発明に係る結合装置によって達成可能なQダイナミックレンジの概略図を、先行技術と比較して示す。a)では高Q範囲が拡張され、b)では低Q範囲が拡張されて示される。 本発明のEPR測定システムの概略図を示す。
1.概要
本発明は、虹彩の近傍で著しくより多くの磁束をもたらし、したがって結合動的性を増加させる、導波管のエンドランチ虹彩型のアパーチャ(開口)に適した新しいタイプのマイクロ波結合装置を述べたものである。この性能は、従来の方法によって得られたのと同じレベルの磁束の集束(密度)を同時に達成することによって実現されるが、これまで使用されていなかったより多くの磁束寄与を虹彩アパーチャ近傍にもたらす新しい方法によって完成される。好ましい実施形態は、最新の金属リング、ボール、ディスク又はねじを、誘電体ディスクのスタックと交互配置された金属リングのスタックに置き換えることに関連するものであって、TE10の伝搬の方向の伝搬機構であって、すなわちリングのスタックを通りリングの軸に垂直な伝搬機構を提供する。この機能は、スタック内の各金属リングが導波管からのより多くの入射磁束線と連結できるようにすることによって達成される。最新技術では確立することができないこの連結(リンケージ)は、金属リングの該スタックによって虹彩アパーチャにさらに伝達され、これによって全体的な結合強度が改善される。
2.導入
本発明が解決しようとする課題を簡単に説明すると、2つの別々のマイクロ波領域(マイクロ波構造体)間の虹彩型結合アパーチャ(虹彩開口)の結合強度を高めることである。一般的に言えば、これは通常、単に虹彩開口を通る電磁束リンケージを高めることを意味し得る。しかしながら、EPR分光法で使用されるマイクロ波結合装置の目的及び機能性を提供するために、本開示では、結合動的能力の分析も含まなければならない。
本開示のすべてのセクションを説明する目的で、給電金属導波管(第1のマイクロ波構造体)からマイクロ波共振空洞(第2のマイクロ波構造体)にマイクロ波電力を伝送しなければならないという特定の状況を考慮することができる。当業者は、例示的な事例のこの特定の選択によって問題の一般性が失われないことを容易に認識することができ、この新しい結合装置のための解決策は、給電導波管から別の導波管への、若しくはマイクロストリップ、又は同軸伝送線路への、エンドランチ虹彩開口を介したマイクロ波電力の伝達などの他の同様の問題に容易に適用することができる。
簡単にするために、共振マイクロ波空洞が金属壁で囲まれているとする。さらに、
空洞の内部Q値(ここではQINTと呼ぶ)はパラメータではないとし、すなわち、必要に応じてすべての内部Q値が可能であるとする。
さらに、この空洞は、本質的に空洞の金属壁内の固定サイズの物理的な開口穴として説明することができる虹彩アパーチャ(虹彩開口)によって給電導波管に連結されるとする(図1を参照)。虹彩アパーチャオリフィスは、一般的に長方形(又は楕円形)であって、Z軸に沿って配置されている。
図1には、導波管2とマイクロ波共振空洞1との間のマイクロ波結合のための虹彩開口5(アパーチャ)の内側及び近傍の磁力リンケージ6(B-field linkage)(結合)が示されている。導波管2内のマイクロ波磁力線3(B-field line)及びマイクロ波空洞1内のマイクロ波磁力線4は破線で示されている。Xは導波管内のマイクロ波フィールド伝搬の方向を示し、Zは虹彩開口5の長さ方向である。良好な結合のために、虹彩開口5の長さは、アパーチャ近傍のマイクロ波磁力3及び4と同じ方向である。
帯域幅を目的として、開口内側のカットオフ未満(エバネッセント)x軸伝搬を画定するために、虹彩開口の寸法はZ軸方向において十分に短い必要がある。低損失を目的として、エバネッセント減衰を小さくするために、x軸方向に十分に短くなければならない。
虹彩開口は、典型的な寸法であり、幾何学的形状であり、また、配置を取り得る。ここで、これらのパラメータは、最新技術の方法によって、アパーチャを通過する磁束と空洞の所定の動作マイクロ波共振モードの磁束線との間に、理論上で最大の結合(リンケージ)を提供するように選択されるべきである。虹彩開口によって空洞の壁の表面上の電流線が妨害されることは容易に認識されるはずであり、これはマイクロ波共振モードの摂動に相当し、これは、明確なマイクロ波のエネルギー損失と関連し得る。例えば、虹彩開口を迂回する新しい経路上に電流線を適合させるのに必要な作業の寄与として理解するのは簡単であるが、このマイクロ波の損失メカニズムに対する他の寄与も存在し得ることに留意されたい(本質的に、共振モードを特徴付けるすべての表面電流線は、虹彩孔の存在によって乱され、空洞内の全体的なモード対称性は低下し、したがって損失が増加することになる)。
この態様をよりよく研究するために、QINTの定義を変更せずに、代わりに、空洞内の虹彩開口によってもたらされる摂動に関連する品質係数を記述する、新しい測定可能な(間接的な)量(ここではQIRISと呼ぶ)を定義しなければならない。
以下の分析に関する一般性を破ることなく、虹彩開口の形状をかなり薄い矩形の開口(すなわち、マイクロ波伝送デバイス(導波管)を空洞に接続するための最適な開口形状)に制限すると仮定すると、本発明者らの経験から有効な以下の近似を以下のように提案することができる:
Figure 0007303259000001
ここで、AIRISは虹彩開口の面積であり、ARESは空洞金属壁の総面積である。
空洞(QINT)とその虹彩開口(QIRIS)の両方による電磁損失の、これら2つの寄与を合わせると、空洞の無負荷品質係数(ここではQと呼ぶ)を、以下の適切な形式で定義することができる:

Figure 0007303259000002
典型的なEPR分光法用途では、マイクロ波結合装置を、可変結合を提供するような設計、すなわち次式によって負荷品質係数(ここではQと呼ぶ)を修正するような設計で使用する必要がある:

Figure 0007303259000003
ここで、βは結合係数である。この要件は、例えば、空洞パラメータが変更されたときに、すなわち、(多かれ少なかれ損失があり得る、)様々な空洞チューニングインサートの挿入又は変更、RFコイルの挿入、様々なEPRプローブ試料の挿入及び測定など、すべての状況でEPRキャビティを臨界結合にするために必要である。
高感度EPR分光測定に使用される空洞の典型的な設計要件は、少なくとも15000から750以下の範囲でQ値を連続的に変化させることができることである。Q変動範囲(ここでは「結合ダイナミック(動的性)(coupling dynamic)」と呼び、この場合は20:1になる)は、結合係数βの動的性を反映している。より正確には、結合動的性は、マイクロ波空洞に臨界的に結合することが可能なQ範囲(又はその上限と下限の比)である。
教科書及び学術論文では、結合係数βは、主要なパラメータ、すなわち虹彩開口領域における(リンケージ目的のための)磁束の表面積分に依存することが示されている。実際には、これは、虹彩開口における磁束密度(B、TのSI単位)及び虹彩開口の面積(AIRIS)の2つのパラメータにさらに分割することができる。第1のパラメータ(磁束密度)は、典型的には、摺動式のマイクロ波装置(ここでは「マイクロ波結合装置」と呼ぶ)によって実験の設定中に変更することができる可変パラメータである。後者のパラメータ(開口面積)は、固定された機械的値を含み、Qの下限設計要件を達成するために、単純に調整される(通常、設計及び製造中に調整される。すなわち、永久的に設定される)。しかしながら、前述したように、虹彩開口の面積が大きいとQIRISも減少し、Qが取り得る最大値を制限することで悪影響を及ぼすことになる。以下の式は、マイクロ波結合動的性の分析を完了するのに有用である:

Figure 0007303259000004
ここで、虹彩開口における磁束密度Bは、装置動作中の可変パラメータであり、0からBmaxまでの値、すなわち「マイクロ波結合装置」によって決定される、したがってマイクロ波設計によって決定される値Bmaxまでの値をとる。
結論として、上記の式をすべて適切に整理すると、

Figure 0007303259000005
となる。これは、本発明によって解決されるべき基本的な問題、すなわち結合ダイナミックレンジの増加は、2つの設計パラメータAIRIS(結合装置を後退させて、各Q値について大きなQ値を達成するために、最小化される)及びBmax(結合装置使用中に、小さなQ値を達成するために、最大化される)のみに依存することを示す。AIRISを固定したまま結合動的性を増加させること、若しくは結合動的性を固定したままAIRISを減少させてQの上限を増加させることは、必然的に、そのような改善に必要とされる重要な共振器技術要件は、虹彩開口においてより高いBmaxを得るための新しい設計の解決策を得ることであることを意味する。
3.最新技術
従来技術では、給電矩形導波管から、定在波、低速波又は進行波型の空洞に、虹彩開口(導波管を空洞から分離する金属壁の開口)を介して結合するマイクロ波エネルギーの問題が広く集中的に研究されていた。マイクロ波結合は、マイクロ波工学における基本的な問題の1つであり、その解決策の結果は、製品の全体的な性能に深く強力な影響を及ぼす。
マイクロ波結合問題の主要な解決策の1つは、導波管と空洞との間の金属壁の虹彩開口に基づくものである。なお、導波管及び空洞では、それらの挙動はそれらの励起モードに依存することに留意されたい。
虹彩開口の設計詳細を決定するために、特筆すべき結果の1つは、導波管で使用されるマイクロ波伝送モード及び空洞で使用される共振モードと相関して、導波管及び空洞の両方における虹彩開口の理想的な位置、ならびにその理想的な形状及び幾何学的パラメータを決定することであった(非特許文献1と比較のこと)。本発明では、この態様はパラメータとは見なされず、任意の解決策が科学的に正しくかつ工学的に最適な方法で虹彩の形状及び配置問題を処理することを前提としている。
本発明では、他の重要な態様、すなわち虹彩開口における磁束密度Bを増加させることに注目した。以前の学術研究では、このパラメータの値は、整合回路の機能、つまり、不足結合、臨界結合、及び過結合を提供する能力と相関することが示されている。
古典的な従来技術の解決策は、導波管領域の虹彩開口の前にマイクロ波結合装置(完全に金属製のシリンダ、ロッド、ボール又はねじ)を使用することであり、これは磁力線を虹彩に集束させ(磁束密度Bを増加させ)、したがって結合強度を増加させる役割を有する(図2を参照)。
この解決策の下位変形例は、いくつかの特定の用途(例えば、EPR分光法)に特化したものであって、可変マイクロ波結合の機能要件が追加されており、したがって、広い荷重スペクトル下でキャビティを整合させることが可能になった。新しいパラメータ「結合動的性」が要件に導入され、マイクロ波設計はそれを実現し改善しようとした。
最新技術では、利用可能な最良の技術的解決策の1つは、虹彩開口の前に配置され、Z方向に移動可能な金属シリンダの形状のマイクロ波結合装置である。標準TE10モードで動作する導波管断面の長軸に沿って結合シリンダ装置を並進させることによって可変結合機能を実現する。可変結合を得るための物理的機構を説明するために、従来の結合装置7が磁束密度磁力線3と共に図2に示されている。マイクロ波結合装置7は、広帯域型(すなわち、非共振、空洞の動作周波数の周りで調整されない)のものである。完全に突出した位置(中央、虹彩開口5の前に完全に着座、図2に示される)において、マイクロ波結合装置7は、虹彩開口における磁束密度をBmax値まで増加させる。完全に後退した位置(図2には示さず、例えば、結合装置7がz方向に導波管2の底部に、又はさらには導波管2の外に移動した状態)においては、虹彩開口での磁束密度は0値に近い値に設定される(すなわち、不足結合モード)。
図2は、完全金属製又はカットオフ条件を満たして可変結合を実現する内部ボアを有する、円筒形の金属の結合装置7を用いた、虹彩開口5を介した導波管2とマイクロ波空洞1との間の結合を概略的に示す。結合装置7は、可変結合を実現するために、導波管2の内側における虹彩開口5の前において、z軸に沿って摺動することができる。その中心位置は最大結合係数に対応し、完全に抽出された(extracted)結合装置は得られた最小結合係数を表す。
この図2は、特に、TE10伝搬モードを用いた矩形導波管2における集束効果の物理的機構を説明するための結合装置7及び磁束密度磁力線3(magnetic flux density B lines 3)を示す。磁力線3は、それらの結合又は非結合の挙動に従って区別することができ:
3aは、本来虹彩開口5の近傍を通過し、結合装置7によって妨害されない、導波管2内のマイクロ波磁力線を示す。
3b’は、結合装置7を挿入する前の導波管2内のマイクロ波磁力線を示す。
3b’’は、導波管2内のマイクロ波磁力線3b’のうち、結合装置7を挿入することによって現在妨害されてしまっているものを示す(カットオフ条件下では、それらは結合装置7の内側をそのまま通過することができない)。ここで、これらの線は、強制的に、虹彩開口5と結合装置7との間に集束されて通過せざるを得ず、したがってリンケージ6により効率的に寄与している。
3c’は、本来虹彩開口5から遠いところを通過する導波管2内のマイクロ波磁力線を示す。
3c’’は、導波管2内のマイクロ波磁力線3c’のうち、ここでもまた、結合装置7によって現在妨害されてしまっているものを示す。しかし、マイクロ波磁力線3b’’とは対照的に、これらの力線3c’’は、虹彩開口5と結合装置7との間に集束され得ず、したがって、ここではリンケージ6にさらにあまり寄与していない。これは、図2に示した先行技術の結合装置7の主な欠点である。
図2の結合シリンダが虹彩開口5の近くに配置された場合、結合係数をさらに増加させることができる。例えば、EPR装置では、結合シリンダ間の距離は0.5 mm未満であり、これはすなわち、この距離を小さくする場合、距離の変動がマイクロ波結合に非常に強い影響を及ぼすため、より高い製造精度が求められることを意味する。製造精度が高いほど、当然、価格も高くなる。
代替として、結合シリンダ7の外径を増大することが可能である。これはまた、結合係数を増加させる。しかしながら、部品のスペース要件はすでに最適化されており、製造公差の変動が大きすぎるため、どちらの手段にも困難が伴う。
したがって、最新技術の寸法を維持したまま結合係数を増加させることができれば望ましい。
以下の先行技術文献は、図2に示すような結合装置を使用している。
特許文献1は、同軸線とEPRマイクロ波空洞との間に可変マイクロ波結合器を有するEPR共振器を開示している。結合要素は、ねじ及び金属スタッドを備える。共振空洞に結合されるマイクロ波エネルギーの量を制御するために、空洞に通じる部分のスタッドの長さが調整可能である。
特許文献2は、長方形の形状及び円筒形のマイクロ波空洞を有する円筒形の電子常磁性共鳴プローブに関する。結合及び調整ユニットは、結合強度を調整するための結合ボルトを備える。調整ボルトは、連結ボルトの上部に設けられた金属キャップを備える。
この摺動金属シリンダ解決策は、他のタイプのマイクロ波結合装置(摺動金属ディスク、球体及びねじ)と比較して非常に効率的に機能し、過去30年間変わらず使用されてきた。X帯域空洞の場合、典型的には、Q=15000の上部境界からQ=800の底部境界までの結合動的性を達成することができる。
4.ダイナミックレンジの重要性について
しかし、おそらくEPR分光法に限らず多くのマイクロ波用途では、虹彩開口でBmax値の増加を得ることから効果を得ることができる。
CW-EPR分光法では、信号は空洞のQに比例するため、上限値が高いとS/N及び測定感度が高くなる。しかしながら、Qの下限は約700のままとすべきである。結合動的性の増大に対するこの要求は、最新技術の解決策(摺動結合装置の役割を果たす完全に金属製のシリンダ、ロッド、球体又はねじ)では満たすことができなかった。
パルスEPR分光法では、スピンエコー信号は時間指数関数的に減衰するため、マイクロ波パルス後のリンギング時間を最小化するためにQの下限を減少させる必要があり、これによって、信号を測定できないときの機器のデッドタイムを最小化する。しかしながら、通常、測定のためのパルスEPR空洞は、パルス挙動が強調及び最適化された組み合わせCWパルス(combination CW-Pulse)として必要とされるので、Q上限は依然として高い値、例えば約15000を維持するべきである。しかし、ここでも結合動的性を増加させるという要求が存在し、最新技術の解決策(摺動結合装置の役割を果たす完全に金属製のシリンダ、ロッド、球体又はねじ)では満たすことができなかった。
最大Bmaxは、結合装置が虹彩開口のちょうど前に配置されるときに達成される。結合装置の容積内の磁束密度は、エバネッセント(すなわち、結合装置がリング形状である場合、円筒軸上の伝搬のためのカットオフ条件下で)、又はゼロ(結合装置が金属で完全に充填されるように設計されている場合)になるように設計されている。すると、結合装置の内部容積から反発された磁束は、導波管端壁(虹彩開口)と結合装置の外側円筒面との間の領域に変位され、したがって、虹彩開口における磁束密度Bmaxが増加する。
続けると、本発明の目的は、結合装置、特に、EPR分光計において、増大したBmaxを有するEPR共振器内にオリフィスを介してMW電力を結合するための結合装置を提供すること、並びに、より大きなダイナミックレンジを有する結合装置を提供することである。
5.本発明の結合装置の概念
本発明の着目点は、中空(軸方向に穿孔された)金属シリンダの一般的な形態に基づくが、該シリンダ軸線Zに対して本質的に垂直に配向され、軸線Zに沿って整列した一組の平行な導体ループ(ここでは「ストライプ」とも呼ばれるそれぞれのループに属する材料片を有する)をさらに特徴とするマイクロ波結合装置である。
ループの組は、円筒を、本質的に平行な金属(導電性)の環状導体リングの積層された組に分割することができる。換言すれば、(軸方向に穿孔された)金属シリンダは、複数の貫通した切り口を備え、これは穿孔ディスクを直接配列することに相当する。代替として、ループの組は、同じ効果を有するソレノイドの複数の巻線を含んでよい。換言すれば、(軸方向に穿孔された)金属シリンダは、らせん状の切り口を有することができ、これはワイヤをソレノイド方式で直接巻き付けることに相当する。
導電性ループの内部容積及びそれらの間の間隔は、誘電体で充填されるべきである。誘電体(又は誘電体の一部)は、各金属ループ(リング又は巻線)の機械的支持(誘電体又は誘電体の一部が固体である場合)として機能し得るが、装置の本質的なマイクロ波機能も果たす。すなわち、先行技術のシリンダ(これはz方向に連続しており、したがって、結合装置の内部容積内へのz方向に垂直な磁場伝搬を排除する)には不都合がなく、すなわち、誘電体によって、内部容積内への横方向のマイクロ波場の侵入が可能になり、したがって追加の結合が可能になる。
別個の環状ループ(ストライプ)は、誘電材料からなるロッドなどの支持構造体を必要とする。図3は、第1のタイプの本発明の結合装置12の一例を側面図で概略的に示したものであり、誘電体(非導電性)材料で作製されたロッド状支持構造体20は、その外側に複数の導体ループ21を担持しており、ここでは導体リング8として形成されている。各導体リング8は、環状の閉じた形状である。ループ21は、例えば、支持構造体20上のコーティング(金属化表面)として製造されてよい。ループ21は、z軸に沿って順に配置され、z軸に沿って互いに離間している。支持構造体20は、典型的にはプラスチック材料で作製され、導体ループ21は、典型的にはAg又はAlなどの金属材料で作製される。
結合装置12をz軸に沿って移動させるために、支持構造体20は、(支持構造体20が「ねじ」になるような)外ねじ28を備えることができる。このとき、外ねじ28はホルダ構造体27(破線で示す)の内ねじにねじ込まれ、例えばモータ29によって支持構造体20を回転させると、ホルダ構造体27に対する支持構造体20のz方向の運動(z movement)が生じる。ホルダ構造体27が結合装置12に属する場合、ホルダ構造体27及びねじ山28は、結合装置12の移動機構35とみなすことができる。支持構造体20の外ねじ28と協働するホルダ構造体27と、モータ29とを合わせて、結合装置12のための移動装置30とみなすことができる。
別の実施形態(図示せず)では、純粋な並進運動によって、結合装置をZ方向に移動することができる。その目的のために、結合装置は、例えば摺動スロットを備え得る。並進運動の動きの主な利点は、円周におけるループの製造公差がそれほど重要ではないことである。
ソレノイド構造化金属ループ(ストライプ)又はワイヤは、自立型であってよく、この変形例では、誘電体を、必要に応じて、部分的又は完全に空気として選択することができる。図4は、第2のタイプの本発明の結合装置12の一例を側面図で概略的に示したものであり、ねじ状支持構造体20は、その外側にねじ山22を担持している。金属ワイヤ26aは、支持構造体20の周りに巻かれ、したがって、各々が支持構造体20の周りを回る複数の巻線23を有する連続的な螺旋構造体26を形成する。各巻線23は、導体デバイス12の導体ループ21を表す。
図5は、本発明のマイクロ波結合アセンブリ25の一例として、第1のマイクロ波構造体2a、ここではマイクロ波導波管2と、さらに第2のマイクロ波構造体1a、ここではマイクロ波共振空洞1と、第1のマイクロ波構造体2a及び第2のマイクロ波構造体1aの間に配置され、基本的にx方向と垂直に配向された共通の壁24とを備える、マイクロ波結合アセンブリ25を示す。ここで、共通の壁24は、ここに示すように、x方向に連続して配置された第1及び第2のマイクロ波構造体2a、1aの2つの部分壁で構成され得ることに留意されたい。共通の壁24は、第1のマイクロ波構造体2a及び第2のマイクロ波構造体1aにおける磁場を結合するための虹彩開口5を備え、z方向に沿ったその寸法はILDであり、これは虹彩開口5の最長延長である。第1のマイクロ波構造体2a内には、本発明の結合装置12が配置されており、ここではz軸に沿って積層され、その軸方向の両端部間において内部容積34(又は、軸方向の「ボア」)を半径方向に包含する、閉じたリング8として形成された4つの別個の導体ループ21を備える。結合装置12は、ここでは虹彩開口5の前の中央部分に配置され、虹彩開口5の近傍の磁束密度(又は磁場強度)を最大にし、ひいては、導波管2と空洞1との間の結合を最大にする。結合装置12は、移動装置(図示せず)によってz方向に移動でき、特に、導波管2と空洞1との間の結合を最小にするために、虹彩開口5から引き抜く(虹彩開口5との重なり合いを解消する)ことができる。空洞1には、EPR分光法によって調査すべき試料32を担持する試料ホルダ31が含まれてよく、試料32を、アクセス開口36を介して空洞1に挿入することができる。次いで、結合アセンブリ25を、試料32のEPR測定のためのプローブヘッド33として使用することができる。
図5に例として示されている結合装置12は、金属リング8で作製されている。各リングは、z軸上の伝搬に関してカットオフ条件を満たす内部ボアを有する。すなわち、磁力線はz方向に沿って内部ボアに入らない。リング8の積み重なり(スタック)は同じ条件を満たす。本発明の結合装置12(それぞれリング8のスタック)は、可変結合を実現するために、導波管2の内側における虹彩開口5の前でz軸に沿って摺動することができる。図示された中心位置は最大結合係数に対応し、完全に抽出された結合装置12は最小結合係数を表す。
リング8又はそれらの対応するストライプは、リング状ストライプが配置されているシリンダ(例えば、図5には示されていない支持構造によって部分的に又は完全に形成される)の内側でのz軸(細長い結合装置のZ軸)に沿った磁力の軸方向伝搬が禁止されるように、すなわち伝搬がカットオフ未満であるように設計されるべきである。したがって、マイクロ波放射は、結合装置12の内部空間(内部容積34)に軸方向に侵入しない。言い換えれば、リングのスタックの容積は、軸方向の侵入によって導波管からのマイクロ波エネルギーで満たされることから除外される。
図5を参照すると、マイクロ波磁力線3a及び3b’’は、図2の状況と比較して変化しないままであり、両方とも先行技術と同様の新しい結合装置12によって虹彩開口5の近傍に集束され、これによりリンケージ6に寄与する。
円筒形の金属リング8は、z軸と同軸に(平行に)配置されている(あるいは、z軸に沿ったソレノイドの巻線/ターンを使用することができる)。該リング8によって、異なる結合を実現することができる。マイクロ波磁力線9は、前の3c’’マイクロ波磁力線の新しい歪んだ形状を表しており、ここで、これらは追加のリンケージ10(局所的なマイクロ波磁力線ループ10aを形成する)を介してリング8の各々の内側に侵入し、二次リンケージ11を介してリンケージ6にさらに寄与しており、したがって、共振器内の磁場に対する主リンケージ6の増加に寄与している。すなわち、各リング8の磁力リンケージ11は、それぞれの追加のリンケージ10からエネルギーを伝達することによってリンケージ6に寄与する。これは、先行技術と比較して、著しく増加した結合又はBmaxの増加をもたらす。
新しい結合装置12は、リング8のスタックによって、又は、各巻線/ターン23がリング8に相当するz軸に沿ったソレノイドとして作製される。いずれの場合においても、軸方向コア(又はボア)は導電性材料を含まないままであり、隣接する導体ループ間の軸方向空間は導体材料を含まないままである。
カットオフ条件は、磁力線が結合装置のループ/リング/巻線のスタック内側に軸方向に侵入しないように定義される。マイクロ波フィールド線は、カットオフ条件未満では(消えるように(evanescently))減衰されるべきである。カットオフ条件及びその測定可能な効果は、当業者に知られており、典型的には、リングのサイズ、内径、周波数、長さ又は厚さ、使用される材料及びその導電率のようなパラメータと相関する。
軸方向伝搬は、ここでは、マイクロ波放射の磁力線がZ軸に平行であり、スタック/ループ/リング/巻線の内部(円筒形)表面内にあることを意味するものとする。軸方向伝搬は、カットオフ条件未満では発生しない。
図9は、本発明と共に使用するための電子常磁性共鳴(=EPR)測定システム48を示す。マイクロ波源41は、マイクロ波ブリッジ41にマイクロ波放射をもたらし、サーキュレータ42は、マイクロ波放射をマイクロ波導波管2(第1のマイクロ波構造体2a)内に誘導する。マイクロ波導波管2の端部において、本発明の結合装置12が、マイクロ波共振空洞1(第2のマイクロ波構造体1a)に開口する虹彩開口5の前に配置される。マイクロ波共振空洞1内には、試料32が配置されている。マイクロ波導波管2、結合装置12、及びマイクロ波共振空洞1は、基本的に、EPR測定システム48のEPRプローブヘッドを形成する。
試料32が配置される静磁場を提供するために、マイクロ波共振空洞1は、一対の変調コイル43と、ここでは一対のディスク形状の主磁石コイル44との間に配置される。
試料32によって特性吸収されたマイクロ波放射は、マイクロ波導波管2を伝搬してサーキュレータ42に戻り、マイクロ波検出器45に誘導される。マイクロ波検出器45は増幅器46に接続され、増幅器46は制御及び評価装置として機能するコンピュータ47に接続される。増幅器46はまた、制御のために変調コイル43及び主磁石コイル44に接続される。
図6は、本発明による結合装置12の寸法を示す。装置12は、以下の幾何学的パラメータによって定義される:
Lは、装置(又はスタック)12の長さを定義するが、L=N*Hring+(N-1)*Hdielであり、
ring:金属導体ループ21(ここではリング8、又は巻線)のストライプ(材料片)の高さ、
diel:金属導体ループ/リング/巻線の間に配置された誘電体(特に誘電体セパレータ13)の高さ、
N:金属導体ループ/リング/巻線の数、
in及びRout:金属導体ループ/リング/巻線の内側半径及び外側半径
である。なお、図6の例では、Rin及びRoutはまた、スタック12及び誘電体セパレータ13によって共有されることに留意されたい。なお、ここでは、Rinは、ループ21の最小内寸MIDでもあり、Routは、ループ21の最大外寸でもあって、差Rout-Rin=RWringはループ/リング/巻線の半径方向幅である。
装置12は、以下の電磁パラメータによってさらに定義される:
σ:導体ループ/リング/巻線の金属伝導率;
δ:導体ループ/リング/巻線のマイクロ波表皮深さ、
εdiel:ループ/リング/巻線の間に軸方向に配置された誘電体の比誘電率。なお、誘電体は、周囲/空気及び/又はホルダ/支持構造体(もしあれば)を備え得ることに留意されたい。また、これらのパラメータは、通常、結合装置/スタック12全体及び各金属導体ループ21/リング8/巻線によって共有される。
誘電体セパレータ13は、周囲及びホルダ(εsur)よりも高い誘電率(εsep、εdielに対応)を有し得る。したがってεsep≧εsurである。
装置/スタック全体12は、パラメータL、Rin、Routによって定義される。
ループ/金属リング8は、パラメータHring、Rin、Routによって定義される。
誘電体セパレータ13は、パラメータHdiel、Rin、Routによって定義される。
典型的には、円筒形スタック内の磁力線3b’’に対してz軸に沿ったカットオフ条件を提供するために、L>3*2*Rinである。
ring>3*δの場合、この関係は、一般に、任意の周波数(δは周波数及び材料パラメータに依存する)で良好な導体を記述するのに十分であり、したがって、必要に応じてカットオフ条件未満又はカットオフ条件超過の状態を一貫して効率的に実施させるために十分である。
diel>(Rout-Rin)/(3*εdiel)の場合、この関係は、リング8と磁力線3c’’との有意なリンケージを達成するために、隣接する一組の金属リング8の間の誘電体セパレータ13を通るBz成分の、十分に大きなカットオフ未満の半径方向の伝搬がもたらされるように選択されるべきである。
共通パラメータL、Rin、Rout、及びσは、上述の図2の先行技術の結合装置7と少なくとも同じマイクロ波設計及び機能を提供する。これは、zに沿って同じカットオフ未満マイクロ波伝搬を維持すると、必然的に磁力線3a及び3b’’に同一の歪みがもたらされることを意味する。したがって、結合装置の寸法と虹彩開口から結合装置の距離とは、先行技術の結合シリンダ7(図2を参照)と同じままであり、これは、製造においてより高い精度を必要としない。しかし、本発明による結合装置12では、結合係数が大幅に増加する。
好ましい実施形態では、金属導体ループ/リング/巻線又はそれらのストライプの間の間隔Hdielは、それぞれ、カットオフを超える動作が可能になるのに十分に大きくなければならない(例えば、10μm~2mmの範囲;10GHzについては0.5mm;263GHzについては20μm)。
ループ/リング/巻線の半径方向延長部RWring(RWring=Rout-Rin)は、上述のカットオフ条件に起因する過度に大きい減衰を避けるように対応するように、十分に小さくなければならない。好ましくは、RWringは、RWring≦Hdiel*3*εdielに従うべきである。
以下の図7は、金属ソレノイド15(連続的な螺旋構造体26)を使用する本発明の結合装置12の実施形態の一例を示し、分離されたリングのスタックの代わりに、導体ループ21として複数の巻線23を備える。この実施形態は同じ要件を満たし、すなわち、ソレノイド15内のカットオフ条件が維持され、特別なリンケージ10及び11がマイクロ波磁力線3c’’を結合することに寄与しており、したがって、二次リンケージ10及び11は図5に示すものと同じように機能する。
結合装置12のこの実施形態はソレノイド配置に基づいており、幾何学パラメータ(L、Rin、Rout、Hring、Hdiel)及び材料(σ、δ、εdiel、加え、該当する場合はεsurとεsepとを区別する)によって記述される。螺旋構造体26(金属ソレノイド15)は、材料(σ、δ)、ワイヤの形状、断面(Hring)、及び巻線パラメータRin、Rout、及びHdielによって記述される。誘電体支持及び巻線セパレータ16(もしあれば)は、幾何学的パラメータ(Hdiel、Rin)及び材料パラメータ(εsep)によって記述される。上述の図6によるパラメータの定義が、同じように適用される。
6.本発明によるダイナミックレンジの適用
好ましい実施形態では、結合装置は、特に不足結合、臨界結合、及び過結合を提供することができるように、虹彩の前のB磁束密度を変更することができるように、Z方向に移動可能でなければならない。例えば、誘電体支持構造体は、Z軸に沿って移動可能であるようにねじで固定され得る。虹彩の前の磁束密度を変更でき、且つ、結合装置Bmaxをより高くできることによって、共振器のダイナミックレンジをより広くすることができる。
解決しようとする課題を例示するために、図8に、本発明の技術的解決策が、高感度EPR空洞の2つの典型的な設計要件に対してどのように適用されるかを以下に示す。
低損失EPR試料の改善ケース1:Q上限を15000を超えて増加させることが望ましい(Qが高くなるとEPR信号が高くなるため、低損失EPR試料に対する感度が高くなる。)が、Q下限は700に保たれるべきである。
最新技術の解決策:結合動的性20:1(Qは15000から700まで)のシステムから開始して、Q=30000の2倍高い上限が必要な場合、虹彩開口AIRISを半分に低減させなければならない。結合動的性が、20:1以下にとどまると、Q_L=700の下限要件はこれ以上満たされない。
本発明による解決策:結合装置の新しい設計においてBmaxを2倍に向上させることが達成された場合、同時にAIRISを半分に低減し、下限を維持することができる。新しい結合動的性は、必要に応じて、40:1(30000から700まで)である(図8の、下に示されるa)部を比較)。
改善事例2:損失の多いEPR試料(低感度クラスシステムとしても知られているより小さいQINT)若しくはEPRパルスプローブヘッド、又はRS EPRプローブヘッドなどについて:Qの下限を350に低減することが望ましいが、Qの上限は15000に保つ必要がある。
最新技術の解決策:結合動的性20:1(Qは15000から700まで)のシステムから開始して、Q=350の2分の1の下限が必要な場合、虹彩開口AIRISを2倍に増加させなければならない。結合動的性が20:1以下にとどまると、Q=15000の上限要件はこれ以上満たされない。
本発明による解決策:結合装置の新しい設計においてBmaxを2倍に向上させることが達成された場合、単にAIRISを一定に保つ。新しい結合動的性は、必要に応じて、40:1(Qは15000から350まで)である(図8の上部に示されるb)部を比較)。
7.本発明のさらなる態様
ループの数(リングの数、又はソレノイドの場合は巻線の数)は、少なくとも3つであるべきであり、多くの場合、少なくとも4つのループが使用される。好ましくは、リング又は巻線の数は3から20であるべきであり、これにより結合変動の滑らかさ(連続性)を維持する。
一般に、ループ間の軸方向間隔は等しく選択されるが、等しくなくてもよい。一般に、結合装置は、円筒形状(z軸に垂直な断面において円形)を有するように選択されるが、非円筒形状、例えば楕円形又は長方形の形状であってもよい。
製造を簡単にするために、以下のステップをとることができる:
-ソレノイドストライプを有する結合装置を製造するために、ねじ付き誘電体(誘電体支持構造体)の溝を、例えば誘電体ねじに巻き付けた導線などの導電性材料で充填することが可能である。
-環状ループ(導体リング/ストライプ)を有する結合装置を製造するために、誘電体に金属コーティングを塗布することが可能である。例えば、半径方向外面が金属化された誘電体リングは、金属化されていない誘電体リングと交互に積層されてもよい。メタライゼーションの軸方向の延長部は、金属リングに対応する。さらに、金属リング(スロット付きディスク)は、一方(又は両方)の軸方向端面上に誘電体材料でコーティングされてもよく、誘電体コーティングの軸方向延長部は実質的に誘電体セパレータ又は切断部に対応する。
1 マイクロ波共振空洞
1a 第2のマイクロ波構造体
2 マイクロ波導波管
2a 第1のマイクロ波構造体
3 (導波管内の)磁力線
3a 結合装置の影響を受けない磁力線
3b’ 結合装置による歪みのない磁力線
3b’’ カットオフ条件下での結合装置による、虹彩開口に向かう歪みを伴う磁力線(元は3b’)
3c’ 結合装置による歪みのない磁力線
3c’’ カットオフ条件下での結合装置による、虹彩開口から離れる歪みを伴う磁力線(元は3b’)
4 (空洞内の)磁力線
5 虹彩開口
6(主)リンケージ
7 結合装置(最新技術)
8 リング
9 軸方向に隣接する導体ループ間で、結合装置の内部容積内への横方向進入を伴う歪んだ磁力線(元は3b’)
10 (追加の)リンケージ
10a 局所的なマイクロ波磁力線ループ
11 (二次)リンケージ
12 (本発明による)結合装置
13 セパレータ(ディスク)
15 金属ソレノイド
16 巻線セパレータ
20 支持構造体
21 導体ループ
22 ねじ山
23 巻線
24 共通の壁
25 マイクロ波結合アセンブリ
26 螺旋構造体
26a ワイヤ
27 保持構造体
28 ねじ山
29 モータ
30 移動装置
31 試料ホルダ
32 試料
33 プローブヘッド
34 内部容積
35 移動機構
36 (試料アクセス)開口
40 マイクロ波源
41 マイクロ波ブリッジ
42 サーキュレータ
43 変調コイル
44 主磁石コイル
45 マイクロ波検出器
46 増幅器
47 コンピュータ
48 EPR測定システム
X マイクロ波フィールド伝搬の方向/軸
Z 虹彩開口の長寸法の方向/軸(標準的な長方形TE10導波管の長軸の方向も意味する)

Claims (16)

  1. 結合装置(12)であって、
    第1のマイクロ波構造体(2a)、詳細にはマイクロ波導波管(2)からのマイクロ波放射を、第2のマイクロ波構造体(1a)、詳細にはマイクロ波共振空洞(1)に結合させるための結合装置(12)であって、前記第1及び第2のマイクロ波構造体(2a,1a)は共通の壁(24)を共有し、前記結合装置(12)は、前記第1のマイクロ波構造体(2a)の側に位置する前記壁(24)の虹彩開口(5)を介して結合をするものであって、
    詳細には、前記結合装置(12)は、基本的に円筒形状であり、
    前記結合装置(12)は、N≧3、好ましくは3≦N≦20であるN個の導電性の導体ループ(21)を備える結合装置(12)であって
    前記導体ループ(21)は、z軸に沿って同軸に配列され、
    前記z軸は、前記第1のマイクロ波構造体(2a)及び前記第2のマイクロ波構造体(1a)の前記共通の壁(24)と平行であり、
    軸方向に隣接する導体ループ(21)は誘電体によって分離されている、
    ことを特徴とする結合装置(12)。
  2. 前記導体ループ(21)及び前記誘電体は、前記z軸に沿ったマイクロ波磁場の軸方向の伝搬がカットオフ条件を下回るように選択され、寸法決めされ、配置されているため、前記z軸に平行なマイクロ波磁力線(3)は前記結合装置(12)の内部容積(34)に入ることができないことを特徴とする請求項1に記載の結合装置(12)。
  3. 前記導体ループ(21)及び前記誘電体は、軸方向に隣接するループ(21)間から前記結合装置(12)の内部容積(34)内へのマイクロ波磁場の伝搬が可能となるように選択され、寸法決めされ、配置されているため、個々の導体ループ(21)の周りの局所的なマイクロ波磁力線ループ(10a)は、前記結合装置(12)を介して前記第1のマイクロ波構造体(2a)内のマイクロ波磁場と前記第2のマイクロ波構造体(1a)内のマイクロ波磁場とを連結するために形成され得ることを特徴とする請求項1又は2に記載の結合装置(12)。
  4. 前記導体ループ(21)は、連続的な螺旋導体構造体(26)の導体巻線(23)として形成されることを特徴とする請求項1乃至3のいずれか1項に記載の結合装置(12)。
  5. 前記導体ループ(21)は、互いに電気的に絶縁された閉じた導体リング(8)として形成されることを特徴とする請求項1乃至3のいずれか1項に記載の結合装置(12)。
  6. 前記結合装置(12)は、前記導体ループ(21)が配置された支持構造体(20)を備え、
    前記支持構造体(20)は前記誘電体から作製される
    ことを特徴とする請求項1乃至5のいずれか1項に記載の結合装置(12)。
  7. 前記結合装置(12)は、前記支持構造体(20)を前記z軸に沿って移動させるための移動機構(35)を備えることを特徴とする請求項6に記載の結合装置(12)。
  8. 前記導体ループ(21)の配列は、前記z軸に沿って長さLを有し、前記配列は、前記z軸に垂直な平面内で最大外径MODを有し、
    0.5≦L/MOD≦10である
    ことを特徴とする請求項1乃至7のいずれか1項に記載の結合装置(12)。
  9. 前記導体ループ(21)の配列は、前記z軸に沿って長さLを有し、前記導体ループ(21)の各々は、前記z軸に垂直な平面内で最小内径MIDを有し、
    L>2*MIDである
    ことを特徴とする請求項1乃至8のいずれか1項に記載の結合装置(12)。
  10. 前記導体ループ(12)は、前記マイクロ波放射の表皮深さをδとすると、局所的な軸方向延長部HringがHring≧3*δである導体ストライプから作製されることを特徴とする請求項1乃至9のいずれか1項に記載の結合装置(12)。
  11. 隣接する導体ループ(21)を分離する前記誘電体の局所的な軸方向延長部Hdielは、Hdiel≧RWring/(3*εdiel)となるように選択され、
    前記導体ループ(21)は、局所的な半径方向幅RWringを有する導体ストライプから作製され、前記誘電体は、相対誘電率εdielを有する
    ことを特徴とする請求項1乃至10のいずれか1項に記載の結合装置(12)。
  12. -詳細にはマイクロ波導波管(2)である第1のマイクロ波構造体(2a)と、
    -詳細にはマイクロ波共振空洞(1)である第2のマイクロ波構造体(1a)であって、前記第1及び第2のマイクロ波構造体(2a、1a)が共通の壁(24)を共有する第2のマイクロ波構造体(1a)と、
    -前記第1のマイクロ波構造体(2a)と前記第2のマイクロ波構造体(1a)とを接続する、前記共通の壁(24)内の虹彩開口(5)と、
    -前記第1のマイクロ波構造体(2a)内において前記虹彩開口の前に位置する、請求項1乃至11のいずれか1項に記載の結合装置(12)と、
    を備えるマイクロ波結合アセンブリ(25)であって、
    前記導体ループ(21)が前記z軸に沿って同軸に配列され、前記z軸は、前記第1のマイクロ波構造体(2a)及び前記第2のマイクロ波構造体(1a)の前記共通の壁(24)と平行である
    ことを特徴とするマイクロ波結合アセンブリ(25)
  13. 前記導体ループ(21)の配列は、前記z軸に沿って長さLを有し、前記虹彩開口(5)は、前記z軸に沿って延長部ILDを有し、
    0.2*ILD≦L≦2*ILDである
    ことを特徴とする請求項12に記載のマイクロ波結合アセンブリ(25)。
  14. マイクロ波結合アセンブリ(25)は、前記第1のマイクロ波構造体(2a)内で前記結合装置(12)を前記z軸に沿って移動させるための移動装置(30)を備え、
    特に、前記移動装置(30)は、ねじ又はガイド部材を備える
    ことを特徴とする請求項12及び13のいずれか1項に記載のマイクロ波結合アセンブリ(25)。
  15. 電子常磁性共鳴(=EPR)測定システム用のプローブヘッド(33)であって、
    請求項12乃至14のいずれか1項に記載のマイクロ波結合アセンブリ(25)を備え、
    前記第2のマイクロ波構造体(1a)は、EPR試料(32)用の少なくとも1つの開口(36)及び試料ホルダ(31)を備えるマイクロ波共振空洞(1)であり、
    前記第1のマイクロ波構造体(2a)は、マイクロ波導波管(2)である
    ことを特徴とするプローブヘッド(33)。
  16. EPR測定における、請求項15に記載のプローブヘッド(33)の使用法であって、 EPR試料(32)は、前記マイクロ波共振空洞(1)内の前記試料ホルダ(31)に配置され、
    マイクロ波放射は、前記マイクロ波導波管(2)に供給され、前記結合装置(12)によって補助された前記虹彩開口(5)を介して前記マイクロ波共振空洞(1)に結合され、
    前記虹彩開口(5)の前の前記マイクロ波放射の磁力線(3)は、前記z軸に平行であり、
    前記z軸に沿ったマイクロ波磁場の軸方向の伝搬は結合装置(12)のカットオフ条件を下回っているため、前記z軸に平行なマイクロ波磁力線(3)は前記結合装置(12)の内部容積(34)に侵入せず、
    軸方向に隣接するループ(21)間で前記結合装置(12)の前記内部容積(34)へのマイクロ波磁場の伝搬が起こるので、局所的なマイクロ波磁力線ループ(10a)が、個々の導体ループ(21)の周りに形成されて、前記結合装置(12)を介して前記第1のマイクロ波構造体(2a)のマイクロ波磁場と前記第2のマイクロ波構造体(1a)のマイクロ波磁場とを連結する、
    プローブヘッド(33)の使用法。
JP2021130159A 2020-08-12 2021-08-06 複数の導体ループを備える、虹彩アパーチャのためのマイクロ波結合装置 Active JP7303259B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20190712.8 2020-08-12
EP20190712.8A EP3955377B1 (en) 2020-08-12 2020-08-12 Microwave coupling device for iris apertures, comprising a plurality of conductor loops

Publications (2)

Publication Number Publication Date
JP2022033007A JP2022033007A (ja) 2022-02-25
JP7303259B2 true JP7303259B2 (ja) 2023-07-04

Family

ID=72050741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021130159A Active JP7303259B2 (ja) 2020-08-12 2021-08-06 複数の導体ループを備える、虹彩アパーチャのためのマイクロ波結合装置

Country Status (4)

Country Link
US (1) US11914010B2 (ja)
EP (1) EP3955377B1 (ja)
JP (1) JP7303259B2 (ja)
CN (1) CN114079137B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117148241B (zh) * 2023-10-30 2024-02-06 天津天达图治科技有限公司 一种智能超材料结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050908A (ja) 2000-08-02 2002-02-15 Nec Corp 導波管マイクロ波回路またはミリ波回路

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3003118A (en) * 1958-03-31 1961-10-03 Sanders Associates Inc Synchronized regenerative amplifier
US3076122A (en) * 1960-04-11 1963-01-29 Litton Electron Tube Corp Magnetron device
US3080520A (en) * 1960-11-04 1963-03-05 Gulf Research Development Co Resonant microwave cavity structure
US3896400A (en) 1973-06-14 1975-07-22 Varian Associates Coaxial line to microwave cavity coupling section comprising a waveguide beyond cutoff
JPS5782703U (ja) * 1980-11-10 1982-05-21
JPS5782703A (en) 1980-11-12 1982-05-24 Copyer Co Ltd Method and device for detecting paper thickness
US4468633A (en) 1982-04-28 1984-08-28 The Bendix Corporation Adjustable microwave power combiner for a plurality of coaxially mounted impatt diodes
ES2078172B1 (es) 1993-12-29 1998-01-16 Consejo Superior Investigacion Junta rotatoria de perfil plano para radiofrecuencia.
JP2967224B2 (ja) 1995-06-28 1999-10-25 株式会社村田製作所 強磁性共鳴測定用空洞共振器
FR2755544B1 (fr) * 1996-11-05 1999-01-22 Centre Nat Etd Spatiales Dispositif de filtrage a cavite metallique a inserts dielectriques
SE516862C2 (sv) * 2000-07-14 2002-03-12 Allgon Ab Avstämningsskruvanordning samt metod och resonator
CN101315999B (zh) * 2008-06-27 2012-10-03 华为技术有限公司 螺钉装置和使用该螺钉装置的空腔滤波器
CN102780058A (zh) 2012-08-10 2012-11-14 成都赛纳赛德科技有限公司 矩形波导定向耦合器
CN103033526B (zh) 2013-01-05 2017-09-12 中国人民解放军军事医学科学院放射与辐射医学研究所 一种外置样品测量的圆柱形电子顺磁共振探头
CN103018269B (zh) * 2013-01-05 2017-09-12 中国人民解放军军事医学科学院放射与辐射医学研究所 一种腔外测量样品的矩形电子顺磁共振探头
CN103151586B (zh) 2013-02-01 2016-03-02 华为技术有限公司 一种金属同轴腔与介质谐振腔的耦合装置和滤波器
US10078120B2 (en) * 2014-01-20 2018-09-18 Doty Scientific, Inc. Tunable microwave resonator for static dynamic nuclear polarization (DNP)
CN204203131U (zh) 2014-04-28 2015-03-11 中国人民解放军军事医学科学院放射与辐射医学研究所 具有双表面检测口的电子顺磁共振探头
EP3070488B1 (en) * 2015-03-18 2017-08-30 Bruker BioSpin GmbH Epr microwave cavity for small magnet airgaps
US9705171B2 (en) * 2015-04-08 2017-07-11 Space Systems/Loral, Llc Dielectric resonator filter and multiplexer having a common wall with a centrally located coupling iris and a larger peripheral aperture adjustable by a tuning screw
EP3145022A1 (en) 2015-09-15 2017-03-22 Spinner GmbH Microwave rf filter with dielectric resonator
US10340124B2 (en) * 2015-10-29 2019-07-02 Applied Materials, Inc. Generalized cylindrical cavity system for microwave rotation and impedance shifting by irises in a power-supplying waveguide
US10802102B2 (en) 2017-08-10 2020-10-13 University Of Science And Technology Of China Pulsed electron paramagnetic resonance spectrometer
CN107623158A (zh) 2017-09-06 2018-01-23 南京理工大学 一种Ku波段宽带交指型滤波器
GB201714350D0 (en) 2017-09-06 2017-10-18 Turner Rhodri Microwave resonance cavity
CN108631037B (zh) 2018-04-19 2020-09-18 武汉凡谷电子技术股份有限公司 介质谐振器与金属谐振器形成对称零点的结构及滤波器
CN110658226B (zh) 2019-11-05 2024-04-19 国仪量子技术(合肥)股份有限公司 一种微波谐振腔及使用它的电子顺磁共振探头

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002050908A (ja) 2000-08-02 2002-02-15 Nec Corp 導波管マイクロ波回路またはミリ波回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.A.J.M.Disselhorst,A Pulsed EPR and ENDOR Spectrometer Operationg at 95GHz,Journal of Magnetic Resonance, Series A,1995年,Vol.115,pp.183-188

Also Published As

Publication number Publication date
JP2022033007A (ja) 2022-02-25
US20220050155A1 (en) 2022-02-17
US11914010B2 (en) 2024-02-27
EP3955377A1 (en) 2022-02-16
CN114079137A (zh) 2022-02-22
EP3955377B1 (en) 2022-11-09
US20220342015A9 (en) 2022-10-27
CN114079137B (zh) 2023-02-10

Similar Documents

Publication Publication Date Title
US4446429A (en) Microwave resonator
JP3066359B2 (ja) Nmr信号受信用超伝導ハイブリッド共鳴器
EP2875369B1 (en) Crossed-loop resonators
US4504788A (en) Enclosed loop-gap resonator
EP0047065B1 (en) Distributed phase rf coil
US10078120B2 (en) Tunable microwave resonator for static dynamic nuclear polarization (DNP)
US4314204A (en) Resonator for electron spin resonance experiments
JP7303259B2 (ja) 複数の導体ループを備える、虹彩アパーチャのためのマイクロ波結合装置
US4480239A (en) Loop-gap resonator network
Rinard et al. Easily tunable crossed-loop (bimodal) EPR resonator
US4680550A (en) High-frequency antenna device in apparatus for nuclear spin tomography and method for operating this device
AU768008B2 (en) Probe head for an NMR spectrometer
JP3860840B2 (ja) 分光法のための交差ループ共振器の構造
EP0165741A2 (en) Double post reentrant cavity for NMR probes
JP2019180851A (ja) アレイコイル及び磁気共鳴撮像装置
US20030038633A1 (en) Cavity resonator for electron paramagnetic resonance spectroscopy having axially uniform field
JP6553159B2 (ja) Rf帯域における透過性および均一性を強化したepr共振器
US3250985A (en) Microwave cavity resonator
JP2007520714A (ja) 無線周波数伝送線路を使用する核磁気共鳴用の高周波空洞共振器
US20130328564A1 (en) Nmr rf probe coil exhibiting double resonance
US20240004012A1 (en) Nmr probehead
RU2083977C1 (ru) Датчик спектрометра двойного ядерно-электронного резонанса
SU868506A1 (ru) Резонансна система спектрометра двойного электронно- дерного резонанса
Ivanov On the geometry optimization of X-band resonator for electron paramagnetic resonance application
Wilmshurst et al. Spectrometer cavities

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230622

R150 Certificate of patent or registration of utility model

Ref document number: 7303259

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150