JP7296250B2 - Excavation surface geological evaluation method - Google Patents

Excavation surface geological evaluation method Download PDF

Info

Publication number
JP7296250B2
JP7296250B2 JP2019101831A JP2019101831A JP7296250B2 JP 7296250 B2 JP7296250 B2 JP 7296250B2 JP 2019101831 A JP2019101831 A JP 2019101831A JP 2019101831 A JP2019101831 A JP 2019101831A JP 7296250 B2 JP7296250 B2 JP 7296250B2
Authority
JP
Japan
Prior art keywords
vibration
personal computer
geophone
excavation
elastic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019101831A
Other languages
Japanese (ja)
Other versions
JP2020197389A (en
Inventor
和弘 大沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2019101831A priority Critical patent/JP7296250B2/en
Publication of JP2020197389A publication Critical patent/JP2020197389A/en
Application granted granted Critical
Publication of JP7296250B2 publication Critical patent/JP7296250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

本発明は、トンネル工事などの土木工事においてトンネル切羽などの掘削面の地質状態の把握に使用する掘削面地質評価方法に関する。 TECHNICAL FIELD The present invention relates to an excavated surface geological evaluation method used for grasping the geological state of an excavated surface such as a tunnel face in civil engineering works such as tunnel construction.

通常、トンネル工事においては、トンネルの掘削や支保を安全かつ適切に施工するために、トンネルの掘削前に地山の弾性波速度分布を推定することが行われる。また、トンネルの掘削中に掘削面である切羽付近の地質状態を把握するため、トンネル坑内においてトンネル切羽の弾性波速度の測定が行われる。 Generally, in tunnel construction, the seismic velocity distribution of the ground is estimated before tunnel excavation in order to safely and appropriately construct tunnel excavation and support. During tunnel excavation, elastic wave velocity of the tunnel face is measured in order to grasp the geological condition near the face, which is the excavation surface.

従前、本願発明者はこの種の弾性波速度測定方法を特許文献1により提案している。
この弾性波速度測定方法は、機材設置ステップ、音波振動、弾性波振動記録ステップ、弾性波速度算出ステップを順次実施する。
Previously, the inventor of the present application proposed this kind of elastic wave velocity measuring method in Patent Document 1.
This elastic wave velocity measuring method sequentially implements an equipment installation step, a sound wave vibration, an elastic wave vibration recording step, and an elastic wave velocity calculation step.

まず機材設置ステップでは、トンネル坑内の切羽を含む土木工事における掘削位置から所定の距離離れた所定の位置にロックボルトを設置しロックボルトに可搬型のジオフォンを固定設置して、ジオフォンに通信ケーブルを介してICレコーダを接続する。 First, in the equipment installation step, a rock bolt is installed at a predetermined distance from the excavation position in civil engineering work, including the tunnel face, and a portable geophone is fixed to the rock bolt, and a communication cable is connected to the geophone. Connect an IC recorder via

続く音波振動、弾性波振動記録ステップでは、掘削位置で振動を発生させ、掘削位置の振動により発生し掘削位置とジオフォンの設置位置との間の地山を伝播する弾性波の振動を、掘削位置の振動により発生し掘削位置とジオフォンの設置位置との間の空中を伝播する音波の振動とともに、ジオフォンのみで受振、計測し、掘削位置で振動を発生させる前から記録動作を開始させたICレコーダに記録する。 In the next step of recording sound wave vibration and elastic wave vibration, vibration is generated at the excavation position, and the vibration of the elastic wave generated by the vibration of the excavation position and propagating through the ground between the excavation position and the geophone installation position is recorded at the excavation position. An IC recorder that receives and measures the sound wave generated by the vibration of the excavation position and propagates in the air between the excavation position and the geophone installation position, and starts the recording operation before the vibration is generated at the excavation position. to record.

そして弾性波速度算出ステップでは、ICレコーダに記録された音波の振動データ及び弾性波の振動データに基いて弾性波速度を算出する。この弾性波速度算出ステップの場合、音波の振動データから、音波到達時間として、掘削位置で振動を発生させる前から記録動作を開始させたICレコーダの記録動作の開始の時点から掘削位置の振動により発生し空中を伝播する音波の振動がICレコーダに到達した時点までの時間を抽出するとともに、弾性波の振動データから、弾性波到達時間として、掘削位置で振動を発生させる前から記録動作を開始させたICレコーダの記録動作の開始の時点から掘削位置の振動により発生し地山を伝播する弾性波の振動がICレコーダに到達した時点までの時間を抽出し、所定の距離及び既知の空気中の音速と音波到達時間とに基いて、ICレコーダの記録動作の開始の時点から掘削位置で振動を発生させた時点までの振動発生時間を推定して、所定の距離と弾性波到達時間及び振動発生時間とに基いて、掘削位置とジオフォンの設置位置との間の弾性波速度を算出する。 In the elastic wave velocity calculation step, the elastic wave velocity is calculated based on the vibration data of the sound waves and the vibration data of the elastic waves recorded in the IC recorder. In the case of this elastic wave velocity calculation step, from the vibration data of the sound wave, the arrival time of the sound wave is calculated from the time when the recording operation of the IC recorder started before the vibration is generated at the excavation position. In addition to extracting the time until the vibration of the generated sound wave that propagates in the air reaches the IC recorder, from the vibration data of the elastic wave, the recording operation is started before the vibration is generated at the excavation position as the arrival time of the elastic wave. Extract the time from the start of the recording operation of the IC recorder to the time when the vibration of the elastic wave generated by the vibration of the excavation position and propagated through the ground reaches the IC recorder, Based on the sound speed and the sound wave arrival time, the vibration generation time from the start of the recording operation of the IC recorder to the time when the vibration is generated at the excavation position is estimated, and the predetermined distance, the elastic wave arrival time, and the vibration Based on the time of occurrence and the time of occurrence, the elastic wave velocity between the drilling position and the geophone installation position is calculated.

このようにして簡易な汎用機材の可搬型のジオフォン、簡易な汎用機材の可搬型のICレコーダのみで、弾性波速度を確実かつ容易に測定し、弾性波速度の測定を低コストで実施することができる。 In this way, it is possible to reliably and easily measure elastic wave velocities using only a simple general-purpose portable geophone and a simple general-purpose portable IC recorder, and to implement elastic wave velocity measurements at low cost. can be done.

特許第6420054号公報Japanese Patent No. 6420054

ところで山岳トンネル建設工事においては、掘削作業中に、切羽から肌落ちが発生することがある。このため、厚生労働省は「山岳トンネル工事の切羽における肌落ち災害防止対策に係るガイドライン」を示すとともに、トンネル工事の施工者は各種の災害防止対策を実施している。しかしながら、現在のところ、切羽からの肌落ちなどによる労働災害を撲滅するまでには至っていない。このため、労働者を肌落ちによる落石から防護する手法とともに、合理的に肌落ちなどの発生を予測する手法の開発が求められている。 By the way, in the mountain tunnel construction work, during the excavation work, the surface may come off from the face. For this reason, the Ministry of Health, Labor and Welfare has issued the "Guidelines for Measures against Falling Skin Accidents in the Face of Mountain Tunnel Construction", and tunnel construction workers are implementing various disaster prevention measures. However, at present, it has not reached the stage of eradicating occupational accidents due to skin falling from the face. Therefore, there is a demand for the development of a method for protecting workers from falling rocks caused by falling skin, as well as a method for reasonably predicting the occurrence of falling skin.

一方、トンネル坑内の作業員は、従前より、トンネルの発破音について異常と感じた場合は、切羽の点検を強化するなどの対応を行ってきた。この発破音に関しては騒音の観点からの研究が多数あるものの、発破音と切羽状況との関係を定量的に評価する研究はほとんど知られていない。このことから、本願発明者はこの発破音の周波数特性に着目して検討を試みた。特許文献1の弾性波測定方法は、トンネル掘削発破で生じる弾性波を掘削の進行に伴って連続的に測定し、トンネル坑内の弾性波速度分布を把握するとともに、切羽前方の地質変化を予測するもので、この方法は、本来、地山を伝播する弾性波を測定するものであるが、ジオフォンをトンネル孔壁のロックボルトの頭部に機械的に固定するため、このジオフォンで発破音も同時に測定することができる。そこで、近年掘削が完了したトンネルにおいて、上記の弾性波測定方法を用いて、切羽の振動により発生し切羽とジオフォンの設置位置との間の地山を伝播する弾性波の振動を、切羽の振動により発生し切羽とジオフォンの設置位置との間の空中を伝播する音波(発破音)の振動とともに、ジオフォンのみで受振、計測し、パソコンに記録して、弾性波の周波数とともに音波の周波数に注目して検討を行ったところ、発破直後の切羽毎に切羽の地質変化によるリスクを評価するための新たな手法を見出すに至った。 On the other hand, tunnel workers have been taking measures such as strengthening the inspection of the face when they feel that the blasting sound of the tunnel is abnormal. Although there are many studies on this blasting noise from the viewpoint of noise, there are few studies that quantitatively evaluate the relationship between the blasting noise and the face condition. For this reason, the inventors of the present application focused on the frequency characteristics of this blasting sound and tried to study it. The elastic wave measurement method of Patent Document 1 continuously measures elastic waves generated by tunnel excavation blasting as the excavation progresses, grasps the elastic wave velocity distribution in the tunnel, and predicts geological changes in front of the face. This method is originally intended to measure the elastic waves propagating through the ground, but since the geophone is mechanically fixed to the head of the rock bolt on the wall of the tunnel hole, the blasting sound can also be detected by this geophone at the same time. can be measured. Therefore, in a tunnel that has been excavated in recent years, the above-mentioned elastic wave measurement method was used to measure the vibration of the elastic wave generated by the vibration of the face and propagating through the ground between the face and the geophone installation position. Along with the vibration of the sound wave (explosive sound) that is generated and propagates in the air between the face and the geophone installation position, the vibration is received only by the geophone, measured, recorded on a personal computer, and the frequency of the sound wave as well as the frequency of the elastic wave. As a result, we found a new method for evaluating the risk of geological changes in the face immediately after blasting.

本発明は、特許文献1の弾性波測定方法を改良するものであり、トンネル切羽を含む地山の掘削面で振動を発生させた直後の掘削面毎に掘削面の地質状況の変化を評価できるようにして、この地質状況の変化の評価レベルをパーソナルコンピュータなどに表示して地山の掘削に従事する作業員に対して施工・安全情報として提供したりこの地質状況の変化の評価レベルに応じた警報や警告をトンネル掘削に従事する作業員に向けて発したりするなどして、トンネル切羽を含む地山の掘削作業での肌落ち災害を未然に防止することのできる新たな掘削面地質評価方法を提供すること、を目的とする。 The present invention is an improvement of the elastic wave measurement method of Patent Document 1, and can evaluate changes in the geological conditions of each excavation surface immediately after vibration is generated on the excavation surface of the ground including the tunnel face. In this way, the evaluation level of the change in the geological situation is displayed on a personal computer or the like, and is provided as construction and safety information to the workers engaged in excavating the natural ground. A new excavation surface geological evaluation that can prevent disasters such as falling skin during excavation work of the ground including the tunnel face by issuing warnings and warnings to workers engaged in tunnel excavation. The purpose is to provide a method.

上記目的を達成するために、本発明の掘削面地質評価方法は、
トンネル坑内の切羽を含む土木工事における掘削面から所定の距離離れた所定の設置位置に地震計とマイクロフォンとして可搬型のジオフォンをロックボルトを介して設置するとともに、前ジオフォンに通信ケーブルを介して記録装置として可搬型のパーソナルコンピュータ又はICレコーダを接続し、
前記掘削面で振動を発生させ、当該振動の際に発生し、前記掘削面と前記ジオフォンの設置位置との間の地山を伝播する弾性波、及び前記掘削面と前記ジオフォンの設置位置との間の空中を伝播する音波を、それぞれ、前記ジオフォンのみで受振、計測し、前記掘削面で前記振動の発生前から記録動作を開始させた前記パーソナルコンピュータ又は前記ICレコーダに記録して、
解析装置としてパーソナルコンピュータを使用し、当該パーソナルコンピュータに弾性波データ及び音波データを解析する解析ソフトを搭載して、前記パーソナルコンピュータ又は前記ICレコーダに記録された弾性波データ及び音波データから、前記解析ソフトを搭載された前記パーソナルコンピュータにより、弾性波の周波数特性及び音波の周波数特性を算出し、前記弾性波の周波数特性及び前記音波の周波数特性から明確に判別可能なそれぞれの卓越した周波数特性に基づいて前記掘削面の地質状況を推定し評価する、
ことを要旨とする。
In order to achieve the above object, the excavated surface geological evaluation method of the present invention includes:
A seismometer and a portable geophone as a microphone are installed at a predetermined installation position at a predetermined distance from the excavation surface in civil engineering work , including the tunnel face, via rock bolts, and a communication cable is connected to the geophone . Connect a portable personal computer or IC recorder as a recording device,
Vibration is generated on the excavation surface, an elastic wave generated during the vibration and propagating through the ground between the excavation surface and the installation position of the geophone , and an elastic wave between the excavation surface and the installation position of the geophone . The sound waves propagating in the air between them are respectively received and measured only by the geophone , and recorded on the personal computer or the IC recorder that has started the recording operation before the vibration occurs on the excavation surface,
A personal computer is used as an analysis device, and analysis software for analyzing elastic wave data and sound wave data is installed in the personal computer, and the analysis is performed from the elastic wave data and sound wave data recorded in the personal computer or the IC recorder . The frequency characteristics of the elastic wave and the frequency characteristics of the sound wave are calculated by the personal computer equipped with the software , and based on the excellent frequency characteristics that can be clearly distinguished from the frequency characteristics of the elastic wave and the frequency characteristics of the sound wave. estimating and evaluating the geological condition of the excavation surface by
This is the gist of it.

そして、この方法は次のように具体化される。
(1)掘削面の振動源として発破を使用し、前記掘削面に発破孔を設けて爆薬を装填し、爆薬を起爆させる。
)上記()に代えて、掘削面の振動源としてブレーカ、ハンマを含む土木工事に用いる各種機器を使用し、前記掘削面をブレーカ、ハンマを含む前記各種機器で打撃するようにしてもよい。
)掘削面付近を含む土木工事の現場の適宜の位置に警報器を配備し、掘削面毎に前記警報器により掘削面の地質状況の評価に応じた警報を発するものとする。
And this method is embodied as follows.
(1 ) Blasting is used as a source of vibration of the excavation surface, and a blasting hole is provided in the excavation surface to load the explosive and detonate the explosive.
( 2 ) Instead of ( 1 ) above, various equipment used in civil engineering work, including breakers and hammers, are used as vibration sources for the excavated surface, and the excavated surface is hit by the various equipment including breakers and hammers. good too.
( 3 ) Alarm devices shall be installed at appropriate positions on the site of civil engineering work, including near the excavation surface, and an alarm according to the evaluation of the geological condition of the excavation surface shall be issued by the alarm device for each excavation surface.

本発明の掘削面地質評価方法によれば、土木工事における掘削面から所定の距離離れた所定の設置位置に可搬型のジオフォンをロックボルトを介して設置するとともに、このジオフォンに通信ケーブルを介して可搬型のパーソナルコンピュータ又はICレコーダを接続し、掘削面で振動を発生させ、この振動の際に発生し、掘削面とジオフォンの設置位置との間の地山を伝播する弾性波、及び掘削面とジオフォンの設置位置との間の空中を伝播する音波をそれぞれ、ジオフォンのみで受振、計測し、掘削面で振動の発生前から記録動作を開始させたパーソナルコンピュータ又はICレコーダに記録して、パーソナルコンピュータに弾性波データ及び音波データを解析する解析ソフトを搭載し、このパーソナルコンピュータで、パーソナルコンピュータ又はICレコーダに記録された弾性波データ及び音波データから弾性波の周波数特性及び音波の周波数特性を算出し、この弾性波の周波数特性及び音波の周波数特性から明確に判別可能なそれぞれの卓越した周波数特性に基づいて掘削面の地質状況を推定し評価するようにしたので、ジオフォン、ICレコーダ、パーソナルコンピュータなど簡易な汎用機材で、トンネル切羽を含む地山の掘削面で振動を発生させた直後の掘削面毎に掘削面の地質状況の変化を簡易にしかも低コストに評価することができ、この地質状況の変化の評価レベルをパーソナルコンピュータなどに表示して地山の掘削に従事する作業員に対して施工・安全情報として提供したりこの地質状況の変化の評価レベルに応じた警報や警告をトンネル掘削に従事する作業員に向けて発したりすることで、トンネル切羽を含む地山の掘削作業での肌落ち災害を未然に防止することができる、という本発明独自の格別な効果を奏する。 According to the excavated surface geological evaluation method of the present invention, a portable geophone is installed at a predetermined installation position at a predetermined distance from an excavated surface in civil engineering work via a rock bolt, and a communication cable is connected to the geophone. A portable personal computer or IC recorder is connected to generate vibrations on the excavation surface, and elastic waves generated during this vibration propagate through the ground between the excavation surface and the geophone installation position, and the excavation surface. The sound waves propagating in the air between the and the geophone installation position are respectively received and measured by the geophone alone , and recorded on a personal computer or IC recorder that starts the recording operation before the vibration occurs on the excavation surface. A computer is equipped with analysis software for analyzing elastic wave data and sound wave data, and this personal computer calculates the frequency characteristics of elastic waves and the frequency characteristics of sound waves from the elastic wave data and sound wave data recorded in the personal computer or IC recorder. However, the geological condition of the excavation surface is estimated and evaluated based on the excellent frequency characteristics that can be clearly distinguished from the frequency characteristics of the elastic waves and the frequency characteristics of the sound waves. It is possible to easily and at a low cost evaluate changes in the geological conditions of each excavated surface immediately after vibration is generated on the excavated surface of the ground including the tunnel face , using simple general-purpose equipment such as The evaluation level of the change in the situation is displayed on a personal computer or the like, and is provided as construction and safety information to the workers engaged in excavating the natural ground. The present invention has a unique and special effect that it is possible to prevent disasters such as falling of the skin during excavation of natural ground including a tunnel face by directing it to workers engaged in excavation.

本発明の一実施の形態における掘削面地質評価方法の流れを示す図A diagram showing the flow of an excavated surface geological evaluation method according to an embodiment of the present invention. 同方法における機材設置ステップ及び弾性波振動・音波振動記録ステップの具体例を示す図A diagram showing a specific example of the equipment installation step and the elastic wave vibration / sound wave vibration recording step in the same method 同方法における弾性波振動・音波振動記録ステップで測定しパソコンに記録された波形データの一例を示す図A diagram showing an example of waveform data measured in the elastic wave vibration/sound wave vibration recording step in the same method and recorded in a personal computer. 同方法における周波数特性評価ステップのFFT解析による弾性波のスペクトル分布の一例を示す図A diagram showing an example of spectral distribution of elastic waves by FFT analysis of the frequency characteristic evaluation step in the same method 同方法における周波数特性評価ステップのFFT解析による音波のスペクトル分布の一例を示す図A diagram showing an example of the spectral distribution of sound waves by FFT analysis of the frequency characteristic evaluation step in the same method 同方法における弾性波振動・音波振動記録ステップ、周波数特性評価ステップ、地質状況推定評価ステップの繰り返しによる切羽の掘削進捗に伴う弾性波と音波のパワースペクトルの推移を示す図A diagram showing changes in the power spectrum of elastic waves and sound waves as the face excavation progresses by repeating the elastic wave vibration/sonic vibration recording step, the frequency characteristics evaluation step, and the geological condition estimation evaluation step in the same method.

次に、この発明を実施するための形態について図を用いて説明する。図1に掘削面地質評価方法を示している。図1に示すように、この掘削面地質評価方法は、次の機材設置ステップ、弾性波振動・音波振動記録ステップ、パワースペクトル周波数算出ステップ、地質状況推定評価ステップを順次実施することにより行う。 Next, a mode for carrying out the present invention will be described with reference to the drawings. Figure 1 shows the method for evaluating the geology of the excavated surface. As shown in FIG. 1, this excavated surface geological evaluation method is carried out by sequentially carrying out the following equipment installation step, elastic wave vibration/sound wave vibration recording step, power spectrum frequency calculation step, and geological condition estimation and evaluation step.

(機材設置ステップ(図1中、ST1))
図1において、機材設置ステップでは、トンネル坑内の切羽を含む土木工事における掘削面から所定の距離離れた後方所定の設置位置に地震計を設置するとともに、掘削面から地震計と同じ距離離れた後方所定の設置位置にマイクロフォンを設置して、地震計及びマイクロフォンに通信ケーブルを介して記録装置を接続する。この場合、地震計に可搬型のジオフォンを採用し(以下、ジオフォンという。)、ジオフォンを地山深部を伝播する弾性波を検出できるようにトンネル坑壁の所定の位置に固定したロックボルトに設置する。なお、この場合、可搬型のジオフォンをマイクロフォンとしても代用し、このジオフォンを地震計とマイクロフォンとして兼用してもよい。記録装置には可搬型のパーソナルコンピュータを採用する(以下、パソコンという。)。近時のパソコンは、通常、ステレオのピンジャックが付設されていてステレオ録音が可能であり、パソコン(のピンジャック1チャンネル、2チャンネル)にジオフォン、マイクロフォンをそれぞれ(2本の)通信ケーブルを介して接続する。また、この場合、パソコンに弾性波データ及び音波データを解析する解析ソフト(例えば、SP-WAVEなど)を搭載し、解析装置としても使用する。なお、機材設置作業の簡便性を重視すれば、記録装置に2チャンネルのICレコーダを用いてもよい。
(Equipment installation step (ST1 in FIG. 1))
In Fig. 1, in the equipment installation step, the seismometer is installed at a predetermined installation position behind the excavation surface in civil engineering work including the face of the tunnel, and at the same distance behind the excavation surface as the seismometer. A microphone is installed at a predetermined installation position, and a recording device is connected to the seismometer and the microphone through a communication cable. In this case, a portable geophone is adopted as the seismometer (hereafter referred to as a geophone), and the geophone is installed on a rock bolt fixed at a predetermined position on the tunnel wall so that it can detect elastic waves propagating deep in the ground. do. In this case, a portable geophone may be used as a microphone, and the geophone may be used as both a seismometer and a microphone. A portable personal computer is used as the recording device (hereinafter referred to as a personal computer). Recent computers are usually equipped with stereo pin jacks and stereo recording is possible. to connect. In this case, the personal computer is equipped with analysis software (such as SP-WAVE) for analyzing elastic wave data and sound wave data, and is also used as an analysis device. A two-channel IC recorder may be used as the recording device if the simplicity of equipment installation work is emphasized.

図2にこの機材設置ステップの具体例を示している。図2に示すように、このステップでは、まず、トンネル切羽から後方の位置の坑壁壁面にジオフォン1を設置し、切羽から後方にジオフォンと同じ距離離れたジオフォンに近接する所定の位置にマイクロフォン2を設置する。そして、ここでは図示を省略しているが、これらジオフォン1及びマイクロフォン2をそれぞれ、通信ケーブルを介して、パソコン3(図3参照)に接続する。 FIG. 2 shows a specific example of this equipment installation step. As shown in FIG. 2, in this step, first, a geophone 1 is installed on the wall surface of the tunnel wall at a position behind the tunnel face, and a microphone 2 is placed at a predetermined position close to the geophone at the same distance as the geophone behind the face. to be installed. Although not shown here, the geophone 1 and the microphone 2 are connected to a personal computer 3 (see FIG. 3) via communication cables.

(弾性波振動・音波振動記録ステップ(図1中、ST2、3、4))
図1において、弾性波振動・音波振動記録ステップでは、切羽を含む掘削面で振動を発生させ、この振動の際に発生し、掘削面とジオフォンの設置位置との間の地山を伝播する弾性波、及び掘削面とマイクロフォンの設置位置との間の空中を伝播する音波をそれぞれジオフォン及びマイクロフォンで受振、計測し、掘削面で振動の発生前から記録動作を開始させたパソコンに記録する。この場合、掘削面の振動源として発破を使用し、掘削面に発破孔を設けて爆薬を装填し、爆薬を起爆させて、この爆薬を起爆させた際に発生する弾性波をジオフォンで、音波をマイクロフォンで、それぞれ受振、計測し、パソコンに記録する。また、この場合、掘削面の振動源として、発破に代えて、ブレーカ、ハンマを含む土木工事に用いる各種機器を使用し、掘削面をブレーカ、ハンマを含む各種機器で打撃することにより、弾性波及び音波を発生させてもよい。なお、記録装置にICレコーダを用いた場合は、ICレコーダに記録した弾性波データ及び音波データをパソコンへ通信ケーブル又は記録媒体を用いて入力することになる。
(Elastic wave vibration/sound wave vibration recording step (ST2, 3, 4 in FIG. 1))
In Fig. 1, in the elastic wave vibration/acoustic vibration recording step, vibration is generated on the excavation surface including the face. Waves and sound waves propagating in the air between the excavation surface and the microphone installation position are received and measured by the geophone and microphone, respectively, and recorded in a personal computer that starts recording operation before the vibration occurs on the excavation surface. In this case, blasting is used as a source of vibration on the excavation surface, a blast hole is provided in the excavation surface, an explosive is loaded, the explosive is detonated, and the elastic wave generated when the explosive is detonated is detected by a geophone and a sound wave. are received and measured with a microphone, and recorded on a computer. In this case, instead of blasting, various equipment used in civil engineering work, including breakers and hammers, are used as the vibration source of the excavated surface, and by hitting the excavated surface with various equipment including breakers and hammers, elastic waves are generated. and may generate sound waves. When an IC recorder is used as the recording device, elastic wave data and sound wave data recorded in the IC recorder are input to a personal computer using a communication cable or a recording medium.

図2にこの弾性波振動・音波振動記録ステップの具体例を併せて示している。図2に示すように、まず、トンネル坑内の切羽に爆薬を装填する。この場合、トンネル切羽の掘削に当たり発破を行うので、発破は電気雷管等を用いて起爆させることとし、切羽に発破孔を削孔して、電気雷管を装着した爆薬を装填する。なお、切羽に発破孔を設けている間や発破孔に爆薬を装填している間、あるいは発破孔に爆薬を装填した後の爆薬の起爆の直前など、爆薬の起爆前にパソコン3による記録動作を開始(つまり、録音をスタート)し、録音(中の)状態にしておく。続いて、発破スイッチをON操作し、切羽の爆薬を起爆させて切羽を爆破し、振動を発生させる。この爆発により、切羽から発生した弾性波は地山を伝播し、切羽後方のジオフォン1に到達し、切羽から発生した音波は坑内(空中)を伝播し、切羽後方のマイクロフォン2に到達する。この弾性波をジオフォン1で、音波をマイクロフォン2で、それぞれ、受振、計測し、これを録音(中の)状態になっているパソコン3(のメモリ)に記録する。 FIG. 2 also shows a specific example of this elastic wave vibration/sound wave vibration recording step. As shown in FIG. 2, first, the face in the tunnel is loaded with explosives. In this case, since blasting is performed when excavating the tunnel face, an electric detonator or the like is used to initiate the blasting. Note that the recording operation by the personal computer 3 before the detonation of the explosive, such as while the blast hole is provided in the face, while the blast hole is loaded with the explosive, or immediately before the detonation of the explosive after the explosive is loaded into the blast hole. start (that is, start recording) and leave it in the recording (during) state. Subsequently, the blasting switch is turned on to detonate the explosive in the face, blow up the face, and generate vibration. Due to this explosion, the elastic wave generated from the face propagates through the ground and reaches the geophone 1 behind the face, and the sound wave generated from the face propagates in the tunnel (in the air) and reaches the microphone 2 behind the face. The elastic waves are received and measured by the geophone 1 and the sound waves by the microphone 2, respectively.

図3にこの弾性波振動・音波振動記録ステップで、ジオフォンをマイクロフォンとして使用して測定しパソコン3に記録された波形データの一例を示している。この波形データはパソコン3のディスプレイに表示される。この場合、横軸は時刻、縦軸は振幅を示し、サンプリング周波数を44.1kHz、量子化ビット数を24bitとし、原則として掘削発破の全数を記録する。測定結果は、発破点火後、地山を伝播した弾性波がまず記録され、その後空中を伝播した発破音が記録される。上段は発破信号の測定記録(本願特許では使用しない)で、この記録から、記録開始後8.685msに発破が起爆され、切羽から弾性波及び音波が発生したことが分かる。下段はジオフォン1とマイクロフォン2の測定記録である。この結果から、弾性波は22.971msにジオフォン1に到達し、音波が148.367msにマイクロフォン2に到達したことが分かる。弾性波は比較的低周波成分が卓越するのに対し、発破音では高周波成分が卓越し、測定波形から明瞭に判別できる。 FIG. 3 shows an example of waveform data measured using a geophone as a microphone and recorded in the personal computer 3 in this elastic wave vibration/sound wave vibration recording step. This waveform data is displayed on the display of the personal computer 3 . In this case, the horizontal axis indicates time, the vertical axis indicates amplitude, the sampling frequency is 44.1 kHz, and the number of quantization bits is 24 bits. As for the measurement results, after the blasting ignition, the elastic wave propagating through the ground is first recorded, and then the blasting sound propagating through the air is recorded. The upper row shows the measurement record of the blasting signal (not used in the patent of the present application). From this record, it can be seen that the blasting was initiated 8.685 ms after the start of recording, and elastic waves and sound waves were generated from the face. The bottom row is the measurement record of Geophone 1 and Microphone 2. From this result, it can be seen that the elastic wave reached Geophone 1 at 22.971 ms and the sound wave reached Microphone 2 at 148.367 ms. While the elastic wave is relatively predominant in low-frequency components, the blasting sound is predominant in high-frequency components, which can be clearly distinguished from the measured waveform.

(パワースペクトル周波数算出ステップ(ST5、6))
図1において、パワースペクトル周波数算出ステップでは、パソコンに記録された弾性波データ及び音波データから弾性波のパワースペクトル周波数及び音波のパワースペクトル周波数を算出する。ここでは、パソコンに記録された弾性波及び音波についてパソコン(の解析ソフト)でFFT解析を行い、それぞれのパワースペクトルを算出する。この場合、SP-WAVEを使用する。
(Power spectrum frequency calculation step (ST5, 6))
In FIG. 1, in the power spectrum frequency calculation step, the power spectrum frequency of the elastic wave and the power spectrum frequency of the sound wave are calculated from the elastic wave data and the sound wave data recorded in the personal computer. Here, FFT analysis is performed on the elastic waves and sound waves recorded in the personal computer using (analysis software of) the personal computer, and respective power spectra are calculated. In this case SP-WAVE is used.

図4にFFT解析による弾性波のスペクトル分布の一例を示し、図5にFFT解析による音波のスペクトル分布の一例を示す。このFFT解析による解析結果はパソコン3のディスプレイに表示される。この結果から、図4に示すように、弾性波のパワースペクトル周波数は64.600Hzをピークとし、これが卓越した周波数となり、音波のパワースペクトル周波数は1119.727Hzをピークとし、これが卓越した周波数となることが分かる。 FIG. 4 shows an example of spectral distribution of elastic waves by FFT analysis, and FIG. 5 shows an example of spectral distribution of sound waves by FFT analysis. The analysis result by this FFT analysis is displayed on the display of the personal computer 3. FIG. From this result, as shown in FIG. 4, the power spectrum frequency of elastic waves peaks at 64.600 Hz, which is the predominant frequency, and the power spectrum frequency of sound waves peaks at 1119.727 Hz, which is the predominant frequency. I understand.

(地質状況推定評価ステップ(ST7、8))
地質状況推定評価ステップでは、弾性波のパワースペクトル周波数及び音波のパワースペクトル周波数に基づいて掘削面の地質状況を推定し評価する。ここでは、パソコンで、まず、切羽などの掘削面で発破などの振動により発生させた弾性波、音波のそれぞれについて、現地点の掘削面での弾性波パワースペクトル周波数、音波パワースペクトル周波数と一つ前の地点(以下、単に前地点という。)の掘削面での弾性波パワースペクトル周波数、音波パワースペクトル周波数とを比較して、つまり、今回の発破時データと前回の発破時データとの比較により、現地点の弾性波パワースペクトル周波数と前地点の弾性波パワースペクトル周波数との一致、現地点の音波パワースペクトル周波数と前地点の音波パワースペクトル周波数との一致、それぞれの判定を行う。その判定は次の式(1)及び(2)により行う。

Figure 0007296250000001
Figure 0007296250000002
この場合、閾値α及びβは、評価開始時点では0とし、記録されたデータから閾値の修正を行うものとする。
そして、切羽などの掘削面の地質状況の変化を次表1の判定マトリックスから判定する。ここで、数式1及び数式2では、数式が成立する場合に一致、不成立の場合に不一致とする。
Figure 0007296250000003
すなわち、この判定マトリックスから、現地点と前地点の弾性波のパワースペクトル周波数と現地点と前地点の音波のパワースペクトル周波数がどちらも一致する場合は、切羽の地質状況が変化する可能性が小さいと評価し、パソコンのディスプレイにはこれを例えばA判定と表示し、現地点と前地点の弾性波のパワースペクトル周波数と現地点と前地点の音波のパワースペクトル周波数が共に不一致の場合は、切羽の地質状況が変化する可能性が大きいと評価し、パソコンのディスプレイにはこれを例えばC判定と表示し、現地点と前地点の弾性波のパワースペクトル周波数と現地点と前地点の音波のパワースペクトル周波数のどちらか一方が一致、他方が不一致の場合は、切羽の地質状況が変化する可能性が見込まれると評価し、パソコンのディスプレイにはこれを例えばB判定と表示する。なお、弾性波パワースペクトル周波数と音波パワースペクトル周波数の一致、不一致の閾値(つまり、一致の範囲)は、トンネルの掘削に伴い、随時、修正の設定を行うこととする。 (Geological situation estimation evaluation step (ST7, 8))
In the geological condition estimation evaluation step, the geological condition of the excavation surface is estimated and evaluated based on the power spectrum frequency of the elastic wave and the power spectrum frequency of the sound wave. Here, on a personal computer, first, for each of the elastic waves and sound waves generated by vibrations such as blasting on the excavation surface such as the face, one By comparing the elastic wave power spectrum frequency and the acoustic wave power spectrum frequency on the excavation surface of the previous point (hereinafter simply referred to as the previous point), that is, by comparing the data at the time of this blasting and the data at the time of the previous blasting , matching between the elastic wave power spectrum frequency at the local point and the elastic wave power spectrum frequency at the previous point, and matching between the sound wave power spectrum frequency at the current point and the sound wave power spectrum frequency at the previous point. The determination is made by the following equations (1) and (2).
Figure 0007296250000001
Figure 0007296250000002
In this case, the thresholds α and β are set to 0 at the start of evaluation, and the thresholds are corrected from the recorded data.
Then, the change in the geological condition of the excavation surface such as the working face is determined from the determination matrix in Table 1 below. Here, in the formulas 1 and 2, it is determined that they match when the formulas hold, and they do not match when they do not hold.
Figure 0007296250000003
In other words, from this decision matrix, if both the power spectrum frequencies of the elastic waves at the local point and the previous point and the power spectrum frequencies of the sound waves at the local point and the previous point match, there is little possibility that the geological conditions of the face will change. This is evaluated as, for example, A judgment on the display of the personal computer, and if both the power spectrum frequency of the elastic wave at the local point and the previous point and the power spectrum frequency of the sound wave at the local point and the previous point do not match, the face It is evaluated that there is a high possibility that the geological situation will change, and this is displayed as, for example, a C judgment on the computer display, and the power spectrum frequency of the elastic waves at the local point and the previous point and the power of the sound waves at the local point and the previous point. If one of the spectral frequencies matches and the other does not match, it is evaluated that there is a possibility that the geological condition of the face will change, and this is displayed as B judgment, for example, on the display of the personal computer. The matching and non-matching thresholds (that is, the range of matching) between the elastic wave power spectrum frequency and the acoustic wave power spectrum frequency are set to be corrected as needed as the tunnel is excavated.

図6に切羽の掘削進捗に伴う弾性波と音波のパワースペクトルの推移を示す。
図6(a)は、切羽の進行に伴い、支保パターンはCII-bと変化はないが、切羽の地質が花崗閃緑岩から細粒凝灰岩に変化する区間を示している。この測定結果は、パソコン3のディスプレイに表示される。各切羽の距離程を横軸、パワースペクトル周波数を縦軸とし、丸のマークは弾性波のパワースペクトル周波数を、ひし形のマークは音波のパワースペクトル周波数を、それぞれ、示している。なお、点線は5切羽のパワースペクトル周波数の移動平均値を参考として示している。
ここで、花崗閃緑岩、細粒凝灰岩の各同一地質の区間では、各掘削面での弾性波、音波のパワースペクトル周波数は大きく変化していないことから、地質状況が変化していないことが分かる。一方、花崗閃緑岩から細粒凝灰岩への地質変化に伴い、弾性波のパワースペクトル周波数の低下が認められるとともに、音波のパワースペクトル周波数の上昇が認められ、異なる地質間では地質状況が変化していることが分かる。この場合、音波での変化が顕著で、音波のばらつきが弾性波に比較して比較的大きいことから、地質変化に対して、弾性波と比較して音波が敏感であることが分かる。
図6(b)は地質は花崗閃緑岩と同一であるが、支保パターンがCIからCII-b、さ
らにCIに変化する区間を示す。ここで、支保パターンがCIからCII-bまでの区間で
は、CIの区間に比較してCII-bの区間が弾性波及び音波共にパワースペクトルの低下
が認められる。また、CII-bの区間からCIの区間に変化するTD.604m以降の区
間において音波のパワースペクトル周波数が1000Hz以上を示すものが多い。一方、弾性波のパワースペクトル周波数はTD.617m以降で66Hz以上を示すものが多くなるが、TD.604m付近の支保パターン変化点とは多少のずれが生じている。これは、弾性波がトンネル周辺地山を伝播していることの影響が考えられる。
Figure 6 shows changes in the power spectrum of elastic waves and sound waves as the face excavation progresses.
FIG. 6(a) shows a section where the face geology changes from granodiorite to fine-grained tuff as the face advances, although the shoring pattern does not change from CII-b. This measurement result is displayed on the display of the personal computer 3 . The horizontal axis represents the distance of each face, and the vertical axis represents the power spectrum frequency. Circle marks indicate the power spectrum frequencies of elastic waves, and diamond marks indicate the power spectrum frequencies of sound waves. The dotted line indicates the moving average value of the power spectrum frequencies of the five facets for reference.
Here, in the same geological sections of granodiorite and fine-grained tuff, the power spectrum frequencies of elastic waves and sound waves at each excavation surface did not change significantly, indicating that the geological conditions have not changed. I understand. On the other hand, along with the geological change from granodiorite to fine-grained tuff, a decrease in the power spectrum frequency of elastic waves and an increase in the power spectrum frequency of sound waves were observed, indicating changes in geological conditions between different geological features. It is understood that In this case, the change in the sound wave is remarkable, and the variation in the sound wave is relatively large compared to the elastic wave.
Fig. 6(b) shows an interval where the geology is the same as granodiorite, but the shoring pattern changes from CI to CII-b to CI. Here, in the section of the support pattern from CI to CII-b, the power spectrum of both the elastic wave and the sound wave is lower in the section CII-b than in the section CI. Also, the TD. In the section after 604 m, many of the sound wave power spectrum frequencies are 1000 Hz or higher. On the other hand, the power spectrum frequency of elastic waves is TD. After 617m, many show 66Hz or more, but TD. There is some deviation from the support pattern change point near 604m. This is thought to be due to the elastic waves propagating through the ground around the tunnel.

(警報ステップ)
この掘削面地質評価方法ではこの地質状況推定評価ステップに続いて掘削面の地質状況の評価に応じて警報を発する警報ステップを有するものとしてもよい。この警報ステップでは、掘削面付近を含む土木工事の現場の適宜の位置に予め警報器を配備しておき、掘削面毎に警報器により掘削面の地質状況の評価に応じた警報を発生させる。警報器の警報方式は掘削面の地質状況の評価に応じた警報音や音声、警告光、又はこれらの組み合わせとする。そして、これらの警報器をパソコンに電気的に接続し、パソコンによる地質状況の評価に基づいて作動させる。例えば、パソコンで切羽の地質状況が変化する可能性が小さいと評価され、パソコンのディスプレイにA判定と表示された場合、警報音、音声形式の警報器では、サイレンや音声は発せず、警告光式の警報器では、消灯、又は安全を報知する色、例えば青色の回転灯を回し、パソコンで切羽の地質状況が変化する可能性が大きいと評価され、パソコンのディスプレイにC判定と表示された場合、警報音、音声形式の警報器では、退避を警告するサイレンや音声を発し、警告光式の警報器では、退避を警告する色、例えば赤色の回転灯を回し、パソコンで切羽の地質状況が変化する可能性が見込まれると評価され、パソコンのディスプレイにB判定と表示された場合、警報音、音声形式の警報器では、注意を喚起するサイレンや音声を発し、警告光式の警報器では、注意を喚起する色、例えば黄色の回転灯を回す。このようにして地質状況の変化の評価レベルをパソコンのディスプレイなどに表示して地山の掘削に従事する作業員に対して施工・安全情報として提供したりこの地質状況の変化の評価レベルに応じた警報や警告をトンネル掘削に従事する作業員に向けて発したりすることで、トンネル切羽を含む地山の掘削作業での肌落ち災害を未然に防止することができる。
(alarm step)
This excavated surface geological evaluation method may have an alarm step of issuing an alarm according to the evaluation of the geological condition of the excavated surface following the geological condition estimation evaluation step. In this warning step, alarm devices are provided in advance at appropriate positions on the site of the civil engineering work including the vicinity of the excavation surface, and an alarm corresponding to the evaluation of the geological condition of the excavation surface is issued by the alarm device for each excavation surface. The alarm system of the alarm shall be alarm sound, voice, warning light, or a combination of these according to the evaluation of the geological condition of the excavation surface. These alarms are then electrically connected to a personal computer and activated based on the evaluation of the geological situation by the personal computer. For example, if the personal computer evaluates that there is little possibility that the geological conditions of the face will change, and an A judgment is displayed on the personal computer display, the warning sound and sound type alarm will not emit a siren or sound, and a warning light will be emitted. The type of alarm turned off, or turned a rotating light in a color that indicated safety, such as blue. In this case, an alarm sound or voice type alarm emits a siren or voice to warn evacuation, and a warning light type alarm turns a rotating light of a color, such as red, to warn evacuation, and the geological condition of the face is displayed on a computer. If it is evaluated that the possibility of change is expected and a B judgment is displayed on the display of the personal computer, the warning sound and voice type alarm emits a siren or voice to call attention, and the warning light type alarm Now turn on a rotating light of a color that calls attention, for example yellow. In this way, the evaluation level of changes in geological conditions is displayed on the display of a personal computer, etc., and is provided as construction and safety information to workers engaged in excavating natural ground. By issuing such alarms and warnings to workers who are engaged in tunnel excavation, it is possible to prevent skin fall disasters in the excavation work of the ground including the tunnel face.

以上説明したように、この掘削面地質評価方法では、トンネル坑内の切羽を含む土木工事における掘削面から所定の距離離れた所定の設置位置にジオフォンを設置するとともに、掘削面からジオフォンと同じ距離離れた所定の設置位置にマイクロフォンを設置して、ジオフォン及びマイクロフォンに通信ケーブルを介してパソコンを接続し、掘削面毎に、掘削面で発破などにより振動を発生させ、この振動の際に発生し、掘削面とジオフォンの設置位置との間の地山を伝播する弾性波、及び掘削面とマイクロフォンの設置位置との間の空中を伝播する音波をそれぞれジオフォン及びマイクロフォンで受振、計測し、掘削面で振動の発生前から記録動作を開始させたパソコンに記録して、パソコンに記録された弾性波データ及び音波データから弾性波の周波数特性として弾性波のパワースペクトル周波数及び音波の周波数特性として音波のパワースペクトル周波数を算出し、弾性波のパワースペクトル周波数及び音波のパワースペクトル周波数の類似性により、すなわち、現地点と前地点の弾性波のパワースペクトル周波数と現地点と前地点の音波のパワースペクトル周波数がそれぞれ一致する場合は、切羽の地質状況が変化する可能性が小さいと、掘削面の地質状況を推定、評価し、現地点と前地点の弾性波のパワースペクトル周波数と現地点と前地点の音波のパワースペクトル周波数が共に不一致の場合は、切羽の地質状況が変化する可能性が大きいと、現地点と前地点の弾性波のパワースペクトル周波数と現地点と前地点の音波のパワースペクトル周波数のどちらか一方が一致、他方が不一致の場合は、切羽の地質状況が変化する可能性が見込まれると、掘削面の地質状況を推定し評価するので、トンネル切羽を含む地山の掘削面で振動を発生させた直後の掘削面毎に掘削面の地質状況の変化を評価することができる。そして、この地質状況の変化の評価レベルをパソコンのディスプレイなどに表示して地山の掘削に従事する作業員に対して施工・安全情報として提供したりこの地質状況の変化の評価レベルに応じた警報や警告をトンネル掘削に従事する作業員に向けて発したりすることで、トンネル切羽を含む地山の掘削作業での肌落ち災害を未然に防止することができる。 As described above, in this excavated surface geological evaluation method, a geophone is installed at a predetermined installation position at a predetermined distance from an excavated surface in civil engineering work including a tunnel face, and the geophone is placed at the same distance from the excavated surface as the geophone. A microphone is installed at a predetermined installation position, and a personal computer is connected to the geophone and microphone via a communication cable. Elastic waves propagating in the ground between the excavation surface and the location where the geophone is installed, and acoustic waves propagating in the air between the excavation surface and the location where the microphone is installed are received and measured by the geophone and microphone, respectively. Recorded on a personal computer that started the recording operation before the vibration occurred, and from the elastic wave data and sound wave data recorded on the personal computer, the power spectrum frequency of the elastic wave as the frequency characteristic of the elastic wave and the power of the sound wave as the frequency characteristic of the sound wave The spectral frequencies are calculated, and due to the similarity of the power spectral frequencies of the elastic wave and the acoustic wave power spectral frequencies, i.e., the power spectral frequencies of the elastic waves at the local point and the previous point and the power spectral frequencies of the acoustic waves at the local point and the previous point are If they match, the geological condition of the excavation face is estimated and evaluated, and the power spectrum frequency of the elastic waves at the local and previous points and the sound waves at the local and previous points are estimated and evaluated. If the power spectrum frequencies of both do not match, it is likely that the geological condition of the face will change. If one of them matches and the other does not match, the geological condition of the excavated surface is estimated and evaluated if the possibility of changes in the geological condition of the face is expected, so that the excavated surface of the ground including the tunnel face will not vibrate. It is possible to evaluate the change in the geological condition of the excavated surface for each excavated surface immediately after it is generated. Then, the evaluation level of the change in the geological situation is displayed on the display of a personal computer, etc., and is provided as construction and safety information to the workers engaged in excavating the natural ground, or the evaluation level of the change in the geological situation is displayed. By issuing alarms and warnings to workers engaged in tunnel excavation, it is possible to prevent skin fall disasters in the excavation work of the ground including the tunnel face.

また、特許文献1の弾性波速度測定方法では、地山を伝播する弾性波速度を伝播距離と伝播時間の走時曲線から算出するため、切羽付近の弾性波速度を算出するためには、伝播距離を変えた複数回の発破を1台の地震計で測定することが必要で、測定のために、比較的長時間を要するが、この掘削面地質評価方法によると、地山を伝播する弾性波の周波数特性から切羽の地質状況を推定する手法に、空中を伝播する音波の周波数特性から切羽の地質状況を推定する手法を加えることで、切羽の地質状況の推定に対する精度の向上を図り、トンネル切羽を含む地山の掘削面で振動を発生させた直後の掘削面毎に掘削面の地質状況の変化を評価できるので、この点で、特許文献1の弾性波速度測定方法を大きく改良することができる。 In addition, in the elastic wave velocity measurement method of Patent Document 1, since the elastic wave velocity propagating through the ground is calculated from the travel time curve of the propagation distance and the propagation time, in order to calculate the elastic wave velocity near the face, propagation It is necessary to measure multiple blasts at different distances with a single seismometer, which takes a relatively long time. By adding the method of estimating the geological condition of the face from the frequency characteristics of sound waves propagating in the air to the method of estimating the geological condition of the face from the frequency characteristics of waves, we aim to improve the accuracy of estimating the geological condition of the face. Since it is possible to evaluate the change in the geological condition of the excavated surface for each excavated surface immediately after vibration is generated on the excavated surface of the ground including the tunnel face, in this respect, the elastic wave velocity measurement method of Patent Document 1 is greatly improved. be able to.

また、この方法では、弾性波の受振計測に可搬型のジオフォン、音波の受振計測にマイクロフォン、弾性波、音波の記録にパソコン又は2チャンネルのステレオICレコーダ、弾性波データ、音波データの解析に一般的な解析ソフトを搭載したパソコンなど、測定機材に簡易な汎用機材を使って弾性波、音波を測定し解析するので、掘削面の地質評価を確実かつ容易にしかも低コストに実施することができる。これにより、多くの土木技術者がトンネル坑内の切羽など土木工事における掘削面の地質評価を簡易に測定することができる。トンネル坑内で実施される従来の弾性波探査方法で、1回の発破を複数台の地震計で測定する手法があるが、この方法では、複数台の地震計をトンネル坑内に設置する必要があり、地震計の設置のために多くの時間を要し、測定では専門の業者により高価な多チャンネルのデータロガーを使って行われるため、コストが増大するが、この掘削面地質評価方法によると、掘削面の地質評価を簡便にしかも低コストに実施できるので、この点で、従来の弾性波探査方法を大幅に改善することができる。 In addition, in this method, a portable geophone is used for receiving and measuring elastic waves, a microphone is used for receiving and measuring sound waves, a personal computer or a two-channel stereo IC recorder is used for recording elastic waves and sound waves, and a general method is used for analyzing elastic wave data and sound wave data. Since elastic waves and sound waves are measured and analyzed using simple general-purpose measurement equipment, such as a personal computer equipped with specialized analysis software, geological evaluation of the excavated surface can be performed reliably, easily, and at low cost. . As a result, many civil engineers can easily measure the geological evaluation of the excavated surface in civil engineering work such as the face of a tunnel pit. In the conventional seismic survey method conducted inside the tunnel, there is a method of measuring one blast with multiple seismometers, but this method requires the installation of multiple seismometers inside the tunnel. , it takes a lot of time to install the seismometer, and the measurement is done by a specialized company using an expensive multi-channel data logger, which increases the cost. Since the geological evaluation of the excavated surface can be performed easily and at low cost, the conventional seismic survey method can be significantly improved in this respect.

さらに、この方法によれば、ジオフォン、マイクロフォン及びパソコン又はICレコーダを掘削面の振源(発破点)から十分に離れた位置に設置できるので、測定作業自体は安全であり、測定機材の破損の可能性は極めて低い。 Furthermore, according to this method, the geophone, microphone and personal computer or IC recorder can be installed at a position sufficiently distant from the vibration source (blasting point) on the excavation surface, so the measurement work itself is safe and damage to the measurement equipment is minimized. Very unlikely.

なお、この実施の形態では、トンネル坑内の切羽などの掘削面(振源)から同距離離れた後方所定の位置にジオフォン及びマイクロフォンを設置して、掘削面に発破などにより振動を発生させた際に地山を伝播する弾性波をジオフォンで、空中を伝播する音波をマイクロフォンで、同時に測定して、パソコンに記録するものとしたが、既述のとおり、地山を伝播する弾性波及び空中を伝播する音波をいずれもジオフォンのみで受振、計測してもよく、このようにしても、音波の測定精度がマイクロフォンに比べて若干劣後するが、上記実施の形態と概ね同様の作用効果を得ることができる。 In this embodiment, a geophone and a microphone are installed at a predetermined position behind the excavation surface (vibration source) such as the face of the tunnel shaft at the same distance, and when vibration is generated on the excavation surface by blasting or the like. At the same time, we measured the elastic waves propagating through the ground with a geophone and the sound waves propagating in the air with a microphone, and recorded them on a personal computer. All of the propagating sound waves may be received and measured only by the geophone. Even in this case, the sound wave measurement accuracy is slightly inferior to that of the microphone, but substantially the same effects as those of the above embodiment can be obtained. can be done.

また、この実施の形態では、トンネル切羽などの掘削面に振動を発生させるために、掘削面の振動源として発破を使用し、掘削面を発破により爆破したが、既述のとおり、掘削面の振動源としてブレーカ、ハンマを含む土木工事に用いる各種機器を使用し、掘削面をブレーカ、ハンマなどで打撃し、当該掘削面の打撃により発生する弾性波をジオフォンで受振、計測し、当該掘削面の打撃により発生する音波をマイクロフォンで受振、計測して、パソコンに記録するようにしてもよく、このようにしても上記実施の形態と同様の作用効果を得ることができる。 Further, in this embodiment, blasting is used as a vibration source of the excavation surface in order to generate vibrations on the excavation surface such as the tunnel face, and the excavation surface is blasted by the blasting. Using various equipment used in civil engineering work, including breakers and hammers, as vibration sources, the excavated surface is hit with a breaker, hammer, etc., and the elastic waves generated by the impact on the excavated surface are received and measured by a geophone, and the excavated surface is measured. A microphone may be used to receive and measure the sound waves generated by the impact of the ball, and the results may be recorded in a personal computer.

さらに、この実施の形態では、土木工事における掘削位置としてトンネル坑内の切羽を例示したが、トンネル切羽だけでなく、ダムや造成工事などの所謂明かり掘削工事においても本案による掘削面地質評価方法の適用が可能であり、この評価方法により掘削法面の岩盤性状や安定状況を定量的に把握することができる。また、この場合も、使用機材に汎用機材を使用することができ、安価であり、コストの低減に資することができる。 Furthermore, in this embodiment, the tunnel face was exemplified as an excavation position in civil engineering work, but the excavated surface geological evaluation method according to the present invention can be applied not only to the tunnel face but also to so-called open excavation work such as dam and land development work. It is possible to quantitatively grasp the bedrock properties and stability of the excavation slope by this evaluation method. Also in this case, general-purpose equipment can be used as the equipment, which is inexpensive and can contribute to cost reduction.

1 地震計(ジオフォン)
2 マイクロフォン
3 記録装置(パーソナルコンピュータ)
1 Seismometer (geophone)
2 microphone 3 recording device (personal computer)

Claims (4)

トンネル坑内の切羽を含む土木工事における掘削面から所定の距離離れた所定の設置位置に地震計とマイクロフォンとして可搬型のジオフォンをロックボルトを介して設置するとともに、前ジオフォンに通信ケーブルを介して記録装置として可搬型のパーソナルコンピュータ又はICレコーダを接続し、
前記掘削面で振動を発生させ、当該振動の際に発生し、前記掘削面と前記ジオフォンの設置位置との間の地山を伝播する弾性波、及び前記掘削面と前記ジオフォンの設置位置との間の空中を伝播する音波を、それぞれ、前記ジオフォンのみで受振、計測し、前記掘削面で前記振動の発生前から記録動作を開始させた前記パーソナルコンピュータ又は前記ICレコーダに記録して、
解析装置としてパーソナルコンピュータを使用し、当該パーソナルコンピュータに弾性波データ及び音波データを解析する解析ソフトを搭載して、前記パーソナルコンピュータ又は前記ICレコーダに記録された弾性波データ及び音波データから、前記解析ソフトを搭載された前記パーソナルコンピュータにより、弾性波の周波数特性及び音波の周波数特性を算出し、前記弾性波の周波数特性及び前記音波の周波数特性から明確に判別可能なそれぞれの卓越した周波数特性に基づいて前記掘削面の地質状況を推定し評価する、
ことを特徴とする掘削面地質評価方法。
A seismometer and a portable geophone as a microphone are installed at a predetermined installation position at a predetermined distance from the excavation surface in civil engineering work , including the tunnel face, via rock bolts, and a communication cable is connected to the geophone . Connect a portable personal computer or IC recorder as a recording device,
Vibration is generated on the excavation surface, an elastic wave generated during the vibration and propagating through the ground between the excavation surface and the installation position of the geophone , and an elastic wave between the excavation surface and the installation position of the geophone . The sound waves propagating in the air between them are respectively received and measured only by the geophone , and recorded on the personal computer or the IC recorder that has started the recording operation before the vibration occurs on the excavation surface,
A personal computer is used as an analysis device, and analysis software for analyzing elastic wave data and sound wave data is installed in the personal computer, and the analysis is performed from the elastic wave data and sound wave data recorded in the personal computer or the IC recorder . The frequency characteristics of the elastic wave and the frequency characteristics of the sound wave are calculated by the personal computer equipped with the software , and based on the excellent frequency characteristics that can be clearly distinguished from the frequency characteristics of the elastic wave and the frequency characteristics of the sound wave. estimating and evaluating the geological condition of the excavation surface by
An excavated surface geological evaluation method characterized by:
掘削面の振動源として発破を使用し、前記掘削面に発破孔を設けて爆薬を装填し、爆薬を起爆させる請求項1に記載の掘削面地質評価方法。 2. The excavated surface geological evaluation method according to claim 1, wherein blasting is used as a source of vibration of the excavated surface, a blast hole is provided in the excavated surface, an explosive is charged, and the explosive is detonated. 掘削面の振動源としてブレーカ、ハンマを含む土木工事に用いる各種機器を使用し、前記掘削面をブレーカ、ハンマを含む前記各種機器で打撃する請求項に記載の掘削面地質評価方法。 2. The excavated surface geological evaluation method according to claim 1 , wherein various equipment used in civil engineering work, including breakers and hammers, are used as vibration sources for the excavated surface, and the excavated surface is hit by the various equipment including breakers and hammers. 掘削面付近を含む土木工事の現場の適宜の位置に警報器を配備し、掘削面毎に前記警報器により掘削面の地質状況の評価に応じた警報を発する請求項1乃至3のいずれかに記載の掘削面地質評価方法。 4. Any one of claims 1 to 3, wherein an alarm device is provided at an appropriate position of the civil engineering work site including the vicinity of the excavated surface, and an alarm corresponding to the evaluation of the geological condition of the excavated surface is issued by the alarm device for each excavated surface. The excavated surface geological evaluation method described.
JP2019101831A 2019-05-30 2019-05-30 Excavation surface geological evaluation method Active JP7296250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019101831A JP7296250B2 (en) 2019-05-30 2019-05-30 Excavation surface geological evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019101831A JP7296250B2 (en) 2019-05-30 2019-05-30 Excavation surface geological evaluation method

Publications (2)

Publication Number Publication Date
JP2020197389A JP2020197389A (en) 2020-12-10
JP7296250B2 true JP7296250B2 (en) 2023-06-22

Family

ID=73649010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019101831A Active JP7296250B2 (en) 2019-05-30 2019-05-30 Excavation surface geological evaluation method

Country Status (1)

Country Link
JP (1) JP7296250B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045679A (en) 1998-07-28 2000-02-15 Ohbayashi Corp Heading collapse alarming system
US20100268491A1 (en) 2007-11-06 2010-10-21 Csir Method and apparatus for assessing the integrity of a rock mass
JP2014106128A (en) 2012-11-28 2014-06-09 Hazama Ando Corp Method of measuring natural ground elastic wave velocity
JP2016075606A (en) 2014-10-08 2016-05-12 株式会社安藤・間 Elastic wave velocity measuring method
JP2017115388A (en) 2015-12-24 2017-06-29 前田建設工業株式会社 Tunnel face plane displacement monitoring device
JP6420054B2 (en) 2014-03-25 2018-11-07 株式会社安藤・間 Elastic wave velocity measurement method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3443714B2 (en) * 1995-05-12 2003-09-08 財団法人先端建設技術センター Tunnel front exploration device and exploration method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045679A (en) 1998-07-28 2000-02-15 Ohbayashi Corp Heading collapse alarming system
US20100268491A1 (en) 2007-11-06 2010-10-21 Csir Method and apparatus for assessing the integrity of a rock mass
JP2014106128A (en) 2012-11-28 2014-06-09 Hazama Ando Corp Method of measuring natural ground elastic wave velocity
JP6420054B2 (en) 2014-03-25 2018-11-07 株式会社安藤・間 Elastic wave velocity measurement method
JP2016075606A (en) 2014-10-08 2016-05-12 株式会社安藤・間 Elastic wave velocity measuring method
JP2017115388A (en) 2015-12-24 2017-06-29 前田建設工業株式会社 Tunnel face plane displacement monitoring device

Also Published As

Publication number Publication date
JP2020197389A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
JP5587960B2 (en) Tunnel elastic wave exploration method and tunnel elastic wave exploration system used therefor
KR101547508B1 (en) Apparatus for predicting front geological features and the method thereof
JP6420054B2 (en) Elastic wave velocity measurement method
JP6131027B2 (en) Measurement method of natural ground elastic wave velocity
JP5985371B2 (en) Geological exploration method during tunnel excavation
Bogdanoff Vibration measurements in the damage zone in tunnel blasting
CN105765407A (en) A method and system for detecting and reducing methane hazard in vicinity of a longwall
CN112012797A (en) Evaluation method for coal mine impact danger pressure relief effect
JP6522918B2 (en) Elastic wave velocity measurement method
Afeni et al. Assessment of noise and ground vibration induced during blasting operations in an open pit mine—a case study on Ewekoro limestone quarry, Nigeria
Trigueros et al. A methodology based on geomechanical and geophysical techniques to avoid ornamental stone damage caused by blast-induced ground vibrations
JP2015184144A5 (en)
Kamali et al. Prediction of blast induced vibrations in the structures of Karoun III power plant and dam
JP7296250B2 (en) Excavation surface geological evaluation method
JP7030502B2 (en) Rock evaluation method
JP6304527B2 (en) Tunnel rock exploration method
Khokhlov et al. Conducting industrial explosions near gas pipelines
JP7315449B2 (en) Excavation surface geological evaluation method
JP4260329B2 (en) Geological exploration method in front of tunnel face
JPH08226975A (en) Method for surveying geology in front of face of tunnel
CN105045969B (en) A kind of crustal stress type bump danger multiple information coupling prediction method
JP2003075247A (en) Method for measuring elastic wave speed in face in tunnel pit
CN110261901A (en) Deep rock mass rockburst intensity evaluation method based on induced vibration
CN111413734B (en) Calculation method for testing propagation speed and arrival time of underground vibration wave
JP6379261B2 (en) Elastic wave velocity measuring method and elastic wave velocity measuring system

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20201209

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20201228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230612

R150 Certificate of patent or registration of utility model

Ref document number: 7296250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150