JP2003075247A - Method for measuring elastic wave speed in face in tunnel pit - Google Patents

Method for measuring elastic wave speed in face in tunnel pit

Info

Publication number
JP2003075247A
JP2003075247A JP2001264514A JP2001264514A JP2003075247A JP 2003075247 A JP2003075247 A JP 2003075247A JP 2001264514 A JP2001264514 A JP 2001264514A JP 2001264514 A JP2001264514 A JP 2001264514A JP 2003075247 A JP2003075247 A JP 2003075247A
Authority
JP
Japan
Prior art keywords
face
elastic wave
vibration
tunnel
blasting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001264514A
Other languages
Japanese (ja)
Inventor
Susumu Hirano
享 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP2001264514A priority Critical patent/JP2003075247A/en
Publication of JP2003075247A publication Critical patent/JP2003075247A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an elastic wave speed measuring method of a face in tunnel pits that can measure the elastic wave speed in a face without suspending excavation work by the face, can reduce expenses for measurement, and can automate measurement. SOLUTION: A measurement hole is excavated on a side wall at a position that is separated rearward from the face in the pit of a tunnel, a vibration sensor (seismometer) 3 is installed, and blasting vibration due to the explosion of the blasting of the face is received by the vibration sensor and is recorded by a data accumulator. This process is repeated for each face advance. Then, blasting vibration data are analyzed by a processor, and the elastic wave speed of the face Kn+1 is obtained from Vn+1=Δa/(Tn+1-Tn) from the distance Δa between arrival time Tn, Tn+1 to the vibration sensor of blasting vibration at the faces Kn, Kn+1 in face advancing cycles n, n+1 and the faces Kn and Kn+1 at the center line of the tunnel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、トンネル坑内切羽
の弾性波速度の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the elastic wave velocity of a tunnel pit face.

【0002】[0002]

【従来の技術】従来より、トンネル工事において、支保
パターンの決定等のために、トンネル坑内の切羽や側壁
をハンマー等で打撃したり、試験発破をさせて、発生し
た振動波の振動センサまでの到達時間から、切羽の弾性
波速度を測定することが行われている。
2. Description of the Related Art Conventionally, in tunnel construction, for example, to determine a support pattern, a face or a side wall in a tunnel mine is hit with a hammer or the like, or a test blast is performed to a vibration sensor of a generated vibration wave. The elastic wave velocity of the face is measured from the arrival time.

【0003】例えば特開平11−37834に開示され
る測定方法では、図5に示すように、トンネル坑内の切
羽21に複数の切羽受信点(地震計)22と、最下段の
左右両側の受信点の外側にハンマー打撃による切羽起振
点23とを設け、また切羽21から後方に離れた底盤位
置に発振孔25(発破点26)を設け、発振孔25と切
羽21との間に複数の底盤受信点(地震計)27を設け
る。さらにトンネル側壁の切羽21と底盤発振孔25と
の間に側壁発振孔28(発破点29)を設ける。
For example, in the measuring method disclosed in Japanese Patent Laid-Open No. 11-37834, as shown in FIG. 5, a plurality of face receiving points (seismometers) 22 are provided on a face 21 in a tunnel pit, and receiving points on the left and right sides of the lowest stage. And a face oscillating point 23 by a hammer strike is provided outside of the face, and an oscillation hole 25 (blasting point 26) is provided at a bottom plate position rearward from the face 21, and a plurality of bottom plates are provided between the oscillation hole 25 and the face 21. A reception point (seismometer) 27 is provided. Further, a sidewall oscillation hole 28 (blast point 29) is provided between the face 21 of the tunnel sidewall and the bottom oscillation hole 25.

【0004】そして底盤発振孔25の発破起振について
切羽受信点22で得た振動データおよび底盤受信点27
で得た振動データと、側壁発振孔28の発破起振につい
て切羽受信点22で得た振動データとを主に用い、切羽
起振点23でのハンマー打撃による振動データを補助的
に用いて、切羽の弾性波速度分布を求めるものである。
The vibration data obtained at the face receiving point 22 and the bottom plate receiving point 27 for the blasting vibration of the bottom plate oscillating hole 25.
Mainly using the vibration data obtained in step 1 and the vibration data obtained at the face receiving point 22 for the blasting vibration of the side wall oscillation hole 28, and using the vibration data by the hammer impact at the face exciting point 23 as an auxiliary. The elastic wave velocity distribution of the face is obtained.

【0005】[0005]

【発明が解決しようとする課題】上記公報の測定方法で
は、トンネル坑内の切羽付近および既掘削区間における
平均的弾性波速度とその分布状況が得られる。
According to the measuring method of the above publication, the average elastic wave velocity and its distribution in the vicinity of the face of the tunnel and in the excavated section can be obtained.

【0006】しかしながら、上記方法では、発破等の測
定用の振動源を設ける必要がある上、発振点、受信点を
多数設置しなければならなず、測定のための設備費、人
件費に多額の費用がかかる。また掘削作業を少なからず
妨げるので、特別に計画した日程か、掘削作業を断続的
に中断して実施しなければならない問題もある。
However, in the above method, it is necessary to provide a vibration source for measurement such as blasting, and a large number of oscillation points and reception points must be installed, resulting in a large equipment cost and labor cost for measurement. Cost of. In addition, since excavation work is hindered to some extent, there is also a problem that the excavation work must be interrupted or carried out on a specially planned schedule.

【0007】本発明の課題は、切羽での掘削作業を中断
せずに、切羽の弾性波速度を測定することでき、測定に
かかる費用も低減でき、測定の自動化も可能なトンネル
坑内切羽の弾性波速度測定方法を提供することである。
An object of the present invention is to measure the elastic wave velocity of a face without interrupting the excavation work on the face, reduce the cost for the measurement, and automate the measurement. It is to provide a method for measuring a wave velocity.

【0008】[0008]

【課題を解決するための手段】以上の課題を解決するた
め、請求項1記載の発明は、トンネル坑内の切羽弾性波
速度測定方法において、例えば図1に示すように、トン
ネル8坑内の切羽1から離れた後方の側壁位置に振動セ
ンサ3を設置し、振動センサ3で切羽1の発破振動を計
測することを切羽掘進サイクルごとに行い、得られた発
破振動データに基づいて切羽1の弾性波速度を求めるこ
とを特徴とする。
In order to solve the above problems, the invention according to claim 1 is a method for measuring a face elastic wave velocity in a tunnel pit, for example, as shown in FIG. A vibration sensor 3 is installed at a rear side wall position away from the face, and the blast vibration of the face 1 is measured by the vibration sensor 3 for each face excavation cycle, and the elastic wave of the face 1 is calculated based on the obtained blast vibration data. It is characterized by determining the speed.

【0009】請求項1記載の発明によれば以下の作用効
果を有する。 (1)平時の切羽掘削で発生する発破振動を利用して切
羽の弾性波速度を測定するので、測定用の振動源をわざ
わざ準備するのが省け、測定のための設備費、人件費が
削減できる。 (2)振動センサの設置場所を切羽から離れた位置、た
とえば発破点火所付近とすることができるので、トンネ
ルの掘削作業を妨げることがない。従って、任意の時期
に測定を実施することができ、現場管理における工程
面、安全面の負担も少ない。 (3)最初に振動センサ等の機器を設置した後は、切羽
掘削の進捗ごとに発破振動のデータが得られるので、測
定の自動化、データ収集作業の自動化をすることができ
る。 (4)弾性波速度の測定対象を切羽に限定するので、一
次支保の設計を目的とした切羽管理に好適に適用するこ
とができる。
According to the invention described in claim 1, the following operational effects are obtained. (1) Since the elastic wave velocity of the face is measured by using the blasting vibration generated during face face excavation, it is not necessary to prepare a vibration source for measurement, and the equipment cost and labor cost for measurement are reduced. it can. (2) Since the installation location of the vibration sensor can be set at a position away from the face, for example, near the blast ignition site, it does not hinder the tunnel excavation work. Therefore, the measurement can be performed at any time, and the burden on the process and safety in the field management is small. (3) After the equipment such as the vibration sensor is installed for the first time, blasting vibration data can be obtained with each progress of face excavation, so that measurement can be automated and data collection work can be automated. (4) Since the measurement target of the elastic wave velocity is limited to the face, it can be suitably applied to face management for the purpose of designing the primary support.

【0010】請求項2記載の発明は、請求項1記載のト
ンネル坑内切羽の弾性波速度測定方法において、たとえ
ば図2〜図3に示すように、切羽掘進サイクルn、n+
1の切羽Kn、Kn+1における発破振動の振動センサ
までの到達時間をTn、Tn+1、トンネル中心線にお
ける切羽KnとKn+1との間の距離(切羽の進捗距
離)をΔaとしたときに、切羽Kn+1の弾性波速度V
n+1を、 Vn+1=Δa/(Tn+1−Tn) の式により求めることを特徴とする。
According to the second aspect of the present invention, in the method for measuring the elastic wave velocity of the tunnel undercut face according to the first aspect, for example, as shown in FIGS.
When the arrival time of the blasting vibration at the cutting face Kn, Kn + 1 of No. 1 to the vibration sensor is Tn, Tn + 1 and the distance between the cutting face Kn and Kn + 1 at the tunnel center line (the progressing distance of the cutting face) is Δa, Elastic wave velocity V
n + 1 is obtained by an equation of Vn + 1 = Δa / (Tn + 1-Tn).

【0011】請求項2記載の発明によれば、切羽Kn+
1の弾性波速度Vn+1を、 Vn+1=Δa/(Tn+1−Tn) の式により求めるので、振動センサで切羽の発破振動を
計測することを切羽掘進サイクルごとに行って、各切羽
における発破振動の振動センサまでの到達時間(一般に
Tn)、切羽の進捗距離(Δa)を求めることにより、
各切羽の弾性波速度を測定することができる。
According to the invention of claim 2, the face Kn +
Since the elastic wave velocity Vn + 1 of 1 is obtained by the formula of Vn + 1 = Δa / (Tn + 1-Tn), the blasting vibration of the face is measured by the vibration sensor for each face excavation cycle, and the vibration of the blasting vibration at each face is measured. By determining the arrival time to the sensor (generally Tn) and the progress distance of the face (Δa),
The elastic wave velocity of each face can be measured.

【0012】[0012]

【発明の実施の形態】以下、本発明のトンネル坑内切羽
の弾性波速度測定方法の一実施の形態を図に基づき詳述
する。図1は本発明のトンネル坑内切羽の弾性波測定方
法の一実施の形態を示す説明図である。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the method for measuring the elastic wave velocity of a tunnel underground face according to the present invention will be described in detail below with reference to the drawings. FIG. 1 is an explanatory view showing an embodiment of an elastic wave measuring method for a tunnel downhole face according to the present invention.

【0013】図1に示すように、トンネル8の坑内切羽
1から後方に離れた位置の側壁に測定孔2を削孔して、
測定孔2内に振動センサ(地震計)3を設置する。切羽
1から後方に離れた位置とは、切羽1に設置した発破7
から安全が確保できる距離の位置で、たとえば発破の点
火所付近の位置とすることができる。振動センサ3には
データ蓄積器(データロガー)4を接続する。データ蓄
積器4はトンネル坑内に設置される。また切羽1の発破
7を点火する発破手ボタン5をセンサ3およびデータ蓄
積器4に接続する。振動センサ3およびデータ蓄積器4
は、発破手が発破ボタン5を押すことによって起動し、
所要の動作を行った後自動的に停止するようになってい
る。
As shown in FIG. 1, a measurement hole 2 is drilled in a side wall of the tunnel 8 which is located rearward from the underground face 1 and
A vibration sensor (seismometer) 3 is installed in the measurement hole 2. The position away from the face 1 behind means the blast 7 installed on the face 1.
Can be set at a position where safety can be secured, for example, a position near the blasting igniter. A data accumulator (data logger) 4 is connected to the vibration sensor 3. The data storage 4 is installed in the tunnel mine. A blaster button 5 for igniting the blast 7 of the face 1 is connected to the sensor 3 and the data accumulator 4. Vibration sensor 3 and data accumulator 4
Is activated by the blaster pressing the blast button 5,
It is designed to automatically stop after performing the required operation.

【0014】切羽掘削時、発破手が発破手ボタン5を押
して、切羽1に装填した発破7を点火、爆発させて切羽
1を爆破するが、発破7の爆発によって発生した発破振
動は、地山を伝播して振動センサ3に到達する。本実施
の形態では、この発破振動を振動センサ3で受振して計
測する。振動センサ3は計測した発破振動を電気信号に
変換してデータ蓄積器4に出力し、データ蓄積器4は電
気信号に変換された発破振動を記録する。振動センサ3
およびデータ蓄積器4はその後停止する。以上の切羽掘
削にともなう発破振動の計測、データ蓄積を切羽掘進ご
とに繰り返す。
At the time of excavating the face, the blaster pushes the blaster button 5 to ignite and explode the blast 7 loaded on the face 1 to explode the face 1. However, the blast vibration generated by the explosion of the blast 7 is unclear. To reach the vibration sensor 3. In the present embodiment, this blasting vibration is received by the vibration sensor 3 and measured. The vibration sensor 3 converts the measured blast vibration into an electric signal and outputs the electric signal to the data accumulator 4, and the data accumulator 4 records the blast vibration converted into the electric signal. Vibration sensor 3
And the data store 4 is then stopped. The measurement of the blasting vibration accompanying the face excavation and the data accumulation are repeated for each face excavation.

【0015】データ蓄積器4に蓄えた発破振動データ
は、所要のタイミング(切羽の掘進速度にもよるが、最
低週1回程度)で回収して管理センターへ転送し、管理
センターの処理装置で処理する。蓄積器4からのデータ
の回収、転送は、メモリカードに記録して管理センター
に運んだり、データ蓄積器4と管理センターとの間に専
用信号線6などの通信設備を設置して行う。
The blasting vibration data stored in the data accumulator 4 is collected at a required timing (at least once a week depending on the cutting speed of the face, but at least once a week) and transferred to the management center. To process. Data is collected and transferred from the storage device 4 by recording it on a memory card and carrying it to a management center, or by installing communication equipment such as a dedicated signal line 6 between the data storage device 4 and the management center.

【0016】管理センターでは、処理装置で発破振動デ
ータを解析して、各々の切羽掘進について、発破振動デ
ータから、発破手ボタンの点火信号を基準として発破振
動が切羽1から振動センサ3に達するまでに要した時間
を得る。そして次に述べる測定原理を用いて切羽の弾性
波速度を測定する。
At the management center, the blasting vibration data is analyzed by the processing device, and for each face excavation, from the blasting vibration data until the blasting vibration reaches the vibration sensor 3 from the face 1 based on the ignition signal of the blaster button. Get the time needed for. Then, the elastic wave velocity of the face is measured using the following measurement principle.

【0017】切羽弾性波の測定原理を図2〜図3により
説明する。図2に示す切羽掘進サイクルnにおいて、振
動センサ3からの切羽Knまでのトンネル8の中心線の
距離をa、振動センサ3とトンネル中心線との間隔を
b、切羽Knの中心と振動センサ3とを結ぶ直線距離を
Lnとして、切羽Knにおける発破振動が直線距離Ln
を時間Tnをかけて進んで、振動センサ3に到達すると
する。ただし、地山9における発破振動の屈折を無視
し、伝播経路は最短距離を直進すると仮定する。
The principle of measurement of the face elastic wave will be described with reference to FIGS. In the face cutting cycle n shown in FIG. 2, the distance of the center line of the tunnel 8 from the vibration sensor 3 to the face Kn is a, the distance between the vibration sensor 3 and the center line of the tunnel is b, the center of the face Kn and the vibration sensor 3. The blasting vibration at the face Kn is the linear distance Ln, where Ln is the linear distance connecting
Is reached over time Tn to reach the vibration sensor 3. However, it is assumed that the refraction of the blast vibration in the natural ground 9 is ignored and the propagation path goes straight for the shortest distance.

【0018】つぎに図3に示すように、切羽掘進サイク
ルが1つ進んでn+1になると、トンネル8は中心線で
の距離Δaだけ進行して切羽Kn+1になり、切羽Kn
+1の中心と振動センサ3とを結ぶ直線距離Ln+1が
得られる。切羽Kn+1における発破振動は、直線距離
Ln+1を時間Tn+1をかけて振動センサ3に到達す
る。
Next, as shown in FIG. 3, when the face excavation cycle advances by 1 to reach n + 1, the tunnel 8 advances by the distance Δa at the center line to face Kn + 1 and face Kn.
A straight line distance Ln + 1 connecting the center of +1 and the vibration sensor 3 is obtained. The blast vibration at the face Kn + 1 reaches the vibration sensor 3 over a linear distance Ln + 1 over a time Tn + 1.

【0019】図3において、距離Ln+1のうち、サイ
クルn+1で進捗した区間を通過する部分をΔLn+1
とすると、a>>bのとき、 ΔLn+1≒Δa ・・・(1) Ln+1−ΔLn+1≒Ln ・・・(2) である。
In FIG. 3, of the distance Ln + 1, a portion passing through the section progressed in the cycle n + 1 is ΔLn + 1.
Then, when a >> b, ΔLn + 1≈Δa (1) Ln + 1−ΔLn + 1≈Ln (2).

【0020】切羽Knの発破振動は距離Lnを時間Tn
で進むから、これを式(2)から、切羽Kn+1の発破
振動が距離Ln+1−ΔLn+1を進む時間とすると、
切羽Kn+1の発破振動は距離Ln+1−ΔLn+1を
時間Tnで進み、結局、切羽Kn+1の発破振動は距離
ΔLn+1の間を時間ΔT=Tn+1−Tnで進むこと
になる。従って、切羽Kn+1の弾性波速度Vn+1
は、式(1)を考慮して、 Vn+1=ΔLn+1/ΔT =Δa/(Tn+1−Tn) ・・・(3) と求められる。
The blasting vibration of the face Kn is the distance T
Therefore, if the blasting vibration of the face Kn + 1 travels the distance Ln + 1−ΔLn + 1 from Equation (2),
The blasting vibration of the face Kn + 1 advances at a distance Ln + 1−ΔLn + 1 at a time Tn, and the blasting vibration of the face Kn + 1 advances at a time ΔT = Tn + 1−Tn during a distance ΔLn + 1. Therefore, the elastic wave velocity Vn + 1 of the face Kn + 1
In consideration of the equation (1), Vn + 1 = ΔLn + 1 / ΔT = Δa / (Tn + 1−Tn) (3)

【0021】以上から、一般に掘進サイクルn、n+1
における切羽Kn、Kn+1の発破振動の振動センサ3
への到達時間Tn、Tn+1、切羽の進捗距離Δa(ト
ンネル中心線における切羽KnとKn+1との間の距
離)が分かれば、切羽Kn+1の弾性波速度が求められ
る。
From the above, generally, the excavation cycle n, n + 1
Vibration sensor 3 for blasting vibration of the face Kn, Kn + 1 in
If the arrival times Tn, Tn + 1 and the progress distance Δa of the face (distance between the face Kn and Kn + 1 at the tunnel center line) are known, the elastic wave velocity of the face Kn + 1 can be obtained.

【0022】本実施の形態では、以上のようにして、切
羽の発破振動を計測して、切羽の弾性波速度を測定す
る。これから掘削した切羽、従って切羽周囲の地盤の硬
さ等の性質を知ることができ、掘削した切羽周囲の坑道
の支保(一次支保)の内容を決定することができる。そ
して坑道の支保を行ったら、次の切羽の発破爆破を行
う。これを繰り返してトンネルの掘進を行う。
In this embodiment, the blasting vibration of the face is measured as described above to measure the elastic wave velocity of the face. It is possible to know the properties such as the hardness of the excavated face and thus the ground around the face, and to determine the details of the support (primary support) of the tunnel around the excavated face. After supporting the mine shaft, the next blasting and blasting of the face is performed. This is repeated to excavate the tunnel.

【0023】したがって、本実施の形態の測定方法を使
用することにより、図4に示すように、トンネルの掘進
サイクルと切羽弾性波速度の計測サイクルを組み合わせ
たトンネル工事を実施することができる。
Therefore, by using the measuring method of the present embodiment, as shown in FIG. 4, it is possible to carry out the tunnel construction in which the tunnel excavation cycle and the face elastic wave velocity measurement cycle are combined.

【0024】計測サイクルは、トンネル坑内に設置した
振動センサ3等の機器により発破振動を計測し、発破振
動データを回収し、管理センターの処理装置で発破振動
データから切羽弾性波速度を解析し、支保の方法を決定
し、掘進現場に報告する。支保には、吹き付けコンクリ
ート、ロックボルト、鋼材等の一つまたは複数を組み合
わせて用いる。
In the measuring cycle, the blasting vibration is measured by a device such as a vibration sensor 3 installed in the tunnel mine, the blasting vibration data is collected, and the processing device of the management center analyzes the face elastic wave velocity from the blasting vibration data. Decide the support method and report it to the excavation site. For support, one or more of sprayed concrete, rock bolts, steel, etc. are used in combination.

【0025】掘削サイクルは、切羽に発破孔を削孔し、
発破を装填して爆発させ、切羽の爆破によって出たずり
をトンネル坑内から搬出し、掘削された切羽周囲の坑道
を決定された支保内容の方法で支保する。以上を各切羽
について繰り返す。
In the excavation cycle, blast holes are drilled in the face,
The blast is loaded to explode, the skid caused by the blast of the face is carried out from the tunnel mine, and the excavated mine shaft is supported by the determined support method. The above is repeated for each face.

【0026】本実施の形態の切羽弾性速度測定方法は以
上のように構成されるので、つぎのような作用効果を奏
する。 (1)平時の切羽掘削で発生する発破振動を利用して切
羽の弾性波速度を測定するので、測定用の振動源をわざ
わざ準備するのが省け、測定のための設備費、人件費が
削減できる。 (2)振動センサの設置場所を切羽から離れた安全な位
置、たとえば発破点火所付近とすることができるので、
トンネルの掘削作業を妨げることがない。従って、任意
の時期に測定を実施することができる。また現場管理に
おける工程面、安全面の負担も少ない。 (3)最初に振動センサ等の機器を設置した後は、切羽
掘削の進捗ごとに発破振動のデータが得られるので、測
定の自動化、データ収集作業の自動化をすることができ
る。 (4)弾性波速度の測定対象を切羽に限定するので、一
次支保の設計を目的とした切羽管理に好適に適用するこ
とができる。
Since the face elastic velocity measuring method of the present embodiment is configured as described above, it has the following operational effects. (1) Since the elastic wave velocity of the face is measured by using the blasting vibration generated during face face excavation, it is not necessary to prepare a vibration source for measurement, and the equipment cost and labor cost for measurement are reduced. it can. (2) Since the vibration sensor can be installed at a safe position away from the face, for example, near the blasting igniter,
Does not interfere with tunnel excavation work. Therefore, the measurement can be performed at any time. In addition, there are few process and safety burdens on site management. (3) After the equipment such as the vibration sensor is installed for the first time, blasting vibration data can be obtained with each progress of face excavation, so that measurement can be automated and data collection work can be automated. (4) Since the measurement target of the elastic wave velocity is limited to the face, it can be suitably applied to face management for the purpose of designing the primary support.

【0027】[0027]

【発明の効果】以上説明したように、本発明によれば、
トンネル坑内切羽の掘削作業を中断せずに、切羽の弾性
波速度を測定することでき、測定にかかる費用も低減で
き、測定を自動化することも可能になる。
As described above, according to the present invention,
The elastic wave velocity of the face can be measured without interrupting the excavation work of the face under the tunnel, the cost for the measurement can be reduced, and the measurement can be automated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のトンネル坑内切羽の弾性波速度測定方
法の一実施の形態を示す説明図である。
FIG. 1 is an explanatory diagram showing an embodiment of a method for measuring an elastic wave velocity of a tunnel underground face according to the present invention.

【図2】図1の方法で使用する弾性波速度の測定原理を
示す説明図である。
FIG. 2 is an explanatory diagram showing a principle of measuring an elastic wave velocity used in the method of FIG.

【図3】図1の方法で使用する弾性波速度の測定原理を
示す説明図である。
FIG. 3 is an explanatory view showing the principle of measurement of elastic wave velocity used in the method of FIG.

【図4】本発明の測定方法による切羽弾性波速度の計測
サイクルと掘進サイクルとを組み合わせたトンネル工事
を示す概念図である。
FIG. 4 is a conceptual diagram showing tunnel construction in which a face elastic wave velocity measurement cycle and a tunneling cycle are combined by the measuring method of the present invention.

【図5】従来の切羽弾性波速度の測定方法を示す説明図
である。
FIG. 5 is an explanatory diagram showing a conventional method for measuring the speed of a face elastic wave.

【符号の説明】[Explanation of symbols]

1 切羽 2 測定孔 3 振動センサ 4 データ蓄積器 5 発破手ボタン 6 専用信号線 7 発破 8 トンネル 9 地山 Kn、Kn+1 切羽 1 face 2 measurement holes 3 Vibration sensor 4 data storage 5 blaster button 6 dedicated signal line 7 blast 8 tunnels 9 Ground Kn, Kn + 1 face

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 トンネル坑内の切羽から離れた後方の側
壁位置に振動センサを設置し、前記振動センサで切羽の
発破振動を計測することを切羽掘進サイクルごとに行
い、得られた発破振動データに基づいて切羽の弾性波速
度を求めることを特徴とするトンネル坑内切羽の弾性波
速度測定方法。
1. A vibration sensor is installed at a rear side wall position away from a face in a tunnel mine, and the blast vibration of the face is measured by the vibration sensor for each face excavation cycle, and the obtained blast vibration data is obtained. A method for measuring the elastic wave velocity of a face in a tunnel, characterized in that the elastic wave velocity of the face is obtained based on the method.
【請求項2】 切羽掘進サイクルn、n+1の切羽K
n、Kn+1における発破振動の振動センサまでの到達
時間をTn、Tn+1、トンネル中心線における切羽K
nとKn+1との間の距離をΔaとしたときに、 切羽Kn+1の弾性波速度Vn+1を、 Vn+1=Δa/(Tn+1−Tn) の式により求めることを特徴とする請求項1記載のトン
ネル坑内切羽の弾性波速度測定方法。
2. A face K of a face excavation cycle n, n + 1
The arrival time of the blast vibration at n, Kn + 1 to the vibration sensor is Tn, Tn + 1, the face K at the tunnel center line.
When the distance between n and Kn + 1 is Δa, the elastic wave velocity Vn + 1 of the face Kn + 1 is calculated by the following formula: Vn + 1 = Δa / (Tn + 1-Tn). Elastic wave velocity measurement method.
JP2001264514A 2001-08-31 2001-08-31 Method for measuring elastic wave speed in face in tunnel pit Pending JP2003075247A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001264514A JP2003075247A (en) 2001-08-31 2001-08-31 Method for measuring elastic wave speed in face in tunnel pit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264514A JP2003075247A (en) 2001-08-31 2001-08-31 Method for measuring elastic wave speed in face in tunnel pit

Publications (1)

Publication Number Publication Date
JP2003075247A true JP2003075247A (en) 2003-03-12

Family

ID=19091099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264514A Pending JP2003075247A (en) 2001-08-31 2001-08-31 Method for measuring elastic wave speed in face in tunnel pit

Country Status (1)

Country Link
JP (1) JP2003075247A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174580A (en) * 2012-01-25 2013-09-05 Hazama Ando Corp Tunnel elastic wave exploration method and tunnel elastic wave exploration system used for the same
CN103742156A (en) * 2014-01-13 2014-04-23 中国科学院武汉岩土力学研究所 Method for determining timing and modes for changing opposite advancing into unidirectional advancing before deep hard rock tunnel holing-through
JP2016075606A (en) * 2014-10-08 2016-05-12 株式会社安藤・間 Elastic wave velocity measuring method
CN105823546A (en) * 2016-03-22 2016-08-03 中国矿业大学(北京) Large-diameter mine freezing shaft blasting vibration monitoring and damping method and system
CN106525570A (en) * 2017-01-12 2017-03-22 大连交通大学 Testing device and method for simulating influence of tunnel blasting excavation on surrounding pipelines
CN107152964A (en) * 2017-07-11 2017-09-12 北京市市政三建设工程有限责任公司 A kind of Blast Vibration Monitoring method of buried underground water supply pipelines in tunnel benching tunnelling method construction
JP2020008368A (en) * 2018-07-05 2020-01-16 株式会社安藤・間 Natural ground elastic wave measurement method
CN113588064A (en) * 2021-07-06 2021-11-02 中铁二十局集团第六工程有限公司 Method for measuring blasting vibration data
JP2022014396A (en) * 2020-07-06 2022-01-19 大成建設株式会社 Natural ground measurement system, natural ground measurement method, natural ground control system and natural ground control method
CN116258285A (en) * 2023-05-16 2023-06-13 青岛理工大学 Porous small-clear-distance tunnel blasting vibration speed prediction method, device, equipment and medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259472A (en) * 1994-03-25 1995-10-09 Hazama Gumi Ltd Geological survey in tunnel digging
JPH1137834A (en) * 1997-07-18 1999-02-12 Shimizu Corp Elastic wave speed measuring method for working face of tunnel
JP2000081486A (en) * 1998-09-04 2000-03-21 Taisei Corp Elastic wave speed logging method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07259472A (en) * 1994-03-25 1995-10-09 Hazama Gumi Ltd Geological survey in tunnel digging
JPH1137834A (en) * 1997-07-18 1999-02-12 Shimizu Corp Elastic wave speed measuring method for working face of tunnel
JP2000081486A (en) * 1998-09-04 2000-03-21 Taisei Corp Elastic wave speed logging method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013174580A (en) * 2012-01-25 2013-09-05 Hazama Ando Corp Tunnel elastic wave exploration method and tunnel elastic wave exploration system used for the same
CN103742156A (en) * 2014-01-13 2014-04-23 中国科学院武汉岩土力学研究所 Method for determining timing and modes for changing opposite advancing into unidirectional advancing before deep hard rock tunnel holing-through
JP2016075606A (en) * 2014-10-08 2016-05-12 株式会社安藤・間 Elastic wave velocity measuring method
CN105823546B (en) * 2016-03-22 2018-11-23 中国矿业大学(北京) A kind of major diameter freezes vertical Blast Vibration Monitoring, oscillation damping method and system
CN105823546A (en) * 2016-03-22 2016-08-03 中国矿业大学(北京) Large-diameter mine freezing shaft blasting vibration monitoring and damping method and system
CN106525570A (en) * 2017-01-12 2017-03-22 大连交通大学 Testing device and method for simulating influence of tunnel blasting excavation on surrounding pipelines
CN107152964A (en) * 2017-07-11 2017-09-12 北京市市政三建设工程有限责任公司 A kind of Blast Vibration Monitoring method of buried underground water supply pipelines in tunnel benching tunnelling method construction
JP2020008368A (en) * 2018-07-05 2020-01-16 株式会社安藤・間 Natural ground elastic wave measurement method
JP7030634B2 (en) 2018-07-05 2022-03-07 株式会社安藤・間 Ground elastic wave measurement method
JP2022014396A (en) * 2020-07-06 2022-01-19 大成建設株式会社 Natural ground measurement system, natural ground measurement method, natural ground control system and natural ground control method
CN113588064A (en) * 2021-07-06 2021-11-02 中铁二十局集团第六工程有限公司 Method for measuring blasting vibration data
CN116258285A (en) * 2023-05-16 2023-06-13 青岛理工大学 Porous small-clear-distance tunnel blasting vibration speed prediction method, device, equipment and medium
CN116258285B (en) * 2023-05-16 2023-08-25 青岛理工大学 Porous small-clear-distance tunnel blasting vibration speed prediction method, device, equipment and medium

Similar Documents

Publication Publication Date Title
RU2604532C2 (en) Method of stress concentration relative changes measuring in front of mining face front
JP5587960B2 (en) Tunnel elastic wave exploration method and tunnel elastic wave exploration system used therefor
JP6713627B2 (en) Method and system for evaluating rock mass in front of tunnel face
JP5985371B2 (en) Geological exploration method during tunnel excavation
WO1996018118A1 (en) Method for real time location of deep boreholes while drilling
JP5839271B2 (en) Tunnel face forward exploration method
JP2003075247A (en) Method for measuring elastic wave speed in face in tunnel pit
JP6420054B2 (en) Elastic wave velocity measurement method
JP6304527B2 (en) Tunnel rock exploration method
JP4260329B2 (en) Geological exploration method in front of tunnel face
Olsson et al. Äspö HRL. Experiences of blasting of the TASQ tunnel
JP3856392B2 (en) Evaluation method of natural ground in front of ground excavation part
JP2010038790A (en) Elastic wave probe system
CN102562033A (en) Method for testing gas drainage drill hole depth through microseismic positioning
JP2002106290A (en) Tunnel boring machine mounted with forward survey device
JP7315449B2 (en) Excavation surface geological evaluation method
Singh et al. Ground vibration: prediction for safe and efficient blasting
JP7296250B2 (en) Excavation surface geological evaluation method
AU2020340709B2 (en) Measurement system and measurement method
Dickmann et al. Rapid Seismic Data Acquisition in a TBM Road Tunnel Excavation with Segmental Lining
JP2018100549A (en) Tunnel pit face front investigation method
JP7401394B2 (en) How to predict the final displacement of a tunnel
Shirzadegan Development of a Methodology for Dynamic Testing of Rock Support: Field Tests and Numerical Analysis
JP2022153213A (en) Charging volume calculation system
JP2022153214A (en) Charging volume calculation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080731

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100831

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

A02 Decision of refusal

Effective date: 20110208

Free format text: JAPANESE INTERMEDIATE CODE: A02