JP7401394B2 - How to predict the final displacement of a tunnel - Google Patents

How to predict the final displacement of a tunnel Download PDF

Info

Publication number
JP7401394B2
JP7401394B2 JP2020093140A JP2020093140A JP7401394B2 JP 7401394 B2 JP7401394 B2 JP 7401394B2 JP 2020093140 A JP2020093140 A JP 2020093140A JP 2020093140 A JP2020093140 A JP 2020093140A JP 7401394 B2 JP7401394 B2 JP 7401394B2
Authority
JP
Japan
Prior art keywords
displacement
measurement
shoring
steel
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020093140A
Other languages
Japanese (ja)
Other versions
JP2021188994A (en
Inventor
宏嗣 小沼
隆彦 向井
寿史 工一
雅明 倉橋
立樹 横道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2020093140A priority Critical patent/JP7401394B2/en
Publication of JP2021188994A publication Critical patent/JP2021188994A/en
Application granted granted Critical
Publication of JP7401394B2 publication Critical patent/JP7401394B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、トンネルの内空変位量や天端沈下量などの最終変位量を精度良く予測する方法に関する。 The present invention relates to a method for accurately predicting the final displacement amount of a tunnel, such as the inner space displacement amount and the crown settlement amount.

例えば、NATM工法に代表される山岳トンネルの施工では、トンネルを精度良くかつ高品質で施工するために各種の測量が行われている。測量項目としては、例えば鋼製支保工の天・左右の3点を測量し、設置精度を確認する支保工検測、掘削後の任意断面又は任意点においてアタリを検測するアタリ測量、天端沈下量や内空変位量の計測を行う坑内A計測、任意断面の掘削内空断面の計測を行う断面測定などがある。 For example, in the construction of mountain tunnels, typified by the NATM construction method, various types of surveying are performed in order to construct the tunnels with high precision and high quality. Surveying items include, for example, shoring inspection that measures the top, left and right three points of a steel shoring to confirm installation accuracy, hit surveying that measures hit at any cross section or arbitrary point after excavation, and crown surveying. There are underground A measurements that measure the amount of subsidence and internal space displacement, and cross-sectional measurements that measure an arbitrary cross section of the internal space of an excavation.

これら各種測量項目の内、前記坑内A計測は、トンネル延長方向に一定の間隔(例えば、10~30m間隔)で実施されるものである。坑内A計測の内、天端沈下量の計測は掘削に伴うトンネル天端の同一位置における絶対高さ標高の変化を測量し、トンネル天端の沈下量、沈下速度を把握することによってトンネルの安全性、支保工効果を判断する資料を得ることを目的として行われるものであり、内空変位量の計測はトンネルの安定及び支保工効果の確認、支保工の施工時期の判定、覆工の打設時期の判定等の資料を得ることを目的として行われるものである。 Among these various survey items, the underground A measurement is carried out at regular intervals (for example, at intervals of 10 to 30 m) in the tunnel extension direction. Among underground A measurements, measuring the amount of crest subsidence involves measuring the change in absolute height and elevation at the same location at the top of the tunnel due to excavation, and by understanding the amount and rate of subsidence at the top of the tunnel, safety of the tunnel can be improved. The purpose of this measurement is to obtain data for determining the stability and effectiveness of shoring.Measurement of internal displacement is used to confirm the stability of the tunnel and the effectiveness of shoring, determine the timing of shoring construction, and perform lining work. The purpose is to obtain materials for determining the establishment date, etc.

前記坑内A計測の測量作業は、図12に示されるように、トンネル50内にトータルステーション51を設置し、図13に示されるように、トンネル壁面の天端及び側壁に設置された5点の視準ターゲット52、52…(天端、左肩、左下半、右肩、右下半の5点)を計測し、各点の変位量や沈下量を管理することにより行われる。 The surveying work for the underground A measurement is carried out by installing a total station 51 inside the tunnel 50, as shown in FIG. This is done by measuring the quasi-targets 52, 52... (five points: the top, left shoulder, lower left half, right shoulder, lower right half) and managing the amount of displacement and sinking of each point.

一方で、トンネル施工管理の一環として、前記坑内A計測に基づいて、トンネルの最終変位量を予測することが行われている。最も多用されている手法は、坑内A計測における初期変位速度(多くは計測開始から1日後の変位の進行速度又は1D時変位量までの変位の進行速度)と最終変位量との相関データを蓄積しておき、掘削後の坑内A計測によって初期変位速度を計測したならば、前記相関データから最終変位量の予測を行うものである。 On the other hand, as part of tunnel construction management, the final displacement amount of the tunnel is predicted based on the underground A measurement. The most frequently used method is to accumulate correlation data between the initial displacement rate in underground A measurement (often the rate of progress of displacement one day after the start of measurement or the rate of progress of displacement up to the 1D displacement amount) and the final displacement amount. If the initial displacement rate is measured by the A measurement in the pit after excavation, the final displacement amount is predicted from the correlation data.

この技術に関連するものとして、下記特許文献1には、予め定める2測点間にわたって一定の張力で張架される索条と、前記2測点のうちいずれか一方に設けられ、前記索条の移動量を検出する手段と、前記検出手段によって検出された移動量から各測点の変位速度を求め、この変位速度に基づいて最終変位量を求める演算処理手段とを含む地山変形測定装置が開示されている。 As related to this technology, Patent Document 1 below describes a cable that is stretched with a constant tension between two predetermined measurement points, and a cable that is installed at one of the two measurement points and A ground deformation measurement device comprising: means for detecting the amount of movement of the detector; and arithmetic processing means for determining the displacement speed of each measurement point from the amount of movement detected by the detection means and calculating the final displacement amount based on this displacement speed. is disclosed.

また、下記特許文献2には、所定の管理最大変位量から変位管理レベルを段階的に設定し、該変位管理レベルに対応する最終変位量を計測開始後の経時期間とトンネル内空変位量とをパラメータとした関数曲線により算定してトンネル掘削時の内空変位の管理曲線を設定するとともに、掘削開始直後時に得られた初期変位速度をもとに前記関数曲線により変位予想曲線を求め、最終変位量を予測するようにしたトンネル内空変位の予測方法が開示されている。 Furthermore, in Patent Document 2 listed below, a displacement management level is set stepwise from a predetermined maximum displacement amount, and the final displacement amount corresponding to the displacement management level is determined based on the elapsed period after the start of measurement and the amount of displacement in the tunnel. A control curve for inner space displacement during tunnel excavation is set by calculation using a function curve with the parameters as parameters, and a displacement prediction curve is determined using the function curve based on the initial displacement speed obtained immediately after the start of excavation. A method for predicting displacement inside a tunnel is disclosed, which predicts the amount of displacement.

特開平7-159106号公報Japanese Patent Application Publication No. 7-159106 特開平7-197785号公報Japanese Unexamined Patent Publication No. 7-197785

しかしながら、前述した最終変位量の予測方法においては、変位量(初期変位速度)の計測は掘削直後から計測することが望ましいのであるが、発破後にズリ出し・当り取り、1次吹付け、鋼製支保工の設置、2次吹付けを終えた後、壁面に視準ターゲット(光学プリズム)を設置した時点から開始しているため、発破から初期計測までに既に時間が経過しており、これが誤差要因となるとの問題があった。その結果、最終変位量の予測に誤差が生じて、後で覆工コンクリートの厚さが確保できない事態が発生したり、縫い返し(再掘削)を余儀なくされることも多々あった。 However, in the above-mentioned method for predicting the final displacement amount, it is desirable to measure the displacement amount (initial displacement speed) immediately after excavation. After the installation of the shoring and the secondary spraying, the process starts when the collimation target (optical prism) is installed on the wall, so some time has already elapsed from the time of blasting to the initial measurement, which can lead to errors. There was a problem with this being a factor. As a result, errors occurred in predicting the final amount of displacement, which often resulted in situations in which it was not possible to secure the thickness of the concrete lining, or in many cases, resewing (re-excavation) was forced.

そこで本発明の主たる課題は、山岳トンネルの施工において、変位計測から求めた初期変位速度に基づいて最終変位量を従来よりも精度良く予測するための方法を提供することにある。 Therefore, the main object of the present invention is to provide a method for predicting the final amount of displacement with higher accuracy than before, based on the initial displacement speed determined from displacement measurement, in the construction of mountain tunnels.

上記課題を解決するために請求項1に係る本発明として、山岳トンネルの施工において、変位計測から求めた初期変位速度に基づいて最終変位量を予測するための方法であって、
発破後にトンネル壁面に対して1次吹付けを行った後、鋼製支保工を設置し、該鋼製支保工に取り付けた視準ターゲットを計測することにより鋼製支保工の設置位置の計測を行う支保工検測を行った後に、引き続いて前記鋼製支保工の変位計測を継続して行う第1手順と、
2次吹付けを終えたならば、トンネル壁面に視準ターゲットを設置して坑内A計測を開始する第2手順と、
前記鋼製支保工の変位計測と前記坑内A計測による変位計測とに基づいて、鋼製支保工の変位量分を考慮した初期変位速度を算出し、蓄積されたデータに基づいて作成された初期変位速度と最終変位量の相関データから最終変位量を予測する第3手順とからなることを特徴とするトンネルの最終変位量の予測方法が提供される。
In order to solve the above problem, the present invention according to claim 1 provides a method for predicting the final displacement amount based on the initial displacement speed obtained from displacement measurement in the construction of a mountain tunnel, comprising:
After blasting, the tunnel wall surface is first sprayed, then steel shoring is installed, and the installation position of the steel shoring is measured by measuring the sighting target attached to the steel shoring. A first step of continuously measuring the displacement of the steel shoring after performing the shoring inspection to be performed;
After completing the secondary spraying, the second step is to set up a collimation target on the tunnel wall and start the underground A measurement.
Based on the displacement measurement of the steel shoring and the displacement measurement by the underground A measurement, an initial displacement speed that takes into account the amount of displacement of the steel shoring is calculated, and an initial displacement rate is calculated based on the accumulated data. A method for predicting the final displacement of a tunnel is provided, which is characterized by comprising a third step of predicting the final displacement from correlation data between the displacement speed and the final displacement.

上記請求項1記載の発明では、先ず、鋼製支保工の設置位置の計測を行う支保工検測を行った後に、引き続いて前記鋼製支保工の変位計測を継続して行うようにしている(第1手順)。そして、通常通り、2次吹付けを終えた後、トンネル壁面に視準ターゲットを設置して坑内A計測を開始したならば(第2手順)、前記鋼製支保工の変位計測と前記坑内A計測による変位計測とに基づいて、構鋼製支保工の変位量分を考慮した初期変位速度を算出し、蓄積されたデータに基づいて作成された初期変位速度と最終変位量の相関データから最終変位量を予測するようにしている(第3手順)。 In the invention according to claim 1, first, a shoring inspection is performed to measure the installation position of the steel shoring, and then displacement measurement of the steel shoring is continuously performed. (First step). Then, as usual, after finishing the secondary spraying, if a collimation target is installed on the tunnel wall and the underground A measurement is started (second step), the displacement measurement of the steel shoring and the underground A Based on the displacement measurement, the initial displacement rate is calculated taking into account the displacement of the structural steel support, and the final displacement rate is calculated from the correlation data between the initial displacement rate and the final displacement created based on the accumulated data. The amount of displacement is predicted (third step).

本発明では、通常の坑内A計測よりも早い段階、すなわち鋼製支保工を設置した段階から鋼製支保工の変位を計測しておき、坑内A計測による変位計測とに基づいて、鋼製支保工の変位量分を考慮した初期変位速度を算出するようにしている。発破後からのトンネル地山の変位量は初期に大きく変位し漸次変位量が収束する傾向を示している。しかし、坑内A計測は2次吹付けを終えた後に、トンネル壁面に視準ターゲットを設置してからでないと計測を開始できず、変位がある程度収束し初めている段階からの計測となっていた。その結果、初期変位速度と最終変位量との相関性がその分薄れたものとなっていたため、本発明では極力早い段階からトンネルの変位量を測定開始するために、鋼製支保工の設置後に該鋼製支保工の変位を測定し、これを坑内A計測の計測値に加算した値をもって初期変位速度を算出するようにしたため、初期変位速度と最終変位量との相関性を向上でき、最終変位量を精度良く予測できるようになる。 In the present invention, the displacement of the steel shoring is measured at an earlier stage than normal underground A measurement, that is, from the stage when the steel shoring is installed, and the displacement of the steel shoring is measured based on the displacement measurement by the underground A measurement. The initial displacement speed is calculated by taking into account the displacement amount of the workpiece. The amount of displacement of the tunnel ground after blasting shows a tendency to be large at the beginning and gradually converge. However, underground A measurements could only be started after the secondary spraying was completed and a collimation target was installed on the tunnel wall, and measurements were taken only after the displacement had begun to converge to a certain extent. As a result, the correlation between the initial displacement speed and the final displacement amount was weakened accordingly, so in the present invention, in order to start measuring the tunnel displacement amount from the earliest possible stage, after the steel shoring was installed, Since the displacement of the steel shoring is measured and the initial displacement rate is calculated by adding this value to the measured value of the underground A measurement, the correlation between the initial displacement rate and the final displacement amount can be improved, and the final displacement rate can be improved. It becomes possible to predict the amount of displacement with high accuracy.

請求項2に係る本発明として、前記初期変位速度は、鋼製支保工の変位計測開始からA計測開始までの時間をα(日)、このα経過時における鋼製支保工の変位量をDαとし、前記坑内A計測開始から24時間経過後の変位量をD24とした場合に、(Dα+D24)/(α+1)(mm/day)によって算出する請求項1記載のトンネルの最終変位量の予測方法が提供される。 As the present invention according to claim 2, the initial displacement speed is defined as α (days) from the start of displacement measurement of the steel shoring to the start of A measurement, and D as the displacement amount of the steel shoring after this α has elapsed. The final value of the tunnel according to claim 1, which is calculated by (D α + D 24 )/(α + 1) (mm/day), where α is the displacement amount 24 hours after the start of the measurement in the tunnel A and D 24 . A method for predicting displacement is provided.

上記請求項2記載の発明は、前記鋼製支保工の変位計測と前記坑内A計測による変位計測とに基づいて、鋼製支保工の変位量分を考慮した初期変位速度の算出方法の第1例を示したものである。坑内A計測は計測開始から24時間経過後の変位量を計測することが規定されているため、この坑内A計測の24時間経過後の変位量をD24に鋼製支保工の変位量Dαを加算した変位量を分子とし、これらの計測時間(α+1)(日)を分母とした算式によって、1日当たりの変位量(初期変位速度)に換算したものである。 The invention according to claim 2 provides a first method of calculating an initial displacement rate that takes into account the amount of displacement of the steel support, based on the displacement measurement of the steel support and the displacement measurement by the underground A measurement. This is an example. Since it is specified that the underground A measurement is to measure the displacement 24 hours after the start of the measurement, the displacement after 24 hours of the underground A measurement is set as D24 and the displacement D α of the steel shoring. It is converted into a displacement amount per day (initial displacement speed) using a formula in which the sum of the displacement amounts is the numerator and the measurement time (α+1) (days) is the denominator.

請求項3に係る本発明として、前記初期変位速度は、鋼製支保工の変位計測開始からA計測開始までの時間をα(時間)、このα経過時における鋼製支保工の変位量をDαとし、前記坑内A計測開始から(24時間-α)経過後の変位量をD24-αとした場合に、(Dα+D24-α)(mm/day)によって算出する請求項1記載のトンネルの最終変位量の予測方法が提供される。 As the present invention according to claim 3, the initial displacement speed is defined as α (hour), which is the time from the start of displacement measurement of the steel shoring to the start of measurement A, and D, the displacement amount of the steel shoring after this α has elapsed. 2. The calculation is performed by (D α +D 24-α ) (mm/day), where α is the displacement amount after (24 hours-α) has elapsed since the start of the underground A measurement and D 24-α is A method for predicting the final displacement of a tunnel is provided.

上記請求項3記載の発明は、前記鋼製支保工の変位計測と前記坑内A計測による変位計測とに基づいて、鋼製支保工の変位量分を考慮した初期変位速度の算出方法の第2例を示したものである。この方法は、鋼製支保工の変位計測開始から24時間経過時の変位量を(Dα+D24-α)によって求め、これを初期変位速度(mm/day)としたものである。 The invention according to claim 3 provides a second method for calculating an initial displacement rate that takes into account the amount of displacement of the steel support, based on the displacement measurement of the steel support and the displacement measurement by the underground A measurement. This is an example. In this method, the amount of displacement of the steel shoring 24 hours after the start of displacement measurement is determined by (D α +D 24−α ), and this is taken as the initial displacement rate (mm/day).

請求項4に係る本発明として、山岳トンネルの施工において、変位計測から求めた初期変位速度に基づいて最終変位量を予測するための方法であって、
発破後にトンネル壁面に対して1次吹付けを行った後、鋼製支保工を設置し、該鋼製支保工に取り付けた視準ターゲットを計測することにより鋼製支保工の設置位置の計測を行う支保工検測を行った後に、引き続いて前記鋼製支保工の変位計測を継続して行う第1手順と、
前記鋼製支保工の変位計測のみに基づいて初期変位速度を算出し、蓄積されたデータに基づいて作成された初期変位速度と最終変位量の相関データから最終変位量を予測する第2手順とからなることを特徴とするトンネルの最終変位量の予測方法が提供される。
The present invention according to claim 4 is a method for predicting the final displacement amount based on the initial displacement speed obtained from displacement measurement in the construction of a mountain tunnel, comprising:
After blasting, the tunnel wall surface is first sprayed, then steel shoring is installed, and the installation position of the steel shoring is measured by measuring the sighting target attached to the steel shoring. A first step of continuously measuring the displacement of the steel shoring after performing the shoring inspection to be performed;
a second step of calculating the initial displacement speed based only on the displacement measurement of the steel shoring, and predicting the final displacement amount from correlation data between the initial displacement speed and the final displacement amount created based on the accumulated data; A method for predicting the final displacement of a tunnel is provided.

上記請求項4記載の発明では、通常の坑内A計測よりも早い段階、すなわち鋼製支保工を設置した段階から鋼製支保工の変位を計測し、この鋼製支保工の変位計測のみに基づいて初期変位速度を算出するようにしている。発破後からのトンネル地山の変位量は初期に大きく変位し漸次変位量が収束する傾向を示しているが、坑内A計測は2次吹付けを終えた後に、トンネル壁面に視準ターゲットを設置してからでないと計測を開始できず、変位がある程度収束し初めている段階からの計測となっていたため、初期変位速度と最終変位量との相関性がその分薄れたものとなっていた。 In the invention according to claim 4, the displacement of the steel shoring is measured at an earlier stage than the normal underground A measurement, that is, from the stage when the steel shoring is installed, and based only on the displacement measurement of the steel shoring. The initial displacement speed is calculated using The amount of displacement of the tunnel ground after blasting shows a tendency that there is a large initial displacement and then the amount of displacement gradually converges, but for underground A measurement, a collimation target was set on the tunnel wall after the secondary blasting was completed. Measurements could not be started until after this, and measurements were taken after the displacement had begun to converge to a certain extent, so the correlation between the initial displacement speed and the final displacement amount was correspondingly weakened.

そこで、本発明では発破後の極力早い段階で変位計測を開始するため、鋼製支保工の設置後に該鋼製支保工の変位を測定し、この鋼製支保工の変位計測のみに基づいて初期変位速度を算出するようにしたため、初期変位速度と最終変位量との相関性を向上でき、最終変位量を精度良く予測できるようになる。 Therefore, in the present invention, in order to start displacement measurement as early as possible after blasting, the displacement of the steel shoring is measured after the steel shoring is installed, and the initial stage is based only on the displacement measurement of this steel shoring. Since the displacement speed is calculated, the correlation between the initial displacement speed and the final displacement amount can be improved, and the final displacement amount can be predicted with high accuracy.

請求項5に係る本発明として、前記鋼製支保工の支保工検測及び変位計測は、鋼製支保工を建込む前に鋼製支保工の所定箇所に視準ターゲットを取り付けておくようにする請求項1~4いずれかに記載のトンネルの最終変位量の予測方法が提供される。 As the present invention according to claim 5, the shoring inspection and displacement measurement of the steel shoring are performed by attaching a collimation target to a predetermined location of the steel shoring before erecting the steel shoring. There is provided a method for predicting the final displacement of a tunnel according to any one of claims 1 to 4.

上記請求項5記載の発明では、具体的な鋼製支保工の変位計測方法について規定したものである。鋼製支保工の変位計測を効率良く行うために、鋼製支保工を建込む前に鋼製支保工の所定箇所に視準ターゲットを取り付けておき、鋼製支保工の設置後に支保工検測を行い、引き続いて鋼製支保工の変位計測を行うことが可能となる。 The invention as set forth in claim 5 stipulates a specific method for measuring displacement of steel shoring. In order to efficiently measure the displacement of steel shoring, sighting targets are attached to designated locations on the steel shoring before it is erected, and the shoring can be inspected after the steel shoring is installed. This makes it possible to subsequently measure the displacement of steel shoring.

請求項6に係る本発明として、前記鋼製支保工に取り付けた視準ターゲットは、蝶番又は揺動アームによって支持され、回動操作によって発破時に爆風を受けないように待避可能としてある請求項1~5いずれかに記載のトンネルの最終変位量の予測方法が提供される。 The present invention according to claim 6 is characterized in that the collimation target attached to the steel shoring is supported by a hinge or a swing arm, and can be retracted by rotation operation so as not to be exposed to blast waves during blasting. There is provided a method for predicting the final displacement of a tunnel according to any one of items 1 to 5.

上記請求項6記載の発明では、鋼製支保工の変位計測のために鋼製支保工に取り付けた視準ターゲットが発破による爆風を受けて損傷することが懸念される。そのため、視準ターゲットを鋼製支保工に対して蝶番又は揺動アームによって回動自在に支持し、回動操作によって発破時に爆風を受けないように待避可能として発破による爆風によって破損しないようにしたものである。 In the invention set forth in claim 6, there is a concern that the collimation target attached to the steel shoring for measuring the displacement of the steel shoring may be damaged by the blast wave caused by the blasting. Therefore, the collimation target was rotatably supported on a steel support using a hinge or a swinging arm, and the rotation operation enabled the target to be evacuated from the blast wave during blasting, so that it would not be damaged by the blast wave from blasting. It is something.

以上詳説のとおり本発明によれば、山岳トンネルの施工において、変位計測から求めた初期変位速度に基づいて最終変位量を従来よりも精度良く予測することが可能となる。 As described in detail above, according to the present invention, in constructing a mountain tunnel, it is possible to predict the final displacement amount with higher accuracy than before based on the initial displacement speed obtained from displacement measurement.

トンネルの掘削要領を示すトンネル縦断面図である。FIG. 2 is a vertical cross-sectional view of a tunnel showing the procedure for excavating a tunnel. トンネル掘削要領のフロー図である。It is a flowchart of tunnel excavation procedure. (A)はドリルジャンボによる切羽への穿孔・装薬の要領図、(B)はホイールローダによるズリ出し要領図、(C)は1次吹付け要領図である。(A) is a diagram of the procedure for drilling and charging the face with a drill jumbo, (B) is a diagram of the procedure for removing sludge using a wheel loader, and (C) is a diagram of the procedure for primary spraying. 鋼製支保工10への視準ターゲット11の取付け位置を示す正面図である。FIG. 3 is a front view showing the attachment position of the collimation target 11 to the steel shoring 10. FIG. 鋼製支保工10の建込み要領図である。It is a construction procedure diagram of the steel shoring 10. 支保工検測の要領図である。This is a diagram showing the procedure for shoring inspection. 坑内A計測の要領図である。It is a schematic diagram of underground A measurement. ロックボルトの打設要領図である。It is a drawing of a procedure for driving a rock bolt. 初期変位速度と最終変位量との相関データの例を示したグラフである。It is a graph showing an example of correlation data between an initial displacement speed and a final displacement amount. 初期変位速度(mm/day)の算出例を説明するための図である。FIG. 3 is a diagram for explaining an example of calculating an initial displacement speed (mm/day). 鋼製支保工10への視準ターゲットの取付け例を示す、(A)は計測時、(B)は発破時を示す横断面図である。FIG. 2 is a cross-sectional view showing an example of attaching a collimation target to a steel shoring 10, with (A) showing the time of measurement and (B) showing the time of blasting. 坑内A計測の測定要領図である。It is a measurement procedure diagram of underground A measurement. 坑内A計測の計測点を示す図である。It is a figure showing the measurement point of underground A measurement.

以下、本発明の実施の形態について図面を参照しながら詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

図1に示されるように、切羽Sの近傍では、ドリルジャンボ1、吹付け機2、ホイールローダなどのトンネル施工重機が配置され掘削作業が行われる。図示の例は、上半及び下半の一括の併行作業により掘削を行うミニベンチ工法の例であり、上半ベンチ長を3~5.5mと極端に小さくした上で、上半及び下半のそれぞれにおいて、図2のフロー図に示されるように、ドリルジャンボによって切羽に対して削孔と装薬を行い、上半と下半とを一気に切り崩し(発破)、その後にズリ出し・当り取り・こそくを行った後、壁面に対して吹付け機2を用いて一次吹付けを行い、次いで鋼製支保工10の建込みを行い、二次吹付けを行った後ロックボルト打設の手順によって掘削が行われるようになっている。 As shown in FIG. 1, tunnel construction heavy machinery such as a drill jumbo 1, a spray machine 2, and a wheel loader are arranged near the face S to perform excavation work. The illustrated example is a mini-bench construction method in which excavation is carried out by simultaneous work on the upper and lower halves. In each case, as shown in the flowchart in Fig. 2, a drill jumbo is used to drill holes and charge the face, to break down the upper and lower halves at once (blasting), and then to remove the sludge, remove the hit, and After performing the shoveling, primary spraying is performed on the wall surface using the spraying machine 2, then the steel shoring 10 is erected, and after the secondary spraying is performed, the procedure for driving rock bolts. Excavation is now being carried out by

本発明は、前記山岳トンネルの施工において、変位計測から求めた初期変位速度に基づいて最終変位量を予測するための方法を提供するものである。具体的には、発破後にトンネル壁面に対して1次吹付けを行った後、鋼製支保工10を設置し、該鋼製支保工10に取り付けた視準ターゲットを計測することにより鋼製支保工10の設置位置の計測を行う支保工検測を行った後に、引き続いて前記鋼製支保工10の変位計測を継続して行う第1手順と、
2次吹付けを終えたならば、トンネル壁面に視準ターゲットを設置して坑内A計測を開始する第2手順と、
前記鋼製支保工10の変位計測と前記坑内A計測による変位計測とに基づいて、鋼製支保工10の変位量分を考慮した初期変位速度を算出し、蓄積されたデータに基づいて作成された初期変位速度と最終変位量の相関データから最終変位量を予測する第3手順とからなるものである。
The present invention provides a method for predicting the final displacement amount based on the initial displacement speed determined from displacement measurement in the construction of the mountain tunnel. Specifically, after performing primary spraying on the tunnel wall surface after blasting, a steel shoring 10 is installed, and a collimation target attached to the steel shoring 10 is measured. A first step of continuously measuring the displacement of the steel shoring 10 after performing a shoring inspection to measure the installation position of the steel shoring 10;
After completing the secondary spraying, the second step is to set up a collimation target on the tunnel wall and start the underground A measurement.
Based on the displacement measurement of the steel shoring 10 and the displacement measurement by the underground A measurement, an initial displacement speed is calculated taking into account the amount of displacement of the steel shoring 10, and is created based on the accumulated data. This step consists of a third step of predicting the final displacement amount from correlation data between the initial displacement velocity and the final displacement amount.

以下、トンネル掘削工程に従いながら具体的に詳述する。 The tunnel excavation process will be explained in detail below.

(穿孔・装薬)
図3(A)に示されるように、切羽Sの手前にドリルジャンボ1を位置決めした状態とし、ドリルジャンボ1に搭載されている削孔機1Aを用いて切羽Sに対して穿孔を行い、この穿孔内に装薬を行ったならば、爆発により上半と下半とを一気に切り崩すようにする(発破工程)。
(Drilling/Charging)
As shown in Fig. 3(A), the drill jumbo 1 is positioned in front of the face S, and the drilling machine 1A mounted on the drill jumbo 1 is used to drill a hole in the face S. Once the charge is placed in the borehole, the upper and lower halves are torn off at once by an explosion (blasting process).

(ズリ出し等)
次いで、図3(B)に示されるように、ホイールローダ4によってズリ出しを行う。ズリはズリ運搬車5によって坑外まで運搬される。また、その後にバックホウやブレーカを用いて、当り取りやコソクを行う(図示せず)。
(Drawing out etc.)
Next, as shown in FIG. 3(B), the wheel loader 4 removes the shear. The waste is transported to the outside of the mine by a waste transport vehicle 5. Further, after that, a backhoe or a breaker is used to perform a hit or break (not shown).

(一次吹付け)
ここまでの作業が完了したならば、コンクリートの1次吹付け作業に入る。吹付け作業は、図3(C)に示されるように、吹付け機2を切羽手前に位置決めさせた状態で、アームの先端の保持された吹付けノズル2aから概ね5cm程度の厚さでコンクリートを壁面に吹き付けるようにする。
(Primary spraying)
Once the work up to this point has been completed, the first concrete spraying work will begin. As shown in Fig. 3(C), the spraying operation is carried out with the spraying machine 2 positioned in front of the face, and the concrete is sprayed approximately 5 cm thick from the spraying nozzle 2a held at the tip of the arm. Spray it on the wall.

(鋼製支保工の建込み)
次に、鋼製支保工10の建込み作業に入る。鋼製支保工10としては通常H形綱が使用される。建込み作業に先立ち、図4に示されるように、鋼製支保工10の所定箇所、図示例では天端、左肩、左下半、右肩、右下半の5箇所に視準ターゲット11を取り付けておくようにする。
(Erection of steel shoring)
Next, construction work for the steel shoring 10 begins. As the steel shoring 10, H-shaped ropes are usually used. Prior to erection work, as shown in FIG. 4, collimation targets 11 are attached to predetermined locations on the steel shoring 10, in the illustrated example five locations: the top, left shoulder, lower left half, right shoulder, and lower right half. Make sure to keep it.

鋼製支保工10の建込みは、図5に示されるように、前記吹付け機2を用いて行う。吹付け機2は2台の鋼製支保工用のエレクター装置2A、2Bを具備しており、中央で2分割された鋼製支保工10A、10Bのそれぞれをエレクター装置2A、2Bによって保持し、掘削後の壁面に周方向に沿って鋼製支保工10A、10Bを所定位置に位置決めしたならば、バスケット2C、2Dに搭乗した作業員によって天端位置で鋼製支保工10A、10Bの連結作業が行われる。 The steel shoring 10 is erected using the spraying machine 2, as shown in FIG. The spraying machine 2 is equipped with two erector devices 2A and 2B for steel shoring, and the steel shoring 10A and 10B, which are divided into two at the center, are held by the erector devices 2A and 2B, respectively. Once the steel supports 10A and 10B have been positioned at predetermined positions along the circumferential direction of the wall surface after excavation, workers on board the baskets 2C and 2D connect the steel supports 10A and 10B at the top position. will be held.

(支保工検測)
次に、前記鋼製支保工10が設計位置に所定の精度で据え付けられているかどうかを検証するために支保工検測が行われる。
(Shoring inspection)
Next, a shoring inspection is performed to verify whether the steel shoring 10 is installed at the designed position with a predetermined accuracy.

測量作業に当たっては、図6に示されるように、トンネル坑内にトータルステーション6が設置される。トータルステーション6は、測距及び測角の基本機能の他にレーザー照射、自動視準機能、視準の自動追尾機能、自動整準補正機能を備えた測量機器である。計測に当たっては、予め座標が既知とされる少なくとも2点の基準点A,Bをトータルステーション6によって視準し、三角測量の原理を応用した後方交会法によりトータルステーション6の設置座標を算出する。このトータルステーション6の設置座標の特定作業は、設置点が変化している場合もあるため、各種測量が行われる度に繰り返し行うようにするのが望ましい。 For surveying work, a total station 6 is installed inside the tunnel, as shown in FIG. The total station 6 is a surveying instrument that is equipped with laser irradiation, an automatic sighting function, an automatic sight tracking function, and an automatic leveling correction function in addition to the basic functions of distance measurement and angle measurement. In the measurement, the total station 6 collimates at least two reference points A and B, the coordinates of which are known in advance, and the installation coordinates of the total station 6 are calculated by the backward intersection method applying the principle of triangulation. Since the installation point may change, it is desirable to repeatedly specify the installation coordinates of the total station 6 each time various types of surveying are performed.

鋼製支保工10の検測は、図6に示されるように、鋼製支保工10に設けた5点の視準ターゲット11の内、少なくとも左端検測点、天端検測点、右端検測点の3点の視準ターゲット11を前記トータルステーション6により測量すればよい。 As shown in FIG. 6, the inspection of the steel shoring 10 is carried out at at least the left end inspection point, the top end inspection point, and the right end inspection point among the five sighting targets 11 provided on the steel shoring 10. The three collimation targets 11 of the measurement points may be surveyed by the total station 6.

(鋼製支保工10の変位計測)
前述の支保工検測が終えたならば、引き続き鋼製支保工10の変位計測を継続して行うようにする。検測点は、鋼製支保工10に設置した5点のターゲットとする。この計測点は坑内A計測に合わせて設定したものである。
(Displacement measurement of steel shoring 10)
After the above-mentioned shoring inspection is completed, the displacement measurement of the steel shoring 10 is continued. The inspection points are five targets installed on the steel shoring 10. This measurement point was set in accordance with the underground A measurement.

通常、鋼製支保工10を1次吹付け面に沿わせて設置した状態では、鋼製支保工10と1次吹付け面との間に部分的に空間が形成されている箇所が点在することになるが、このような部分的な空間が多数形成されているとしても、鋼製支保工10は1次吹付け面に対して周方向の多点で接触している限り、地山の変形は鋼製支保工10の変形として概ね現れる。従って、鋼製支保工10の変位計測を行うことにより地山の変形を把握することが可能となる。 Normally, when the steel shoring 10 is installed along the primary sprayed surface, there are places where spaces are partially formed between the steel shoring 10 and the primary sprayed surface. However, even if a large number of such partial spaces are formed, as long as the steel shoring 10 is in contact with the primary sprayed surface at multiple points in the circumferential direction, it will not disturb the ground. The deformation generally appears as deformation of the steel shoring 10. Therefore, by measuring the displacement of the steel shoring 10, it is possible to understand the deformation of the ground.

なお、当該鋼製支保工10の変位計測は、坑内A計測の一環として行われる意味合いが強いため、計測頻度については後述する坑内A計測に合わせるようにするのが望ましい。 In addition, since the displacement measurement of the steel shoring 10 has a strong implication that it is performed as part of the underground A measurement, it is desirable that the measurement frequency be matched with the underground A measurement, which will be described later.

(2次吹付け)
鋼製支保工10の建込みが完了したならば、次に吹付け機2によって概ね5~15cmの厚みでコンクリートの2次吹付けを行う。
(Secondary spraying)
Once the steel shoring 10 has been erected, a secondary spraying of concrete is performed using a spraying machine 2 to a thickness of approximately 5 to 15 cm.

(坑内A計測)
2次吹付けを完了したならば、坑内A計測を行う。坑内A計測に当たっては、2次吹付け面に対して視準ターゲット11を設置する。視準ターゲット11の設置箇所は、図12に示されるように、天端、左肩、左下半、右肩、右下半の5点とし、各点の変位量(及び測定点間距離)や沈下量を計測する。
(Inside mine A measurement)
Once the secondary spraying is completed, underground A measurement will be carried out. When measuring underground A, a collimation target 11 is installed on the secondary spraying surface. As shown in Figure 12, the collimation target 11 is installed at five points: the top, left shoulder, lower left half, right shoulder, and lower right half, and the displacement (and distance between measurement points) and subsidence of each point are measured. Measure the amount.

測量は、図7に示されるように、坑内にトンネル坑内にトータルステーション6を設置して行うようにする。図示されるように、トータルステーション6の自動視準機能を利用して、多数設置された視準ターゲットを順に連続的に測量するようにすることが望ましい。 The survey is carried out by installing a total station 6 inside the tunnel, as shown in FIG. As shown in the figure, it is desirable to use the automatic sighting function of the total station 6 to successively survey a large number of sighting targets.

測定頻度に関しては、一般的に下表1に従って行うようにすればよい。 Regarding the measurement frequency, it may generally be carried out according to Table 1 below.

Figure 0007401394000001
なお、測定頻度は、内空変位の変位速度より定まる計測頻度と、切羽からの離れによる定まる計測頻度のうち頻度の高い方を採用するものとする。
Figure 0007401394000001
In addition, the measurement frequency shall be determined by the measurement frequency determined by the displacement speed of the internal space displacement, and the measurement frequency determined by the distance from the face, whichever is higher.

(ロックボルト打設)
前記2次吹付けを作業を終えたならば、図8に示されるように、トンネル周方向に亘って、トンネル放射方向に沿ってロックボルトの打設を行う。
(Rock bolt installation)
After completing the secondary spraying, rock bolts are driven along the radial direction of the tunnel along the circumferential direction of the tunnel, as shown in FIG.

(最終変位の予測)
前記鋼製支保工10の変位計測と前記坑内A計測による変位計測とに基づいて、鋼製支保工10の変位量分を考慮した初期変位速度(mm/day)を算出し、蓄積されたデータに基づいて作成された初期変位速度と最終変位量の相関データから最終変位量を予測する。以下、具体的に詳述する。
(Prediction of final displacement)
Based on the displacement measurement of the steel shoring 10 and the displacement measurement by the underground A measurement, an initial displacement speed (mm/day) considering the amount of displacement of the steel shoring 10 is calculated, and the data is accumulated. The final displacement amount is predicted from the correlation data between the initial displacement velocity and the final displacement amount created based on. This will be explained in detail below.

先ず、前記初期変位速度(mm/day)の算出方法について、図9に基づいて具体的に詳述する。 First, the method for calculating the initial displacement speed (mm/day) will be specifically explained in detail based on FIG. 9.

<第1手法>
図9の上段に示されるように、鋼製支保工10の変位計測開始からA計測開始までの時間をα(日)、このα経過時における鋼製支保工10の変位量をDαとし、坑内A計測開始から24時間経過後の変位量をD24とする。
<First method>
As shown in the upper part of FIG. 9, the time from the start of displacement measurement of the steel shoring 10 to the start of A measurement is α (days), the displacement amount of the steel shoring 10 after this α has elapsed is D α , The amount of displacement 24 hours after the start of the measurement in the mine A is defined as D24 .

第1手法は、図9の中段に示されるように、鋼製支保工10の変位量Dαと、坑内A計測開始から24時間経過後の変位量D24とを加算した総変位量に基づいて初期変位速度を求めるようにしたものである。具体的には、坑内A計測は計測開始から24時間経過後の変位量を計測することが規定されているため、この坑内A計測の24時間経過後の変位量D24に鋼製支保工の変位量Dαを加算した変位量を分子とし、これらの計測時間(α+1)(日)を分母とした算式によって、1日当たりの変位量(初期変位速度)に換算したものを初期変位速度(mm/day)とするものである。仮に、α:0.125日(3hr)、Dα:20mm、D24:60mmである場合に、初期変位速度は(20+60)/1.125=71.1(mm/day)となる。 The first method is based on the total amount of displacement, which is the sum of the amount of displacement D α of the steel shoring 10 and the amount of displacement D 24 after 24 hours have elapsed since the start of the measurement of underground A, as shown in the middle part of FIG. The initial displacement velocity is determined by Specifically, since it is stipulated that the amount of displacement after 24 hours has elapsed from the start of measurement in the underground A measurement, the displacement D24 of the steel shoring after 24 hours has elapsed in the underground A measurement. The displacement amount obtained by adding the displacement amount D α is the numerator, and the measurement time (α + 1) (days) is used as the denominator to calculate the displacement amount per day (initial displacement speed), which is converted to the initial displacement speed (mm /day). If α: 0.125 days (3 hr), D α : 20 mm, and D 24 : 60 mm, the initial displacement speed will be (20+60)/1.125=71.1 (mm/day).

なお、1日当たりの変位量に換算するのは、鋼製支保工10の変位計測開始からA計測開始までの時間αにバラツキがあることと、一般的に最終変位の予測は坑内A計測の24時間変位量から行っているため、これらとの関連性から1日当たりの変位量に換算するのが望ましいためである。 Note that the reason for converting the amount of displacement per day is that there is variation in the time α from the start of displacement measurement of the steel shoring 10 to the start of A measurement, and in general, the final displacement is predicted after 24 hours of underground A measurement. This is because since the calculation is based on the amount of time displacement, it is desirable to convert it into the amount of displacement per day based on the relationship with these.

<第2手法>
第2手法は、直接的に、鋼製支保工10の変位計測開始から24時間経過時の変位量を(Dα+D24-α)によって求め、これを初期変位速度(mm/day)としたものである。
<Second method>
The second method is to directly calculate the amount of displacement of the steel support 10 24 hours after the start of displacement measurement using (D α + D 24-α ), and use this as the initial displacement rate (mm/day). It is something.

図9の上段に示されるように、鋼製支保工10の変位計測開始からA計測開始までの時間をα(時間)、このα経過時における鋼製支保工10の変位量Dαとし、前記坑内A計測開始から(24時間-α)経過後の変位量をD24-αとすると、第2手法では、図9の下段に示されるように、鋼製支保工10の変位量Dαと、坑内A計測開始から(24時間-α)経過時の変位量D24-αを加算した総変位量をもって初期変位速度(mm/day)とすれば良いことになる。前記変位量D24-αについては、坑内A計測開始から24時間経過後の変位量D24に基づいて変位曲線を描き、坑内A計測開始から(24時間-α)経過時点の変位量を読み取っても良いし、坑内A計測開始から(24時間-α)経過時点でトータルステーション6によって変位計測を行うことにより変位量D24-αを直接的に計測してもよい。 As shown in the upper part of FIG. 9, the time from the start of displacement measurement of the steel shoring 10 to the start of A measurement is α (hour), the displacement amount D α of the steel shoring 10 when this α has elapsed, and the Assuming that the amount of displacement after (24 hours-α) has elapsed since the start of the measurement of underground A is D 24-α , in the second method, as shown in the lower part of FIG. 9, the amount of displacement D α of the steel shoring 10 is , the initial displacement speed (mm/day) can be taken as the total displacement amount obtained by adding the displacement amount D 24-α after the start of the measurement in the mine A (24 hours-α). Regarding the displacement amount D24-α , draw a displacement curve based on the displacement amount D24 after 24 hours have elapsed from the start of the underground A measurement, and read the displacement amount at the time point (24 hours-α) after the start of the underground A measurement. Alternatively, the amount of displacement D 24-α may be directly measured by measuring the displacement using the total station 6 at a time point (24 hours-α) after the start of the measurement in the mine A.

以上の手法によって、初期変位速度(mm/day)を求めたならば、この初期変位速度(mm/day)と最終変位量(mm)との関係を支保パターン毎に、横軸を初期変位速度(mm/day)とし、縦軸を最終変位量(mm)としたグラフ中にプロットして行き、ある程度のデータが蓄積されると、図10に示されるような、支保工パターン(E、DII、DI、CII-b、CI)毎に相関データ(相関直線又は相関曲線)を得ることが可能となる。 Once the initial displacement speed (mm/day) has been determined using the above method, the relationship between this initial displacement speed (mm/day) and the final displacement amount (mm) can be plotted for each support pattern, with the horizontal axis representing the initial displacement speed. (mm/day) and plot it on a graph with the vertical axis as the final displacement (mm). When a certain amount of data is accumulated, the shoring pattern (E, DII , DI, CII-b, CI), it becomes possible to obtain correlation data (correlation straight line or correlation curve).

その後の掘削では、初期変位速度(mm/day)を求めると、支保工パターン別の相関データに基づいて、最終変位量(mm)を予測することが可能となる。例えば、図10において、初期変位速度が54(mm/day)であり、支保工パターンがCIならば、その最終変位量は80(mm)であると予測することが可能となる。 In subsequent excavations, by determining the initial displacement rate (mm/day), it becomes possible to predict the final displacement (mm) based on the correlation data for each shoring pattern. For example, in FIG. 10, if the initial displacement speed is 54 (mm/day) and the shoring pattern is CI, it is possible to predict that the final displacement amount will be 80 (mm).

〔第2形態例〕
上記形態例では、通常の坑内A計測よりも早い段階、すなわち鋼製支保工10を設置した段階から鋼製支保工10の変位を計測しておき、鋼製支保工10の変位計測と坑内A計測による変位計測とに基づいて、鋼製支保工10の変位量分を考慮した初期変位速度を算出するようにしたが、前記坑内A計測とは無関係に、鋼製支保工10の変位計測のみに基づいて初期変位速度を算出し、蓄積されたデータに基づいて作成された初期変位速度と最終変位量の相関データから最終変位量を予測することも可能である。
[Second form example]
In the above embodiment, the displacement of the steel shoring 10 is measured at an earlier stage than normal underground A measurement, that is, from the stage when the steel shoring 10 is installed, and the displacement measurement of the steel shoring 10 and the underground A Although the initial displacement speed was calculated based on the displacement measurement by taking into account the amount of displacement of the steel shoring 10, it is possible to calculate only the displacement measurement of the steel shoring 10, regardless of the above-mentioned underground A measurement. It is also possible to calculate the initial displacement speed based on the , and predict the final displacement amount from correlation data between the initial displacement speed and the final displacement amount created based on the accumulated data.

鋼製支保工10の変位挙動は、鋼製支保工10を間に介した地山の変位であり間接的なものであるが、その変位挙動は地山の変形を明確に反映したものである。従って、鋼製支保工10の変位から求められた初期変位速度と最終変位量との間には高い相関性を有すると考えられるため、坑内A計測の変位計測によらずとも、鋼製支保工10の変位計測のみに基づいて算出された初期変位速度に基づいて最終変位量を予測することが可能となる。 The displacement behavior of the steel shoring 10 is an indirect displacement of the ground via the steel shoring 10, but the displacement behavior clearly reflects the deformation of the ground. . Therefore, since it is considered that there is a high correlation between the initial displacement rate and the final displacement amount determined from the displacement of the steel shoring 10, it is possible to It becomes possible to predict the final displacement amount based on the initial displacement speed calculated based only on the 10 displacement measurements.

〔他の形態例〕
(1)前記鋼製支保工10に対する視準ターゲット11の取付けに関して、視準ターゲット11はその後の発破時においても残置されることになる。しかし、発破時の爆風によって損傷することが予想されるため、鋼製支保工10に取り付けた視準ターゲット11は、蝶番13によって支持され、回動操作によって発破時に爆風を受けないように待避可能とすることが望ましい。具体的には図11に示されるように、留め具12と蝶番13とを連結した支持具を用い、前記蝶番13に視準ターゲット11を固定する。鋼製支保工10に対する取付けは前記留め具12によって行い、計測時には図11(A)に示されるように、蝶番13を開いて視準ターゲット11を外側に露出させる一方、発破時には図11(B)に示されるように、蝶番13を閉じて切羽側からの爆風を受けないように待避させるようにする。
[Other form examples]
(1) Regarding the attachment of the collimation target 11 to the steel shoring 10, the collimation target 11 will remain in place even during subsequent blasting. However, since it is expected that the target will be damaged by the blast during blasting, the collimating target 11 attached to the steel shoring 10 is supported by hinges 13 and can be evacuated by rotation operation so as not to be exposed to the blast during blasting. It is desirable to do so. Specifically, as shown in FIG. 11, the collimation target 11 is fixed to the hinge 13 using a support that connects a fastener 12 and a hinge 13. Attachment to the steel shoring 10 is performed using the fasteners 12, and during measurement the hinge 13 is opened to expose the collimation target 11 to the outside as shown in FIG. ), the hinge 13 is closed to avoid receiving the blast from the face side.

なお、前記蝶番13による支持に代えて、支軸を回転中心として揺動可能な揺動アームによって視準ターゲット11を支持し、回動操作によって発破時に爆風を受けないように待避可能とすることでもよい(図示せず)。 In addition, instead of being supported by the hinge 13, the collimation target 11 is supported by a swinging arm that is swingable around a support shaft, and can be evacuated from being exposed to the blast during blasting by rotating the target. (not shown).

1…ドリルジャンボ、2…吹付け機(エレクター装置付き)、3…資材運搬車、4…ホイールローダ、5…ズリ運搬車、6…トータルステーション、10…鋼製支保工、11…視準ターゲット、12…留め具、13…蝶番 1... Drill jumbo, 2... Spraying machine (with erector device), 3... Material carrier, 4... Wheel loader, 5... Slipper carrier, 6... Total station, 10... Steel shoring, 11... Sighting target, 12... Fastener, 13... Hinge

Claims (6)

山岳トンネルの施工において、変位計測から求めた初期変位速度に基づいて最終変位量を予測するための方法であって、
発破後にトンネル壁面に対して1次吹付けを行った後、鋼製支保工を設置し、該鋼製支保工に取り付けた視準ターゲットを計測することにより鋼製支保工の設置位置の計測を行う支保工検測を行った後に、引き続いて前記鋼製支保工の変位計測を継続して行う第1手順と、
2次吹付けを終えたならば、トンネル壁面に視準ターゲットを設置して坑内A計測を開始する第2手順と、
前記鋼製支保工の変位計測と前記坑内A計測による変位計測とに基づいて、鋼製支保工の変位量分を考慮した初期変位速度を算出し、蓄積されたデータに基づいて作成された初期変位速度と最終変位量の相関データから最終変位量を予測する第3手順とからなることを特徴とするトンネルの最終変位量の予測方法。
A method for predicting the final displacement amount based on the initial displacement speed obtained from displacement measurement in the construction of a mountain tunnel, the method comprising:
After blasting, the tunnel wall surface is first sprayed, then steel shoring is installed, and the installation position of the steel shoring is measured by measuring the sighting target attached to the steel shoring. A first step of continuously measuring the displacement of the steel shoring after performing the shoring inspection to be performed;
After completing the secondary spraying, the second step is to set up a collimation target on the tunnel wall and start the underground A measurement.
Based on the displacement measurement of the steel shoring and the displacement measurement by the underground A measurement, an initial displacement speed that takes into account the amount of displacement of the steel shoring is calculated, and an initial displacement rate is calculated based on the accumulated data. A method for predicting the final displacement of a tunnel, comprising a third step of predicting the final displacement from correlation data between the displacement speed and the final displacement.
前記初期変位速度は、鋼製支保工の変位計測開始からA計測開始までの時間をα(日)、このα経過時における鋼製支保工の変位量をDαとし、前記坑内A計測開始から24時間経過後の変位量をD24とした場合に、(Dα+D24)/(α+1)(mm/day)によって算出する請求項1記載のトンネルの最終変位量の予測方法。 The initial displacement speed is defined as α (days) from the start of displacement measurement of the steel shoring to the start of A measurement, and D α the displacement amount of the steel shoring after this α has elapsed, from the start of A measurement in the mine. The method for predicting the final displacement of a tunnel according to claim 1, wherein the calculation is performed by (D α +D 24 )/(α+1) (mm/day), where the displacement after 24 hours is D 24 . 前記初期変位速度は、鋼製支保工の変位計測開始からA計測開始までの時間をα(時間)、このα経過時における鋼製支保工の変位量をDαとし、前記坑内A計測開始から(24時間-α)経過後の変位量をD24-αとした場合に、(Dα+D24-α)(mm/day)によって算出する請求項1記載のトンネルの最終変位量の予測方法。 The initial displacement speed is defined as α (time) from the start of displacement measurement of the steel shoring to the start of A measurement, and D α the displacement amount of the steel shoring after this α elapses, from the start of A measurement in the mine. The method for predicting the final displacement of a tunnel according to claim 1, wherein the prediction method of the final displacement of a tunnel is calculated by (D α +D 24-α ) (mm/day), where the displacement after (24 hours-α) is D 24-α. . 山岳トンネルの施工において、変位計測から求めた初期変位速度に基づいて最終変位量を予測するための方法であって、
発破後にトンネル壁面に対して1次吹付けを行った後、鋼製支保工を設置し、該鋼製支保工に取り付けた視準ターゲットを計測することにより鋼製支保工の設置位置の計測を行う支保工検測を行った後に、引き続いて前記鋼製支保工の変位計測を継続して行う第1手順と、
前記鋼製支保工の変位計測のみに基づいて初期変位速度を算出し、蓄積されたデータに基づいて作成された初期変位速度と最終変位量の相関データから最終変位量を予測する第2手順とからなることを特徴とするトンネルの最終変位量の予測方法。
A method for predicting the final displacement amount based on the initial displacement speed obtained from displacement measurement in the construction of a mountain tunnel, the method comprising:
After blasting, the tunnel wall surface is first sprayed, then steel shoring is installed, and the installation position of the steel shoring is measured by measuring the sighting target attached to the steel shoring. A first step of continuously measuring the displacement of the steel shoring after performing the shoring inspection to be performed;
a second step of calculating the initial displacement speed based only on the displacement measurement of the steel shoring, and predicting the final displacement amount from correlation data between the initial displacement speed and the final displacement amount created based on the accumulated data; A method for predicting the final displacement of a tunnel, the method comprising:
前記鋼製支保工の支保工検測及び変位計測は、鋼製支保工を建込む前に鋼製支保工の所定箇所に視準ターゲットを取り付けておくようにする請求項1~4いずれかに記載のトンネルの最終変位量の予測方法。 According to any one of claims 1 to 4, the shoring inspection and displacement measurement of the steel shoring are performed by attaching a collimation target to a predetermined location of the steel shoring before erecting the steel shoring. A method for predicting the final displacement of the tunnel described. 前記鋼製支保工に取り付けた視準ターゲットは、蝶番又は揺動アームによって支持され、回動操作によって発破時に爆風を受けないように待避可能としてある請求項1~5いずれかに記載のトンネルの最終変位量の予測方法。 A tunnel according to any one of claims 1 to 5, wherein the collimation target attached to the steel shoring is supported by a hinge or a swing arm, and can be evacuated by rotation operation so as not to receive a blast wave during blasting. How to predict the final displacement.
JP2020093140A 2020-05-28 2020-05-28 How to predict the final displacement of a tunnel Active JP7401394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020093140A JP7401394B2 (en) 2020-05-28 2020-05-28 How to predict the final displacement of a tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020093140A JP7401394B2 (en) 2020-05-28 2020-05-28 How to predict the final displacement of a tunnel

Publications (2)

Publication Number Publication Date
JP2021188994A JP2021188994A (en) 2021-12-13
JP7401394B2 true JP7401394B2 (en) 2023-12-19

Family

ID=78848351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020093140A Active JP7401394B2 (en) 2020-05-28 2020-05-28 How to predict the final displacement of a tunnel

Country Status (1)

Country Link
JP (1) JP7401394B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298433A (en) 2007-05-29 2008-12-11 Enzan Kobo:Kk Prediction method for tunnel final displacement
JP2011163017A (en) 2010-02-10 2011-08-25 Kajima Corp Device, gear and method for determining soundness of tunnel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008298433A (en) 2007-05-29 2008-12-11 Enzan Kobo:Kk Prediction method for tunnel final displacement
JP2011163017A (en) 2010-02-10 2011-08-25 Kajima Corp Device, gear and method for determining soundness of tunnel

Also Published As

Publication number Publication date
JP2021188994A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
Kavvadas Monitoring ground deformation in tunnelling: Current practice in transportation tunnels
Costamagna et al. Assessment of contour profile quality in D&B tunnelling
KR101162918B1 (en) Method of measuring underground displacement using inclinometer
JP2010217017A (en) Method for execution of tunnel excavation construction using three-dimensional laser scanner
Hoult et al. Sensing solutions for assessing and monitoring tunnels
CN104100272A (en) Quick construction method of tunnels traversing unfavorable geology
JP7401394B2 (en) How to predict the final displacement of a tunnel
JP7090981B2 (en) Tunnel construction management system, judgment method and construction management system
Clayton et al. Monitoring and displacements at Heathrow Express Terminal 4 station tunnels
Kositsyn et al. Geotechnical projection of the influence of the construction of the designed metropolitene tunnel by the method of shield passage on the sedimentation of the earth’s surface
JP2008298433A (en) Prediction method for tunnel final displacement
JP3856392B2 (en) Evaluation method of natural ground in front of ground excavation part
Kavvadas Monitoring and modelling ground deformations during tunnelling
JP2003075247A (en) Method for measuring elastic wave speed in face in tunnel pit
JP2000045678A (en) Heading collapse alarming system
Lang et al. Survey based open pit wall monitoring—Experience based realities
JP6223891B2 (en) Ground survey method
JP2012180675A (en) Natural ground situation prediction method
Bhatkar et al. Risk management by geotechnical monitoring for safe excavation of a large rock cavern: a case study
JP2896163B2 (en) How to manage the position of the shoring in the tunnel
NAKANIWA et al. Pile Driving and Drilling Monitoring Survey Technology Using a Total Station
JPH1144529A (en) Method and system for measuring thickness of sprayed concrete
Shashkin et al. Telemetric vibration measuring complex for monitoring mechanical safety of cultural heritage object:“Russian Renault”
JP6748918B2 (en) Tunnel face exploration method
JP2891477B2 (en) Method of determining maser surveying instrument installation coordinates and collimating direction in tunnel, and method of shoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7401394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150