JP7293037B2 - Crystal elements, crystal devices and electronic equipment - Google Patents

Crystal elements, crystal devices and electronic equipment Download PDF

Info

Publication number
JP7293037B2
JP7293037B2 JP2019147520A JP2019147520A JP7293037B2 JP 7293037 B2 JP7293037 B2 JP 7293037B2 JP 2019147520 A JP2019147520 A JP 2019147520A JP 2019147520 A JP2019147520 A JP 2019147520A JP 7293037 B2 JP7293037 B2 JP 7293037B2
Authority
JP
Japan
Prior art keywords
crystal
electrode
crystal element
main surface
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019147520A
Other languages
Japanese (ja)
Other versions
JP2021029013A (en
Inventor
雅俊 湯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2019147520A priority Critical patent/JP7293037B2/en
Publication of JP2021029013A publication Critical patent/JP2021029013A/en
Application granted granted Critical
Publication of JP7293037B2 publication Critical patent/JP7293037B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

本開示は、水晶素子、水晶素子を備えた水晶デバイス、及び、水晶デバイスを備えた電子機器に関する。水晶デバイスとしては、例えば水晶振動子又は水晶発振器などが挙げられる。 The present disclosure relates to a crystal element, a crystal device including the crystal element, and an electronic device including the crystal device. Crystal devices include, for example, crystal resonators and crystal oscillators.

厚みすべり振動モードの水晶素子は、ATカットの水晶片の両主面に、金属膜パターンからなる励振電極を形成したものである(例えば特許文献1の図3参照)。また、水晶デバイスは、水晶素子の圧電効果及び逆圧電効果を利用して、特定の発振周波数を発生させる。一般的な水晶デバイスは、パッケージ内に水晶素子を収容し、これを蓋体によって気密封止した構造である(例えば特許文献1の図1参照)。 A thickness-shear vibration mode crystal element is an AT-cut crystal piece on which excitation electrodes made of metal film patterns are formed on both main surfaces (for example, see FIG. 3 of Patent Document 1). Also, the crystal device generates a specific oscillation frequency using the piezoelectric effect and the inverse piezoelectric effect of the crystal element. A general crystal device has a structure in which a crystal element is housed in a package and hermetically sealed with a lid (for example, see FIG. 1 of Patent Document 1).

図8に示すように、水晶素子の等価回路は、直列抵抗R1と直列インダクタンスL1と直列容量C1との直列回路に、並列容量C0が並列接続されたものである。直列抵抗R1は、アドミッタンス円線図におけるコンダクタンスが最大となる抵抗値であり、水晶素子が振動する際の損失抵抗となる。そのため、一般的に直列抵抗R1が小さいほど、水晶素子としては優れている。直列インダクタンスL1は、大きいほどQ値が高くなり発振の安定度が増す。並列容量C0は、水晶素子の励振電極間の容量であり、水晶片の厚みと励振電極の面積により決定される。 As shown in FIG. 8, the equivalent circuit of the crystal element is a series circuit of a series resistor R1, a series inductance L1, and a series capacitor C1, and a parallel capacitor C0 connected in parallel. The series resistance R1 is a resistance value that maximizes the conductance in the admittance circle diagram, and serves as a loss resistance when the crystal element vibrates. Therefore, in general, the smaller the series resistance R1, the better the crystal element. The larger the series inductance L1, the higher the Q value and the more stable the oscillation. A parallel capacitance C0 is a capacitance between the excitation electrodes of the crystal element, and is determined by the thickness of the crystal piece and the area of the excitation electrodes.

直列容量C1は、小さいほどQ値が高くなり、大きいほど負荷容量の変化に対する周波数変化が大きくなる。したがって、高安定度の発振器には、直列容量C1を小さく設計する。また、VCXO(voltage controlled crystal oscillator)のように周波数の変化を大きくしたい場合には、直列容量C1を大きく設計する。 The smaller the series capacitance C1 is, the higher the Q value is. Therefore, the series capacitance C1 is designed to be small for a highly stable oscillator. In addition, when it is desired to increase the change in frequency as in a VCXO (voltage controlled crystal oscillator), the series capacitance C1 is designed to be large.

特開2015-211362号公報JP 2015-211362 A

水晶素子の等価定数(直列抵抗R1、直列インダクタンスL1、直列容量C1及び並列容量C0)は、水晶片の外形並びに励振電極の位置、外形及び大きさなどに依存している。そのため、発振周波数及び直列抵抗R1をそのままにして直列容量C1だけを変えようとする場合には、水晶素子全体を設計し直す必要があった。 The equivalent constants of the crystal element (series resistance R1, series inductance L1, series capacitance C1 and parallel capacitance C0) depend on the external shape of the crystal blank and the position, external shape and size of the excitation electrodes. Therefore, in order to change only the series capacitance C1 while leaving the oscillation frequency and the series resistance R1 unchanged, it was necessary to redesign the entire crystal element.

そこで、本開示の目的は、発振周波数及び直列抵抗R1を変えることなく直列容量C1を容易に調整し得る水晶素子を提供することにある。 Therefore, an object of the present disclosure is to provide a crystal element that can easily adjust the series capacitance C1 without changing the oscillation frequency and the series resistance R1.

本開示に係る水晶素子は、
互いに向かい合う二つの主面を有する水晶片と、
前記主面の中央に位置する励振電極と、
前記主面の周縁に位置する接続電極と、
前記接続電極と前記励振電極とを繋ぐ配線電極と、
一方の前記主面において他方の前記主面に位置する前記励振電極に平面透視して重ならない部分に位置し、一方の前記主面に位置する前記励振電極と同電位になる調整電極と、
を備えた水晶素子であって、
前記水晶片は、平面視して長辺及び短辺からなる略矩形であり、前記二つの主面に挟まれた側面を更に有し、前記長辺を含む前記側面は、前記長辺に沿って延びる結晶面であるm面を含み、
前記調整電極は、当該水晶素子を平面透視したときに、他方の前記主面と前記m面との境界部に跨る位置に設けられているものである。
The crystal element according to the present disclosure is
a crystal piece having two principal surfaces facing each other;
an excitation electrode positioned in the center of the main surface;
connection electrodes located on the periphery of the main surface;
a wiring electrode that connects the connection electrode and the excitation electrode;
an adjusting electrode located in a portion of one of the principal surfaces that does not overlap the excitation electrode located on the other principal surface in plan perspective view, and having the same potential as the excitation electrode located on one of the principal surfaces;
A crystal element comprising
The crystal piece has a substantially rectangular shape with long sides and short sides when viewed from above, and further has a side surface sandwiched between the two main surfaces, and the side surface including the long side extends along the long side. including the m-plane, which is a crystal plane extending along the
The adjustment electrode is provided at a position straddling the boundary between the other main surface and the m-plane when the crystal element is viewed through the plane.

本開示に係る水晶デバイスは本開示に係る水晶素子を備えたものであり、本開示に係る電子機器は本開示に係る水晶デバイスを備えたものである。 A crystal device according to the present disclosure includes the crystal element according to the present disclosure, and an electronic device according to the present disclosure includes the crystal device according to the present disclosure.

本開示に係る水晶素子によれば、一方の主面において他方の主面に位置する励振電極に平面透視して重ならない部分に位置し、一方の主面に位置する励振電極と同電位になる調整電極を備えたことにより、発振周波数及び直列抵抗R1を変えることなく、直列容量C1を容易に調整できる。つまり、既存の水晶素子の励振電極に特定の調整電極を付設するだけで、既存の水晶素子の発振周波数及び直列抵抗R1を変えることなく、直列容量C1を調整できる。 According to the crystal element according to the present disclosure, one main surface is positioned in a portion that does not overlap with the excitation electrode positioned on the other main surface in plan perspective view, and has the same potential as the excitation electrode positioned on the one main surface. By providing the adjusting electrode, the series capacitance C1 can be easily adjusted without changing the oscillation frequency and the series resistance R1. In other words, the series capacitance C1 can be adjusted without changing the oscillation frequency and series resistance R1 of the existing crystal element simply by attaching a specific adjustment electrode to the excitation electrode of the existing crystal element.

図1[A]は実施形態1の水晶素子を示す斜視図、図1[B]は図1[A]におけるIb-Ib線拡大断面図である。1[A] is a perspective view showing the crystal element of Embodiment 1, and FIG. 1[B] is an enlarged sectional view taken along the line Ib-Ib in FIG. 1[A]. 図2[A]は実施形態1の水晶素子の表側を示す平面図、図2[B]は実施形態1の水晶素子の裏側を示す平面透視図である。2A is a plan view showing the front side of the crystal element of Embodiment 1, and FIG. 2B is a plan perspective view showing the back side of the crystal element of Embodiment 1. FIG. 図3[A]は実施形態2の水晶素子の表側を示す平面図、図3[B]は実施形態2の水晶素子の裏側を示す平面透視図である。3A is a plan view showing the front side of the crystal element of Embodiment 2, and FIG. 3B is a plan perspective view showing the back side of the crystal element of Embodiment 2. FIG. 図4[A]は実施形態3の水晶素子の表側を示す平面図、図4[B]は実施形態3の水晶素子の裏側を示す平面透視図である。4A is a plan view showing the front side of the crystal element of Embodiment 3, and FIG. 4B is a plan perspective view showing the back side of the crystal element of Embodiment 3. FIG. 図5[A]は実施形態4の水晶素子の表側を示す平面図、図5[B]は実施形態5の水晶素子の裏側を示す平面透視図である。5A is a plan view showing the front side of the crystal element of Embodiment 4, and FIG. 5B is a plan perspective view showing the back side of the crystal element of Embodiment 5. FIG. 図6[A]は実施形態5の水晶デバイスを示す斜視図であり、図6[B]は図6[A]におけるVIb-VIb線断面図である。6[A] is a perspective view showing the crystal device of Embodiment 5, and FIG. 6[B] is a cross-sectional view taken along line VIb-VIb in FIG. 6[A]. 図7[A]は実施形態6の電子機器の第一例を示す正面図であり、図7[B]は実施形態6の電子機器の第二例を示す正面図である。FIG. 7A is a front view showing a first example of the electronic device of Embodiment 6, and FIG. 7B is a front view showing a second example of the electronic device of Embodiment 6. FIG. 一般的な水晶素子の等価回路図である。1 is an equivalent circuit diagram of a general crystal element; FIG.

以下、添付図面を参照しながら、本開示を実施するための形態(以下「実施形態」という。)について説明する。なお、本明細書及び図面において、実質的に同一の構成要素については同一の符号を用いることにより適宜説明を省略する。図面に描かれた形状は、当業者が理解しやすいように描かれているため、実際の寸法及び比率とは必ずしも一致していない。平面透視図では、表側から水晶片を透視して、裏側の電極を見た状態を示している。 EMBODIMENT OF THE INVENTION Hereinafter, the form (henceforth "embodiment") for implementing this indication is demonstrated, referring an accompanying drawing. In addition, in the present specification and drawings, substantially the same components are denoted by the same reference numerals, and the description thereof is omitted as appropriate. The shapes depicted in the drawings are drawn so that those skilled in the art can easily understand them, so they do not necessarily match the actual dimensions and proportions. The plan perspective view shows a state in which the crystal piece is seen through from the front side and the electrodes on the back side are seen.

<実施形態1>
図1及び図2に示すように、本実施形態1の水晶素子10は、互いに向かい合う二つの主面13e,13fを有する水晶片12と、主面13e,13fの中央に位置する励振電極14e,14fと、主面13e,13fの周縁に位置する接続電極14a,14bと、接続電極14a,14bと励振電極14e,14fとを繋ぐ配線電極14g,14hと、調整電極15eと、を備えている。調整電極15eは、主面13eにおいて主面13fに位置する励振電極14fに平面透視して重ならない部分に位置し、主面13eに位置する励振電極14eと同電位になる。
<Embodiment 1>
As shown in FIGS. 1 and 2, the crystal element 10 of the first embodiment includes a crystal piece 12 having two main surfaces 13e and 13f facing each other, an excitation electrode 14e located in the center of the main surfaces 13e and 13f, and an excitation electrode 14e. 14f, connection electrodes 14a and 14b located on the periphery of the main surfaces 13e and 13f, wiring electrodes 14g and 14h connecting the connection electrodes 14a and 14b and the excitation electrodes 14e and 14f, and an adjustment electrode 15e. . The adjustment electrode 15e is located in a portion of the main surface 13e that does not overlap with the excitation electrode 14f located on the main surface 13f in plan view, and has the same potential as the excitation electrode 14e located on the main surface 13e.

調整電極15eは、励振電極14eに直接接続しているが、接続電極14a又は配線電極14gを介して励振電極14eに接続してもよい。なお、調整電極15eは、本実施形態1では主面13eにのみ設けているが、主面13fにのみ設けてもよく、主面13e,13fの両方に設けてもよい。主面13e,13fの両方に設ける場合は、平面透視して調整電極同士が重ならないように配置する。 The adjustment electrode 15e is directly connected to the excitation electrode 14e, but may be connected to the excitation electrode 14e via the connection electrode 14a or the wiring electrode 14g. Although the adjustment electrode 15e is provided only on the main surface 13e in Embodiment 1, it may be provided only on the main surface 13f, or may be provided on both of the main surfaces 13e and 13f. When the adjustment electrodes are provided on both the main surfaces 13e and 13f, the adjustment electrodes are arranged so as not to overlap with each other when viewed through the plane.

水晶片12は、平面視して長辺11a,11b及び短辺11c,11dからなる略矩形であり、互いに向かい合う二つの主面13e,13fと、二つの主面13e,13fに挟まれた側面13a,13b,13c,13dと、を有する。励振電極14e,14fは、主面13e,13fにおいてそれらの中央に位置する。接続電極14a,14bは、主面13e,13fにおいてそれらの周縁に位置する。配線電極14g,14hは、接続電極14a,14bと励振電極14e,14fとを電気的に繋いでいる。調整電極15eは主面13eにおいて長辺11bに沿って延びている。 The crystal piece 12 has a substantially rectangular shape with long sides 11a and 11b and short sides 11c and 11d in plan view, and has two main surfaces 13e and 13f facing each other and side surfaces sandwiched between the two main surfaces 13e and 13f. 13a, 13b, 13c and 13d. The excitation electrodes 14e and 14f are located at the centers of the main surfaces 13e and 13f. The connection electrodes 14a, 14b are located on the peripheral edges of the main surfaces 13e, 13f. The wiring electrodes 14g, 14h electrically connect the connection electrodes 14a, 14b and the excitation electrodes 14e, 14f. Adjustment electrode 15e extends along long side 11b on main surface 13e.

調整電極15eは、励振電極14e,14f等と同じ金属膜からなり、励振電極14e,14f等と同時に形成される。調整電極15eは、次のようにしてもよい。形成位置は、主面13eの長辺11b側に限らず、主面13eの長辺11a側でもよいし、主面13eの短辺11d側でもよい。平面形状は、側面13bに沿った直線状に限らず、側面13a,13bに沿ったニの字状にしてもよいし、側面13b,13d又は側面13a,13dに沿ったL字状にしてもよいし、側面13a,13b,13dに沿ったコの字状などにしてもよい。 The adjustment electrode 15e is made of the same metal film as the excitation electrodes 14e, 14f, etc., and is formed at the same time as the excitation electrodes 14e, 14f, etc. are formed. The adjustment electrode 15e may be configured as follows. The formation position is not limited to the long side 11b side of the main surface 13e, and may be the long side 11a side of the main surface 13e or the short side 11d side of the main surface 13e. The planar shape is not limited to a linear shape along the side surface 13b, but may be a V shape along the side surfaces 13a and 13b, or an L shape along the side surfaces 13b and 13d or the side surfaces 13a and 13d. Alternatively, it may be U-shaped along the side surfaces 13a, 13b, and 13d.

長辺11a,11bを含む二つの側面13a,13bは、水晶片12の厚み方向(Y’軸方向)に斜めとなるm面16a,16bと、水晶片12の厚み方向に略平行となる垂直面17a,17bとを有する。m面16a,16bは結晶面のm面であり、垂直面17a,17bは結晶面のR面に直角な面を含む。換言すると、m面16a,16bは主面13e,13fに対して斜めであり、垂直面17a,17bは主面13e,13fに対して略垂直である。 Two side surfaces 13a and 13b including the long sides 11a and 11b are m-planes 16a and 16b that are oblique to the thickness direction (Y′-axis direction) of the crystal piece 12 and vertical surfaces that are substantially parallel to the thickness direction of the crystal piece 12. It has surfaces 17a and 17b. The m-planes 16a and 16b are m-planes of crystal planes, and the vertical planes 17a and 17b include planes perpendicular to the R-planes of crystal planes. In other words, the m-planes 16a and 16b are oblique to the main surfaces 13e and 13f, and the vertical planes 17a and 17b are substantially perpendicular to the main surfaces 13e and 13f.

次に、水晶素子10について更に詳しく説明する。 Next, the crystal element 10 will be described in more detail.

水晶片12は、ATカット水晶板である。すなわち、水晶において、X軸(電気軸)、Y軸(機械軸)及びZ軸(光軸)からなる直交座標系XYZを、X軸回りに30°以上かつ50°以下(一例として、35°15′)回転させて直交座標系XY’Z’を定義したとき、XZ’平面に平行に切り出されたウェハが水晶片12の原材料となる。そして、長辺11a,11bがX軸に平行、短辺11c,11dがZ’軸に平行、厚み方向がY’軸に平行である。水晶片12の外形寸法を例示すれば、長辺11a,11bは650~920μm、短辺11c,11dは550~690μm、厚みは発振周波数に応じて異なる。例えば、発振周波数が100MHz以上の場合は、励振電極14e,14fが位置する部分の水晶片12の厚みは17μm以下である。 The crystal blank 12 is an AT-cut crystal plate. That is, in crystal, the orthogonal coordinate system XYZ consisting of the X-axis (electrical axis), Y-axis (mechanical axis), and Z-axis (optical axis) is 30° or more and 50° or less (for example, 35° 15') When an orthogonal coordinate system XY'Z' is defined by rotation, a wafer cut out parallel to the XZ' plane becomes the raw material of the crystal blank 12. The long sides 11a and 11b are parallel to the X-axis, the short sides 11c and 11d are parallel to the Z'-axis, and the thickness direction is parallel to the Y'-axis. As an example of the outer dimensions of the crystal piece 12, the long sides 11a and 11b are 650 to 920 μm, the short sides 11c and 11d are 550 to 690 μm, and the thickness varies depending on the oscillation frequency. For example, when the oscillation frequency is 100 MHz or more, the thickness of the crystal blank 12 at the portions where the excitation electrodes 14e and 14f are located is 17 μm or less.

一対の励振電極14e,14fは、平面視して略矩形であり、両主面13e,13fのそれぞれ略中央に設けられている。励振電極14e,14fからは、励振に寄与しない配線電極14g,14hが、長辺11a,11bに沿って短辺11cの接続電極14a,14bまで延びている。つまり、接続電極14aは配線電極14gを介して励振電極14eに導通し、接続電極14bは配線電極14hを介して励振電極14fに導通している。なお、励振電極14e,14fは、略矩形に限らず、例えば略円形又は略楕円形などであってもよい。 The pair of excitation electrodes 14e and 14f are substantially rectangular in plan view, and are provided substantially at the centers of the main surfaces 13e and 13f, respectively. Wiring electrodes 14g and 14h that do not contribute to excitation extend from the excitation electrodes 14e and 14f to the connection electrodes 14a and 14b on the short side 11c along the long sides 11a and 11b. That is, the connection electrode 14a is electrically connected to the excitation electrode 14e via the wiring electrode 14g, and the connection electrode 14b is electrically connected to the excitation electrode 14f via the wiring electrode 14h. The excitation electrodes 14e and 14f are not limited to substantially rectangular shapes, and may be substantially circular or substantially elliptical, for example.

励振電極14e,14fは、例えばクロム(Cr)からなる下地層と、金(Au)からなる導体層と、の積層体を成している。つまり、水晶片12上に下地層が位置し、下地層上に導体層が位置している。下地層は、主に水晶片12との密着力を得る役割を果たす。導体層は、主に電気的導通を得る役割を果たす。接続電極14a,14b及び配線電極14g,14hも、励振電極14e,14fと同様に、下地層と導体層との積層体としてもよい。 The excitation electrodes 14e and 14f form a laminate of, for example, a base layer made of chromium (Cr) and a conductor layer made of gold (Au). That is, the base layer is positioned on the crystal piece 12, and the conductor layer is positioned on the base layer. The underlayer mainly plays a role of obtaining adhesion to the crystal piece 12 . The conductor layer mainly plays the role of obtaining electrical continuity. The connection electrodes 14a, 14b and the wiring electrodes 14g, 14h may also be a laminate of a base layer and a conductor layer, like the excitation electrodes 14e, 14f.

励振電極14e,14f等の製造工程としては、水晶片12に成膜後にフォトレジストパターンを形成してエッチングする方法、水晶片12にフォトレジストパターンを形成後に成膜してリフトオフする方法、又は、水晶片12をメタルマスクで覆い成膜する方法などが挙げられる。成膜には、スパッタ又は蒸着などが用いられる。 As the manufacturing process of the excitation electrodes 14e, 14f, etc., there is a method of forming a photoresist pattern on the crystal piece 12 and then etching it, a method of forming a photoresist pattern on the crystal piece 12 and then forming a film and then lifting off the film, or A method of forming a film by covering the crystal piece 12 with a metal mask can be used. Sputtering, vapor deposition, or the like is used for film formation.

m面16a,16b及び垂直面17a,17bは、ウェットエッチング時(外形加工工程)に主面13eのマスク(耐食膜)と主面13fのマスク(耐食膜)とをZ’軸方向に少しずらすことによって得られる。 For the m-planes 16a and 16b and the vertical planes 17a and 17b, the mask (corrosion-resistant film) on the main surface 13e and the mask (corrosion-resistant film) on the main surface 13f are slightly shifted in the Z'-axis direction during wet etching (outer shape processing step). obtained by

水晶素子10は、例えば、フォトリソグラフィ技術とエッチング技術とを用いて次のように製造することができる。 The crystal element 10 can be manufactured as follows using, for example, photolithography technology and etching technology.

まず、ATカットの水晶ウェハ全面に耐食膜を設け、その上にフォトレジストを設ける。続いて、そのフォトレジストの上に水晶片12のパターンが描かれたマスクを重ね、露光及び現像をすることにより一部の耐食膜を露出させ、この状態で耐食膜に対するウェットエッチングをする。その後、残った耐食膜をマスクにして、水晶ウェハに対してウェットエッチングをすることにより、水晶片12の外形を形成する(外形加工工程)。 First, a corrosion-resistant film is provided on the entire surface of an AT-cut crystal wafer, and a photoresist is provided thereon. Subsequently, a mask having a pattern of the crystal piece 12 is superimposed on the photoresist, exposed and developed to partially expose the corrosion resistant film, and wet etching is performed on the corrosion resistant film in this state. Thereafter, using the remaining corrosion-resistant film as a mask, the crystal wafer is wet-etched to form the outer shape of the crystal piece 12 (outer shape processing step).

その後、残った耐食膜を水晶ウェハから除去し、励振電極14e,14f等となる金属膜を水晶ウェハ全面に設ける。続いて、励振電極14e,14f等のパターンからなるフォトレジストマスクを金属膜上に形成し、不要な金属膜をエッチングによって除去することにより、下地層及び導体層からなる励振電極14e,14f等を形成する。その後、不要なフォトレジストを除去することにより、水晶ウェハに複数の水晶素子10を形成する。最後に、この水晶ウェハから各水晶素子10に個片化することで、単体の水晶素子10が得られる。 After that, the remaining corrosion-resistant film is removed from the crystal wafer, and a metal film, which becomes the excitation electrodes 14e, 14f, etc., is provided on the entire surface of the crystal wafer. Subsequently, a photoresist mask having a pattern of the excitation electrodes 14e, 14f, etc. is formed on the metal film, and the unnecessary metal film is removed by etching, thereby forming the excitation electrodes 14e, 14f, etc. composed of the base layer and the conductor layer. Form. Thereafter, by removing unnecessary photoresist, a plurality of crystal elements 10 are formed on the crystal wafer. Finally, the individual crystal elements 10 are obtained by singulating the crystal wafer into individual crystal elements 10 .

水晶素子10の動作は次のとおりである。励振電極14e,14fを介して、水晶片12に交番電圧を印加する。すると、水晶片12は、両主面13e,13fが互いにずれるように厚みすべり振動を起こし、特定の発振周波数を発生させる。このように、水晶素子10は、水晶片12の圧電効果及び逆圧電効果を利用して、一定の発振周波数の信号を出力するように動作する。このとき、励振電極14e,14f間の水晶片12の板厚が薄いほど、高い発振周波数となる。 The operation of crystal element 10 is as follows. An alternating voltage is applied to the crystal piece 12 via the excitation electrodes 14e and 14f. Then, the crystal piece 12 causes thickness-shear vibration so that both principal surfaces 13e and 13f are displaced from each other, and generates a specific oscillation frequency. Thus, the crystal element 10 operates to output a signal with a constant oscillation frequency using the piezoelectric effect and the inverse piezoelectric effect of the crystal element 12 . At this time, the thinner the plate thickness of the crystal piece 12 between the excitation electrodes 14e and 14f, the higher the oscillation frequency.

次に、水晶素子10の作用及び効果について説明する。 Next, the action and effect of the crystal element 10 will be described.

水晶素子10によれば、主面13eにおいて励振電極14fに平面透視して重ならない部分に位置し、励振電極14eと同電位になる調整電極15eを備えたことにより、発振周波数及び直列抵抗R1を変えることなく、直列容量C1を容易に調整できる。つまり、既存の水晶素子の励振電極14eに調整電極15eを付設するだけで、既存の水晶素子の発振周波数及び直列抵抗R1を変えることなく、直列容量C1を調整できる。本開示は、本発明者が実験的に得た知見に基づく。 According to the crystal element 10, the oscillation frequency and the series resistance R1 are adjusted by providing the adjustment electrode 15e which is located in a portion not overlapping with the excitation electrode 14f in plan perspective view on the main surface 13e and has the same potential as the excitation electrode 14e. The series capacitance C1 can be easily adjusted without changing it. In other words, simply by attaching the adjustment electrode 15e to the excitation electrode 14e of the existing crystal element, the series capacitance C1 can be adjusted without changing the oscillation frequency and the series resistance R1 of the existing crystal element. The present disclosure is based on findings experimentally obtained by the inventors.

直列抵抗R1、直列インダクタンスL1及び直列容量C1を機械的な振動に置き換えて説明すると、次のようになる。直列抵抗R1は、振動時の内部摩擦や水晶片12の支持系の機械的な損失などの振動エネルギの損失成分に相当する。直列インダクタンスL1は、振動部分の質量に相当する。直列容量C1は、水晶片12の伸縮性や可塑性を定量化した物理量であるコンプライアンスに相当し、水晶片12に対する応力や歪みによって変化する。また、並列容量C0は、浮遊容量を含めた励振電極14e,14f間の静電容量である。 If the series resistance R1, the series inductance L1, and the series capacitance C1 are replaced by mechanical vibrations, the explanation is as follows. The series resistance R1 corresponds to loss components of vibration energy such as internal friction during vibration and mechanical loss of the support system of the crystal element 12 . Series inductance L1 corresponds to the mass of the vibrating portion. The series capacitance C<b>1 corresponds to compliance, which is a physical quantity that quantifies the stretchability and plasticity of the crystal piece 12 , and changes depending on the stress and strain applied to the crystal piece 12 . A parallel capacitance C0 is a capacitance between the excitation electrodes 14e and 14f including floating capacitance.

このような前提の下で、水晶素子10が上記効果を奏する理由は、次のように考えられる。水晶素子10では、主面13eに調整電極15eを付設したことにより、水晶片12に対して新たな応力や歪みが加わり、その結果、直列容量C1が変化した。このとき、直列インダクタンスL1は、(1/2π)(1/√(L1・C1))=一定を満たすように変化したため、発振周波数は変化しなかった。 Under such a premise, the reason why the crystal element 10 exhibits the above effects is considered as follows. In the crystal element 10, since the adjustment electrode 15e was attached to the main surface 13e, new stress and strain were applied to the crystal blank 12, and as a result, the series capacitance C1 changed. At this time, the series inductance L1 changed so as to satisfy (1/2π)(1/√(L1·C1))=constant, so the oscillation frequency did not change.

また、調整電極15eは、励振電極14fに平面透視して重ならない部分に位置することにより、厚みすべり振動に寄与しない。更に、調整電極15eは、励振電極14eと同電位になることにより、浮遊容量になりにくいので、並列容量C0にも影響しにくい。調整電極15eの付設前後で、励振電極14e,14fの面積は変わらないので、直列抵抗R1及び並列容量C0も変わらない。 In addition, since the adjustment electrode 15e is positioned in a portion that does not overlap the excitation electrode 14f in plan perspective view, it does not contribute to thickness-shear vibration. Furthermore, since the adjustment electrode 15e is at the same potential as the excitation electrode 14e, it is less likely to become a floating capacitance, so that the parallel capacitance C0 is less likely to be affected. Since the areas of the excitation electrodes 14e and 14f do not change before and after the adjustment electrode 15e is attached, the series resistance R1 and the parallel capacitance C0 also do not change.

なお、調整電極15eを形成後に、イオンビーム又はレーザ光などによって調整電極15eを削りながら、は直列容量C1を調整するようにしてもよい。 After the adjustment electrode 15e is formed, the series capacitance C1 may be adjusted while the adjustment electrode 15e is shaved by an ion beam or a laser beam.

また、長辺11a,11bを含む二つの側面13a,13bが、水晶片12の厚み方向(Y’軸方向)に斜めとなるm面16a,16bと、水晶片12の厚み方向に略平行となる垂直面17a,17bと、を有することにより、換言すると、結晶面のm面であるm面16a,16bと、結晶面のR面に直角な面を含む垂直面17a,17bと、を備えたことにより、両端部(両側面13a,13b)が実質的に薄くなる。よって、両端部(両側面13a,13b)での振動変位が大きく減衰するため、振動エネルギの閉じ込め効果によって、CI(クリスタルインピーダンス)値を低減できる。この効果は、水晶片12の厚み方向(Y’軸方向)においてm面16a,16bの厚みと垂直面17a,17bの厚みとが等しくなる場合に、最も大きくなる。このとき、図1[B]に示すように、水晶片12の重心に対して左右が点対称となることにより、水晶片12の上半分と下半分とで振動の状態が同じになるので、振動バランスを向上できる。 Two side surfaces 13a and 13b including the long sides 11a and 11b are substantially parallel to the thickness direction of the crystal piece 12 and the m-planes 16a and 16b that are oblique to the thickness direction (Y'-axis direction) of the crystal piece 12. In other words, it has m-planes 16a and 16b that are m-planes of crystal planes and vertical planes 17a and 17b that include planes perpendicular to the R-planes of crystal planes. As a result, both ends (both side surfaces 13a and 13b) are substantially thinned. Therefore, since the vibration displacement at both ends (both side surfaces 13a and 13b) is greatly attenuated, the CI (crystal impedance) value can be reduced by the confinement effect of vibration energy. This effect is maximized when the thickness of the m-planes 16a and 16b and the thickness of the vertical planes 17a and 17b are equal in the thickness direction (Y'-axis direction) of the crystal piece 12. FIG. At this time, as shown in FIG. 1B, the left and right sides of the crystal piece 12 are symmetrical with respect to the center of gravity of the crystal piece 12, so that the upper half and the lower half of the crystal piece 12 vibrate in the same state. Vibration balance can be improved.

<実施形態2>
図3に示すように、本実施形態2の水晶素子20は次の特徴を有する。水晶片12は、平面視して長辺11a,11b及び短辺11c,11dからなる略矩形である。接続電極14a,14bは、主面13e,13fの少なくとも一方の周縁において短辺11c側(又は短辺11d側でもよい)に位置する。調整電極25eは、励振電極14eと接続電極14bとの間に位置し、かつ短辺11cに沿って直線状に延びる部分を有する。
<Embodiment 2>
As shown in FIG. 3, the crystal element 20 of Embodiment 2 has the following features. The crystal piece 12 has a substantially rectangular shape with long sides 11a and 11b and short sides 11c and 11d in plan view. The connection electrodes 14a and 14b are positioned on the short side 11c side (or the short side 11d side) on at least one peripheral edge of the main surfaces 13e and 13f. The adjustment electrode 25e has a portion located between the excitation electrode 14e and the connection electrode 14b and linearly extending along the short side 11c.

なお、調整電極25eは、本実施形態2では主面13eにのみ設けているが、主面13fにのみ設けてもよく、主面13e,13fの両方に設けてもよい。主面13e,13fの両方に設ける場合は、平面透視して調整電極同士が重ならないように配置することが好ましい。 Although the adjustment electrode 25e is provided only on the main surface 13e in the second embodiment, it may be provided only on the main surface 13f, or may be provided on both the main surfaces 13e and 13f. When the adjustment electrodes are provided on both the main surfaces 13e and 13f, it is preferable that the adjustment electrodes are arranged so as not to overlap with each other when viewed through the plane.

水晶素子20によれば、平面視して調整電極25eが励振電極14eと接続電極14bとの間に位置することにより、調整電極25eが錘の機能を果たすので、接続電極14bが接着又は接合されたときの励振電極14eへの影響を低減できる。水晶素子20の斜視図及び断面図は、図1に準ずる。本実施形態2のその他の構成、作用及び効果は、実施形態1のそれらと同様である。 According to the crystal element 20, since the adjustment electrode 25e is positioned between the excitation electrode 14e and the connection electrode 14b in plan view, the adjustment electrode 25e functions as a weight, so that the connection electrode 14b is adhered or joined. It is possible to reduce the influence on the excitation electrode 14e when the voltage is applied. A perspective view and a cross-sectional view of the crystal element 20 conform to FIG. Other configurations, actions and effects of the second embodiment are the same as those of the first embodiment.

<実施形態3>
図4に示すように、本実施形態3の水晶素子30は次の特徴を有する。水晶片12は、平面視して長辺11a,11b及び短辺11c,11dからなる略矩形であり、二つの主面13e,13fに挟まれた側面13a,13b,13c,13dを更に有する。長辺11a,11bを含む側面13a,13bは、長辺11a,11bに沿って延びる結晶面であるm面16a,16bを含む。調整電極35eは、主面13eのm面16aに近接する側及びm面16aの少なくとも一方に位置し、長辺11aに沿って直線状に延びる部分を有する。調整電極35eは、本実施形態3では主面13eのm面16aに近接する側にのみ位置するが、m面16aにのみ位置してもよいし、主面13eのm面16aに近接する側及びm面16aの両方に位置してもよい。
<Embodiment 3>
As shown in FIG. 4, the crystal element 30 of Embodiment 3 has the following features. The crystal piece 12 has a substantially rectangular shape with long sides 11a, 11b and short sides 11c, 11d in plan view, and further has side surfaces 13a, 13b, 13c, 13d sandwiched between two main surfaces 13e, 13f. The side surfaces 13a and 13b including the long sides 11a and 11b include m-planes 16a and 16b, which are crystal planes extending along the long sides 11a and 11b. The adjustment electrode 35e is positioned on at least one of the main surface 13e adjacent to the m-plane 16a and the m-plane 16a, and has a portion extending linearly along the long side 11a. The adjustment electrode 35e is positioned only on the side of the main surface 13e close to the m-plane 16a in Embodiment 3, but may be positioned only on the m-plane 16a or on the side of the main surface 13e close to the m-plane 16a. and m-plane 16a.

なお、調整電極35eは、本実施形態3では主面13eにのみ設けているが、主面13fにのみ設けてもよく、主面13e,13fの両方に設けてもよい。主面13e,13fの両方に設ける場合は、平面透視して調整電極同士が重ならないように配置する。 Although the adjustment electrode 35e is provided only on the main surface 13e in Embodiment 3, it may be provided only on the main surface 13f, or may be provided on both of the main surfaces 13e and 13f. When the adjustment electrodes are provided on both the main surfaces 13e and 13f, the adjustment electrodes are arranged so as not to overlap with each other when viewed through the plane.

接続電極34a,34bは、主面13e,13fの周縁において短辺11c側に位置する。配線電極34gの一部は、主面13eのm面16aに接する側及びm面16aの少なくとも一方に位置し、接続電極34aから長辺11aに沿って延び調整電極35eに繋がっている。 The connection electrodes 34a and 34b are positioned on the short side 11c side at the peripheral edges of the main surfaces 13e and 13f. A portion of the wiring electrode 34g is positioned on at least one of the m-plane 16a and the m-plane 16a of the main surface 13e, extends from the connection electrode 34a along the long side 11a, and is connected to the adjustment electrode 35e.

m面16aで反射した振動は、近傍の調整電極35eが錘となることにより減衰する。そのため、m面16aで反射する振動が励振電極14e,14fに到達して、主振動を阻害したり主振動に結合したりすることを、抑えられる。その結果、等価直列抵抗値の低減、及び、周波数温度特性の向上などを達成できる。 The vibration reflected by the m-plane 16a is attenuated by the nearby adjustment electrode 35e serving as a weight. Therefore, it is possible to prevent the vibrations reflected by the m-plane 16a from reaching the excitation electrodes 14e and 14f and interfering with or coupling with the main vibration. As a result, it is possible to reduce the equivalent series resistance value and improve the frequency temperature characteristics.

本実施形態3では、接続電極34aから配線電極34gを経て調整電極35eまで、隙間なく一体化された状態で、主面13eのm面16aに接する側及びm面16aの少なくとも一方に位置している。よって、水晶素子30によれば、主面13eのm面16aに接する側及びm面16aの少なくとも一方に位置し、長辺11aに沿って延びる調整電極35eを備えたことにより、m面16aでの振動を抑制できるので、電気的特性を向上できる。水晶素子30の斜視図及び断面図は、図1に準ずる。本実施形態3のその他の構成、作用及び効果は、実施形態1のそれらと同様である。 In the third embodiment, the connection electrode 34a, the wiring electrode 34g, and the adjustment electrode 35e are integrated without gaps, and are positioned on at least one of the side of the main surface 13e in contact with the m-plane 16a and the m-plane 16a. there is Therefore, according to the crystal element 30, the adjusting electrode 35e is positioned on at least one of the main surface 13e and the m-plane 16a and extends along the long side 11a. can be suppressed, so the electrical characteristics can be improved. A perspective view and a cross-sectional view of the crystal element 30 conform to FIG. Other configurations, actions and effects of the third embodiment are the same as those of the first embodiment.

<実施形態4>
図5に示すように、本実施形態4の水晶素子40は、次の点で実施形態1と異なる。調整電極45eは、主面13eにおいて主面13fに位置する励振電極14fに平面透視して重ならない部分に位置し、(主面13eではなく)主面13fに位置する励振電極14fと同電位になる。
<Embodiment 4>
As shown in FIG. 5, the crystal element 40 of Embodiment 4 differs from Embodiment 1 in the following points. The adjustment electrode 45e is located in a portion of the main surface 13e that does not overlap with the excitation electrode 14f located on the main surface 13f (not the main surface 13e), and has the same potential as the excitation electrode 14f located on the main surface 13f (not the main surface 13e). Become.

なお、調整電極45eは、本実施形態4では主面13eにのみ設けているが、主面13fにのみ設けてもよく、主面13e,13fの両方に設けてもよい。主面13e,13fの両方に設ける場合は、平面透視して調整電極同士が重ならないように配置する。 Although the adjustment electrode 45e is provided only on the main surface 13e in Embodiment 4, it may be provided only on the main surface 13f, or may be provided on both of the main surfaces 13e and 13f. When the adjustment electrodes are provided on both the main surfaces 13e and 13f, the adjustment electrodes are arranged so as not to overlap with each other when viewed through the plane.

実施形態1では調整電極が同じ主面内の励振電極と同じ電位になるのに対し、本実施形態4では調整電極45eが反対の主面13f内の励振電極14fと同じ電位となる。励振電極14e,14fに電圧を印加すると、調整電極45eと励振電極14eとの間の水晶片12の表面に、Y’軸方向に垂直となる電界が発生する。このとき、水晶片12の内部ではなく表面に電界が発生するので、この電界による厚みすべり振動は生じない。 In the first embodiment, the adjustment electrodes have the same potential as the excitation electrodes on the same main surface, whereas in the fourth embodiment, the adjustment electrodes 45e have the same potential as the excitation electrodes 14f on the opposite main surface 13f. When a voltage is applied to the excitation electrodes 14e and 14f, an electric field perpendicular to the Y'-axis direction is generated on the surface of the crystal blank 12 between the adjustment electrode 45e and the excitation electrode 14e. At this time, since an electric field is generated on the surface of the crystal element 12 rather than inside it, thickness-shear vibration due to this electric field does not occur.

水晶素子40によれば、主面13eにおいて励振電極14fに平面透視して重ならない部分に位置し、励振電極14fと同電位になる調整電極45eを備えたことにより、発振周波数及び直列抵抗R1を変えることなく、直列容量C1を容易に調整できる。水晶素子40の斜視図及び断面図は、図1に準ずる。本実施形態4のその他の構成、作用及び効果は、実施形態1のそれらと同様である。 According to the crystal element 40, the oscillation frequency and the series resistance R1 can be adjusted by providing the adjustment electrode 45e which is located in a portion not overlapping the excitation electrode 14f in plan perspective view on the main surface 13e and has the same potential as the excitation electrode 14f. The series capacitance C1 can be easily adjusted without changing it. A perspective view and a cross-sectional view of the crystal element 40 conform to FIG. Other configurations, actions and effects of the fourth embodiment are the same as those of the first embodiment.

<実施形態5>
図6に示すように、本実施形態5の水晶デバイス60は、実施形態1の水晶素子10と、水晶素子10が位置する基体61と、基体61とともに水晶素子10を気密封止する蓋体62と、を備えている。基体61は、パッケージとも呼ばれ、基板61aと枠体61bとからなる。基板61aの上面と枠体61bの内側面と蓋体62の下面とによって囲まれた空間が、水晶素子10の収容部63となる。水晶素子10は、例えば、電子機器等で使用する基準信号を出力する。
<Embodiment 5>
As shown in FIG. 6, the crystal device 60 of the fifth embodiment includes the crystal element 10 of the first embodiment, a base 61 on which the crystal element 10 is positioned, and a lid body 62 hermetically sealing the crystal element 10 together with the base 61. and have. The base 61 is also called a package and consists of a substrate 61a and a frame 61b. A space surrounded by the upper surface of the substrate 61 a , the inner surface of the frame 61 b , and the lower surface of the lid 62 serves as the housing portion 63 for the crystal element 10 . The crystal element 10 outputs, for example, a reference signal used in electronic equipment and the like.

換言すると、水晶デバイス60は、上面に一対の電極パッド61d及び下面に四つの外部端子61cを有する基板61aと、基板61aの上面の外周縁に沿って位置する枠体61bと、一対の電極パッド61dに導電性接着剤61eを介して実装される水晶素子10と、水晶素子10を枠体61bとともに気密封止する蓋体62と、を備えている。 In other words, the crystal device 60 includes a substrate 61a having a pair of electrode pads 61d on the upper surface and four external terminals 61c on the lower surface, a frame 61b positioned along the outer periphery of the upper surface of the substrate 61a, and a pair of electrode pads. A crystal element 10 is mounted on 61d via a conductive adhesive 61e, and a lid 62 hermetically seals the crystal element 10 together with the frame 61b.

基板61a及び枠体61bは、例えばアルミナセラミックス又はガラスセラミックス等のセラミック材料からなり、一体的に形成されて基体61となる。基体61及び蓋体62は、平面視して概ね矩形状である。外部端子61cと電極パッド61d及び蓋体62とは、基体61の内部又は側面に形成された導体を介して電気的に接続される。詳しく言えば、基板61aの下面の四隅に外部端子61cがそれぞれ位置する。それらのうちの二つの外部端子61cが水晶素子10に電気的に接続され、残りの二つの外部端子61cが蓋体62に電気的に接続される。外部端子61cは、電子機器等のプリント配線板などに実装するために用いられる。 The substrate 61a and the frame 61b are made of a ceramic material such as alumina ceramics or glass ceramics, and integrally formed to form the base 61. As shown in FIG. The base 61 and the lid 62 are generally rectangular in plan view. The external terminal 61c, the electrode pad 61d, and the lid 62 are electrically connected via a conductor formed inside or on the side surface of the base 61. As shown in FIG. Specifically, the external terminals 61c are positioned at the four corners of the lower surface of the substrate 61a. Two of these external terminals 61 c are electrically connected to the crystal element 10 , and the remaining two external terminals 61 c are electrically connected to the lid 62 . The external terminal 61c is used for mounting on a printed wiring board of an electronic device or the like.

水晶素子10は、前述したように、水晶片12と、水晶片12の上面に形成された励振電極14eと、水晶片12の下面に形成された励振電極14fとを有する。そして、水晶素子10は、導電性接着剤61eを介して電極パッド61d上に接合され、安定した機械振動と圧電効果により、電子機器等の基準信号を発振する役割を果たす。 Crystal element 10 has crystal element 12, excitation electrode 14e formed on the upper surface of crystal element 12, and excitation electrode 14f formed on the lower surface of crystal element 12, as described above. The crystal element 10 is bonded onto the electrode pad 61d via a conductive adhesive 61e, and plays a role of oscillating a reference signal for electronic equipment or the like by stable mechanical vibration and piezoelectric effect.

電極パッド61dは、基体61に水晶素子10を実装するためのものであり、基板61aの一辺に沿うように隣接して一対が位置する。そして、一対の電極パッド61dは、それぞれ接続電極14a,14bを接続して水晶素子10の一端を固定端とし、水晶素子10の他端を基板61aの上面から離間した自由端とすることにより、片持ち支持構造にて水晶素子10を基板61a上に固定する。 The electrode pads 61d are for mounting the crystal element 10 on the substrate 61, and a pair of electrode pads are positioned adjacent to each other along one side of the substrate 61a. The pair of electrode pads 61d connects the connection electrodes 14a and 14b, respectively, and has one end of the crystal element 10 as a fixed end, and the other end of the crystal element 10 as a free end separated from the upper surface of the substrate 61a. The crystal element 10 is fixed on the substrate 61a with a cantilever support structure.

導電性接着剤61eは、例えば、シリコーン樹脂等のバインダの中に、導電フィラとして導電性粉末が含有されたものである。蓋体62は、例えば、鉄、ニッケル又はコバルトの少なくともいずれかを含む合金からなり、シーム溶接などによって枠体61bと接合することにより、真空状態にある又は窒素ガスなどが充填された収容部63を気密的に封止する。 The conductive adhesive 61e is, for example, a binder such as silicone resin containing conductive powder as a conductive filler. The lid body 62 is made of an alloy containing at least one of iron, nickel, and cobalt, for example, and is joined to the frame body 61b by seam welding or the like, so that the housing part 63 is in a vacuum state or filled with nitrogen gas or the like. hermetically sealed.

水晶デバイス60によれば、水晶素子10を備えたことにより、安定した電気特性を発揮できる。なお、水晶デバイス60は、実施形態1の水晶素子10に限らず、他の実施形態の水晶素子を備えたものとしてもよい。 According to the crystal device 60, by including the crystal element 10, stable electrical characteristics can be exhibited. Note that the crystal device 60 is not limited to the crystal element 10 of the first embodiment, and may include crystal elements of other embodiments.

<実施形態6>
図7に示すように、本実施形態6の電子機器71,72はそれぞれ水晶デバイス60を備えている。図7[A]に例示した電子機器71はスマートフォンであり、図7[B]に例示した電子機器72はパーソナルコンピュータである。
<Embodiment 6>
As shown in FIG. 7, electronic devices 71 and 72 of Embodiment 6 each include a crystal device 60 . The electronic device 71 illustrated in FIG. 7A is a smart phone, and the electronic device 72 illustrated in FIG. 7B is a personal computer.

図6に示すように構成された水晶デバイス60は、はんだ付け、金(Au)バンプ又は導電性接着剤などによってプリント基板に外部端子61cの底面が固定されることによって、電子機器71,72を構成するプリント基板の表面に実装される。そして、水晶デバイス60は、例えば、スマートフォン、パーソナルコンピュータ、時計、ゲーム機、通信機、又はカーナビゲーションシステム等の車載機器などの種々の電子機器で発振源として用いられる。 In the crystal device 60 configured as shown in FIG. 6, the electronic devices 71 and 72 are connected by fixing the bottom surface of the external terminals 61c to the printed circuit board by soldering, gold (Au) bumps, conductive adhesive, or the like. It is mounted on the surface of the constituent printed circuit board. The crystal device 60 is used as an oscillation source in various electronic devices such as smartphones, personal computers, clocks, game machines, communication devices, and in-vehicle devices such as car navigation systems.

電子機器71,72によれば、水晶デバイス60を備えたことにより、安定した電気特性に基づく高性能かつ高信頼性の動作を実現できる。 According to the electronic devices 71 and 72, by including the crystal device 60, high-performance and highly reliable operation based on stable electrical characteristics can be realized.

<その他>
以上、上記各実施形態を参照して本開示を説明したが、本開示はこれらに限定されるものではない。本開示の構成や詳細については、当業者が理解し得るさまざまな変更を加えることができる。また、本開示には、上記各実施形態の構成の一部又は全部を相互に適宜組み合わせたものも含まれる。
<Others>
Although the present disclosure has been described with reference to the above embodiments, the present disclosure is not limited to these. Various changes that can be understood by those skilled in the art can be added to the configuration and details of the present disclosure. In addition, the present disclosure also includes appropriate combinations of part or all of the configurations of the above-described embodiments.

10,20,30,40 水晶素子
11a,11b 長辺
11c,11d 短辺
12 水晶片
13e,13f 主面
13a,13b,13c,13d 側面
14a,14b,34a,34b 接続電極
14e,14f 励振電極
14g,14h,34g,34h 配線電極
15e,25e,35e,45e 調整電極
16a,16b m面
17a,17b 垂直面
60 水晶デバイス
61 基体
61a 基板
61b 枠体
61c 外部端子
61d 電極パッド
61e 導電性接着剤
62 蓋体
63 収容部
71,72電子機器
C0 並列容量
C1 直列容量
L1 直列インダクタンス
R1 直列抵抗
10, 20, 30, 40 crystal element 11a, 11b long side 11c, 11d short side 12 crystal piece 13e, 13f main surface 13a, 13b, 13c, 13d side surface 14a, 14b, 34a, 34b connection electrode 14e, 14f excitation electrode 14g , 14h, 34g, 34h wiring electrodes 15e, 25e, 35e, 45e adjustment electrodes 16a, 16b m-planes 17a, 17b vertical planes 60 crystal device 61 substrate 61a substrate 61b frame 61c external terminal 61d electrode pad 61e conductive adhesive 62 lid Body 63 Housing 71, 72 Electronic equipment C0 Parallel capacitance C1 Series capacitance L1 Series inductance R1 Series resistance

Claims (4)

互いに向かい合う二つの主面を有する水晶片と、
前記主面の中央に位置する励振電極と、
前記主面の周縁に位置する接続電極と、
前記接続電極と前記励振電極とを繋ぐ配線電極と、
一方の前記主面において他方の前記主面に位置する前記励振電極に平面透視して重ならない部分に位置し、一方の前記主面に位置する前記励振電極と同電位になる調整電極と、
を備えた水晶素子であって、
前記水晶片は、平面視して長辺及び短辺からなる略矩形であり、前記二つの主面に挟まれた側面を更に有し、前記長辺を含む前記側面は、前記長辺に沿って延びる結晶面であるm面を含み、
前記調整電極は、当該水晶素子を平面透視したときに、他方の前記主面と前記m面との境界部に跨る位置に設けられている水晶素子。
a crystal piece having two principal surfaces facing each other;
an excitation electrode positioned in the center of the main surface;
connection electrodes located on the periphery of the main surface;
a wiring electrode that connects the connection electrode and the excitation electrode;
an adjusting electrode located in a portion of one of the principal surfaces that does not overlap the excitation electrode located on the other principal surface in plan perspective view, and having the same potential as the excitation electrode located on one of the principal surfaces;
A crystal element comprising
The crystal piece has a substantially rectangular shape with long sides and short sides when viewed from above, and further has a side surface sandwiched between the two main surfaces, and the side surface including the long side extends along the long side. including the m-plane, which is a crystal plane extending along the
The adjustment electrode is provided at a position straddling a boundary portion between the other main surface and the m-plane when the crystal element is viewed through the plane.
互いに向かい合う二つの主面を有する水晶片と、
前記主面の中央に位置する励振電極と、
前記主面の周縁に位置する接続電極と、
前記接続電極と前記励振電極とを繋ぐ配線電極と、
一方の前記主面において他方の前記主面に位置する前記励振電極に平面透視して重ならない部分に位置し、他方の前記主面に位置する前記励振電極と同電位になる調整電極と、
を備えた水晶素子であって、
前記水晶片は、平面視して長辺及び短辺からなる略矩形であり、前記二つの主面に挟まれた側面を更に有し、前記長辺を含む前記側面は、前記長辺に沿って延びる結晶面であるm面を含み、
前記調整電極は、当該水晶素子を平面透視したときに、他方の前記主面と前記m面との境界部に跨る位置に設けられている水晶素子。
a crystal piece having two principal surfaces facing each other;
an excitation electrode positioned in the center of the main surface;
connection electrodes located on the periphery of the main surface;
a wiring electrode that connects the connection electrode and the excitation electrode;
an adjustment electrode located in a portion of one of the principal surfaces that does not overlap the excitation electrode located on the other principal surface in plan perspective view, and having the same potential as the excitation electrode located on the other principal surface;
A crystal element comprising
The crystal piece has a substantially rectangular shape with long sides and short sides when viewed from above, and further has a side surface sandwiched between the two main surfaces, and the side surface including the long side extends along the long side. including the m-plane, which is a crystal plane extending along the
The adjustment electrode is provided at a position straddling a boundary portion between the other main surface and the m-plane when the crystal element is viewed through the plane.
請求項1又は2に記載の水晶素子と、
前記水晶素子が位置する基体と、
前記基体とともに前記水晶素子を気密封止する蓋体と、
を備えた水晶デバイス。
A crystal element according to claim 1 or 2 ;
a base on which the crystal element is located;
a lid that hermetically seals the crystal element together with the base;
A crystal device with
請求項記載の水晶デバイスを備えた電子機器。 An electronic device comprising the crystal device according to claim 3 .
JP2019147520A 2019-08-09 2019-08-09 Crystal elements, crystal devices and electronic equipment Active JP7293037B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019147520A JP7293037B2 (en) 2019-08-09 2019-08-09 Crystal elements, crystal devices and electronic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019147520A JP7293037B2 (en) 2019-08-09 2019-08-09 Crystal elements, crystal devices and electronic equipment

Publications (2)

Publication Number Publication Date
JP2021029013A JP2021029013A (en) 2021-02-25
JP7293037B2 true JP7293037B2 (en) 2023-06-19

Family

ID=74667074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019147520A Active JP7293037B2 (en) 2019-08-09 2019-08-09 Crystal elements, crystal devices and electronic equipment

Country Status (1)

Country Link
JP (1) JP7293037B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144577A (en) 1999-11-15 2001-05-25 Murata Mfg Co Ltd Piezoelectric resonator
JP2014023015A (en) 2012-07-20 2014-02-03 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and movable body
JP2015211362A (en) 2014-04-28 2015-11-24 京セラクリスタルデバイス株式会社 Quarts device and manufacturing method for quarts device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5936018Y2 (en) * 1978-10-12 1984-10-04 日本電波工業株式会社 piezoelectric vibrator
JPH09139651A (en) * 1995-11-15 1997-05-27 Nippon Dempa Kogyo Co Ltd Crystal oscillator for overtone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144577A (en) 1999-11-15 2001-05-25 Murata Mfg Co Ltd Piezoelectric resonator
JP2014023015A (en) 2012-07-20 2014-02-03 Seiko Epson Corp Vibration element, vibrator, electronic device, electronic apparatus, and movable body
JP2015211362A (en) 2014-04-28 2015-11-24 京セラクリスタルデバイス株式会社 Quarts device and manufacturing method for quarts device

Also Published As

Publication number Publication date
JP2021029013A (en) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7196934B2 (en) piezoelectric vibration device
JP2007274339A (en) Surface mounting type piezoelectric vibration device
JP4899519B2 (en) Surface mount type piezoelectric oscillator
US10411671B2 (en) Crystal element and crystal device
JP2020136999A (en) Crystal element, crystal device, and electronic apparatus
JP2006054321A (en) Package for electronic component and piezoelectric oscillator employing the package
JP7293037B2 (en) Crystal elements, crystal devices and electronic equipment
JP6256036B2 (en) Vibrator, oscillator, electronic device, and moving object
JP2013239947A (en) Vibration device, vibration device module, electronic apparatus, and movable body
JP6015010B2 (en) Vibration element, vibrator, oscillator and electronic equipment
JP7517135B2 (en) Piezoelectric Vibration Device
JP6666166B2 (en) Crystal element and crystal device
JP7308092B2 (en) Crystal elements, crystal devices and electronic equipment
JP6229456B2 (en) Vibrating piece, vibrator, oscillator, electronic device and moving object
JP2017200093A (en) Crystal device
JP7329592B2 (en) Crystal element and crystal device
JP7466568B2 (en) Manufacturing method of quartz crystal element
JP7237707B2 (en) Crystal element and crystal device
JP7170549B2 (en) Crystal element and crystal device
WO2022181113A1 (en) Piezoelectric element and piezoelectric device
JP7274386B2 (en) Crystal elements, crystal devices and electronic equipment
JP6687471B2 (en) Crystal element and crystal device
JP2020136998A (en) Crystal element, crystal device, and electronic apparatus
JP2015207854A (en) piezoelectric device
JP2020174305A (en) Crystal element and crystal device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20211026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20211026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230607

R150 Certificate of patent or registration of utility model

Ref document number: 7293037

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150