JP7291182B2 - 周波数選択性要素を有するアンテナ - Google Patents

周波数選択性要素を有するアンテナ Download PDF

Info

Publication number
JP7291182B2
JP7291182B2 JP2021150298A JP2021150298A JP7291182B2 JP 7291182 B2 JP7291182 B2 JP 7291182B2 JP 2021150298 A JP2021150298 A JP 2021150298A JP 2021150298 A JP2021150298 A JP 2021150298A JP 7291182 B2 JP7291182 B2 JP 7291182B2
Authority
JP
Japan
Prior art keywords
antenna
leg
elements
leg elements
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021150298A
Other languages
English (en)
Other versions
JP2022003798A (ja
Inventor
ストウェル,マイケル・ダブリュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lyten Inc
Original Assignee
Lyten Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lyten Inc filed Critical Lyten Inc
Publication of JP2022003798A publication Critical patent/JP2022003798A/ja
Application granted granted Critical
Publication of JP7291182B2 publication Critical patent/JP7291182B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/248Supports; Mounting means by structural association with other equipment or articles with receiving set provided with an AC/DC converting device, e.g. rectennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/04Non-resonant antennas, e.g. travelling-wave antenna with parts bent, folded, shaped, screened or electrically loaded to obtain desired phase relation of radiation from selected sections of the antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • H01Q9/285Planar dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/42Housings not intimately mechanically associated with radiating elements, e.g. radome
    • H01Q1/422Housings not intimately mechanically associated with radiating elements, e.g. radome comprising two or more layers of dielectric material

Landscapes

  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

関連出願の相互参照
本出願は、2018年4月3日に出願された、「Antenna with Frequency-Selective Elements」と題する、米国非仮特許出願第15/944,482号に対する優先権を主張する。この文献は、1)2017年4月5日に出願された、「Power Management in Energy Harvesting」と題する、米国仮特許出願第62/481,821号、2)2017年4月7日に出願された、「Dynamic Energy Harvesting Power Architecture」と題する、米国仮特許出願第62/482,806号、及び、3)2017年5月18日に出願された、「Carbon-Based Antenna」と題する、米国仮特許出願第62/508,295号の優先権を主張する。これら文献のすべては、本明細書により、すべての目的のために、参照することにより、組み込まれる。
データトラッキング及びモバイルコミュニケーションが幅広い様々な製品及び活動に組み込まれるにつれて、無線デバイスが社会の重要な部分となってきている。たとえば、無線認識(RFID)システムが、輸送されている製品、経由地を通る車両、倉庫内または組立てライン上の在庫品、ならびに、動物及び人間でさえあるものなどの対象を、埋め込まれているか着用されているRFID追跡装置を介して、追跡及び識別するために、一般的に使用されている。モノのインターネット(IoT)は、無線デバイスが使用される別の分野である。この分野では、ネットワーク化されたデバイスが、互いに情報を通信するために、ともに接続されている。IoTアプリケーションの実施例には、スマート器具、スマートホーム、ボイス制御されたアシスタント、ウェアラブル技術、ならびに、セキュリティ、エネルギ、及び環境のためのものなどの監視システムが含まれる。
多くのアプリケーションが、これら無線電子デバイスを非常に小型かつポータブルとすることを必要としており、それにより、デバイスに給電できる方式が制限されることがら、エネルギハーベスティング(EH)がしばしば、デバイスのための追加のエネルギ源として利用される。エネルギハーベスティングは、概略的には、エネルギハーベスティングの構成要素またはデバイスにより、意図的に、自然に、または、副産物もしくは副作用として、エネルギを放射または放出させる、様々なエネルギ源からエネルギを得るプロセスである。採取することができるエネルギのタイプには、他のエネルギの内で、電磁(EM)エネルギ、太陽エネルギ、熱エネルギ、風エネルギ、塩度勾配、及び運動エネルギが含まれる。たとえば、温度勾配が、動作している燃焼機関の周囲の領域に生じる。都会のエリアでは、ラジオ及びテレビの放送のために、大量のEMエネルギが環境内に存在する。エネルギハーベスティングの回路またはデバイスは、このため、これらタイプのエネルギ源からのエネルギレベルが高度に可変性であるか、信頼性のないものである場合があるとしても、これら領域または環境の中、上、または近位に配置して、これらエネルギ源の存在を利用することができる。たとえば、携帯電話、WiFiネットワーク、及びテレビなどのEM源から、無線周波数(RF)エネルギを取得するために、アンテナを使用することができる。エネルギハーベスティングは、電力事業会社により、配電網を通して特定の顧客に提供されるような、専用の、配線によって接続された電力伝達線を通して提供されるエネルギの直接的な供給とは、概して区別される。これらの各々は、エネルギ源に対して追加される電源負荷である。
いくつかの状況では、ハーベスティングに利用可能であるエネルギは、背景の、周囲の
、または補足されたエネルギとしても知られている。これらエネルギは、受信デバイスに給電することを目的に、任意の特定の顧客または受信器に伝達することは特に意図されていない。背景または周囲のエネルギの実施例が、多くのタイプの電気デバイスまたは伝達線の、不可避の副作用または副産物として放射される、自然のEM放射である。地面、空気、または衛星のラジオ送信機から放出される無線周波は、対照的に、遠距離通信の目的のための受信機によって使用されることが意図されている場合があるが、その無線周波エネルギ(このエネルギは、EM放射である)は、意図されていないエネルギハーベスティングの目的のために使用することも可能である。これら「故意ではない」状況では、エネルギハーベスティング回路は、単純に、エネルギ源に対する追加の電力付加となることなく、利用可能であれば、いつでも、または、どこでも、周囲のエネルギを取得する。他の状況では、専用の無線EMエネルギトランスミッタを、広く放送されるか、特定方向に発せられるEM放射に提供することができる。ここでは、エネルギハーベスティングの回路またはデバイスが、エネルギハーベスティングの回路またはデバイスによる意図的な採取または取得のために存在しているものと知られており、それにより、特定の電気デバイスのための「意図的な」無線電力伝達システムを提供する。しかし、エネルギハーベスティングの回路またはデバイスの観点から、EMエネルギトランスミッタからの意図的なEM放射は、意図的な状況が、より信頼性のあるエネルギ源に繋がり得ることを除き、周囲の(意図的ではない)エネルギと同じであるか類似である。意図的に伝達されたエネルギと、意図的ではなく伝達されたエネルギとの両方を、エネルギハーベスティングのために使用することができる。
採取されたエネルギは、概して、ウェアラブル電子機器及び、無線センサデバイスまたはネットワークのいくつかのタイプで使用されるものなど、小さい、通常は無線の、通常は自律性の、電子回路、構成要素、またはデバイスにより、使用するために取得されるか、将来の使用のために貯蔵される。このため、エネルギハーベスティングの回路またはデバイスは、通常は、エネルギハーベスティングの回路またはデバイスに電気的に接続されているか、組み込まれているか、別様に関連付けられている、低エネルギの電子回路または電子デバイスのための、非常にわずかな量の電力を供給する。これらエネルギハーベスティング回路は、EHソースが、デバイス全体のための十分な電力を供給しないか、安定した電力を供給しないことから、通常は、デバイス上のバッテリに対する補助的な電力源である。
アンテナは、エネルギを効率的に収穫するための能力において、重要な役割を果たす。エネルギハーベスティングのためのアンテナ、ならびに、無線デバイス及びIoTデバイスにおける通信のためのアンテナの開発が、サイズを最小にし、効率を向上させ、マルチバンドの周波数を達成し、また、様々なアンテナ材料を研究するために、研究に関係している。アンテナは、モバイルデバイスのためのハウジング内、埋込み式デバイス内、ならびに、スマートカード及びパッケージング上に組み込まれている。RFIDアンテナは、しばしば、小型のはがして張る方式のラベルなどの、パッケージングまたは表示のためのラベルの表面上に添付される。いくつかのアンテナは、シルクスクリーンプリント、フレキソプリント、またはインクジェットプリントなどのプリントによって製造される。銀インクが、導電性構成要素のためにもっとも一般的に使用されるインクであるが、カーボンインク及びポリマベースのインクも使用される。無線デバイスがますます広まっていくにつれて、より効率的で、費用効果の高いアンテナが絶えず必要とされる。
いくつかの実施形態では、アンテナシステムは、基板と、この基板上のアンテナとを有し、このアンテナは、複数のレッグ要素を有している。複数のレッグ要素は、導電インクを備えており、連続した経路を形成している。複数のレッグ要素の少なくとも1つは、ア
ンテナの共振周波数を変更するように、個別に選択可能であるか、除外可能であり、選択されたレッグ要素は、共振周波数に対応するアンテナ経路長を形成する。
いくつかの実施形態では、エネルギハーベスティングシステムは、アンテナシステム及び電子回路を含んでいる。アンテナシステムは、基板と、この基板上のアンテナとを含んでいる。アンテナは、複数のレッグ要素を有しており、この複数のレッグ要素は、カーボンベースの導電インクを備えるとともに、連続した経路を形成している。複数のレッグ要素の各々は、アンテナの共振周波数を変更するように、個別に選択可能であるか、除外可能である。選択されたレッグ要素は、共振周波数に対応するアンテナ経路長を形成する。電子回路は、複数のレッグ要素の各々に対する接続部を有しており、ここで、電子回路は、複数のレッグ要素の内の第1のレッグ要素を第2のレッグ要素に対して短絡させることにより、複数のレッグ要素の内の第1のレッグ要素を動的に除外するように構成されている。
いくつかの実施形態では、アンテナシステムは、基板と、この基板上のアンテナとを含んでいる。アンテナは、複数のレッグ要素を有しており、この複数のレッグ要素は、導電インクを備えるとともに、連続した経路を形成している。複数のレッグ要素の第1のレッグ要素は、受信された周波数と、第1のレッグ要素の第1の電気的インピーダンスとに依存する、第1の共振周波数の閾値を有している。第1の電気的インピーダンスは、透磁率、誘電率、及び導電率からなるグループから選択される材料特性に基づいている。第1のレッグ要素は、アンテナ経路長を変更することにより、アンテナの共振周波数を変更するように、個別に除外可能であり、第1のレッグ要素は、受信された周波数が第1の周波数の閾値より大である場合、アクティブではないようにすることにより、アンテナ経路長から受動的に除外される。
図1A及び図1Bは、当該技術で既知である、アンテナ偏波を示す図である。 図2A及び図2Bは、いくつかの実施形態に係る、周波数選択性要素を有するアンテナの側断面図である。 図3A及び図3Bは、いくつかの実施形態に係る、アンテナのレッグ要素を選択または除外するための、材料チューニングの使用を示す側断面図である。 図4は、いくつかの実施形態に係る、材料チューニングされたレッグ要素を有する、平らな逆Fアンテナの斜視図である。 図5は、いくつかの実施形態に係る、デジタルチューニングを伴うレッグ要素を有する、平らな逆Fアンテナの斜視図である。 図6Aから図6Cは、いくつかの実施形態に係る、デジタルチューニングを伴うレッグ要素に関する、アンテナ、及びSパラメータのグラフである。 図7は、いくつかの実施形態に係る、共振周波数のカスタマイズを示すSパラメータのグラフである。 図8Aと図8Bとは、いくつかの実施形態に係る、誘電材料をプリントすることができる、マイクロストリップアンテナの平面図と側断面図とである。 図9は、いくつかの実施形態に係る、平らな逆Fアンテナ、及び、アンテナのゲイン応答を示す図である。 図10は、いくつかの実施形態に係る、波状アンテナ、及び、アンテナのゲイン応答を示す図である。 図11Aから図11Cは、いくつかの実施形態に係る、ボックス上にプリントされた平らなアンテナを示す図である。 図12Aと図12Bとは、いくつかの実施形態に係る、3次元基板に組み込まれた、折り曲げられた逆Fアンテナの斜視図と側断面図とである。 図13は、いくつかの実施形態に係る、Lスロットのデュアルバンドの平らな逆Fアンテナの斜視図である。 図14は、いくつかの実施形態に係る、プリントされた、曲がった逆Fアンテナの斜視図である。 図15は、いくつかの実施形態に係る、別の平らな逆Fアンテナの斜視図である。 図16は、いくつかの実施形態に係る、矩形の、電磁的に結合されたパッチアンテナの斜視図である。 図17は、いくつかの実施形態に係る、プリントされた、周波数選択性アンテナを製造するためのプロセスの概略図である。 図18は、いくつかの実施形態に係る、プリントされた、周波数選択性アンテナシステムを製造するための方法のフローチャートである。 図19は、当該技術で既知である、様々な紙基板上にプリントされた導電材料に関する電気抵抗のグラフである。 図20は、いくつかの実施形態に係る、周波数選択性アンテナレッグ要素を選択及び除外するための電子回路のブロック図である。 図21は、いくつかの実施形態に係る、様々なアンテナ構成に関する周波数応答のグラフである。
本開示は、複数のレッグ要素を有する、プリントアンテナを記載している。このアンテナでは、所望の周波数に関してアクティブとなるように、レッグ要素が、個別に選択可能であるか除外可能である。アンテナの様々な部分を利用することにより、アンテナの経路長、すなわち、アクティブである所与のアンテナパターンの部分を、特定の周波数に関するエネルギが採取されるように、調整することができる。すなわち、本アンテナは、動的に変更可能である共振周波数を有し、このアンテナでは、アンテナ要素が、経路長を変更するように、入れられるか外されるように切り替えられる。本アンテナシステムは、多くの周波数を認知することができる広帯域アンテナとして動作する。このアンテナでは、システムが、どの周波数がもっとも優勢な電力源であるかを見出し、受信する電力を最大にするために、アンテナシステムの構成要素及び要素を変更する。
いくつかの実施形態では、レッグ要素の選択は、特定の電気的インピーダンスを有するように、各レッグ要素をチューニングすることによって受動的に生じる。この特定の電気的インピーダンスは、ある共振周波数閾値に繋がり、この閾値より上では、レッグ要素は、もはや応答しない。電気的インピーダンスのチューニングは、異なる電磁的浸透性、誘電率、及び/または導電率を有するインクを使用するなど、レッグ要素を印刷するために使用される材料を調整することによって達成することができる。レッグ要素を製造するために使用される材料のタイプは、アンテナの周波数応答特性に影響するようにも、変化させることができる。アンテナがある周波数を受信すると、レッグ要素は、受信した周波数が、その特定のレッグ要素の共振周波数の閾値より下である場合にアクティブとなり、受信した周波数が閾値より上である場合、アクティブではなくなる。こうして、所与の時点におけるアクティブなレッグ要素の総経路長が、アンテナの全体の共振周波数を変化させる。
他の実施形態では、レッグ要素の選択は、その短絡回路のレッグ要素をともに電子的に切り替えることによって動的に生じ、それにより、レッグ要素を除外し、アンテナ経路長を低減する。電子的な切り替えは、アンテナのレッグ要素に結合された、マイクロプロセッサなどの電子回路によって達成される。
いくつかの実施形態では、レッグ要素のチューニング可能な共振周波数を、テーパが付
されたセグメントを使用するなど、アンテナ要素の何学形状によって達成することができる。いくつかの実施形態では、誘電材料も、アンテナ全体の静電容量を調整するために、アンテナのレッグ要素間にプリントすることができる。
いくつかの実施形態では、本発明のアンテナは、2次元の平らな設計として構成することができる。平らなアンテナは、輸送ボックスなど、基板で形成された対象の、1つまたは複数の面上に延びることができる。
さらなる実施形態では、アンテナ自体が、基板内に組み込まれた、3次元(3D)の何学形状を有している。3Dアンテナは、基板の構成要素上にプリントされた複数の導電体を有している。ここでは、各構成要素は、ともに結合及び積層されて、基板を形成している。本3Dアンテナは、特有に、波状のボール紙の多層構造、及び、波状の層自体の3Dの特徴など、基板材料の3Dの特徴を利用する。3Dアンテナの実施形態は、2次元の(平らな)設計上のアンテナの表面積を増大させることができる。表面積が大きければ、採取することができるエネルギ量が増大し、及び/または、通信のための受信及び送信が向上する。3Dアンテナは、選択可能なレッグ要素を通して、アンテナの経路長を変更することにより、様々な周波数で動作するように調整することもできる。
本実施形態のアンテナは、ラベル、カード、及び、ボール紙などのパッケージなどの、紙ベースの材料を含む、様々な基板上か、ガラスまたはプラスチックなどの、紙ではない材料上にプリントすることができる。本発明のアンテナは、金属及びカーボンベースのインクなどの、任意の導電材料を使用してプリントすることができる。カーボンインクは、グラフェン及びカーボンナノオニオン、またはこれらの混合などの、構造化されたカーボンを含む場合がある。
本実施形態の特性には、本質的にフレキシブルなアンテナ技術と、向上されたRFIDレンジ及びフレキシビリティとが含まれる。本アンテナシステムの用途には、職員の遠隔測定用のバッジまたは衣類、グループのようなエネルギハーベスティング及び通信、独立した、及び、多数の、データ遠隔測定及びデータ収集、手動操作不要の輸送処理、荷役口での認可を含む在庫管理、位置及び内部コンテンツの管理、生鮮品の温度、湿度、衝撃などの監視、ならびに、内部製品または接続された回路の、エネルギハーベスティングされた給電または充電が含まれる。
本実施形態が、ダイポールアンテナに関して基本的に記載されるが、本コンセプトは、アレイアンテナ及びスロットアンテナを含む、任意のタイプのアンテナに適用される。通常は300MHzから24GHzの間の周波数で使用されるスロットアンテナは、このアンテナを取り付けることになる、どの表面からも、このアンテナを切り取ることができ、かつ、(ダイポールアンテナに類似の)概ね無指向性である放射パターンを有していることから、一般的である。スロットアンテナの偏波は線形である。スロットのサイズ、形状、及び、このスロット(キャビティ)の後方に何があるかにより、性能をチューニングするために使用することができる設計変数が与えられる。アンテナの指向性を増大させるために、解決策の1つが、反射器を使用することである。たとえば、ワイヤアンテナ(たとえば、半波長ダイポールアンテナ)を始点に、導電シートを、放射を前方向に向けるように、このアンテナの後方に配置することができる。指向性をさらに向上させるために、コーナの反射器が使用される場合がある。マイクロストリップまたはパッチアンテナが、これらを回路基板上に直接プリントできることから、ますます有用になってきている。
実施形態は、基本的にエネルギハーベスティングに関して記載され、ここでは、アンテナは、エネルギを吸収することによるエネルギハーベスタである。しかし、このコンセプトは、限定ではないが、デジタル信号、アナログ信号、音声信号、及びテレビ信号などの
、すべてのタイプのデータの送信及び受信にも適用される。
従来のアンテナ
無線の2次元(2D)の平らなアンテナの受信を向上させるための設計上の因子が、最初に記載される。アンテナの設計における考慮事項の1つが、アンテナゲインである。単純に言えば、より高いゲインのアンテナにより、アンテナから受信される電力が増大する。アンテナがもっとも長いリーチを有することを確実にするために、高いゲインのアンテナの設計が必要である(たとえば、9dBi以上)。手短に言えば、ゲインが高いと、アンテナのレンジが高くなり、またその逆も真である。別の考慮事項が、サイズ及び向きである。向きに関しては、任意のアンテナからの最適なレンジは、アンテナが、発生源に完全に向いているか、発生源に対して適切に向けられていることを確実にすることによって達成される。サイズに関しては、一般的な経験則として、小さいアンテナはレンジが短く、大きいアンテナはレンジが長い。受動的RFIDアンテナは、数インチから50フィートを越えるまで、アンテナのレンジが変化し得る。大きいアンテナが、小さいアンテナよりも広くに放送することから、概して、アンテナが大きければ、アンテナのレンジが大きくなる。
図1A及び図1Bに示すように、アンテナ偏波は、2Dの(平らな)アンテナの設計における別の考慮事項である。偏波は、アンテナが発生する電磁場のタイプに関する。図1Aに示す線形偏波は、単一の平面に沿う放射に関する。図1Bに示す円偏波は、放射された電力を2つの軸に分割し、このため、できるだけ多くの平面をカバーするように場を「スピン」する、アンテナに関する。アンテナが、発生源の偏波と整列している場合、吸収が向上される。ここでは、線形偏波のアンテナが、円偏波のアンテナよりも多くを受信する。さらに、線形アンテナに関し、2つ以上の軸にわたって電力が分割されないことから、線形アンテナの場は、比較可能なゲインにおいて、円アンテナの場よりも遠くに延び、こうして、アンテナ源と整列している場合、アンテナレンジをより長くすることが可能である。アンテナが、発生源の偏波と整列していない場合、円偏波のアンテナが、線形偏波のアンテナよりも広く拡大する場を有することになる。
抵抗力が、2Dアンテナ設計における、さらに別の考慮事項であり、導電体の抵抗力が増大すると、アンテナの受信が低減される。プリントアンテナが、パッケージの製造などの、材料製造ラインに完全に組み込むことができるRFID技術を達成するために、産業において考慮されてきている。しかし、プリントアンテナの欠点は、プリントアンテナのプリントされたトレースのバルクの導電率が、固体の金属よりも低いことから、その放射効率が、銅のアンテナに比べて低いことである。プリントアンテナの主な欠点は、固体金属からアンテナを製造することに比べると、アンテナの導電性が制限されることである。導電体及び導電性に関する基本的な規則により、導電体の厚さが増大するにつれて抵抗損が低減することが示されている。プリントされたインクのトレースが一様ではない場合であっても、同様の作用が、プリントされたトレースにも適用されることになる。所与の長さ及び幅であり、特定のインクの厚さでプリントされた電気伝達線が、長さに比例するとともに、トレースの幅及び厚さに反比例する全抵抗を有している。抵抗損は、インピーダンスのミスマッチによって生じるよりも、かなり重大に放射効率の損失に寄与する。このことは、以下の方程式によって表現される。
Figure 0007291182000001
遠隔測定の要請が増え、無線電子機器の特性が発展すると、さらに多くの動作電力が必要とされる。向上された、大型のアンテナが、既存のアンテナと同じコストで、必要とさ
れている。
周囲の環境において利用可能である様々な周波数を採取することが可能であるなど、エネルギハーベスティングの他の態様における向上も、遠隔測定及びIoTの用途に関して望ましい。いくつかの慣習的なマルチバンドアンテナシステムは、アンテナとのインピーダンスマッチングを達成するために、整流回路を利用する。他の既知のアンテナ設計には、各アンテナが特定の周波数に関して設計された複数のアンテナが含まれている。このアンテナでは、回路は、異なるアンテナ間で切り替わる。別の既知のタイプのアンテナが、フラクタルパターンを利用する、フラクタル広帯域アンテナである。フラクタルパターンは、フラクタル設計において利用可能である様々な経路長に起因して、複数の周波数を同時に受信することを可能にする。しかし、これらフラクタルアンテナが広帯域であるが、信号電流が複数の周波数にわたって一度に広がることから、このアンテナの、個別の周波数の各々の受信状態が弱い。
周波数選択性レッグ要素を有するアンテナ
本実施形態のアンテナは、アンテナの共振周波数を調整することができるように、アンテナの経路長が変更可能である、単一のアンテナを含んでいる。たとえば、共振周波数は、周囲の環境において、その時点でもっとも強い信号を有するのがどの周波数かに応じて、動的に変化させることができる。このため、本アンテナは、エネルギハーベスティングにおける電力の最適化が可能である。
本アンテナは、連続した経路を形成する複数のレッグ要素を有している。ここで、1つまたは複数のレッグ要素は、除外することができる。すなわち、所望の共振周波数におけるアンテナの動作の間、アクティブではなくすることができる。アンテナは、たとえば、多くの周波数を同時に受信するフラクタルアンテナとは対照的に、特定の共振周波数のみでエネルギを集める。1つの周波数のみが採取されることから、アンテナは、高効率で動作する。採取されていた第1の信号が、もはや利用できないが、第2の信号の強度が増大している場合など、異なる周波数を、エネルギハーベスティングのためのターゲットとすることが望まれる場合、アンテナは、第2の信号の周波数に対応する、異なるアンテナ経路長を有するように調整することができる。
概して、アンテナの長さは、アンテナが設計の対象とする共振周波数の波長に対応するように設定される。たとえば、標準的なダイポールアンテナは、2つのロッドを有しており、このロッドの各々は、ターゲットの共振周波数の4分の1波長の長さである。ダイポールアンテナの全長は、半波長であり、このことは、ロッドの電圧及び電流の定常波に繋がる。定常波は、アンテナの供給ポイントからの電流が、4分の1波長のアンテナロッドを通って下がり、導電体(すなわち、アンテナロッド)の端部から反射され、アンテナロッドに沿って供給ポイントに戻る際の、全体の360度の位相変化によって生じる。波長λ(メートル)は、以下の方程式により、周波数f(MHz)に関連する。
Figure 0007291182000002
このため、受信される周波数が高いと、アンテナの長さは短くなる。本実施形態は、この原理を、プリントされるレッグ要素によって可能にされる、選択可能なアンテナ要素に利用している。
図2A及び図2Bは、周波数選択性要素のコンセプトを示す、アンテナの側断面図である。図2A及び図2Bでは、アンテナ200は、複数のレッグ要素210、220、及び
230を有している。この複数のレッグ要素210、220、及び230は、ともに、たとえば、ダイポールアンテナの1つのアームとしての役割を果たすことができる。レッグ要素が、本開示では、レッグセグメントとも称される場合があることに留意されたい。ダイポールアンテナの第2のアームを形成するために、端部201において接地平面(図示せず)に接続されている。この端部201は、レッグセグメント210の端部である。レッグセグメント210は、長さLを有し、レッグセグメント220は、長さLを有し、レッグセグメント230は、長さLを有している。長さL、L、及びLは、この実施形態では、すべて互いに異なるものとして図示されているが、他の実施形態では、これらの長さは、すべて同じである場合があるか、同じ長さと異なる長さとの組合せである場合がある。また、アンテナ200が、線形であるものとして記載されているが、アンテナ200は、限定ではないが、湾曲形状、らせん形状、または傾斜が付けられた曲げ部を有するものなどの、任意の形状である場合がある。
図2Aでは、レッグ要素210、220、及び230のすべてがアクティブであり、これにより、アンテナ経路長が、LAeff=L+L+Lとなっている。図2Bでは、要素230が除外されており、それにより、アンテナ経路長が、LAeffより短いLBeff=L+Lに低減されている。周波数が、方程式2に関し、波長に反比例しており、LAeff>LBeffであることから、すべての要素がアクティブである、図2Aのモードで動作するアンテナは、レッグ要素230がアクティブではない、図2Bのモードの同じアンテナよりも低い周波数で共振する。このため、図2A及び図2Bは、アーム内の1つまたは複数のレッグ要素の異なる組合せを利用することにより、アンテナアームのアクティブな長さを変化させることが、アンテナの共振周波数をシフトさせることを示している。
本明細書に開示のいずれの実施形態においても、このコンセプトが、周波数応答をさらにカスタマイズするために、アンテナ要素の寸法の調整と組み合わせて利用され得る。たとえば、レッグ要素の幅は、その長さに沿ってテーパを付すことができる。
本実施形態は、基板と、この基板上のアンテナとを有するアンテナシステムを開示している。このシステムでは、アンテナが複数のレッグ要素を有している。複数のレッグ要素は、導電インクを備えており(すなわち、導電材料でプリントされている)、連続した経路を形成している。複数のレッグ要素の少なくとも1つは、アンテナの共振周波数を変更するように、個別に選択可能であるか、除外可能であり、選択されたレッグ要素は、共振周波数に対応するアンテナ経路長を形成する。共振周波数は、複数のレッグ要素における、除外されたレッグ要素がアクティブではないことに起因して、アンテナ経路長を低減することによって変更される場合がある。いくつかの実施形態では、導電インクは、カーボンベースであり、基板は紙を備えている。いくつかの実施形態では、アンテナはエネルギハーベスタである。
周波数選択性材料チューニング
いくつかの実施形態では、レッグ要素は、レッグ要素の材料を調整することによって選択されるか除外される。このことは、電気的インピーダンス、そしてひいては、レッグ要素の周波数応答に影響する。
インピーダンスは、交流電流が要素を通って流れることがどれだけ難しいかを示している。この周波数ドメインでは、インピーダンスは、アンテナが誘導子として作用することに起因して、実数部分と虚数部分とを有する複素数である。虚数部分は、アンテナの周波数f及びインダクタンスLに基づく、誘導リアクタンス成分Xである。
Figure 0007291182000003
受信する周波数が増大すると、リアクタンスも増大し、それにより、特定の周波数の閾値においては、(要素のインピーダンスが、たとえば100オームより高くなる場合に)この要素は、もはやアクティブではなくなる。インダクタンスLは、材料の電気的インピーダンスZによって影響される。ここで、Zは、以下の関係により、透磁率μ及び誘電率εの材料特性に関連する。
Figure 0007291182000004
このため、アンテナの材料特性のチューニングにより、電気的インピーダンスZが変化し、このことは、インダクタンスLに影響し、そしてひいては、リアクタンスXに影響する。
本実施形態は、特有に、異なるインダクタンスを有するレッグ要素が異なる周波数応答を有することになることを確認する。すなわち、高いインダクタンスL(電気的インピーダンスZに基づく)を有するアンテナ要素が、より低いインダクタンスを有する別のアンテナ要素よりも低い周波数で、特定のリアクタンスに達することになる。方程式3から、より高い周波数に比べ、より低い周波数(たとえば、20MHzから100GHz)では、インピーダンスは低い。高いインピーダンスのレッグ要素よりも低いインピーダンスを有するアンテナのレッグ要素は、アクティブとなり、所望の周波数に関する共振に合うように、アンテナの経路長を増大させるために利用される(方程式2に関する)。周波数が増大するにつれて、要素のインピーダンスが、特定の共振周波数の閾値において、増大し、アクティブではなくなる、すなわち、無視されて、アンテナの経路長を効果的に短縮し、共振周波数を変更する。周波数応答に基づくレッグ要素の選択または除外は、電子的に制御する必要なく、材料自体の特性に起因して受動的に行われる。周波数選択性の材料チューニングの、この新規のコンセプトは、アクティブ要素によって形成されるアンテナ経路長を調整することにより、アンテナの最適な共振のチューニングに作用するために使用される。いくつかの実施形態では、アンテナの応答は、アンテナ材料の導電率σによっても影響され得る。
本実施形態は、透磁率、誘電率、及び導電率の、これら材料の特性を利用して、特定の共振周波数の閾値の結果となるように、特定の電気的インピーダンスを有する各レッグ要素を設計する。換言すると、アンテナ材料のチューニングは、エネルギハーベスティング及び電力伝達性能を最大にするための広帯域アンテナ要素を形成するために使用される。結果として得られる「メタアンテナ(meta-antenna)」は、基板にフィットすることができるアンテナ長さの物理的な制限によってのみ制限されるように、メガヘルツからギガヘルツまでのレンジなど、様々な周波数に対し、わずかな増加量で良好にチューニングすることができる。レッグ要素の周波数応答をアンテナの材料へと設計することにより、アンテナは、特有に、受動的に選択可能であるか除外可能であるレッグ要素を有している。すなわち、マイクロプロセッサなどの電子回路は、アンテナの経路長を変更するためには必要ない。代わりに、特定のレッグ要素が、このレッグ要素が設計される対象である特定の周波数において、自然にオンまたはオフにされることになる。
図3A及び図3Bは、アンテナのレッグ要素を選択または除外するための、材料チュー
ニングの使用の実施形態を示す側断面図である。図2A及び図2Bのアンテナ200と同様に、図3A及び図3Bのアンテナ300は、複数のレッグセグメント310、320、及び330を有している。レッグセグメント310、320、及び330は、アンテナの1つのアームを形成することができ、一方、第2のアーム(たとえば、接地平面)は、レッグセグメント310の端部において、端部301で接続されている。レッグセグメント310は、長さL及び透磁率μを有し、レッグセグメント320は、長さL及び透磁率μを有し、レッグセグメント330は、長さL及び透磁率μを有している。長さL、L、及びLは、この実施形態では、すべて互いに異なるものとして図示されているが、他の実施形態では、これらの長さは、すべて同じである場合があるか、同じ長さと異なる長さとの組合せである場合がある。また、アンテナ300が、線形であるものとして記載されているが、限定ではないが、湾曲形状、らせん形状、または傾斜した形状などの、他の形状が使用され得る。
アンテナ300の長さに沿う透磁率は選別されており、ここで、μがμより小であり、μがμより小であるように、(端部301における)接地平面から離れると、透磁率が増大する。透磁率が、インダクタンス、そしてひいては周波数応答に影響する電気的インピーダンスに比例することから、レッグ要素330、そしてひいてはレッグ要素320は、周波数が増大するにつれて、除外されることになり、したがって、アンテナ300の経路長を減少させる。換言すると、レッグ要素320及び330の各々に関し、対応する共振周波数の閾値が存在する。この閾値より上では、レッグ要素320または330の周波数応答が、レッグ要素320または330がアクティブで、アンテナ300に寄与するのに十分なレベルでは、電気を通さないレッグ要素320または330の結果となる。このため、レッグ要素330の共振周波数の閾値より大であるが、レッグ要素320の共振周波数の閾値未満である、受信された周波数においては、レッグ要素330は、その結果として得られるインピーダンスのレベルが高いことに起因して、アクティブではなくなることによって除外され、レッグ要素320が、その結果として得られるインピーダンスが低いことに起因して、アクティブとされることによって選択される。さらに、受信した周波数が、レッグ要素320の共振周波数の閾値の上の、さらに高いレベルである場合、レッグ要素320も、その結果として得られるインピーダンスのレベルが高いことに起因して、アクティブではなくなることによって除外されることになる。
たとえば、図3Aでは、EM信号の受信された周波数は、レッグ要素310、320、及び330のすべての、結果として得られるインピーダンスが十分に低くなることに関して、十分に低く、それにより、レッグ要素310、320、及び330のすべてがアクティブであるようになっている。すなわち、図3Aにおける受信された周波数は、レッグ要素310、320、及び330の共振周波数の閾値未満である。したがって、アンテナの経路長はLAeff=L+L+Lであり、アンテナは、4分の1波長LAeffに対応する共振周波数を有している。図3Bは、受信された周波数が図3Aのものよりも高く、レッグ要素330の、結果として得られるインピーダンスが、レッグ要素がアンテナ300に寄与するには高すぎるように、十分に高くなっている状況を示している。このため、図3Bでは、レッグ要素330は、アクティブではなく、ここで、受信された周波数は、レッグ要素330の共振周波数の閾値より高い。アンテナ経路長は、LAeffより短いLBeff=L+Lにのみへと低減されている。図3Bのアンテナは、図3Aのアンテナよりも高い共振周波数を有することになる。
図3A及び図3Bは、複数のレッグ要素の第1のレッグ要素が、受信された周波数に依存する第1の共振周波数の閾値を有する、アンテナの実施形態を示している。第1のレッグ要素は、受信された周波数が第1の周波数の閾値より大である場合、アクティブではないようにすることにより、アンテナ経路長から受動的に除外される。いくつかの実施形態では、複数のレッグ要素の第2のレッグ要素は、受信された周波数に依存する第2の共振
周波数の閾値を有しており、第2の共振周波数の閾値は、第1の共振周波数の閾値より大であり、第2のレッグ要素は、受信された周波数が第2の共振周波数の閾値未満である場合に、共振によって受動的に選択される。第2のレッグ要素は、受信された周波数が第2の共振周波数の閾値より大である場合に、第1のレッグ要素に加えて受動的に除外され得、アンテナ経路長を減少させる。いくつかの実施形態では、第1の共振周波数の閾値は、第1のレッグ要素の第1の電気的インピーダンスに基づき、第2の共振周波数の閾値は、第2のレッグ要素の第2の電気的インピーダンスに基づく。第2の電気的インピーダンスは、材料特性の差異に起因して、第1の電気的インピーダンスとは異なっている。材料特性は、透磁率、誘電率、及び導電率からなるグループから選択される。
いくつかの実施形態では、アンテナシステムは、基板と、この基板上のアンテナとを含んでいる。アンテナは、複数のレッグ要素を有しており、この複数のレッグ要素は、導電インクを備えるとともに、連続した経路を形成している。複数のレッグ要素の第1のレッグ要素は、受信された周波数と、第1のレッグ要素の第1の電気的インピーダンスとに依存する、第1の共振周波数の閾値を有している。第1の電気的インピーダンスは、透磁率、誘電率、及び導電率からなるグループから選択される材料特性に基づいている。第1のレッグ要素は、アンテナ経路長を変更することにより、アンテナの共振周波数を変更するように、個別に除外可能である。第1のレッグ要素は、受信された周波数が第1の周波数の閾値より大である場合、アクティブではないようにすることにより、アンテナ経路長から受動的に除外される。特定の実施形態では、複数のレッグ要素の第2のレッグ要素が、受信された周波数と、第2のレッグ要素の第2の電気的インピーダンスに依存する第2の共振周波数の閾値を有しており、第2の共振周波数の閾値は、第1のレッグ要素と比較した材料特性の差異に起因して、第1の共振周波数の閾値より高い。第2のレッグ要素は、受信された周波数が第2の共振周波数の閾値未満である場合に、共振によって受動的に選択される。
図4は、アンテナ400の斜視図を示しており、標準的な平らな逆Fアンテナ(PIFA)設計の材料チューニングのコンセプトを実施している。アンテナ400の実施形態は、接地平面405と、アンテナ400のセグメントである複数のレッグ要素401とを有している。レッグ要素401は、第1のレッグ要素410及び第2のレッグ要素420を含んでいる。第1のレッグ要素410は、透磁率μを有しており、第2のレッグセグメント420は、透磁率μを有しており、μ>μである。レッグ要素410は、破線のボックス415によって示すように、その共振周波数の閾値より高い、受信された高い周波数においては、利用可能にはならない。この理由は、レッグ要素410のインピーダンスが高くなりすぎるためである。換言すると、十分に高い周波数では、レッグ要素410は応答せず、電流は、レッグ要素410とレッグ要素420との間の交差部で反射する。このため、「F」形状の経路に沿うアンテナ経路長は短縮され、共振周波数が増大する。より高い周波数では、レッグ要素420も、インピーダンスが高くなりすぎることから、利用不可能になり、それにより、電流が流れる際に沿うアンテナ経路長は、長さがさらに短縮されるようになっている。すなわち、破線のボックス415及び425のエリアは、除外されて、共振周波数を増大させる。
アンテナの長さに沿う材料特性を変更する能力は、アンテナをプリントすることにより、特有に可能にされる。プリントは、たとえば、インクジェットプリント、フレキソプリント、またはシルクスクリーンプリントの方法によって実施することができる。いくつかの実施形態では、材料の導電率は、アンテナに沿って変化する。カーボンベースのインクを使用する実施例では、炭素同素体のタイプ(たとえば、グラフェン、カーボンナノオニオンなど)は、レッグ要素間で変化させることができるか、同素体の導電率を変化させることができる(たとえば、低密度のグラフェンは、より密度の高いグラフェンよりも低い導電率を有する)。いくつかの実施形態では、材料の透磁率は、レッグ要素の周波数の閾
値に影響するように、変化させることができる。たとえば、強磁性体材料(たとえば酸化鉄)は、低周波数(たとえば、500kHZから500MHZ)で使用することができ、常磁性体材料(たとえば、鉄シリサイド)は、高周波数(たとえば、500kHZから5GHZ)で使用することができ、あるいは、反強磁性体材料を使用することができる。いくつかの実施形態では、誘電率が、誘電率のみで、または、導電率及び透磁率と組み合わせて、レッグ要素の所望のインピーダンス値を達成するように、チューニングすることができる。
通常は、慣習的なアンテナ要素は、関連する導電率が特定の共振周波数に影響する、単一のタイプの材料で形成されている。対照的に、本実施形態のアンテナ材料は、プリントされる。ここでは、プリントインクは、共振周波数に関してアクティブであるアンテナの経路長を変更することにより、その共振周波数に影響するように、単一のアンテナのサブセクション内の可変特性によってカスタマイズすることができる。材料特性のカスタマイズは、レッグの透磁率、誘電率、及び/または導電率の変更によって達成することができる。このアンテナ材料の調整は、エネルギの受信及び送信が向上したケースにおいて、アンテナ及び/またはマッチングネットワークの要素を、さらに変更することがなくなり得る。
周波数選択性デジタルチューニング
異なる周波数に応答するようにアンテナ材料をチューニングすることによる、経路長の変更に加え、いくつかの実施形態では、アンテナの経路長を、レッグ要素を電子的に選択または除外することによって変更することができる。図5は、図4に類似のPIFAの設計のアンテナ500を示している。ここでは、アンテナ500は、1つのアンテナアームとしての役割を果たす接地平面505と、第2のアンテナアームとしての役割を果たす複数のレッグ要素501とを有している。複数のレッグ要素501は、第1のレッグ要素510、第2のレッグ要素520、及び第3のレッグ要素530を含んでいる。レッグ要素510、520、及び530は、レッグ要素510とレッグ要素520との間の隙間560、及び、レッグ要素520とレッグ要素530との間の隙間561など、レッグ要素間に隙間を伴って、蛇行したパターンを形成する平行なセグメントである。電気接続部515、525、及び535は、レッグ要素間の交差部において、レッグ要素510、520、及び530のそれぞれの端部に接続されている。電気接続部515、525、及び535は、マイクロプロセッサなど、電子回路550に電気的に結合された電気リードである。本開示の「チューニング回路」セクションで記載された電子回路550は、レッグ要素をともに短絡させて、これらレッグ要素を除外することができる。たとえば、接続部515及び525は、レッグ要素510がレッグ要素520に対して短絡されて、レッグ要素510の存在を効率的に除去(すなわち、除外)するように、電子回路によってブリッジさせることができる。
図6Aから図6Cは、アンテナ500が共振する周波数を変更するように、レッグ要素がどのように除外され得るかを示している。Sパラメータ(S1,1)のグラフが、レッグ要素の様々な組合せに関して示されている。図6Aでは、アンテナ500全体が使用されている。ここでは、すべてのレッグ要素501が選択されており、アクティブである。共振周波数は、図6Aでは2.42GHzである。図6Bでは、レッグ要素510は、ブランクエリア517によって示されるように、機能的に除去されている。このレッグ要素510の除外は、接続部515と接続部525とを、電子回路550を使用してともにブリッジすることによって達成され、こうして、レッグ要素510をレッグ要素520に対して短絡させる。図6Bにおいて、結果として得られるアンテナ経路長は、図6Aのアンテナ全体より短く、したがって、中心の周波数は、より高く、2.475GHzにシフトする。図6Cでは、レッグ要素510とレッグ要素520とは両方とも、ブランクエリア517とブランクエリア527とによって示されるように、除去されている。レッグ要素
510及び520は、接続部515、525、及び535をともにブリッジすることにより、除外されており、こうして、レッグ要素510、520、及び530を互いに対して短絡させる。図6Cのアンテナ経路長が、図6Aまたは図6Bよりもさらに短くなっているにも関わらず、周波数は予測されるほど増大しないが、低く、2.34GHzにシフトする。この理由は、F形状の設計において平行なレッグ要素を除去すること(たとえば、隙間560及び561に起因する静電容量の影響の除去)に起因して、静電容量が低減されたためである。こうして、アンテナ全体の幾何学形状(たとえば、蛇行形状、螺旋状、線形)が、所望の共振周波数に関し、アンテナを調整するように、選択可能なレッグ要素と組み合わせて使用することができる、静電容量の影響を生じ得ることを見ることができる。
図5、及び、図6Aから図6Cは、アンテナシステムが、複数のレッグ要素の各々に対する接続部を有する電子回路を有する実施形態を示している。電子回路は、複数のレッグ要素の内の第1のレッグ要素を第2のレッグ要素に対して短絡させることにより、複数のレッグ要素の内の第1のレッグ要素を動的に除外するように構成されている。
いくつかの実施形態では、エネルギハーベスティングシステムは、アンテナシステム及び電子回路を含んでいる。アンテナシステムは、基板と、この基板上のアンテナとを含んでいる。アンテナは、複数のレッグ要素を有しており、この複数のレッグ要素は、カーボンベースの導電インクを備えるとともに、連続した経路を形成している。複数のレッグ要素の各々は、アンテナの共振周波数を変更するように、個別に選択可能であるか、除外可能であり、選択されたレッグ要素は、共振周波数に対応するアンテナ経路長を形成する。電子回路は、複数のレッグ要素の各々に対する接続部を有しており、ここで、電子回路は、複数のレッグ要素の内の第1のレッグ要素を第2のレッグ要素に対して短絡させることにより、複数のレッグ要素の内の第1のレッグ要素を動的に除外するように構成されている。
いくつかの実施形態では、電子回路は、周囲の環境内の、複数の利用可能な周波数を識別し、この複数の利用可能な周波数の電力レベルに基づき、共振周波数を設定する識別回路と、複数のレッグ要素の内のレッグ要素を選択または除外することにより、共振周波数に対応するように、アンテナ経路長を調整する、接続部と通信している切替回路と、を含んでいる。特定の実施形態では、識別回路は、共振周波数を、複数の利用可能な周波数の内の、もっとも高い電力レベルを有する周波数となるように設定する、マイクロプロセッサを備えている。
いくつかの実施形態では、材料チューニングの実施形態と、電子的な切替えの実施形態とを、組み合わせて使用することができる。たとえば、図4の異なる透磁率のレッグ要素は、図5の電気的なリード接続部を有することもできる。各方法を合わせることは、実施することができる共振周波数応答の変化の、さらなるカスタマイズに繋がり得る。このことは、たとえば、図7のSパラメータのグラフ700によって示されている。このカーブは、様々な長さの線形アンテナに関するS(1,1)の応答を示している。ここでは、カーブ710は、1の単位長さを示し、カーブ720は、2の単位長さに関するものであり、カーブ730は、3の単位長さに関するものであり、カーブ740は、0.75の単位長さに関するものであり、カーブ750は、0.5の単位長さに関するものである。見ることができるように、共振周波数のピークは、アンテナ長さが異なっていることに起因して、互いに対してシフトする。カーブ715は、カーブ710の1つの共振ピークに関する、電気的な切り替えと組み合わせての材料チューニングの使用を示している。すなわち、カーブ710の狭い共振ピークは、デジタルチューニングが材料チューニングと合わせられた際に、広げられる。換言すると、要素を電子的に除外することによって形成されるアンテナ長さは、依然として、特定の共振周波数応答に繋がることになるが、材料チュー
ニングが合同して使用される場合、これら共振周波数周りのより広いバンドの応答を伴う。見ることができるように、本アンテナは、特定の周波数周りの共振周波数レンジを含む、特定の周波数で動作するように組み立てられた共振器としての役割を果たすことができる。
静電容量チューニング
さらなる実施形態では、誘電材料は、アンテナの静電容量を変更するように、アンテナの構造内及び/または基板内にプリントすることができる。たとえば、プリントされた誘電要素は、複数のレッグ要素の内の2つのレッグ要素間で利用することができる。この静電容量チューニングのコンセプトは、図8A及び図8Bに示すマイクロストリップアンテナ800によって示されている。ここで、図8Aは平面図であり、図8Bは側断面図である。パッチアンテナ810は、マイクロストリップ伝達線820によって給電され、このパッチアンテナ810とマイクロストリップ伝達線820との両方は、基板830の表面上に取り付けられている。接地平面840は、基板830の反対側に取り付けられている。パッチアンテナ810、マイクロストリップ伝達線820、及び接地平面840は、高い導電率の金属(通常は、慣習的なアンテナでは銅)で形成されている。パッチアンテナ810は、長さLと、幅Wとの寸法を有している。基板830は、誘電率εを有する、厚さhの誘電回路基板である。
接地平面840、または、アンテナ810及び伝達線820によって形成されたマイクロストリップの厚さは、決定的に重要ではない。通常、高さhは、作動波長よりもかなり低いが、波長の0.025(波長の1/40)よりもかなり短いものとすべきではなく、そうでなければ、アンテナの効率が低減されることになる。
パッチアンテナ810の動作周波数は、長さLによって判定される。中心周波数f(すなわち、共振周波数)は、おおよそ、以下によって与えられる。
Figure 0007291182000005
こうして、アンテナ800の共振周波数は、基板830の誘電率によって影響される。図8Bの実施形態では、誘電体層850は、基板830の集合的な誘電率を変更するように、基板830の前面(及び/または後面)上にプリントすることができる。他の実施形態では、基板830は、段ボール構造など、層状である場合があり、ここで、誘電要素は、ボール紙の外側表面のいずれかの上、及び/または、ボール紙の中間層内(たとえば、波状層上)にプリントすることができる。プリントされた誘電体を利用することにより、一意的に、静電容量、そして最終的には、アンテナの周波数応答を調整するための、材料の特性及び寸法の良好なチューニングが可能になる。
いくつかの実施形態では、プリントされた誘電要素は、アンテナの周波数応答をカスタマイズするために、レッグ要素間で利用することができる。たとえば、図5に戻ると、隙間560及び/または隙間561は、プリントされた誘電インクを使用して形成することができる。インクの特性は、レッグ要素間に特定の静電容量を形成するように、カスタマイズすることができる。プリントされた誘電体の寸法も、プリントプロセスによって制御することができる。
基板上の2Dアンテナ
アンテナ設計の実施例を、ここで提供する。このアンテナ設計では、上述の周波数選択
性の特性を、基板上のプリントアンテナとともに実施することができる。平らな(2D)アンテナを、最初に記載する。
図9は、図4及び図5に関して前述した、PIFA設計として構成されたアンテナ900を示している。PIFAアンテナ900は、1つの導電体としての役割を果たすF形状のアンテナ901と、このダイポール設計における別の導電体の役割を果たす接地平面905とを有している。アンテナ900に関する、例示的なアンテナゲイン応答910(dBi)は、2.443GHzのBluetooth(登録商標)の周波数でモデル化されており、すべての方向において一様な放射パターンを示している。換言すると、アンテナゲイン応答910は、このアンテナ900が、実質的に任意の方向に放出するか、任意の方向から受信することができる、受信または送信に関する指向性を有している。
図10は、直交する平らなアーム1001とアーム1002との、同一の対を2つ有する、波状アンテナ1000を示している。アーム1001及び1002の各々は、本開示の材料チューニングの実施形態、電子的に切り替え可能な実施形態、及び/または、静電容量チューニングの実施形態で記載したように、選択可能なレッグ要素を有して構成することができる。アーム1001及び1002の各々の縁部は、周方向の対数周期の角度セクタθの、二等分線1005を越えて前後にスイングする、波状カーブである。アーム1001、1002の各々は、二等分線1005の一方側での幾何学的に類似のセルの交互に並んだシークエンスである。セクタ角度θは、180度以上に達し得、それにより、隣接するアームのセルが差し込まれるが、接触しないようになっている。各アームの何学形状は、2つの角度、対数周期の成長定数、並びに、内側の半径及び外側の半径によって完全に特定されている(DuHamel、及びFilipovic & Cencichによる既知の技術に記載されている)。高性能の波状アンテナは、通常、自己相補的であり、動作する周波数帯にわたって安定した放射パターン及びインピーダンスを達成するように、タイトに巻かれている。応答1010と応答1020とが、2つの設計において示されている。2.75GHzの共振周波数のアンテナが、応答1010に示され、5GHzの共振周波数が応答1020に示されている。
図11Aから図11Cは、輸送ボックスなどの対象1120の、隣接する2つの側部1122と側部1124との上にプリントされた、平らなアンテナ1110を示している。アンテナ1110の、2つのアンテナアーム1101とアンテナアーム1105と(すなわち導電体)は、たとえば、PIFA設計の接地平面及びF形状の要素である場合がある。図11B及び図11Cは、要素1101の長さを、(図7のグラフのように)所望の共振周波数に関して変更することができることを示しており、この実施形態では、アンテナ要素(アーム)1001の経路長は、図11Cよりも図11Bの方が短い。アンテナの経路長の変化は、アンテナアーム1101内のレッグ要素を除外することによって達成される場合がある。
PIFA及び波状アンテナの幾何学形状が既知であるが、図9及び図10は、本実施形態の周波数選択性アンテナ設計が、単純なものから複雑なものまで、幅広い様々な幾何学形状に適用できることを示している。本アンテナがプリントされていることから、一般的なアンテナよりもさらに複雑な幾何学形状が達成可能である。図11Aから図11Cは、本開示のアンテナが、偏波を向上させるためのものなど、3Dの方式で構成することができることを示している。
基板上の3Dアンテナ
本周波数選択性プリントアンテナは、アンテナ構成要素を、表面上への電気的にアクティブなレイヤリング、及び、電磁場の受信のための、基板の中間層として組み込むことにより、3D構造として実施することもできる。一般的なアンテナの受信を向上させるため
に、アンテナのサイズ、数、及び寸法は、本実施形態では向上されている。本明細書のいくつかの実施形態が、段ボールなど、パッケージングに関する基板を記載するが、紙、ガラス、プラスチックを含む、多層の基板の他のタイプも、本開示の範囲に含まれる。
いくつかの実施形態では、基板材料自体は、2Dまたは3Dのエネルギデバイスである。慣習的なアンテナにおけるような、基板の外側にプリントされたアンテナに過ぎないものではなく、真の2D/3Dエネルギハーベスタである。本開示の、周波数選択性アンテナ技術は、多層材料の層内に組み込まれており、段ボール箱などのパッケージングのタイプを含んでいる。本アンテナ技術は、RFID及び発展したエレクトロニクスに給電するように、遠隔測定及びエネルギハーベスティングに関するRF受信の目的のための導電材料及び誘電材料を利用する。アンテナは、たとえば、915MHzまたは2.45GHzに関するRFエネルギハーベスティング機能を提供するなどの、エネルギハーベスティングまたは通信か、他の適切であるか利用可能な電磁エネルギ源のために使用することができる。
3Dの特徴を、アンテナ構成要素を曲げるなどにより、2Dアンテナに追加して、アンテナの受信を向上させることができることが知られている。しかし、曲げられた材料は、通常、曲げによって歪められた場合に、アンテナの入力インピーダンスが変化することから、抵抗値の低減に起因して、より高い損失を生じる。
本実施形態では、曲げられたアンテナ材料における抵抗値の低減は抑制されており、それにより、構造の曲げにより、マッチングアンテナ全体のインピーダンスを向上させるように調整することができる3Dの効果を提供するようになっており、全体の性能が向上する。ボール紙などの3D構造の層を、導電体及び誘電体として使用して、共振空洞を形成することにより、高い受信性能のみならず、複数の周波数を可能にする。3D構造を介して、結果として性能が向上すると、抵抗の制限を、構造の設計において緩和することができる。
図12Aは、折り曲げられた逆Fアンテナ1200(FIFA)の斜視図を示しているが、基板に組み込むことができる3D構造として実施されている。図12Bは、部分側断面図である。アンテナアーム1210は、前述のような周波数選択性要素を伴って構成することができる、放射要素である。アンテナアーム1210は、基板1230の第1の層1231上の頂部金属被覆層1212と底部金属被覆層1214とから形成されている(明確化のために、図12Aでは基板1230が示されていないことに留意されたい)。スロット1216は、金属被覆層1212と金属被覆層1214との両方からエッチングされており、アンテナアーム1210をサブパッチ1218に分離している。3つのサブパッチ1218を形成する、層1212及び1214の各々の2つのスロット1216が、単純化のために、図12Bに示されているが、他の構成が可能である(たとえば、5つのサブパッチ、または、任意の適切な数のサブパッチ)。バイア1219が、金属被覆層1212と金属被覆層1214とを接続している。アンテナが適切に作動するために、アンテナアーム1210は、接地平面1240の上方の特定の高さに設けられており、供給ピン1280及び短絡ピン1290によって支持され、放射アンテナ要素1210の頂部金属被覆層1212と底部金属被覆層1214とを接続するとともに、下の接地平面1240へと繋がっている。接地平面1240は、図12Bには、基板1230の第2の層1232の内側表面上に示されているが、外側表面(すなわち、第2の層1232の外側表面)上にあるものとすることもできる。動作時には、リードワイヤ1285が、アンテナ1200からの出力信号を収集するように、供給ピン1280との電気接続を提供する。
図12Bでは、基板1230は、波状中間物として実施された3D構造である。たとえば、第1の層1231は、第1の線形ボードとすることができ、第2の層1232は、第
1の層1231上に積層された第2の線形ボードとすることができ、第1の層1231と第2の層1232との間の隙間Gには、中間層1233が存在する。中間層1233は、この実施形態では、縦溝のある、波状の層として示されている。基板1230の設計では、隙間Gは、アンテナアーム1210と接地平面1240との間の所望の高さに従ってカスタマイズすることができる。さらなる実施形態では、プリントされた誘電構成要素は、隙間G内にある、第1の層1231、第2の層1232、及び中間層1233の任意の層上など、アンテナ1200の集合的な静電容量を調整するように、隙間G内に挿入することができる。いくつかの実施形態では、中間層1233の各部は、レッグ要素を選択及び除外するように、電子回路に電気接続することができるように、導電材料でプリントすることができる。これらプリントされた導電要素1235a及び1235bの実施例が、中間層1233の、上方表面と下側表面とのそれぞれに示されている。
いくつかの実施形態では、接地平面1240は、シールド要素として使用することができる。たとえば、基板1230が、輸送コンテナへと形成される段ボールである場合、基板1230は、第2の線形ボード1232が、箱の外部上にあるように、向けることができる。第2の線形ボード1232をカバーする接地平面1240を有する、コンテナの任意の部分は、コンテナ内の内容物のための電磁シールドを有することになる。接地平面1240が、図12Bに示すような第2の線形ボード1232の内側表面上か、第2の線形ボード1232の外側表面(第2の線形ボード1232の外側)上にある場合があることに留意されたい。
図13は、Lスロットのデュアルバンドの平らな逆Fアンテナ(PIFA)1300の斜視図である。アンテナ1300は、アンテナアーム1310、接地平面1340、供給ピン1380、及び短絡回路プレート1390としての役割を果たす、矩形の平らな要素を含んでいる。短絡回路プレート1390は、図13では、複数の短絡回路ピンとして例示されている。平らな要素(アンテナアーム1310)と接地平面1340との間の短絡回路プレート1390は、通常、短絡される平らな要素の側部よりも狭い。LスロットのPIFAスタイルのアンテナアーム1310は、アンテナ1300が調整可能な共振周波数を有することを可能にするように、その中に組み込まれた周波数選択性レッグ要素を有することができる。アンテナ1300は、図12A及び図12Bに関して記載したものと類似の方式で、3D基板に組み込むこともできる。図13は、アンテナゲイン応答1303をも示している。アンテナゲイン応答1303では、アンテナ1300は、接地プレート1340に対して平行な平面において、放射方向において、一様に放射している。
図14は、プリントされた、曲がった逆Fアンテナ1400の斜視図である。アンテナ1400は、誘電体1430上のエッチングされた金属線を有しており、曲げられた逆F形状のアンテナアーム1410を形成している。Fの外側の叉は、供給ピン1480により、誘電体1430の後面上に位置する接地平面(この図には見られない)の縁部に対して短絡している。接地平面は、誘電体の一セクション、すなわち、曲げられた逆Fのアーム1410の直下に来ないセクションをカバーしている。アンテナアーム1410は、供給ピン1480により、第2の叉において、接地平面の縁部に関して供給される。曲げられた逆Fのスタイルのアンテナアーム1410は、アンテナ1400が調整可能な共振周波数を有することを可能にするように、その中に組み込まれた周波数選択性レッグ要素を有することができる。アンテナ1400は、図12A及び図12Bに関して記載したものと類似の方式で、3D基板に組み込むこともできる。図14は、アンテナゲイン応答1403をも示している。アンテナゲイン応答1403では、アンテナ1400は、接地プレート1340に対して平行な平面において、放射方向において、一様に放射している。
図15は、別の平らな逆Fアンテナ1500の斜視図を示している。この図では、このPIFAスタイルは、設計のさらに別の実施例であり、この設計には、周波数選択性レッ
グ要素を3D構造として組み込むことができる。アンテナ1500は、通常、アンテナアーム1510、接地平面1540、及び、平らな要素の短絡された側部の幅よりも狭い幅の短絡回路プレート1590としての役割を果たす、矩形の平らな要素を含んでいる。供給ピン1580も示されており、アンテナ1500によって受信される、周波数信号に関する供給ポイントとしての役割を果たす。アンテナゲイン応答1503aが、対応するS(1,1)の応答のプロットであるグラフ1503bで示されている。
図16は、矩形の、電磁的に結合されたパッチアンテナ1600の斜視図である。EM結合したパッチアンテナ1600は、電磁的に結合したパッチ要素1610と供給ライン1680とを有している。パッチ要素1610は、2つの誘電体の基板1630の上方誘電体1631の頂部に位置している。2つの誘電体の基板1630は、下方誘電体1632をも含んでいる。供給ライン1680は、上方誘電体基板1631と下方誘電体基板1632との間にあり、パッチ1610の下に延びている。バンド幅は、厚い基板1630(2つの誘電構造が、単一の層よりも厚い)の頂部上にパッチ要素1610を有することによって向上され、一方、スプリアス放射が、接地平面1640の近くに位置する供給ライン1680を有することにより、制限されている。接地平面1640は、誘電体1632の後面上にある。周波数選択性レッグ要素は、パッチ要素1610に組み込むことができ、全体のアンテナ1600は、基板材料に組み込まれた3D構造として構築することができる。アンテナゲイン応答1603も示されている。
図12A/Bから図16は、本開示の周波数選択性レッグ要素を、3D構造として組み込むことができる、既知のタイプのアンテナの実施例である。いくつかの実施形態では、3D構造は、波状中間物など、多層の基板に実施することができる。使用される場合がある、波状構造の実施例には、単一の面、単一の壁、2つの壁、及び3つの壁が含まれる。単一の層、2つの層、または、さらに多くの層を、高受信アンテナシステムとなるように、追加することができる。基板の構成要素上に個別に堆積された層は、最終的な構造へと、積層するか接着することができる。いくつかの実施形態では、基板層をともに接着するために使用される接着剤も、中間層内のプリントされた誘電体の使用などにより、アンテナの集合的な静電容量を変更することによって、アンテナの周波数応答を調整するために利用することができる。
図12Bによって示されるものなどの、いくつかの実施形態では、アンテナのための基板には、第1の層と、この第1の層に積層された第2の層と、第1の層と第2の層との間の隙間にある中間層とが含まれている。複数のレッグ要素は、第1の層上にあり、この複数のレッグ要素が、アンテナの第1のアンテナアームを形成している。アンテナは、第2の層上の第2のアンテナアーム(たとえば、ダイポールアンテナのための接地平面)と、中間層上の導電体(たとえば、導電要素1235a及び1235b)とをさらに含み、導電体が、第2のアンテナアームを複数のレッグ要素に電気的に結合している。特定の実施形態では、多層基板は、ボール紙とすることができ、中間層は、波状中間物である。いくつかの実施形態では、基板の第1の層と第2の層との間の隙間は、第1のアンテナアームと第2のアンテナアームとの間の誘電体としての役割を果たす。いくつかの実施形態では、隙間の特性は、アンテナの作用に影響するようにカスタマイズすることができる。たとえば、隙間の距離、及び、隙間内の物質(たとえば、空気、中間層のための基板材料、及び、隙間に挿入される誘電体)の特性は、アンテナの静電容量の影響、そしてひいては、アンテナの周波数応答を変更することができる。
一般的な波状中間物にある、縦溝の構成(波の平面に対して垂直なz方向に延びるx-y平面内の波のパターン)など、様々なタイプの3Dの特徴が、基板で利用され得る。しかし、x方向、y方向、及びz方向における波、または、様々なタイプの波のパターンなど、他の3Dの特徴が可能である。概して、本開示の実施形態で使用される3Dの特徴は
、シャープな縁部がアンテナ内の電気経路における不連続部を生じることから、湾曲した遷移部を有するものとする。いくつかの実施形態では、基板の3Dの特徴は、アンテナの共振周波数にも寄与するようにも設計することができる。たとえば、中間層が、切替回路への電気接続としての役割を果たすように、この中間層上にプリントされた電気伝導線を有する場合、波の周期は、採取されるか送信されることが望まれている共振周波数に従って設計することができる。
パッケージング材料を実施例として使用すると、本アンテナをパッケージングコンテナに組み込むことにより、エネルギハーベスティングに関する機能性を著しく増大させることが可能になる。サンプルの構成として、80%のエリアに、アンテナ材料が組み込まれている、1ftの側部を有する小さいボックスに関し、パッケージングコンテナは、約2.6ボルトにおいて、0.5ミリアンペアから1ミリアンペアの大きさで提供することができる。貯蔵デバイスを低コストの超コンデンサのように使用することで、この電流量が、慣習的なエネルギハーベスティングデバイスよりも著しく多くの機能(メモリを含む)に給電することができる。向上された機能性の用途の実施例は、輸送の間、パッケージの温度を記録することである。
3Dプリントアンテナの製造
図17は、プリントされた、周波数選択性アンテナを製造するための例示的なプロセスの概略図である。図17の概略図は、3Dアンテナのパッケージング材料を示しているが、このプロセスは、2D(たとえば、単一層)の基板にも適用される。図18は、対応するフローチャートである。図17及び図18のいくつかの実施形態では、エネルギハーベスティングデバイスは、プリントされたパッケージング材料を含んでおり、電気伝導性材料は、パッケージング材料シートにプリントされている。プリントされたパッケージング材料は、パッケージングコンテナに形成される。
図17の実施例では、基板材料は、カードストック1720であり、このカードストック1720上に、マルチジェットフュージョンプロセス1710を使用することなどにより、アンテナ材料がプリントされる。図17の実施形態では、プリントされたカードストックが波状にされ、最終的な構造の層が、接着などにより、プロセス1730において組み立てられる。プロセス1730は、第1のライナ1731、波状ローラ1732、接着剤塗布機1733、圧力ローラ1734、ヒータローラ1735、及び第2のライナ1736を示している。第1のライナ1731は、図12Bの中間層1233に対応しており、第2のライナ1736は、図12Bの第1の層1231または第2の層1232とすることができる。別のライナ(図示せず)が、図12Bの他のライナ(第2の層1232または第1の層1231)を形成するために追加される。
概略的な実施形態では、プリントされたパッケージング材料は、複数の層を含むことができ、ここで、組み立てられた層は、共振空洞を形成することなどにより、アンテナの共振周波数に影響する寸法及び材料特性を有することができる。結果として得られるパッケージング1740は、図17に示す段ボールコンテナなど、3Dエネルギハーベスティングデバイス(または、送信及び/または受信デバイス)である。様々な実施形態では、より大であるエリアが利用可能であることに起因して、平らなアンテナを使用することができ、あるいは、多層(3D)デバイスを、用途に応じて使用することができる。
いくつかの実施形態では、アンテナがプリントされる基板は、シートまたはフィルムの形態の、紙ベースまたはプラスチックベースの基板など、室温におけるその自然な状態では、柔軟性がある。いくつかの実施形態では、基板は、ガラスまたはプラスチック材料に関する加熱された状態など、1つの状態では、所望の3Dの何学形状に形成することができるが、基板は、室温においては、固くなり、柔軟性がなくなる。様々な実施形態では、
基板は、パッケージング、ラベル、チケット、及び識別カードなどの用途で使用するための、使い捨てにできる、及び/または、生物分解性である、低コストの材料とすることができる。紙、またはプラスチックの基板が、これら低コストの用途では特に有用であり得る。
図18は、たとえば、エネルギハーベスティングシステムとすることができる、周波数選択性アンテナシステムを製造するための例示的方法のフローチャート1800である。ステップ1810では、基板が提供される。基板は、単一層の材料とすることができるか、3D構造を有する多層材料とすることができる。ステップ1820は、導電インクを使用して基板上にアンテナをプリントすることを含んでおり、アンテナは、連続した経路を形成する複数のレッグ要素を備えている。複数のレッグ要素の各々は、アンテナの共振周波数を変更するように、個別に選択可能であるか、除外可能であり、選択されたレッグ要素は、共振周波数に対応するアンテナ経路長を形成する。アンテナは、基板材料の単一の表面上にプリントされた平らなアンテナとすることができるか、様々なアンテナ構成要素が基板の層内に組み込まれた3D構造とすることができる。選択可能/除外可能なレッグ要素は、材料チューニング(たとえば、インクに使用される導電材料のタイプ、及び/または、透磁率、誘電率、及び導電率などの材料特性の調整)、電子的に切替え可能な接続、プリントされた誘電要素、レッグ要素の寸法(たとえば、テーパが付された幅)、またはこれらの任意の組合せを使用して、様々な共振周波数の閾値に関して調整することができる。1820におけるプリントには、いくつかの実施形態では、誘電インクを使用した誘電構成要素をプリントすることを含むことができる。
レッグ要素が動的に選択可能/除外可能である実施形態に関し、ステップ1830では、電子回路が、アンテナに結合されている。電子回路は、アンテナのレッグ要素に対する接続部を有し、それにより、レッグ要素を個別に制御することができるようになっている。電子回路は、周囲の環境内の利用可能な周波数をサーチし、各周波数の電力レベルを分析することができる。いくつかの実施形態では、電子回路は、どの周波数がもっとも強力な電力源となるかに基づき、ターゲットとなる共振周波数を選択する場合がある。他の実施形態では、電子回路は、電子回路及びアンテナに関連付けられたユーザまたはデバイスによって受信されるように、特性を持たせられた波長に従って、ターゲットとなる共振周波数を選択する場合がある。アンテナがエネルギハーベスティングアンテナである実施形態では、本方法は、エネルギ貯蔵構成要素をアンテナに結合することを伴う、ステップ1840をも含んでいる。エネルギ貯蔵構成要素は、アンテナによって受信されたエネルギを貯蔵し、また、たとえば、バッテリまたはコンデンサとすることができる。ステップ1850では、デバイスは、エネルギ貯蔵構成要素に結合されており、それにより、デバイスには、アンテナによって採取されたエネルギによって給電することができるようになっている。
プリントインク
慣習的な銀またはカーボンのインクを含む、様々なタイプのインクを、本発明のアンテナシステムをプリントするために使用することができる。いくつかの実施形態では、アンテナをプリントするためのインクは、高い導電率を得るように、カーボン(たとえば、グラフェンなど)と金属との混合物とすることができる。いくつかの実施形態では、アンテナは、新規のマイクロ波プラズマ及び熱分解の設備及び方法によって形成された、特徴的なカーボン材料、及び、カーボン材料の複合材料を含む、プリント可能な導電性カーボンで形成されている。このカーボン材料は、たとえば、「Carbon Allotropes」と題する、米国特許第9,862,606号、及び、「Seedless Particles with Carbon Allotropes」と題する、米国特許出願第15/711,620号に開示されたカーボン材料などである。これら文献の両方は、本出願の出願人が所有しており、本明細書により、参照することによって完全に組み込
まれる。プリント構成要素の様々な実施形態のためのカーボン材料のタイプには、限定ではないが、多層フラーレン、グラフェン、グラフェンオキシド、硫黄ベースのカーボン(たとえば、硫黄が溶け、散乱したカーボン)、及び、金属を含むカーボン(たとえば、ニッケルが注入されたカーボン、銀のナノ粒子を有するカーボン、金属を有するグラフェン)が含まれる。グラフェン及び/またはカーボンナノオニオンなどの、明確な構造を有するカーボンの混合物も、使用することができる。2つ以上のタイプのカーボンを、材料特性、そしてひいては、各レッグ要素の共振周波数の閾値をチューニングするために、アンテナのレッグ要素に利用することができる。
いくつかの実施形態では、インクは、チューニング可能な、多層の球形のフラーレン、及びそのハイブリッドの形態を含み、フラーレンは、このフラーレンを提供するために使用される分解プロセスのパラメータ(たとえば、熱分解またはマイクロウェーブの分解)によってチューニング可能である、物理的構造を有している。慣習的なカーボンインクを、高度に導電性とすることができるが、いくつかの従来の材料は、高いゲインで、低コストで、プリント可能なデバイスを真に提供するために必要である、固有の静電容量特性及び誘電特性が欠如している。さらに、これら材料で通常は見られる高レベルの不純物は、1)信号のRF及び電力のRFの送信及び受信の、固有の周波数を動的に制御及びチューニングすること、2)単一、または複数のデバイスに向けて、所望の方向(複数可)で、RFエネルギを動的に向ける能力を可能にすること、ならびに、3)2つ以上のデバイス間での通信と、電力の送信との、両方をサポートするために、実質的なレベルに全体のゲインを向上させることのために、他の材料との継続的なドーピングまたは組込みを防止する。本実施形態では、チューニング可能であるカーボンは、幅広い様々な適切な基板上に効果的にプリントされる一方で、幅広い様々な適用可能なインクの組成に組み込むことができ、また、これら障害を克服するために必要な性能を提供することができる。これらカーボン材料及びアンテナは、多様な機能をサポートすることもできる。様々な目的の形態のRFの、同時の、または複合的な送信と受信とを、切替え要素及び/または一次的な変調を使用して、エネルギハーベスティング、信号送信、またはその両方に利用することができる。制御ハードウェアの補助により、これらアンテナは、信号の暗号解読に加え、ベースキャリアまたは側波帯の周波数エネルギの実際のハーベスティングをサポートすることができる。
いくつかの実施形態では、プリント可能なインクは、視覚的ディスプレイ構成要素上の材料の層内で使用するためのものなど、透過性である。
いくつかの実施形態では、誘電インクは、本開示において前述したように、本アンテナシステムにおいて誘電要素をプリントするために使用される場合がある。誘電インクのための誘電材料の実施例には、限定ではないが、無機誘電体(たとえば、酸化アルミニウム、タンタル酸化物、及び二酸化チタン)、ならびに、ポリマ誘電体(たとえば、ポリテトラフルオロエチレン(PTFE)、高密度ポリエチレン(HDPE)、及びポリカーボネート)が含まれる。
いくつかの実施形態では、磁気誘電(MD)インクは、アンテナ要素を形成するために、本アンテナシステムで使用することができる。磁気誘電インクは、基板とプリントアンテナとの間の層を形成するためにも使用することができ、アンテナ効率の向上、及び、アンテナの小型化を可能にし、また、アンテナが任意のタイプの基板上で動作できるように、デカップリング材料としての役割を果たす。材料における、アンテナの小型化技術は、アンテナサイズにおける、材料の電磁パラメータの影響に基づいている。電気的波長λは、以下のように、屈折率の値に反比例する。
Figure 0007291182000006
Figure 0007291182000007
方程式6では、cは光速であり、fはアンテナの共振周波数である。方程式7は、誘電率εと透磁率μとの各々が、実数部分(ε’及びμ’)と虚数部分(ε’’及びμ’’)とを有し、虚数部分は、周波数に関することを示している。方程式6に見ることができるように、材料の特性により、所与の共振周波数に関するアンテナのサイズを判定することができる。慣習的に、アンテナ基板またはスーパーストレートのための高誘電率の材料は、アンテナの小型化のために使用される。しかし、基板材料の相対誘電率を増大させることには、バンド幅が狭く、効率が低い欠点がある。これら欠点は、電界が、高誘電率の領域に残り、発散されないという事実から来ている。高い誘電率の媒体内の低い特性インピーダンスも、インピーダンスマッチングに関する問題に繋がる。
対照的に、1より大のε及びμを有するMD材料は、高誘電率の材料上のアンテナよりも良好なアンテナ性能を伴って、アンテナサイズを低減することができる。既知の研究によれば、相対的な透磁率を適切に増大させることにより、マイクロストリップアンテナのサイズが効率的に低減されることに繋がる。インピーダンスのバンド幅は、小型化の後に維持することができる。キャビティモデルを使用することで、損失の多いMD材料上に置かれたパッチアンテナの放射効率及びバンド幅は、これらMD材料が、アンテナサイズの低減において、有効でであることが示されている。この技術から、相対的な誘電率が、放射効率及びバンド幅に負の影響を有し、一方、相対的な透磁率は、放射効率とバンド幅との両方に正の影響がある。MD材料の様々なアンテナ設計により、アンテナの放射効率及びバンド幅を損なうことなく、アンテナサイズを低減することができることが示されている。本実施形態は、特定の構成に関する透磁率及び誘電率の材料特性を一意的にチューニングすることにより、磁気誘電材料の使用を、アンテナ設計にさらに適用することができる。たとえば、MD材料特性は、アンテナレッグ要素に関する特定の共振周波数を有するように、または、MD要素を、アンテナ要素と基板との間のデカップリング層とするように、チューニングすることができる。
図19は、導電性コーティングを様々な紙上に使用した、複数のテストサンプルに関する電気抵抗(オーム)の従来技術からのグラフ1900である。グラフ1900のX軸によって示すように、複数のサンプルをテストした。コーティングは、コート紙(カーブ1910)、クラフト紙(カーブ1920)、様々なタイプの段ボール(E段(カーブ1930)、B段(カーブ1940)、及びC段(カーブ1950))、ならびに、商業用のラベル(カーブ1960)上に直接プリントした。このグラフ1900は、異なる紙上の同じ導電性コーティングが、抵抗値に大きく影響することを示している。前述の方程式1に関し、ハーベスティングの効率は、抵抗値に大きく依存している。実験により、より低い抵抗値が、より良好なハーベスティングアンテナの性能を提供することが明確に示されている。通常、ボール紙上に直接プリントされた材料は、より高い抵抗値をもたらす。本開示のいくつかの実施形態では、上述の特有のカーボンを特に使用する、特定のインク材料の使用が、この課題を解決する。いくつかの実施形態では、アンテナ材料のためのインクは、様々な紙のタイプに関し、低い抵抗値を達成するようにチューニングすることができる。
チューニング回路
いくつかの実施形態では、エネルギハーベスティングの回路もしくはデバイス、または、電子デバイス全体の性能は、継続的に、または、所定の頻度もしくはインターバルで実施される、エネルギハーベスティングの最適化手順によって最適化される。そのようなチューニング回路のソフトウェア及び/またはハードウェアの構成要素は、採取されたエネルギの、絶対的な入力エネルギレベル(または、このエネルギから発生する電気電力レベル)を監視または判定する。ソフトウェア及び/またはハードウェアの構成要素は、利用可能であるもっとも高いエネルギ入力レベルに関する、動作可能な電圧のサーチを実施するように、インピーダンスマッチング構成要素、アンテナ構造要素、及び負荷要素を調整もする。たとえば、利用可能なもっとも高いエネルギ入力レベルを探す入力/出力(I/O)制御は、アンテナ要素のレッグ、アンテナインピーダンスマッチング要素、負荷マッチング要素、またはこれら要素の任意の組合せを、システム回路に入れるように、または回路から外すように切り替えることによって実施することができ、その後に、上述のように、貯蔵されたエネルギレベル、及び/または、減少量のインジケータをチェックする。もっとも高いエネルギ入力レベルに繋がる、これら要素の構成は、こうして、エネルギハーベスティングの最適化手順が繰り返されるまで、エネルギハーベスティングの回路またはデバイス、及び、電子デバイス全体の動作のために選択される。電子回路が、エネルギハーベスティングに関して記載されているが、他の実施形態では、電子回路は、ユーザによって設計されるようなもの、または、電子回路が関連付けられるデバイスなど、受信されることになる特定の周波数をサーチすることができる。
図20は、エネルギハーベスティングの最適化を制御するための回路及びプロセッサを含む、電子回路2000の実施形態を示している。電子回路2000は、たとえば、マイクロプロセッサとすることができる。電子回路2000は、周囲の環境内の、複数の利用可能な周波数を識別し、この複数の利用可能な周波数の電力レベルに基づき、所望の周波数を設定する、周波数識別回路2010を含んでいる。電子回路2000はまた、複数のレッグ要素を選択または除外するように、アンテナ2050内のレッグ要素の個別の接続部と通信する、切替回路2020を含んでいる。こうして、電子回路2000は、様々なアンテナレッグ要素、及び、電子回路2000内に同様に存在する場合もある様々なインピーダンスマッチング要素、または電子回路2000内に同様に存在する場合もある負荷マッチング要素2030を入れる、及び/または外すように切り替える(すなわち、電気的に短絡させて外すか、直列または並列にともに接続する)。この方式で、エネルギハーベスティングの最適化手順の下で動作するソフトウェア及び/またはハードウェアの構成要素は、アンテナレッグ要素に関する、一連の様々な接続部の構成を生み出す。電子回路2000は、インピーダンスマッチング要素及び負荷を制御すること、ならびに、各構成に関する採取されたエネルギの絶対的な入力エネルギレベルを判定することもできる。アンテナ2050が、エネルギハーベスティングアンテナである実施形態では、システムは、アンテナ2050が受信したエネルギを貯蔵するために使用することができるエネルギ貯蔵構成要素2060をも含んでいる。エネルギ貯蔵構成要素2060は、たとえば、バッテリまたはコンデンサとすることができる。エネルギ貯蔵構成要素2060は、アンテナ2050によって採取されたエネルギによって給電される、デバイス2070に接続されている。
異なる構成のために、これらアンテナレッグ要素及びインピーダンスマッチング要素を入れる、及び/または外すように切り替えることは、図21の例示的グラフ2100に示すように、様々なバンド幅及び周波数の受信を達成する。図21では、実線2110と破線2120とが、異なる最大のエネルギハーベスティングの状況に関する、2つの例示的な構成の結果を示している。所与のエネルギハーベスティングの状況に関する、もっとも高いエネルギ入力レベルに繋がる構成は、こうして、電力が供給される、エネルギハーベ
スティングの回路またはデバイス、及び、電子デバイス全体の動作のために選択される。エネルギハーベスティングの最適化手順は、継続的または定期的に繰り返される。この理由は、周囲の環境において利用可能である周波数の変化、または、アンテナの物理的な向きの変化に起因して、エネルギハーベスティングの状況がどの瞬間においても潜在的に変化し得るためである。
エネルギハーベスティングの最適化手順は、エネルギハーベスティングの回路またはデバイスが使用されることになる環境が、通常は未知であり、潜在的に変化し得ることから、有用である。このため、利用可能なEM放射の周波数は未知である。任意の適切なEM周波数におけるEM放射は、環境内に存在する場合がある。同じ環境において一般的に使用される2つの周波数が、915MHzと2.45GHzとであるが、多くの他の周波数信号も存在する場合がある。しかし、どの周波数が、もっとも高い振幅または電力レベルの信号を有することになるか、そしてひいては、エネルギハーベスティングの最適な候補になるかは、前もって知られていない。最初の時点では、たとえば、第1の周波数における第1の信号が、非常に高い振幅または電力レベルで存在する場合があるが、第2の周波数における第2の信号が、かなり低い振幅または電力レベルを有する場合があり、それにより、第1の信号のみが、エネルギハーベスティングの回路またはデバイスに有用であるようになっている。しかし、第2の時点では、第2の信号が、より高い振幅または電力レベルで存在する場合があり、一方、第1の信号は、より低い振幅または電力レベルを有し、それにより、第2の信号のみが、エネルギハーベスティングの回路またはデバイスに有用であるようになっている。さらに別の時点では、両方の信号が、有用な振幅または電力レベルを有して存在する場合がある。換言すると、異なる時点においては、1つまたは複数の周波数における1つまたは複数の信号の様々な組合せが、有用な振幅または電力レベルで環境内に存在する場合がある。
有用な信号の周波数が未知であるという事実の結果として、任意の所与の環境内、または、任意の所与の時点における、最大のエネルギハーベスティング能力に必要とされる適切なアンテナ構成も、同様に未知となる。この理由は、各アンテナが、通常は、特定の周波数または周波数帯のみ、信号を受信するようにチューニングされているためである。同様に、アンテナに電気的に接続された関連する回路の(インピーダンスマッチングのために必要とされる)適切なインピーダンスも未知である。したがって、エネルギハーベスティングの最適化手順により、エネルギハーベスティングの回路もしくデバイス、及び/または、電子デバイス全体の関連する電子回路が、様々な組合せまたは構成で、様々なアンテナ要素及びインピーダンスマッチング要素に入れる、及び外すように切り替わることが可能になり、それにより、環境内の有用な信号の周波数のすべて(または、ほぼすべて、ほとんど、または顕著な部分)の最適な受信のために、アンテナ全体をチューニングする。それにより、有用なエネルギのハーベスティング(または、このエネルギからの電力の生成)が、任意の所与の状況または環境に関して最大化されるか最適化されるようになっている。
エネルギの最適化は、ICデバイスを組み込んだ実施形態に関して特に良好に適している。この実施形態では、エネルギハーベスティングの回路またはデバイスのための電子機器が、同じICダイ内、及び、同じプラットフォームパッケージング内で、様々な論理デバイス(たとえば、ある程度の処理ができるマイクロプロセッサまたはASICデバイス)とともに組み込まれている。エネルギハーベスティングの回路またはデバイスのための電子機器には、概して、限定ではないが、他のものの中でも、インピーダンスマッチング回路、整流回路、調整回路、及び電荷調整回路(たとえば、コンデンサまたはバッテリなど、貯蔵デバイスのためのもの)が含まれる。様々な論理デバイスのための電子機器には、概して、限定ではないが、他のものの中で、知的機能を実施するために、中央処理ユニット(CPU)、コプロセッサ、ASIC、縮小命令セットコンピューティング(RIS
C)プロセッサ、アドバンスドRISCマシン(TM)(ARM)プロセッサ、及び、より低いレベルの論理が含まれる。様々な論理デバイスのための電子機器は、概して、たとえば、ブルートゥース低エネルギ(BLE:Bluetooth Low Energy)の規格、近距離無線通信(NFC)のプロトコル、ZIGBEE(登録商標)の条項、WiFiの規格、WIMAXの規格などに係るものなどの、通信構成要素をも含むことができる。
開示の発明の実施形態を詳細に参照され、その1つまたは複数の実施例が、添付図面に示されている。各実施例は、本技術の限定としてではなく、本技術の説明のために提供されている。実際、本明細書が、本発明の特定の実施形態に関して詳細に記載されているが、前述の記載を理解すると、当業者が、これら実施形態に対する変更、変形、及び均等を容易に考案し得ることを理解されたい。たとえば、1つの実施形態の一部として図示されるか記載された特徴は、さらに追加の実施形態を得るために、別の実施形態とともに使用される場合がある。このため、本発明の主題が、添付の特許請求の範囲、及びその均等の範囲内にある、そのような変更及び変形のすべてをカバーすることが意図されている。本発明に対する、これら及び他の変更及び変形は、添付の特許請求の範囲により明確に説明されている、本発明の範囲を逸脱することなく、当業者によって実施され得る。さらに、当業者には、前述の記載が、もっぱら例示的ものであり、本発明を限定することは意図していないことを理解されたい。

Claims (9)

  1. エネルギハーベスティングシステムであって、
    A)アンテナシステムを備え、前記アンテナシステムは、
    基板と、
    前記基板上のアンテナであって、前記アンテナが、複数のレッグ要素を備え、前記複数のレッグ要素中のレッグ要素が、カーボンベースの導電インクを含むとともに、前記複数のレッグ要素が連続した経路を形成する、前記アンテナと、を備え、
    前記複数のレッグ要素の少なくとも1つのレッグ要素が、前記アンテナの共振周波数を変更するように受動的に選択されるか受動的に除外されて、前記共振周波数に対応するアンテナ経路長を形成するように構成され、
    B)前記複数のレッグ要素の前記少なくとも1つのレッグ要素に結合されたエネルギ貯蔵構成要素をさらに備え、
    前記複数のレッグ要素の各々のレッグ要素が、前記複数のレッグ要素の間で共振周波数の閾値の差異を生成するレッグ要素の材料特性の差異によって、受動的に選択されるか受動的に除外される、エネルギハーベスティングシステム。
  2. 前記複数のレッグ要素の第1のレッグ要素が、第1のインダクタンスを有し、
    前記複数のレッグ要素の第2のレッグ要素が、第2のインダクタンスを有し、
    前記第1のインダクタンスと前記第2のインダクタンスとは、互いに異なる、請求項1に記載のエネルギハーベスティングシステム。
  3. 前記複数のレッグ要素の第1のレッグ要素が、第1の誘電率を有する第1の材料を含み、
    前記複数のレッグ要素の第2のレッグ要素が、第2の誘電率を有する第2の材料を含み、
    前記第1の誘電率と前記第2の誘電率とは、互いに異なる、請求項1に記載のエネルギハーベスティングシステム。
  4. 前記複数のレッグ要素の第1のレッグ要素が、第1の透磁率を有する第1の材料を含み、
    前記複数のレッグ要素の第2のレッグ要素が、第2の透磁率を有する第2の材料を含み、
    前記第1の透磁率と前記第2の透磁率とは、互いに異なる、請求項1に記載のエネルギハーベスティングシステム。
  5. 前記基板が、第1の層と、前記第1の層上に積層された第2の層と、前記第1の層と前記第2の層との間の隙間内の中間層とを備えており、
    前記複数のレッグ要素が、前記第1の層上にあり、前記複数のレッグ要素が前記アンテナの第1のアンテナアームを形成し、
    前記アンテナが、
    前記第2の層上の第2のアンテナアームと、
    前記中間層上の導電体であって、前記導電体が、前記第2のアンテナアームを前記複数のレッグ要素に電気的に結合している、前記導電体と、
    をさらに備えている、請求項1に記載のエネルギハーベスティングシステム。
  6. 前記基板がボール紙であり、前記中間層が波状中間物である、請求項に記載のエネルギハーベスティングシステム。
  7. 前記第1の層と前記第2の層との間の前記隙間が、前記第1のアンテナアームと前記第2のアンテナアームとの間の誘電体としての役割を果たす、請求項に記載のエネルギハーベスティングシステム。
  8. 前記基板は、室温において柔軟性を有する、請求項1に記載のエネルギハーベスティングシステム。
  9. 前記基板は、室温において柔軟性を有する、請求項に記載のエネルギハーベスティングシステム。
JP2021150298A 2017-04-05 2021-09-15 周波数選択性要素を有するアンテナ Active JP7291182B2 (ja)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201762481821P 2017-04-05 2017-04-05
US62/481,821 2017-04-05
US201762482806P 2017-04-07 2017-04-07
US62/482,806 2017-04-07
US201762508295P 2017-05-18 2017-05-18
US62/508,295 2017-05-18
JP2019554852A JP6946455B2 (ja) 2017-04-05 2018-04-03 周波数選択性要素を有するアンテナ
US15/944,482 2018-04-03
US15/944,482 US10218073B2 (en) 2017-04-05 2018-04-03 Antenna with frequency-selective elements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019554852A Division JP6946455B2 (ja) 2017-04-05 2018-04-03 周波数選択性要素を有するアンテナ

Publications (2)

Publication Number Publication Date
JP2022003798A JP2022003798A (ja) 2022-01-11
JP7291182B2 true JP7291182B2 (ja) 2023-06-14

Family

ID=63711361

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019554852A Active JP6946455B2 (ja) 2017-04-05 2018-04-03 周波数選択性要素を有するアンテナ
JP2021150298A Active JP7291182B2 (ja) 2017-04-05 2021-09-15 周波数選択性要素を有するアンテナ

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019554852A Active JP6946455B2 (ja) 2017-04-05 2018-04-03 周波数選択性要素を有するアンテナ

Country Status (6)

Country Link
US (2) US10218073B2 (ja)
JP (2) JP6946455B2 (ja)
KR (1) KR102440191B1 (ja)
CN (2) CN114725656B (ja)
TW (1) TWI755515B (ja)
WO (1) WO2018187362A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109411877B (zh) * 2017-08-17 2020-11-17 元太科技工业股份有限公司 天线装置以及电子设备
JP7102701B2 (ja) * 2017-09-29 2022-07-20 東洋製罐グループホールディングス株式会社 Rfタグ
CN114218970B (zh) 2018-08-09 2023-03-28 利腾股份有限公司 电磁状态感测装置
EP3844885A1 (en) * 2018-08-31 2021-07-07 Hach Lange GmbH Antenna network matching
US11018703B2 (en) * 2018-09-21 2021-05-25 Qualcomm Incorporated Systems and methods for antenna tuning
US11472233B2 (en) 2019-03-27 2022-10-18 Lyten, Inc. Tuned radio frequency (RF) resonant materials
US11479062B2 (en) 2019-03-27 2022-10-25 Lyten, Inc. Tuned radio frequency (RF) resonant materials and material configurations for sensing in a vehicle
CN111478031A (zh) * 2020-04-22 2020-07-31 云南电网有限责任公司电力科学研究院 一种特高频检测用分形天线
US11217081B2 (en) * 2020-05-04 2022-01-04 Perfectvision Manufacturing, Inc. RF shut down
EP4256650A1 (en) * 2020-12-07 2023-10-11 Rf Venue, Inc. Radio frequency antenna assembly
KR20230036791A (ko) * 2021-09-08 2023-03-15 삼성전자주식회사 안테나 모듈 및 안테나 모듈을 포함하는 전자 장치
CN114824818B (zh) * 2022-05-13 2024-10-11 厦门大学 一种频率选择表面工作频段调整装置和调整方法
CN115458937B (zh) * 2022-08-18 2023-07-25 西安电子科技大学 一种加载去耦合复合结构的mimo天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151949A (ja) 2000-11-13 2002-05-24 Samsung Yokohama Research Institute Co Ltd 携帯端末機
JP2007116515A (ja) 2005-10-21 2007-05-10 Mitsubishi Electric Corp 平衡二線線路式レクテナおよびそれを使用したレクテナ装置。
JP2014187493A (ja) 2013-03-22 2014-10-02 Advanced Telecommunication Research Institute International 共振周波数可変アンテナ、それを備えた電磁波エネルギー回収装置、及び共振周波数可変アンテナの調整方法
JP2014191678A (ja) 2013-03-28 2014-10-06 Toppan Forms Co Ltd 非接触型データ受送信体
US20160093957A1 (en) 2014-09-25 2016-03-31 Lothar Benedikt Moeller Arrayed antenna for millimeter-wave and terahertz applications
JP2016119666A (ja) 2014-12-23 2016-06-30 パロ アルト リサーチ センター インコーポレイテッド 適応性のあるアンテナを用いる多帯域での高周波(rf)エネルギーハーベスティング

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6381506U (ja) * 1986-11-15 1988-05-28
JPS63283208A (ja) * 1987-05-15 1988-11-21 Nec Corp マイクロストリツプアンテナ
JP3327048B2 (ja) * 1995-05-25 2002-09-24 三菱電機株式会社 アンテナ装置
JPH1127042A (ja) * 1997-07-01 1999-01-29 Denki Kogyo Co Ltd 多周波共用ダイポールアンテナ装置
US6107920A (en) 1998-06-09 2000-08-22 Motorola, Inc. Radio frequency identification tag having an article integrated antenna
US6924781B1 (en) 1998-09-11 2005-08-02 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
US6317101B1 (en) 1999-06-14 2001-11-13 Gregory A. Dockery Antenna having multi-directional spiral elements
US6300914B1 (en) 1999-08-12 2001-10-09 Apti, Inc. Fractal loop antenna
JP2002321725A (ja) 2001-04-20 2002-11-05 Oji Paper Co Ltd データキャリヤ搭載搬送体及びその電波受信方法
US6856291B2 (en) * 2002-08-15 2005-02-15 University Of Pittsburgh- Of The Commonwealth System Of Higher Education Energy harvesting circuits and associated methods
US6667092B1 (en) 2002-09-26 2003-12-23 International Paper Company RFID enabled corrugated structures
FI120606B (fi) * 2003-10-20 2009-12-15 Pulse Finland Oy Sisäinen monikaista-antenni
US7057562B2 (en) 2004-03-11 2006-06-06 Avery Dennison Corporation RFID device with patterned antenna, and method of making
US20100026590A1 (en) 2004-07-28 2010-02-04 Kuo-Ching Chiang Thin film multi-band antenna
US8045947B2 (en) 2004-09-17 2011-10-25 Massachusetts Institute Of Technology RF power extracting circuit and related techniques
KR100700944B1 (ko) 2005-01-19 2007-03-28 삼성전자주식회사 휴대용 단말기의 고주파 유기전력 충전 장치 및 방법
WO2007000578A2 (en) 2005-06-25 2007-01-04 Omni-Id Limited Electromagnetic radiation decoupler
US7400253B2 (en) 2005-08-04 2008-07-15 Mhcmos, Llc Harvesting ambient radio frequency electromagnetic energy for powering wireless electronic devices, sensors and sensor networks and applications thereof
KR20070068182A (ko) 2005-12-26 2007-06-29 주식회사 팬택 다중 밴드용 안테나 시스템
US8552597B2 (en) 2006-03-31 2013-10-08 Siemens Corporation Passive RF energy harvesting scheme for wireless sensor
US7696932B2 (en) 2006-04-03 2010-04-13 Ethertronics Antenna configured for low frequency applications
US7479886B2 (en) 2006-08-25 2009-01-20 Intel Corporation Antenna capacitance for energy storage
EP1914832A1 (en) 2006-10-17 2008-04-23 Laird Technologies AB A method of production of an antenna pattern
KR100870996B1 (ko) * 2007-02-22 2008-11-27 주식회사 아모텍 내장형 안테나
US7847697B2 (en) 2008-02-14 2010-12-07 3M Innovative Properties Company Radio frequency identification (RFID) tag including a three-dimensional loop antenna
US20100000441A1 (en) 2008-07-01 2010-01-07 Jang Bor Z Nano graphene platelet-based conductive inks
KR101080609B1 (ko) * 2009-02-11 2011-11-08 주식회사 이엠따블유 Crlh-tl 주기 구조를 이용한 다중 대역 안테나 및 상기 안테나를 이용한 통신장치
KR101090747B1 (ko) 2009-03-09 2011-12-08 (주)파트론 멀티밴드 안테나
US20100231461A1 (en) 2009-03-13 2010-09-16 Qualcomm Incorporated Frequency selective multi-band antenna for wireless communication devices
JP2012525065A (ja) 2009-04-21 2012-10-18 モレックス インコーポレイテド 3次元アンテナ
US20120106103A1 (en) 2010-06-23 2012-05-03 Tanios Nohra Radio frequency energy harvesting enclosure for radio frequency connected devices
US8952792B1 (en) 2011-01-07 2015-02-10 Impinj, Inc. Self tuning RFID tags
US9350069B2 (en) * 2012-01-04 2016-05-24 Apple Inc. Antenna with switchable inductor low-band tuning
JP5929344B2 (ja) 2012-03-13 2016-06-01 富士通株式会社 アンテナ設計方法、アンテナ設計装置、アンテナ設計プログラム
CN102810738B (zh) * 2012-07-31 2015-09-09 深圳光启创新技术有限公司 一种双频天线及电子设备
US20140049430A1 (en) 2012-08-17 2014-02-20 General Electric Company 3-Dimensional Antenna
KR20140031046A (ko) * 2012-09-04 2014-03-12 엘지이노텍 주식회사 통신 단말기, 그의 안테나 장치 및 그의 동작 방법
TWI517500B (zh) * 2013-03-05 2016-01-11 友勁科技股份有限公司 天線模組及具有該天線模組之無線網路通訊裝置
JP2016531770A (ja) 2013-06-24 2016-10-13 プレジデント アンド フェローズ オブ ハーバード カレッジ 印刷3次元(3d)機能部品および製造方法
GB2517907B (en) 2013-08-09 2018-04-11 Drayson Tech Europe Ltd RF Energy Harvester
US9537205B2 (en) 2013-11-08 2017-01-03 Taiwan Semiconductor Manufacturing Company, Ltd. 3D antenna for integrated circuits
US20170077593A1 (en) 2013-11-20 2017-03-16 Yi-Chuan Cheng Portable Device with Rear Charging Antenna
US20160353578A1 (en) 2013-11-26 2016-12-01 Jun Yang Printing Method for Fabrication of Printed Electronics
US9231304B2 (en) * 2014-01-21 2016-01-05 Nvidia Corporation Wideband loop antenna and an electronic device including the same
US9972894B2 (en) 2014-03-10 2018-05-15 Drexel University Wearable power harvesting system
CN204651470U (zh) * 2014-05-23 2015-09-16 天线直通股份有限公司 高清电视天线组件
US9825364B2 (en) 2014-06-12 2017-11-21 Verily Life Sciences Llc Adaptive antenna tuning based on measured antenna impedance
WO2016081779A1 (en) 2014-11-20 2016-05-26 Fractal Antenna Systems, Inc. Fractal metamaterial cage antennas
US20160164171A1 (en) 2014-12-04 2016-06-09 Chung-Ping Lai Wireless antenna made from binder-free conductive carbon inks
US9871298B2 (en) 2014-12-23 2018-01-16 Palo Alto Research Center Incorporated Rectifying circuit for multiband radio frequency (RF) energy harvesting
US9548543B2 (en) 2015-01-07 2017-01-17 Omega Optics, Inc. Method for fabricating and packaging an M×N phased-array antenna
WO2017006191A1 (en) * 2015-07-09 2017-01-12 Assa Abloy Ab Security document with transparent window
CN106356648A (zh) * 2015-07-14 2017-01-25 三星电机株式会社 具有与外廓导体形成电容耦合的天线的电子设备
IL246003B (en) 2016-06-02 2019-03-31 W P Energy Ltd Multiband energy harvesting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151949A (ja) 2000-11-13 2002-05-24 Samsung Yokohama Research Institute Co Ltd 携帯端末機
JP2007116515A (ja) 2005-10-21 2007-05-10 Mitsubishi Electric Corp 平衡二線線路式レクテナおよびそれを使用したレクテナ装置。
JP2014187493A (ja) 2013-03-22 2014-10-02 Advanced Telecommunication Research Institute International 共振周波数可変アンテナ、それを備えた電磁波エネルギー回収装置、及び共振周波数可変アンテナの調整方法
JP2014191678A (ja) 2013-03-28 2014-10-06 Toppan Forms Co Ltd 非接触型データ受送信体
US20160093957A1 (en) 2014-09-25 2016-03-31 Lothar Benedikt Moeller Arrayed antenna for millimeter-wave and terahertz applications
JP2016119666A (ja) 2014-12-23 2016-06-30 パロ アルト リサーチ センター インコーポレイテッド 適応性のあるアンテナを用いる多帯域での高周波(rf)エネルギーハーベスティング

Also Published As

Publication number Publication date
US20190190154A1 (en) 2019-06-20
CN114725656A (zh) 2022-07-08
WO2018187362A1 (en) 2018-10-11
JP2022003798A (ja) 2022-01-11
KR20190128077A (ko) 2019-11-14
TWI755515B (zh) 2022-02-21
US20180294570A1 (en) 2018-10-11
CN110546814B (zh) 2022-03-29
KR102440191B1 (ko) 2022-09-05
JP2020517151A (ja) 2020-06-11
JP6946455B2 (ja) 2021-10-06
US10763586B2 (en) 2020-09-01
US10218073B2 (en) 2019-02-26
CN110546814A (zh) 2019-12-06
CN114725656B (zh) 2023-10-13
TW201838246A (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
JP7291182B2 (ja) 周波数選択性要素を有するアンテナ
Alibakhshi‐Kenari et al. Dual‐band RFID tag antenna based on the Hilbert‐curve fractal for HF and UHF applications
JP4999928B2 (ja) 無線認識用タグ・アンテナおよびタグ・アンテナを用いた無線認識システム
Çelik et al. A novel meander line integrated E‐shaped rectenna for energy harvesting applications
US8952859B2 (en) Compact antenna system having folded dipole and/or monopole
Liu et al. Capacitively loaded, inductively coupled fed loop antenna with an omnidirectional radiation pattern for UHF RFID tags
Koskinen et al. A thin multi‐slotted dual patch UHF‐band metal‐mountable RFID tag antenna
JP2010279039A (ja) Rfidトランスポンダ、rfidトランスポンダを含むrfid通信システム、rfidトランスポンダの製造方法、ならびにそれらの使用
EP2666207B1 (en) Communications device and tracking device with slotted antenna and related methods
Nguyen et al. Miniature 3-d-dipole antenna for UHF RFID tag mounted on conductive materials
Erman et al. Low-profile interdigitated UHF RFID tag antenna for metallic objects
Dhar et al. Design of a hexagonal slot rectenna for RF energy harvesting in Wi‐Fi/WLAN applications
Bansal et al. Compact meandered folded-dipole RFID tag antenna for dual band operation in UHF range
CN206461089U (zh) 一种用于无线智能的电小环天线系统
JP3173180U (ja) 共振回路構造を有するrfタグ
Fazilah et al. Design of compact UHF-RFID tag antenna with meander line technique
Almohaimeed et al. Single Band EBG Antenna for Wireless Power Transfer Applications.
Xu et al. Isotropic radiation from an electrically small loop-loaded printed dipole
CN106384886A (zh) 一种微型无线传感器内电小环天线系统
Choi et al. Design of RFID reader antennas for UHF RFID handheld systems
Choudhary et al. Wideband long range compact serrated triangular patch based UHF RFID tag for metallic base environment
Heino et al. Double loop matching technique for robust UHF RFID tag antennas
CN206461097U (zh) 一种用于可穿戴设备的天线装置
Kurz Passive UHF RFID tag antenna design using graphite-based conductive papers
Elsheakh Multiband Dual-Meander Line Antenna for Body Centric Networks Biomedical Applications by Using UMC 180 nm

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230328

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230328

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230417

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230602

R150 Certificate of patent or registration of utility model

Ref document number: 7291182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150