JP7288585B2 - エンジンシステム - Google Patents

エンジンシステム Download PDF

Info

Publication number
JP7288585B2
JP7288585B2 JP2020007566A JP2020007566A JP7288585B2 JP 7288585 B2 JP7288585 B2 JP 7288585B2 JP 2020007566 A JP2020007566 A JP 2020007566A JP 2020007566 A JP2020007566 A JP 2020007566A JP 7288585 B2 JP7288585 B2 JP 7288585B2
Authority
JP
Japan
Prior art keywords
engine
chamber
combustion chamber
load
spark plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020007566A
Other languages
English (en)
Other versions
JP2021113551A (ja
Inventor
和弘 長津
裕和 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2020007566A priority Critical patent/JP7288585B2/ja
Publication of JP2021113551A publication Critical patent/JP2021113551A/ja
Application granted granted Critical
Publication of JP7288585B2 publication Critical patent/JP7288585B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、エンジンシステムに係わり、特に、エンジンと、主燃焼室と、主燃焼室に連通する連通孔が形成された副室と、インジェクタと、主燃焼室の混合気に点火する第1点火プラグと、副室内の混合気に点火する第2点火プラグと、インジェクタ、第1点火プラグおよび第2点火プラグを制御する制御装置と、を備えるエンジンシステムに関する。
従来、エンジン(内燃機関)において、主燃焼室内に副室を設け、副室の連通孔から火炎を主燃焼室内に噴出させることで主燃焼室での燃焼伝搬を早めて、エンジンの熱効率を向上させるようにした技術が知られている。
たとえば、特許文献1には、主燃焼室に燃料を噴射する主インジェクタと、副室の上流側に設けられた副インジェクタと、副室内に設けられた点火プラグとを備え、副室内の点火プラグにより副室内の混合気に点火し、その副室内で燃焼した混合気の火炎を噴孔から主燃焼室に噴出させて、主燃焼室内の混合気を燃焼させるようにしたエンジンが開示されている。
特開2014-227975号公報
ところで、エンジンの負荷はドライバ(運転者)の要求トルクに応じて変化する。ドライバの要求トルクに応じたエンジン負荷が低い場合には、特許文献1のような技術でも、副室から火炎を噴出させることで、主燃焼室内での火炎伝搬を早めて熱効率を向上させることができる。
ここで、ドライバの要求トルクに応じたエンジン負荷が高いときには、圧縮行程において、点火時期直前の上死点付近で過早着火する、いわゆる、プリイグニッション(pre-ignition)が発生しやすくなる。このようにエンジンが高負荷域で作動している場合、プリイグニッションを抑制するために、圧縮行程において、プリイグニッションが生じやすい点火時期直前に燃料噴射を行い、気筒内を冷却することが有効な方法として知られている。
しかしながら、上述したような副室を有する燃焼室の場合、燃料噴射を点火時期直前に行うと、その燃料噴射から点火までの間に、噴射された燃料と空気とのミキシング時間が確保しにくくなる。これにより、混合気がほぼ生じずに、副室内への流入する混合気が点火可能するほど多くない過剰なリーン状態となり、その結果、副室から火炎を噴出させて主燃焼室での燃焼伝搬を早めて、熱効率を高めた燃焼ができない、という問題がある。
そこで、本発明は、上述した問題を解決するためになされたものであり、プリイグニッションを抑制しつつ、副室を設けたエンジンにおいて、主燃焼室内の混合気を確実に燃焼させると共に、エンジンの熱効率を高めることができるエンジンシステムを提供することを目的とする。
上記の目的を達成するために、本発明は、エンジンと、このエンジンのシリンダヘッドおよびピストンで形成される主燃焼室と、エンジンの主燃焼室に設けられ、主燃焼室に連通する連通孔が形成された副室と、エンジンに設けられ、主燃焼室内に燃料を噴射するインジェクタと、エンジンに設けられ、主燃焼室に臨み主燃焼室の混合気に点火する第1点火プラグと、エンジンの副室内に設けられ、副室内の混合気に点火する第2点火プラグと、ドライバのアクセル開度を検出するアクセル開度検出器と、このアクセル開度検出器からの出力信号を受け、インジェクタ、第1点火プラグおよび第2点火プラグを制御する制御装置と、を備え、この制御装置は、アクセル開度検出器により検出されたアクセル開度に基づいてドライバの要求トルクを判定するドライバ要求トルク判定手段と、このドライバ要求トルク判定手段により判定されたドライバ要求トルクに基づいてエンジンの負荷を決定するエンジン負荷決定手段と、このエンジン負荷決定手段により決定されるエンジン負荷が、所定値以上であるか否かを判定するエンジン負荷判定手段と、を有し、制御装置は、エンジン負荷判定手段によりエンジンの負荷が所定値未満であると判定されたとき、第2点火プラグで副室内の混合気に点火させるように第2点火プラグを制御すると共に所定の時期に燃料を噴射するようにインジェクタを制御し、かつ、エンジン負荷判定手段によりエンジン負荷が所定値以上であると判定されたとき、第1点火プラグで主燃焼室内の混合気に点火させるように第1点火プラグを制御すると共に所定の時期よりも遅い時期に燃料を噴射するようにインジェクタを制御するよう構成されている、ことを特徴としている。
このように構成された本発明によれば、エンジンの負荷が所定負荷以上のとき(所定値以上のとき)は第1点火プラグで主燃焼室内の混合気に点火すると共に、エンジン負荷が所定負荷未満のときの燃料噴射時期よりも遅い時期で主燃焼室内に燃料を噴射するので、その燃料噴射時期を遅くした分、燃料噴射により主燃焼室内の温度上昇を抑制し、その結果、プリイグニッションの発生を抑制することができる。さらに、エンジン負荷が所定負荷未満のときの燃料噴射時期よりも遅い時期に燃料を噴射することで、その燃料噴射時期を遅くした分、主燃焼室内に噴射された燃料と主燃焼室内の空気がミキシングされる時間が確保しにくくなり、副室に流入する混合気が少なくなることに起因して副室で失火しやすくても、第1点火プラグで主燃焼室内の混合気に点火するので、主燃焼室内の混合気を確実に燃焼させることができる。また、本発明によれば、所定負荷未満のとき(所定値未満のとき)は第2点火プラグで副室内の混合気に点火するので、第2点火プラグによる副室内の燃焼により、副室の連通孔から火炎を噴出させて、主燃焼室における燃焼伝搬を早めることができ、その結果、エンジンの熱効率を高めることができる。このように、本発明によれば、プリイグニッションを抑制しつつ、副室を設けたエンジンにおいて、主燃焼室内の混合気を確実に燃焼させると共に、エンジンの熱効率を高めることができる。
また、本発明において、好ましくは、エンジン負荷が所定値未満であるときの所定の時期は吸気行程における時期であり、エンジン負荷が所定値以上であるときの所定の時期よりも遅い時期は、圧縮行程における第1点火プラグの点火時期の直前の時期である。
このように構成された本発明によれば、より効果的に、プリイグニッションを抑制しつつ、副室を設けたエンジンにおいて、主燃焼室内の混合気を確実に燃焼させると共に、エンジンの熱効率を高めることができる。
また、本発明において、好ましくは、制御装置は、エンジン負荷が所定値未満と判定されたとき、吸気行程のみで燃料を噴射させるようインジェクタを制御し、かつ、エンジン負荷が所定値以上と判定されたとき、吸気行程と圧縮行程とに分割して燃料を噴射させるようインジェクタを制御するよう構成されている。
このように構成された本発明によれば、エンジンの負荷が所定値未満のとき、吸気行程のみで燃料を噴射させるので、第2点火プラグによる副室内の混合気の燃焼により、副室の連通孔から火炎を噴出させて、主燃焼室における燃焼伝搬を早めることができる。また、本発明によれば、エンジンの負荷が所定値以上のとき、吸気行程と圧縮行程とに分割して燃料を噴射させるので、圧縮行程中に噴射される燃料により、プリイグニッションを抑制しつつ、第1点火プラグにより主燃焼室内の混合気を確実に燃焼させることができる。また、低負荷時(エンジン負荷が所定値未満のとき)は、高負荷時(エンジン負荷が所定値以上のとき)に比べて、全燃料を吸気行程で噴射するので、分割噴射するよりも、主燃焼室から副室内に流入する混合気の空燃比を理論空燃比にしやすく、その結果、より確実に副室の連通孔から火炎を噴出させて、主燃焼室における燃焼伝搬を早めることができる。
また、本発明において、好ましくは、エンジンにおいて、第1点火プラグはエンジンの排気ポート側に設けられ、副室および第2点火プラグはエンジンの吸気ポート側に設けられている。
このように構成された本発明によれば、第1点火プラグは排気ポート側に設けられ、副室および第2点火プラグは吸気ポート側に設けられているので、副室が、排気ガスの熱を受けることによる、副室内の過度の温度上昇を抑制することができる。すなわち、副室が排気ガスの熱を受けると、その熱を受けた分、副室内の温度が高温になり、その高温となった副室での燃焼伝搬が早くなるが、本発明では、排気ガスの受熱による副室の過度の温度上昇を抑制することができるので、副室内において混合気を安定して燃焼させることができ、それに伴い、連通孔から主燃焼室に噴出する火炎の勢いが強くなり過ぎてしまうことを抑制することができる。
本発明のエンジンシステムによれば、プリイグニッションを抑制しつつ、副室を設けたエンジンにおいて、主燃焼室内の混合気を確実に燃焼させると共に、エンジンの熱効率を高めることができる。
本発明の実施形態によるエンジンシステムの概略構成図である。 本実施形態によるエンジンシステムにおけるエンジンの気筒に形成された主燃焼室まわりの概略構成を示す断面図である。 本実施形態によるエンジンシステムにおけるエンジンの気筒に形成された主燃焼室まわりの概略構成をシリンダ軸線方向の上方から見た平面図である。 本実施形態によるプレチャンバープラグを示す図であり、図4(a)はプレチャンバープラグの副室および副点火プラグを側方から見た部分断面図であり、図4(b)は、プレチャンバープラグの副室をその軸線方向の下方から見た平面図である。 本発明の実施形態によるエンジンの制御装置の制御ブロック図である。 本発明の実施形態によるエンジンの制御装置によるエンジン負荷とエンジン回転数に応じて設定されるエンジン制御マップである。 本発明の実施形態によるエンジンの制御装置により制御される燃料噴射タイミングおよび点火タイミングのタイムチャートであり、図6に示すエンジン制御マップにおける低中負荷領域におけるタイムチャートの一例を示す図である。 本発明の実施形態によるエンジンの制御装置により制御される燃料噴射タイミングおよび点火タイミングのタイムチャートであり、図6に示すエンジン制御マップにおける高負荷低回転領域におけるタイムチャートの一例を示す図である。 本発明の実施形態によるエンジンの制御装置により制御される燃料噴射タイミングおよび点火タイミングのタイムチャートであり、図6に示すエンジン制御マップにおける高負荷高回転領域におけるタイムチャートの一例を示す図である。 本発明の実施形態によるエンジンの制御装置により制御される燃料噴射タイミングおよび点火タイミングのタイムチャートであり、図6に示すエンジン制御マップにおける高負荷高回転領域においてエンジン負荷に応じた燃料噴射タイミングの変更を説明するためのタイムチャートの一例を示す図である。 本発明の実施形態によるエンジンの制御装置によるエンジン制御マップに基づくエンジンの制御内容を示すフローチャートである。 図6に示す制御マップおよび図11に示すフローチャートに基づいて決定される、高負荷低回転領域および低中負荷領域においてエンジン負荷に応じて切り換えられる主点火プラグと副点火プラグの制御内容を示す線図である。
以下、添付図面を参照して、本発明の実施形態によるエンジンシステムについて説明する。
まず、図1を参照して、本発明の実施形態によるエンジンシステムの概略構成を説明する。図1は、本発明の実施形態によるエンジンシステムの概略構成図である。
図1に示すように、エンジンシステム1は、吸気と燃料との混合気を燃焼させて車両の動力を発生する多気筒(本実施形態では4気筒)のエンジン(内燃機関)2と、このエンジン2に吸気を導入するための吸気通路4と、エンジン2からの排気ガスを排出するための排気通路6と、を備える。なお、本発明は4気筒のエンジンに限らず、6気筒など他のエンジンにも適用可能である。
エンジン2の各気筒には、吸気通路4に接続され、後述するシリンダヘッド54(図2参照)に形成された吸気ポート8と、この吸気ポート8に設けられた吸気バルブ10と、排気通路6に接続され、シリンダヘッド54に形成された排気ポート12と、この排気ポート12に設けられた排気バルブ14と、が設けられている。
吸気バルブ10には、吸気バルブ10のリフト量および開閉タイミングを電動で可変に制御する可変バルブリフト機構(Sequential Valve Timing)16が設けられている。
排気バルブ14にも同様に、排気バルブ14のリフト量および開閉タイミングを可変にする可変バルブリフト機構18が設けられている。
エンジン2は、クランクシャフト20によって気筒(シリンダ)22内を往復動するピストン24を備え、このピストン24と、シリンダヘッド54とにより、燃焼室(主燃焼室)26が形成される(図2参照)。
この主燃焼室26には、主燃焼室26内に燃焼を噴射するインジェクタ28と、後述するプレチャンバープラグ30と、主点火プラグ32とが、それぞれ、主燃焼室26内に臨むように設けられている。
吸気通路4の上流側には、エアクリーナ34と、ドライバのアクセル開度に基づく要求燃料噴射量および後述するECU50からの命令信号に基づき、電動で作動し、通過する吸気量を調整するスロットルバルブ(吸気絞り弁)36と、エンジン2に供給する吸気を一時的に蓄えるサージタンク38とが設けられている。
排気通路6の下流側には、排気ガスを浄化する三元触媒40が設けられている。
また、排気通路6には、三元触媒40を通過した排気ガスの一部を吸気通路4に環流するEGR通路42が接続されている。このEGR通路42には、EGRクーラ44と、EGR通路42を流れる排気ガスの流量を制御するEGRバルブ46とが設けられている。
また、エンジンシステム1は、エンジン2を制御するECU(Electronic Control Unit)50を有する。このECU50は、本発明における「エンジンの制御装置」に相当し、本実施形態では、後述する各種センサ(図示せず)の出力信号に基づいて、エンジン2の作動(燃料噴射タイミング、点火タイミング、空燃比など)を制御する。具体的には、以下で説明するインジェクタ28の燃料噴射時期や点火プラグ30、32の点火時期などの制御は、ECU50内の回路で実行される。
次に、図2および図3により、エンジン2の主燃焼室26まわりの概略構成を説明する。図2は、本実施形態によるエンジンの気筒に形成された主燃焼室まわりの概略構成を示す断面図であり、図3は、本実施形態によるエンジンの気筒に形成された主燃焼室まわりの概略構成をシリンダ軸線方向の上方から見た平面図である。なお、図2および図3では、多気筒のうち1つの気筒の主燃焼室まわりの概略構成を示す。他の気筒も同様に構成される。
まず、図2に示すように、エンジン2は、シリンダブロック52およびシリンダヘッド54を備えている。
シリンダブロック52には、気筒(シリンダ)22が形成されている。この気筒22内に設けられたピストン24には、クランクシャフト20に連結されたコンロッド21が接続され、これにより、ピストン24が気筒22内を往復動するようになっている。
次に、図2および図3に示すように、シリンダヘッド54には、各気筒22毎に、各々独立した2つの吸気ポート8(8a、8b)、および、2つの排気ポート12が形成されている。これら吸気ポート8a、8bおよび排気ポート12には、図2および図3では図示を省略するが、上述した吸気バルブ10及び排気バルブ14が、それぞれ、主燃焼室26側の開口を開閉するように設けられている。
2つの吸気ポート8a、8bのうち、一方の吸気ポート8aに接続された吸気通路4aには、吸気通路4aの開度を調整するスワールコントロールバルブ56が設けられている。主燃焼室26には、このスワールコントロールバルブ56の開度に応じた強さのスワール流が生じる。このスワール流の強さが大きいほど、主燃焼室26内で周回する混合気のスワール流は、主燃焼室26およびピストン24の外周側に流れやすくなる。
次に、図2に示すように、シリンダヘッド54には、インジェクタ28、プレチャンバープラグ30および主点火プラグ32が取り付けられている。
図2および図3に示すように、インジェクタ28は、シリンダ軸線上に設けられ、主燃焼室26を上方から見たとき、主燃焼室26の中央部に臨むよう設けられている。
また、プレチャンバープラグ30は、インジェクタ28に対して、吸気ポート8側に設けられており、図2に示すように、吸気ポート8側から斜め下方に延びて、主燃焼室26に臨むよう配置されている。
本実施形態では、図3に示すように、主燃焼室26に臨むプレチャンバープラグ30の先端部(図3で符号30で示す破線の部分)は、平面視で、2つの吸気ポート8a、8bの中間の位置に設けられている。なお、プレチャンバープラグ30の先端部には、後述するように、副室60および副点火プラグ62が設けられている。
本実施形態では、このように、副室60および副点火プラグ62が吸気ポート8側に設けて、副室60が排気ガスの熱を受け、副室60内の温度が過度に上昇することを抑制するようにしている。これにより、副室60内での燃焼伝搬が早くなり、それに伴い、連通孔66から主燃焼室26に噴出する火炎の勢いが強くなってしまうことが抑制される。
また、本実施形態では、図2および図3で示すように、プレチャンバープラグ30の先端部は、主燃焼室26の外周側の領域(少なくとも吸排気ポート8、12の開口部より外周側の領域)より内方の中央領域に設けられている。
また、主点火プラグ32は、インジェクタ28に対して、排気ポート12側に設けられており、図2に示すように、排気ポート12側から斜め下方に延びて、主燃焼室26に臨むよう配置されている。
本実施形態では、図3に示すように、主燃焼室26に臨む主点火プラグ32の先端部は、平面視で、2つの排気ポート12の中間の位置に設けられている。また、なお、図3に破線で示す符号32の部分は、主点火プラグ32の先端部の中心電極32aおよび側方電極(アース)32b(図2参照)の位置を示している。
次に、図4により、プレチャンバープラグ30を説明する。図4は、本実施形態によるプレチャンバープラグを示す図であり、図4(a)はプレチャンバープラグの副室および副点火プラグを側方から見た部分断面図であり、図4(b)は、プレチャンバープラグの副室をその軸線方向の下方から見た平面図である。
まず、図4(a)に示すように、プレチャンバープラグ30は、その先端部に、副室60が形成され、この副室60内に副点火プラグ62が設けられている。
副点火プラグ62は、主点火プラグ32と同様に、中心電極62aおよび側方電極(アース)62bを有している。
副室60は、主燃焼室26内に設けられているが、主燃焼室26とは独立して副室60内の混合気を燃焼可能なものである。より具体的には、副室60内の混合気を副点火プラグ62で点火して、副室60内に火炎伝搬を生じさせる副燃焼室として機能するものである。
次に、図4(a)および図4(b)に示すように、副室60は、所定の径および厚み(本実施形態では半径5mm、厚み1mm)を有する半球状の副室形成部64により形成されている。この副室形成部64には、主燃焼室26に連通する複数の連通孔(噴孔)66が形成されている。
これらの連通孔66は、第1に、主燃焼室26内の混合気を副室60内に流入させるために設けられ、第2に、その流入した混合気を副点火プラグ62により点火し、その副室60内で発生した燃焼伝搬を、火炎として主燃焼室26に噴出/放射させ、それにより、主燃焼室26内の混合気の燃焼伝搬を早めるために設けられている。
混合気は、基本的に、EGRバルブ46が閉じられている場合は、吸気ポート8からの新気とインジェクタ28から噴射される燃料との混合気であり、EGRバルブ46が開かれている場合は、吸気ポート8からの新気とEGR通路42からの排気ガスとインジェクタ28から噴射される燃料との混合気である。
本実施形態においては、これらの連通孔66は、図4(b)に示す下方から見た平面視において、副室形成部64の頂点Aを通る軸線まわりに120°間隔に3つ設けられ、それぞれの直径はφ1.2mmである。また、連通孔66は、いずれも、図4(a)に示すように、側面視で、副室形成部64の頂点Aから45°の位置に45°の方向に延びるよう形成され、これにより、連通孔66からは、その軸線に対して45°の角度で火炎が噴出するようになっている。
なお、後述するように、連通孔66の数、径および位置は、これらの数値に限らず、たとえば、下方から見た平面視において、180°間隔に2つ設け、直径はφ1.0mmであってもよい。このように、連通孔66の孔数を少なくし、および/または、直径を小さくすると、連通孔66から主燃焼室26に噴出する火炎を強くすることが出来る。また、このように噴出する火炎を強くすると、その分、主燃焼室26内の燃焼伝搬が早くなるので、主燃焼室26内の混合気を、よりリーンな混合気にして、エンジン2の熱効率を高めることができる。
また、連通孔66の数および径は、後述するエンジン制御マップにおいてエンジン回転数のしきい値を設定する際に、予め、変更可能である。言い換えると、連通孔66の数および径を変更すると、エンジン制御マップにおけるエンジン回転数の適切なしきい値を変更することができる。
次に、図5により、本発明の実施形態によるエンジンの制御装置の制御ブロックを説明する。図5は、本発明の実施形態によるエンジンの制御装置の制御ブロック図である。
図5に示すように、エンジンシステム1を制御するECU50(図1参照)は、図示しないマイクロコンピュータ、メモリ、I/F回路などを有し、イグニッション信号SW1、および、各種センサSW2~SW10からの出力信号に基づいて、後述するように、エンジン2の燃料噴射タイミング、点火タイミング、空燃比、スワール流の強さなどを制御する。なお、SW2~SW10の各センサは、公知のものであり、図1、図2などにおいて図示を省略している。
具体的には、ECU50には、エンジン始動の指令を意味するイグニッション出力信号(SW1)、吸気通路4に設けられたエアフローセンサSW2からの吸気量に関する出力信号、吸気通路4に設けられた吸気温度センサSW3からの吸気温度に関する出力信号、吸気通路4に設けられた吸気圧センサSW4からの吸気圧に関する出力信号、シリンダヘッド54に設けられた冷却水温度センサSW5からの冷却水温度に関する出力信号、クランク軸20に設けられたクランク角センサSW6からのクランク角に関する出力信号、アクセル開度センサSW7からのアクセルペダルの開度に関する出力信号、吸気カムシャフト(図示せず)に設けられた吸気カム角センサSW8からの吸気側のカム角に関する出力信号、排気カムシャフト(図示せず)に設けられた排気カム角センサSW9からの排気側のカム角に関する出力信号、および、シリンダヘッド54に設けられた燃圧センサSW10からの主燃焼室26内の燃焼圧力に関する出力信号がそれぞれ入力される。
ここで、アクセルペダルの開度に関する出力信号は、ドライバがアクセルペダルを踏み込んだ量に相当する数値を出力する信号であり、この信号は、ECU50において、ドライバの要求トルクを決定すると共に、そのドライバの要求トルクに基づいてエンジン2のエンジン負荷(目標出力トルク/目標エンジントルク)、および、エンジンの各作動領域(図6の制御マップに示す、「エンジン低中負荷領域」、「エンジン低回転高負荷領域」、および、「所定回転数以上におけるエンジン高負荷領域」)を決定するために使用される。
ECU50は、これらの出力信号に基づいて、インジェクタ28による燃料噴射タイミングを制御する。
また、ECU50は、主点火プラグ32およびプレチャンバープラグ30内の副点火プラグ(PCP点火プラグ)30による点火タイミングを制御する。
また、ECU50は、主に、吸気側の可変バルブリフト機構(吸気電動S-VT)16、および、スロットルバルブ36を制御することにより、主燃焼室26への吸入空気量を制御すると共に、インジェクタ28による燃料噴射タイミングおよび燃料噴射量を制御することより、主燃焼室26内の空燃比を制御する。本実施形態では、主に、燃料噴射タイミングを制御することにより空燃比を制御する。なお、この空燃比の制御に伴い、たとえば、NOx低減のため、排気側の可変バルブリフト機構(排気電動S-VT)18、および、EGRバルブ46も制御される。
さらに、ECU50は、スワールコントロールバルブ56によりスワール流の強さを制御する。
次に、図6により、本発明の実施形態によるエンジンの制御装置で用いられる、エンジン負荷とエンジン回転数に応じて設定されるエンジン制御マップを説明する。図6は、本発明の実施形態によるエンジンの制御装置によるエンジン負荷とエンジン回転数に応じて設定されるエンジン制御マップである。
このエンジン制御マップは、ECU50のメモリ内に記憶され、ECU50は、この制御マップに基づいてエンジン2を制御する。
ここで、図6において、縦軸のエンジン負荷は目標エンジントルクであり、横軸はエンジン回転数である。ECU50は、アクセル開度センサSW7からの出力信号に基づいて算出された目標エンジントルク、および、クランク角センサSW6からの出力信号に基づいて算出されたエンジン2の回転数(rpm)に基づき、この制御マップを参照しながらエンジン2を制御する。
以下、このECU50が参照する制御マップにおけるエンジン制御の設定内容およびECU50によるエンジン2の制御方法を具体的に説明する。
まず、図6に示すように、本実施形態のエンジン制御マップでは、エンジン始動時には、主点火プラグ32のみで点火するように設定している。
より具体的には、ECU50にイグニッション出力信号SW1が入力され、エンジン始動時と判定されると、ECU50が、主点火プラグ32により主燃焼室26内の混合気に点火するよう設定されている。エンジン始動時の主燃焼室26内の混合気は、理論空燃比(λ=1)である。このとき、プレチャンバープラグ30の副点火プラグ62では、副室60内を点火しない。
次に、図6に示すように、本実施形態のエンジン制御マップでは、所定のエンジン負荷T1未満である低~中負荷のエンジン負荷領域(以下、「低中負荷領域」という)において、主燃焼室26内の混合気を理論空燃比(λ=1)と設定すると共に、プレチャンバープラグ30の副室60に流入する混合気の空燃比を理論空燃比と設定している。また、この領域では、プレチャンバープラグ30の副点火プラグ62のみの点火と設定している。
ECU50は、このような制御マップに基づき、エンジン2の作動時において、アクセル開度センサSW7の出力信号により決定される目標エンジントルクにより、エンジン2がこの低中負荷領域で作動しているか否かを判定する(図11参照)。
この領域であると判定された場合、ECU50は、本実施形態では、主に、インジェクタ28による燃料噴射タイミングを制御することにより、点火時に、主燃焼室26内およびプレチャンバープラグ30の副室60内の空燃比が理論空燃比となるよう制御する。また、ECU50は、副点火プラグ62により副室60内の混合気に点火するタイミングを制御する。具体的な燃料噴射タイミングおよび点火タイミングは後述する。
次に、図6に示すように、所定のエンジン負荷T1以上である高負荷のエンジン負荷領域、かつ、所定のエンジン回転数Re1未満の回転数領域(以下、「高負荷低回転領域」という)においては、主点火プラグ32のみの点火と設定している。本実施形態では、この領域での主燃焼室26内の混合気を、理論空燃比(λ=1)と設定している。この領域では、プレチャンバープラグ30の副点火プラグ62では、副室60内で点火しない。
ECU50は、このような制御マップに基づき、エンジン2の作動時において、アクセル開度センサSW7の出力信号により決定される目標エンジントルク、および、クランク角センサSW6により得られたエンジン2の回転数(rpm)により、エンジン2がこの高負荷高回転領域で作動しているか否かを判定する(図11参照)。
この領域であると判定された場合、ECU50は、本実施形態では、主に、インジェクタ28による燃料噴射タイミングを制御することにより、点火時に、主燃焼室26内の空燃比が理論空燃比となるよう制御する。また、ECU50は、主点火プラグ32により主燃焼室26内の混合気に点火するタイミングを制御する。具体的な燃料噴射タイミングおよび点火タイミングは後述する。
次に、図6に示すように、所定のエンジン負荷T1以上である高負荷のエンジン負荷領域、かつ、所定のエンジン回転数Re1以上の高回転数領域(以下、「高負荷高回転領域」という)においては、主燃焼室26の混合気を、理論空燃比よりリーンな混合気(λ>1)と設定すると共に、プレチャンバープラグ30の副室60に流入する混合気の空燃比を、理論空燃比よりリーンな空燃比(λ>1)と設定している。また、この高負荷高回転領域では、プレチャンバープラグ30の副点火プラグ62のみで点火するよう設定している。
ECU50は、このような制御マップに基づき、エンジン2の作動時において、アクセル開度センサSW7の出力信号により決定される目標エンジントルク、および、クランク角センサSW6により得られたエンジン2の回転数(rpm)により、エンジン2がこの高負荷高回転領域で作動しているか否かを判定する(図11参照)。
この領域であると判定された場合、ECU50は、本実施形態では、主に、インジェクタ28による燃料噴射タイミングを制御することにより、主燃焼室26内およびプレチャンバープラグ30の副室60内の空燃比が、理論空燃比よりリーンな空燃比となるよう制御する。また、ECU50は、副点火プラグ62により副室60内の混合気に点火するタイミングを制御する。具体的な燃料噴射タイミングおよび点火タイミングは後述する。
ここで、本実施形態では、図6に示す制御マップにおいて、低中負荷領域と高負荷低回転領域との境界、および、低中負荷領域と高負荷高回転領域との境界となる所定のエンジン負荷(目標エンジントルク)T1は、最大のエンジン負荷を100%としたときの70%(T1=70%)に設定している。なお、変形例として、エンジンの仕様等に応じて、70%以外の数値を設定してもよい。
また、本実施形態では、図6に示す制御マップにおいて、高負荷低回転領域と高負荷高回転領域との境界となる所定のエンジン回転数Re1を3000rpmに設定している。なお、変形例として、この境界となるエンジン回転数を、上述した副室60の連通孔66の数および径などに応じて、たとえば、1000rpmに設定してもよい。
次に、図7~図10により、本発明の実施形態によるエンジンの制御装置により制御される燃料噴射タイミングおよび点火タイミングを説明する。図7~図10は、本発明の実施形態によるエンジンの制御装置により制御される燃料噴射タイミングおよび点火タイミングのタイムチャートの一例であり、図7は、図6に示すエンジン制御マップにおける低中負荷領域における基本的なタイムチャートの例を示す図であり、図8は、図6に示すエンジン制御マップにおける高負荷低回転領域における基本的なタイムチャートの一例を示す図であり、図9は、図6に示すエンジン制御マップにおける高負荷高回転領域におけるタイムチャートの一例を示す図であり、図10は、本発明の実施形態によるエンジンの制御装置により制御される燃料噴射タイミングおよび点火タイミングのタイムチャートであり、図6に示すエンジン制御マップにおける高負荷高回転領域においてエンジン負荷に応じた燃料噴射タイミングの変更を説明するためのタイムチャートの一例を示す図である。
まず、図7に示すように、本実施形態では、低中負荷領域において、吸気行程の中期(クランク角=-300°~-240°)の所定の時期で一括燃料噴射を行う。なお、このような燃料噴射時期は、吸気行程中期に限らず、吸気行程初期の所定のタイミングから吸気行程中期の所定のタイミングまでの間や、吸気行程中期の所定のタイミングから吸気行程後期の所定のタイミングまでの間など、吸気行程において燃料と空気をミキシングして、その混合気を理論空燃比とし、圧縮行程において、副室60内に理論空燃比の混合気を流入させることができるような時期であればよい。
また、図7に示すように、この低中負荷領域では、プレチャンバープラグ30の副点火プラグ62による副室60内の混合気への点火(以下、「PCP点火」という)を、圧縮上死点より前の圧縮行程後期に行う。
このように本実施形態では、基本的に吸気行程の中期で一括燃料噴射を行うことにより、吸気行程の後期において燃料と空気のミキシングを行い、混合気を均質にすることで、気筒22内に、λ=1の理論空燃比を有する混合気を形成し、その後、圧縮行程において、プレチャンバープラグ30の副室60内に、理論空燃比となっている混合気を流入させるようにしている。そして、設定した点火時期になると、副室60内に流入した混合気を副点火プラグ62により点火し、その副室60内で発生した火炎伝搬を、火炎として主燃焼室26に噴出/放射させ、それにより、主燃焼室26内の混合気の火炎伝搬を早めるようにしている。
次に、図8に示すように、本実施形態では、高負荷低回転領域において、吸気行程中期の所定の時期で燃料を噴射し、さらに、点火時期直前の少なくとも圧縮行程後半の所定の時期で燃料を噴射する。本実施形態では、この燃料噴射時期は、点火時期直前の圧縮行程の後半の範囲内に設定している。本実施形態における、このような燃料噴射時期は、点火時期直前の上死点付近におけるプリイグニッションが生じることが想定されるクランク角である。
また、図8に示すように、この高負荷低回転領域では、主点火プラグ32による主燃焼室26内の混合気への点火(以下、「主プラグ点火」という)を、圧縮上死点前後に行う。
このように本実施形態では、圧縮行程の後期の後半の時期、すなわち、点火時期の直前のプリイグニッションの発生が想定されるクランク角において燃料を噴射するようにして、その燃料噴射により主燃焼室26の温度上昇を抑制して、プリイグニッションが発生するのを抑制するようにしている。
また、本実施形態では、点火時期直前の圧縮行程で分割噴射しているので、圧縮行程で噴射された燃料と主燃焼室26内の空気がミキシングされる時間が確保しにくくなり、その分、副室60に流入する混合気がリーンになりすぎて失火しやすいので、主点火プラグ32で点火することにより、主燃焼室26内の混合気を確実に燃焼させるようにしている。
次に、図9に示すように、本実施形態では、高負荷高回転領域において、吸気行程中期の所定の時期で燃料を噴射し、さらに、圧縮行程中期(-120°~-60°)の所定の時期で燃料を噴射する。なお、このような燃料噴射時期は、吸気行程中期および/または圧縮行程中期に限らず、点火時に、副室60内に燃焼可能な程度のリーンの空燃比の混合気が流入するような時期であればよい。
また、図9に示すように、この高負荷高回転領域では、プレチャンバープラグ30の副点火プラグ62による副室60内の混合気への点火を、圧縮行程の後期に行う。
このように本実施形態では、分割噴射を行い、全噴射量の一部の燃料を圧縮行程で主燃焼室26に噴射するので、吸気行程における燃料噴射量を減らした分、点火時期に至るまでの間にミキシングされる主燃焼室26内の混合気をリーンにすることができ、そのようなリーンとなっている混合気を、副室60に流入させることができる。この場合、圧縮行程で噴射した燃料は、ミキシング時間が短い分、生成される混合気が少なくなり、副室60に入る混合気が少なくなる。これによっても、副室60内の混合気をリーン(λ>1)にすることができる。そして、副点火プラグ62により、副室60内の混合気に点火すると、混合気が理論空燃比である場合に対して混合気がリーンである分、副室60内の燃焼した混合気の火炎伝搬が遅くなる。そして、この副室60内の火炎伝搬が遅くなった分、副室60の連通孔66から噴出される火炎の勢いも弱まる。このようにして、本実施形態では、高負荷高回転領域では、主燃焼室26内における燃焼伝搬を遅くするようにしている。
言い換えると、この高負荷高回転領域においては、副室60内の混合気をリーンにすることによって、副室60から勢いよく火炎が噴出することを抑制している。これにより、本実施形態では、主燃焼室26における燃焼伝搬が異常に早くなり、主燃焼室26の空間(気柱)に高周波数の気柱共鳴(1.5kHz、3~4kHz、6~7kHz付近など)が励振されるような異常燃焼を抑制するようにしている。
次に、図10に示すように、高負荷高回転領域では、エンジン負荷(目標エンジントルク)に応じて燃料噴射タイミングを変更するようにしている。より具体的には、本実施形態では、吸気行程における燃料噴射タイミングは変更しないが、圧縮行程における燃料噴射タイミングを、エンジン負荷が高くなるほど遅角するようにしている。より具体的には、本実施形態では、エンジン負荷が、低中負荷領域との境界であるエンジン負荷T1=70%のとき、図10においてF1で示すような燃料噴射タイミングで燃料を噴射し、その後、エンジン負荷が高くなるほど、図10においてF2で示すような燃料噴射タイミングまで遅角する。このように本実施形態では、高負荷高回転領域において、エンジン負荷が高くなるほど、燃料噴射タイミングを、圧縮行程中期から圧縮行程後期へと遅角するようにしている。
また、この高負荷高回転領域では、副室60内の混合気への点火の時期を、上述した燃料噴射タイミングのエンジン負荷に応じた遅角と同様に、エンジン負荷が高くなるほど、圧縮上死点前後の時期に向けて遅角する。
また、この高負荷高回転領域では、主燃焼室26内のスワール流が強くなるよう、図3に示すスワールコントロールバルブ56を制御する。
本実施形態では、主燃焼室26内のスワール流が強いほど、混合気が主燃焼室26およびピストン24の外周側に流れ、主燃焼室26およびピストン24の中央領域には流れにくくなることを利用している。ここで、本実施形態では、プレチャンバープラグ30の副室60は、上述したように、平面視で、主燃焼室26の中央領域に設けられている(図3参照)。従って、本実施形態では、主燃焼室26内のスワール流が強くなるようにすることで、混合気が中央領域には流れにくくなり、その分、中央領域に設けた副室60内に流入する混合気をリーンにするようにしている。
次に、図11により、図6に示すエンジン制御マップに基づくECU50によるエンジン2の制御内容を説明する。図11は、本発明の実施形態によるエンジンの制御装置によるエンジン制御マップに基づくエンジンの制御内容を示すフローチャートである。なお、図11において、Sは各ステップを示す。
まず、図11に示すように、ECU50は、S1において、アクセル開度センサSW7からの出力信号、および、クランク角センサSW6の出力信号を読み込む。
次に、S2において、アクセル開度センサSW7からの出力信号に基づいて、目標エンジントルクT1を算出し、次に、S3において、クランク角センサSW6からの出力信号に基づいて、エンジン回転数を算出する。
次に、S4において、S2で算出された目標エンジントルクが所定値未満か否かを判定する。本実施形態では、このS4における目標エンジントルクの所定値は、上述したように、70%に設定されている。
S4において、目標エンジントルクが所定値(70%)未満であった場合(S4でYES)は、上述した低中負荷領域であると判定し、S5に進み、上述したように、λ=1の混合気でPCP点火を行う。
一方、S4において、目標エンジントルクが所定値(70%)以上であった場合(S4でNO)は、S6に進み、S3で算出されたエンジン回転数が所定値未満か否かを判定する。本実施形態では、このS5におけるエンジン回転数の所定値は、上述したように、3000rpmに設定されている。
S6において、目標エンジントルクが所定値(70%)未満であった場合(S6でYES)は、上述した高負荷低回転領域であると判定し、S7に進み、上述したように主点火プラグ32により主燃焼室26の混合気に点火する。
一方、S6において、目標エンジントルクが所定値(70%)以上であった場合(S6でNO)は、上述した高負荷高回転領域であると判定し、S8に進み、上述したように、λ>1の混合気でPCP点火を行う。
次に、図12により、図11に示すフローチャートに基づいて決定される、高負荷低回転領域および低中負荷領域においてエンジン負荷に応じて切り換えられる主点火プラグと副点火プラグの制御内容を説明する。図12は、図6に示す制御マップおよび図11に示すフローチャートに基づいて決定される、高負荷低回転領域および低中負荷領域においてエンジン負荷に応じて切り換えられる主点火プラグと副点火プラグの制御内容を示す線図である。
図12に示すように、低~中負荷領域および高負荷低回転領域においては、エンジン負荷(目標エンジントルク)に応じて点火プラグが切り換えられる。すなわち、エンジン負荷が、低~中負荷の範囲(低中負荷領域)では、上述したように、副点火プラグ62によるPCP点火が行われ(図12においてPCP点火ON)、その後、エンジン負荷が高まり、高負荷低回転領域に入ると、上述したように、主点火プラグ32による点火に切り換えられ(図12においてPCP点火OFF、主点火ON)、主燃焼室26の混合気に点火される。
次に、本発明の実施形態によるエンジンの制御装置の主な作用効果を説明する。
まず、本発明の実施形態によるエンジンシステム1のエンジン2の制御装置(ECU)50は、エンジン負荷が所定負荷以上のとき(たとえば、T1=70%以上の高負荷低回転領域)、主点火プラグ32で主燃焼室26内の混合気に点火させると共に、エンジン負荷が所定負荷未満のときの燃料噴射時期よりも遅い時期(本実施形態では、点火時期の直前の時期、圧縮工程後期の時期、圧縮行程後期の後半の時期)で主燃焼室26内に燃料を噴射するので、燃料噴射により主燃焼室26内の温度上昇を抑制することができ、その結果、プリイグニッションの発生を抑制することができる。さらに、エンジン負荷が所定負荷未満のときの燃料噴射時期よりも遅い時期(点火時期の直前の時期、圧縮工程後期の時期、圧縮行程後期の後半の時期)で燃料を噴射することで、主燃焼室26内に噴射された燃料と主燃焼室26内の空気がミキシングされる時間が確保しにくくなり、副室60に流入する混合気が少なくなることに起因して副室60で失火しやすい状態でも、主点火プラグ32で主燃焼室26内の混合気に点火するので、主燃焼室26内の混合気を確実に燃焼させることができる。
また、本実施形態によれば、エンジン負荷が所定負荷未満のとき(たとえば、T1=70%未満の低中負荷領域)は、副点火プラグ62で副室60内の混合気に点火し燃焼させるので、副室60の連通孔66から火炎を噴出させて、主燃焼室26における燃焼伝搬を早めることができ、その結果、エンジンの熱効率を高めることができる。
また、本実施形態によれば、エンジンシステム1のエンジン2の制御装置50は、エンジン負荷が所定負荷未満のとき(たとえば、T1=70%未満の低中負荷領域)は、吸気行程のみで燃料を噴射させるので、副点火プラグ62による副室60内の混合気の燃焼により、副室60の連通孔66から火炎を噴出させて、主燃焼室26における燃焼伝搬を早めることができる。
また、本実施形態によれば、エンジンシステム1のエンジン2の制御装置50は、エンジン負荷が所定負荷以上のとき(たとえば、T1=70%以上の高負荷低回転領域)は、吸気行程と圧縮行程とに分割して燃料を噴射させるので、圧縮行程中に噴射される燃料により、プリイグニッションを抑制しつつ、主点火プラグ32により主燃焼室26内の混合気を確実に燃焼させることができる。また、低負荷時(エンジン負荷が所定負荷未満のとき)は、高負荷時(エンジン負荷が所定負荷以上のとき)に比べて、全燃料を吸気行程で噴射するので、分割噴射するよりも、主燃焼室26から副室内に流入する混合気の空燃比を理論空燃比にしやすく、その結果、より確実に副室60の連通孔66から火炎を噴出させて、主燃焼室26における燃焼伝搬を早めることができる。
また、本実施形態によれば、エンジン2において、主点火プラグ32は排気ポート12側に設けられ、副室60および副点火プラグ62は吸気ポート8側に設けられている。従って、副室60が排気ガスの熱を受け、副室60内の温度が過度に上昇することを抑制することができ、これにより、副室60内での燃焼伝搬が早くなり、それに伴い、連通孔66から主燃焼室26に噴出する火炎の勢いが強くなってしまうことを抑制することができる。
1 エンジンシステム
2 エンジン
8 吸気ポート
10 吸気バルブ
12 排気ポート
14 排気バルブ
16、18 可変バルブリフト機構
22 気筒(シリンダ)
24 ピストン
26 主燃焼室
30 プレチャンバープラグ(第2点火プラグ)
32 主点火プラグ(第1点火プラグ)
50 ECU(エンジンの制御装置)
52 シリンダブロック
54 シリンダヘッド
56 スワールコントロールバルブ
60 プレチャンバープラグ(PCP)の副室
62 副点火プラグ(第2点火プラグ)
66 連通孔/噴孔

Claims (4)

  1. エンジンと、
    このエンジンのシリンダヘッドおよびピストンで形成される主燃焼室と、
    上記エンジンの主燃焼室に設けられ、上記主燃焼室に連通する連通孔が形成された副室と、
    上記エンジンに設けられ、上記主燃焼室内に燃料を噴射するインジェクタと、
    上記エンジンに設けられ、上記主燃焼室に臨み主燃焼室の混合気に点火する第1点火プラグと、
    上記エンジンの副室内に設けられ、上記副室内の混合気に点火する第2点火プラグと、
    ドライバのアクセル開度を検出するアクセル開度検出器と、
    このアクセル開度検出器からの出力信号を受け、上記インジェクタ、上記第1点火プラグおよび上記第2点火プラグを制御する制御装置と、を備え、
    この制御装置は、
    上記アクセル開度検出器により検出されたアクセル開度に基づいてドライバの要求トルクを判定するドライバ要求トルク判定手段と、
    このドライバ要求トルク判定手段により判定されたドライバ要求トルクに基づいて上記エンジンの負荷を決定するエンジン負荷決定手段と、
    このエンジン負荷決定手段により決定されるエンジン負荷が、所定値以上であるか否かを判定するエンジン負荷判定手段と、を有し、
    上記制御装置は、上記エンジン負荷判定手段によりエンジンの負荷が所定値未満であると判定されたとき、上記第2点火プラグで上記副室内の混合気に点火させるように上記第2点火プラグを制御すると共に所定の時期に燃料を噴射するように上記インジェクタを制御し、かつ、上記エンジン負荷判定手段によりエンジン負荷が所定値以上であると判定されたとき、上記第1点火プラグで上記主燃焼室内の混合気に点火させるように上記第1点火プラグを制御すると共に上記所定の時期よりも遅い時期に燃料を噴射するように上記インジェクタを制御するよう構成されている、ことを特徴とするエンジンシステム。
  2. 上記エンジン負荷が所定値未満であるときの上記所定の時期は吸気行程における時期であり、上記エンジン負荷が所定値以上であるときの上記所定の時期よりも遅い時期は、圧縮行程における上記第1点火プラグの点火時期の直前の時期である、請求項1に記載のエンジンシステム。
  3. 上記制御装置は、エンジン負荷が上記所定値未満と判定されたとき、吸気行程のみで燃料を噴射させるよう上記インジェクタを制御し、かつ、エンジン負荷が上記所定値以上と判定されたとき、吸気行程と圧縮行程とに分割して燃料を噴射させるよう上記インジェクタを制御するよう構成されている、請求項1または請求項2に記載のエンジンシステム。
  4. 上記エンジンにおいて、上記第1点火プラグは上記エンジンの排気ポート側に設けられ、上記副室および上記第2点火プラグは上記エンジンの吸気ポート側に設けられている、請求項1乃至3のいずれか1項に記載のエンジンシステム。
JP2020007566A 2020-01-21 2020-01-21 エンジンシステム Active JP7288585B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020007566A JP7288585B2 (ja) 2020-01-21 2020-01-21 エンジンシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020007566A JP7288585B2 (ja) 2020-01-21 2020-01-21 エンジンシステム

Publications (2)

Publication Number Publication Date
JP2021113551A JP2021113551A (ja) 2021-08-05
JP7288585B2 true JP7288585B2 (ja) 2023-06-08

Family

ID=77076784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020007566A Active JP7288585B2 (ja) 2020-01-21 2020-01-21 エンジンシステム

Country Status (1)

Country Link
JP (1) JP7288585B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024038712A (ja) 2022-09-08 2024-03-21 スズキ株式会社 内燃エンジンの制御装置
CN116464565B (zh) * 2023-06-06 2024-07-09 天津大学 发动机的燃烧控制方法及燃烧系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070558A (ja) 2000-09-01 2002-03-08 Nissan Motor Co Ltd 圧縮自己着火式ガソリン内燃機関
JP2007064101A (ja) 2005-08-31 2007-03-15 Nissan Motor Co Ltd 副室式内燃機関
JP2007255370A (ja) 2006-03-24 2007-10-04 Nissan Motor Co Ltd 副室式内燃機関
JP2019049258A (ja) 2017-09-08 2019-03-28 エフシーエイ イタリア エス.ピー.エー. 予燃焼室および2つのスパークプラグを有するガソリン内燃エンジン

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5221362Y2 (ja) * 1974-03-18 1977-05-17
JPS52125908A (en) * 1976-04-14 1977-10-22 Nippon Soken Inc Combustion apparatus of internal combustion engine
JPS60157926U (ja) * 1984-03-30 1985-10-21 日産自動車株式会社 副室式火花点火内燃機関

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002070558A (ja) 2000-09-01 2002-03-08 Nissan Motor Co Ltd 圧縮自己着火式ガソリン内燃機関
JP2007064101A (ja) 2005-08-31 2007-03-15 Nissan Motor Co Ltd 副室式内燃機関
JP2007255370A (ja) 2006-03-24 2007-10-04 Nissan Motor Co Ltd 副室式内燃機関
JP2019049258A (ja) 2017-09-08 2019-03-28 エフシーエイ イタリア エス.ピー.エー. 予燃焼室および2つのスパークプラグを有するガソリン内燃エンジン

Also Published As

Publication number Publication date
JP2021113551A (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
JP7312362B2 (ja) エンジンシステム
KR101016924B1 (ko) 내연기관의 연료 분사 제어 장치 및 연료 분사 방법
EP4124732B1 (en) Engine system
EP3770412A1 (en) Fuel injection control device, and method of controlling injecton of fuel
EP4124746B1 (en) Engine system
JP2023020225A (ja) エンジンシステム
US11767816B2 (en) Engine system
US10677187B2 (en) Combustion control device for compression autoignition engine
JP2023020229A (ja) エンジンシステム
JP7288585B2 (ja) エンジンシステム
JP2010285906A5 (ja)
JP3893909B2 (ja) 直噴火花点火式内燃機関の制御装置
JP2023020226A (ja) エンジンシステム
JP7365564B2 (ja) エンジンシステム
JP6544418B2 (ja) エンジンの制御装置
JP2021088945A (ja) エンジンの制御装置
JP7354806B2 (ja) エンジンの制御装置
CN110778412B (zh) 压缩着火式发动机的控制装置
WO2023079799A1 (ja) エンジン制御装置及びエンジン制御方法
CN110778409B (zh) 压缩着火式发动机的控制装置
JP6848917B2 (ja) エンジンの制御装置
JP2023020234A (ja) エンジンシステム
JP2023020231A (ja) エンジンシステム
JP2023020233A (ja) エンジンシステム
JP2022150465A (ja) エンジンシステム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220720

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230426

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230427

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230510

R150 Certificate of patent or registration of utility model

Ref document number: 7288585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150