JP7288391B2 - 造形物の製造方法、造形物の製造装置、及びプログラム - Google Patents

造形物の製造方法、造形物の製造装置、及びプログラム Download PDF

Info

Publication number
JP7288391B2
JP7288391B2 JP2019204102A JP2019204102A JP7288391B2 JP 7288391 B2 JP7288391 B2 JP 7288391B2 JP 2019204102 A JP2019204102 A JP 2019204102A JP 2019204102 A JP2019204102 A JP 2019204102A JP 7288391 B2 JP7288391 B2 JP 7288391B2
Authority
JP
Japan
Prior art keywords
layer
shape
shape data
outline
actual
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019204102A
Other languages
English (en)
Other versions
JP2021074981A (ja
Inventor
伸志 佐藤
岳史 山田
正俊 飛田
達也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2019204102A priority Critical patent/JP7288391B2/ja
Publication of JP2021074981A publication Critical patent/JP2021074981A/ja
Application granted granted Critical
Publication of JP7288391B2 publication Critical patent/JP7288391B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

本発明は、造形物の製造方法、造形物の製造装置、及びプログラムに関する。
立体的な造形物の形状を表す形状データを取得し、造形物を造形するために溶融金属を積層する積層装置を制御する情報であって、予め設定された溶融金属の溶着位置である第1の溶着位置と実際の積層状態に応じて設定される溶融金属の溶着位置である第2の溶着位置との誤差が、溶融金属の溶着方向が鉛直下向きである場合よりも低減されるような、溶融金属の特定の溶着方向を少なくとも示す情報である制御情報を、取得された形状データに基づいて生成し、生成された制御情報を出力する積層制御装置は、知られている(特許文献1参照)。
溶接ロボットが、各層L1…Lkの溶融ビードの高さhnowが、計画高さhに対して許容差εの範囲内となるように各層L1…Lkの溶融ビードを形成、積層して、積層造形物を形成する、積層造形物の製造方法であって、溶融ビードの高さhnowが、計画高さhに対して許容差εを引いた値より低い場合は、溶接ロボットが、溶融ビードに重ねてさらに他の溶融ビードを形成し、溶融ビードの高さhnowが、計画高さhに対して許容差εを足した値より高い場合は、溶融ビードを切削ロボットにより削除する、積層造形物の製造方法も、知られている(特許文献2参照)。
特開2018-126760号公報 特開2018-149570号公報
積層造形中に層ごとの高さズレの蓄積等により当初の計画に対して積層高さのズレが生じた場合に、1層ずつ高さズレを解消するように制御したのでは、積層高さズレを局所的にしか修正できず、全体にわたってバランスよく修正することはできない。
本発明の目的は、積層造形中に層ごとの高さズレの蓄積等により当初の計画に対して積層高さのズレが生じた場合に、積層高さズレを全体にわたってバランスよく修正することにある。
かかる目的のもと、本発明は、造形物の形状を表す形状データを取得する工程と、形状データを複数の層に分割し、複数の層の形状をそれぞれ表す複数の層形状データを生成する工程と、複数の層形状データのうちの少なくとも1つの層形状データに従って少なくとも1層の溶接ビードを積層する工程と、積層された少なくとも1層の溶接ビードの形状を計測する工程と、計測された少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する工程と、実績上の外形線と、複数の層形状データから抽出される計画上の外形線との乖離を評価し、乖離を解消する方向に他の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れか1つを修正する工程とを含む造形物の製造方法を提供する。
乖離を解消する方向は、計画上の外形線における少なくとも1層の点から実績上の外形線における少なくとも1層の対応する点へそれぞれ向かう複数の方向に対して略逆の方向であってよい。その場合、複数の方向を平均した方向に対して逆の方向であってよい。
修正する工程では、実績上の外形線を延長して、計画上の外形線を所定の余肉量分移動させた外形線を実績上の外形線が下回ることとなる特定の層を求め、少なくとも特定の層から修正を開始してよい。その場合、特定の層よりも前の層から特定の層まで、段階的に修正してよい。
また、本発明は、造形物の形状を表す形状データを複数の層に分割した複数の層形状データのうちの少なくとも1つの層形状データに従って積層された少なくとも1層の溶接ビードの形状を取得する工程と、取得された少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する工程と、実績上の外形線と、複数の層形状データから抽出される計画上の外形線との乖離を評価し、乖離を解消する方向に他の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れか1つを修正する工程とを含む造形物の製造方法も提供する。
更に、本発明は、造形物の形状を表す形状データを複数の層に分割した複数の層形状データのうちの少なくとも1つの層形状データに従って積層された少なくとも1層の溶接ビードの形状を取得する取得手段と、取得手段により取得された少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する抽出手段と、実績上の外形線と、複数の層形状データから抽出される計画上の外形線との乖離を評価し、乖離を解消する方向に他の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れか1つを修正する修正手段とを備えた造形物の製造装置も提供する。
更にまた、本発明は、コンピュータに、造形物の形状を表す形状データを複数の層に分割した複数の層形状データのうちの少なくとも1つの層形状データに従って積層された少なくとも1層の溶接ビードの形状を取得する機能と、取得された少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する機能と、実績上の外形線と、複数の層形状データから抽出される計画上の外形線との乖離を評価し、乖離を解消する方向に他の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れか1つを修正する機能とを実現させるためのプログラムも提供する。
本発明によれば、積層造形中に層ごとの高さズレの蓄積等により当初の計画に対して積層高さのズレが生じた場合に、積層高さズレを全体にわたってバランスよく修正することができる。
本発明の実施の形態が適用可能な金属積層造形システムの概略構成例を示した図である。 本発明の実施の形態における制御装置のハードウェア構成例を示す図である。 高さ方向に断面形状が変化しない場合の層の追加について示した図である。 高さ方向に断面形状が小さくなるように変化する場合の層の追加について示した図である。 高さ方向に断面形状が大きくなるように変化する場合の層の追加について示した図である。 高さ方向に断面形状は変化しないがオーバーハングしている場合の層の追加について示した図である。 (a),(b)は、本発明の実施の形態によるフィードバックについて示した概念図である。 本発明の実施の形態によるフィードバックにおいて何層目で修正が必要になるかを判断する具体例について示した図である。 本発明の実施の形態における積層計画装置の機能構成例を示した図である。 本発明の実施の形態における制御装置の機能構成例を示した図である。 本発明の実施の形態における積層計画装置の動作例を示したフローチャートである。 本発明の実施の形態における制御装置の溶接条件修正部の動作例を示したフローチャートである。
以下、添付図面を参照して、本発明の実施の形態について詳細に説明する。
[金属積層造形システムの構成]
図1は、本実施の形態における金属積層造形システム1の概略構成例を示した図である。
図示するように、金属積層造形システム1は、溶接ロボット(マニピュレータ)10と、CAD装置20と、積層計画装置30と、制御装置50とを備える。また、積層計画装置30は、溶接ロボット10を制御する制御プログラムを、例えばメモリカード等のリムーバブルな記録媒体70に書き込み、制御装置50は、記録媒体70に書き込まれた制御プログラムを読み出すことができるようになっている。
溶接ロボット10は、複数の関節を有する腕(アーム)11を備え、制御装置50が読み込んだ制御プログラムに従って動作することで溶接作業を行う。また、溶接ロボット10は、腕11の先端に手首部12を介して、積層体の一例である積層造形物100を造形するための溶接トーチ13を有している。そして、金属積層造形システム1の場合、溶接ロボット10は、軟鋼製の溶加材(ワイヤ)14を溶融しながら、溶接トーチ13を移動させて、積層造形物100を製造する。具体的には、溶接トーチ13は、溶加材14を供給しつつ、シールドガスを流しながらアークを発生させて溶加材14を溶融及び固化し、母材90上に複数層の溶接ビード(以下、単に「ビード」という)101を積層して積層造形物100を製造する。尚、ここでは、溶加材14を溶融する熱源としてアークを用いるが、レーザやプラズマを用いてもよい。また、溶接ロボット10は、この他に、溶加材14を送給する送給装置等も含むが、これについては説明を省略する。
CAD装置20は、コンピュータを用いて造形物の設計を行うと共に、設計によって得られた三次元データ(以下、「三次元CADデータ」という)を保持する機能を有している。
積層計画装置30は、CAD装置20が保持する三次元CADデータに基づいて積層造形物100の積層計画を作成する。つまり、溶接トーチ13の軌道を決定すると共に、溶接ロボット10が溶接する際の溶接条件を決定する。そして、この決定した軌道に沿って決定した溶接条件でビード101を形成するように溶接ロボット10を制御するための制御プログラムを生成し、この制御プログラムを記録媒体70に出力する。
制御装置50は、記録媒体70から制御プログラムを読み込んで保持する。そして、この制御プログラムを動作させることにより、積層計画装置30で作成された積層計画に従って、つまり、積層計画装置30で決定された軌道に沿って、積層計画装置30で決定された溶接条件でビード101を形成するよう、溶接ロボット10を制御する。本実施の形態では、造形物の製造装置の一例として、制御装置50を設けている。
[制御装置のハードウェア構成]
図2は、制御装置50のハードウェア構成例を示す図である。
図示するように、制御装置50は、例えば汎用のPC(Personal Computer)等により実現され、演算手段であるCPU51と、記憶手段であるメインメモリ52及び磁気ディスク装置(HDD:Hard Disk Drive)53とを備える。ここで、CPU51は、OS(Operating System)やアプリケーションソフトウェア等の各種プログラムを実行し、制御装置50の各機能を実現する。また、メインメモリ52は、各種プログラムやその実行に用いるデータ等を記憶する記憶領域であり、HDD53は、各種プログラムに対する入力データや各種プログラムからの出力データ等を記憶する記憶領域である。
また、制御装置50は、外部との通信を行うための通信I/F54と、ビデオメモリやディスプレイ等からなる表示機構55と、キーボードやマウス等の入力デバイス56と、記録媒体70に対してデータの読み書きを行うためのドライバ57とを備える。尚、図2は、制御装置50をコンピュータシステムにて実現した場合のハードウェア構成を例示するに過ぎず、制御装置50は図示の構成に限定されない。
また、図2に示したハードウェア構成は、積層計画装置30のハードウェア構成としても捉えられる。但し、積層計画装置30について述べるときは、図2のCPU51、メインメモリ52、磁気ディスク装置53、通信I/F54、表示機構55、入力デバイス56、ドライバ57をそれぞれ、CPU31、メインメモリ32、磁気ディスク装置33、通信I/F34、表示機構35、入力デバイス36、ドライバ37と表記するものとする。
[本実施の形態の背景及び概要]
このような構成を備えた金属積層造形システム1による積層造形中には、層ごとの高さズレの蓄積又は高さ方向の収縮により、当初の計画に対して積層高さのズレが生じる可能性がある。この積層高さのズレを解消するために造形中の測定結果と計画との差に基づいて、計画よりも低い場合は層の追加が対策として考えられる。しかしながら、単純に層を追加したのでは、高さ方向(積層方向)に断面形状が変化する積層造形物を造形する場合に、造形誤差が生じてしまう。
また、積層造形中には、横方向のズレも発生し得るため、単純に層を追加するだけではなく、ビード101の長さ、位置等、計画した形状を実現するために複数の因子を同時に考慮する必要がある。
以下、このことを具体的に説明する。
図3は、高さ方向に断面形状が変化しない場合の層の追加について示した図である。図は、計画上の積層造形物110よりも実際の積層造形物120の方が低くなった場合を示している。この場合、クロスハッチングで示す層を追加した積層造形物130を造形することが考えられる。積層造形物130では、高さ方向については層を追加することでズレが解消される。一方、横方向については、計画上ビード101が存在する部分と実際にビード101が存在する部分とが一致するので、ズレは生じておらず、問題とはならない。
しかしながら、単純に層を追加したのでは、上述したように、高さ方向に断面形状が変化する場合に、造形誤差が生じる。
図4は、高さ方向に断面形状が小さくなるように変化する場合の層の追加について示した図である。図は、計画上の積層造形物111よりも実際の積層造形物121の方が低くなった場合を示している。この場合、クロスハッチングで示す層を追加した積層造形物131を造形することが考えられる。積層造形物131では、高さ方向については層を追加することでズレが解消される。一方、横方向については、計画上はビード101が存在するのに実際にはビード101が存在しない不足部分が発生し、ズレが解消されない。尚、図中、不足部分は、計画上の積層造形物111を示す線と実際の積層造形物121を示す斜線ハッチングとの間の隙間によって表されている。
図5は、高さ方向に断面形状が大きくなるように変化する場合の層の追加について示した図である。図は、計画上の積層造形物112よりも実際の積層造形物122の方が低くなった場合を示している。この場合、クロスハッチングで示す層を追加した積層造形物132を造形することが考えられる。積層造形物132では、高さ方向については層を追加することでズレが解消される。一方、横方向については、計画上はビード101が存在しないのに実際にはビード101が存在する余肉部分が発生し、ズレが解消されない。但し、この余肉部分は切削にて除去すればよいので、さほど問題とはならない。
図6は、高さ方向に断面形状は変化しないがオーバーハングしている場合の層の追加について示した図である。図は、計画上の積層造形物113よりも実際の積層造形物123の方が低くなった場合を示している。この場合、クロスハッチングで示す層を追加した積層造形物133を造形することが考えられる。積層造形物133では、高さ方向については層を追加することでズレが解消される。一方、横方向については、計画上はビード101が存在するのに実際にはビード101が存在しない不足部分が発生し、ズレが解消されない。尚、図中、不足部分は、計画上の積層造形物113を示す線と実際の積層造形物123を示す斜線ハッチングとの間の隙間によって表されている。
これらのうち、図4及び図6のように高さ方向のズレによって不足部分が生じ、特に、造形の余肉量よりも不足量が多くなる場合には、造形をやり直す必要が生じる等、問題となる。
そこで、本実施の形態では、ある層まで造形した途中段階で、外形を計測し、その外形に対応する外形線を引く。また、積層計画からも外形を求め、その外形に対応する外形線を引く。そして、2つの外形線を比較して、各層での差分値を算出し、差分値をビード101の開始位置又は終端位置における補正量としてフィードバックする。
図7(a),(b)は、このフィードバックについて示した概念図である。尚、ここでは、図4に示した計画上の積層造形物111から実際の積層造形物121を造形する場合を例にとっている。
図7(a)に示すように、まず、計画上の積層造形物111から求めた計画上の外形線115を引く。また、積層造形物121の1層目のビード101からm層目のビード101まで積層した後に、造形途中の積層造形物121の形状から外挿した実績上の外形線125を引く。そして、外形線115と外形線125との乖離D(図では左右方向にとっている)を解消する方向に補正を行う。
具体的には、図7(b)の拡大図に示すような補正を行う。即ち、例えば、計画上の積層造形物111の外形線115上の1層目からm層目の開始位置P,…,Pが、それぞれ、実際の積層造形物121の外形線125上の1層目からm層目の開始位置Q,…,Qに移動したとする。すると、実際の積層造形物121の外形線125上の(m+1)層目以降の開始位置Qm+1,…は、開始位置P,…,Pから開始位置Q,…,Qへの複数のベクトルとは略逆のベクトルに沿って、外形線135上の点へと補正される。この場合、開始位置P,…,Pから開始位置Q,…,Qへの複数のベクトルは、計画上の外形線における少なくとも1層の点から実績上の外形線における少なくとも1層の対応する点へそれぞれ向かう複数の方向の一例である。また、複数のベクトルとは略逆のベクトルは、複数の方向に対して略逆の方向の一例である。
ここで、開始位置P,…,Pから開始位置Q,…,Qへの複数のベクトルとは略逆のベクトルは、複数のベクトルに対して向きが略逆であれば、如何なるベクトルであってもよい。例えば、開始位置P,…,Pから開始位置Q,…,Qへの複数のベクトルを平均したベクトルとは逆のベクトルであってもよい。この場合、開始位置P,…,Pから開始位置Q,…,Qへの複数のベクトルを平均したベクトルは、複数の方向を平均した方向の一例である。また、複数のベクトルを平均したベクトルとは逆のベクトルは、複数の方向を平均した方向に対して逆の方向の一例である。
図8は、このようなフィードバックにおいて何層目で修正が必要になるかを判断する具体例について示した図である。尚、ここでは、図6に示した計画上の積層造形物113から実際の積層造形物123を造形する場合を例にとっている。但し、図中、実際の積層造形物123としては、例えば1層目からm層目までの造形によって予測された(n-1)層目から(n+1)層目までを示している(m<nー1)。
図8には、計画上の積層造形物113における(n-1)層目の断面114n-1、n層目の断面114、(n+1)層目の断面114n+1が示されている。そして、断面114n-1、断面114、断面114n+1の基準線からの高さをそれぞれHplan_n-1、Hplan_n、Hplan_n+1としている。また、図8には、実際の積層造形物121における予測された(n-1)層目の断面124n-1、n層目の断面124、(n+1)層目の断面124n+1も示されている。そして、断面124n-1は断面114n-1よりもΔHn-1だけ低くなり、断面124は断面114よりもΔHだけ低くなり、断面124n+1は断面114n+1よりもΔHn+1だけ低くなることが予測されているとする。尚、ここでは、説明を簡略化するため、断面124n-1、断面124、断面124n+1は、横方向においては、ズレが生じておらず、断面114n-1、断面114、断面114n+1と一致しているものとする。
このような前提の下、計画上の積層造形物113の断面114から断面114n+1への変化を示す直線の式fn+1(x)は、以下のようになる。
Figure 0007288391000001
尚、この断面の変化を示す直線は、図7(a)では、各層の断面の左上点を結んだ外形線115としたが、ここでは、断面114の高さ方向の中点(x,y)と断面114n+1の高さ方向の中点(xn+1,yn+1)とを結んだ直線としている。
また、計画上の積層造形物113の断面114から断面114n+1への変化を示す直線を余肉を考慮して移動させた直線の式gn+1(x)は、左右方向の余肉量をBとすると、以下のようになる。
Figure 0007288391000002
ここで、断面124の上面における断面124n+1の開始位置Qn+1が直線gn+1(x)よりも積層造形物123側にある場合は不足部分が生じる。つまり、以下の不等式が成り立つと予測される場合は、黒塗りした部分が不足部分となる。
Figure 0007288391000003
尚、図8では横方向のズレが生じていないことを前提としたので、この不等式は、断面124n+1の開始位置Qn+1のX座標をxn+1とし、gn+1(xn+1)と断面124の上面の高さ(Hplan_n-ΔH)とを比較するものとした。しかしながら、横方向のズレが生じることを考慮する場合は、断面124n+1の開始位置Qn+1のX座標を一般化してtとし、gn+1(t)と断面124の上面の高さ(Hplan_n-ΔH)とを比較するものとしてもよい。
また、図8において、実際の積層造形物123の断面124から断面124n+1への変化を示す直線は、図示しないが、断面124n-1の上面における断面124の開始位置Qと、断面124の上面における断面124n+1の開始位置Qn+1とを結んだ直線である。この状態で、上記不等式が成り立つことは、この直線が式fn+1(x)で表される直線から乖離していることを意味すると言うことができる。そして、ある直線が別の直線から乖離しているとは、ある直線の別の直線に対する乖離度が閾値を超えていることと捉えることもできる。
更に、上記不等式が成り立つ場合は、例えば、n層目を積層した後、本来の(n+1)層目を積層する前にn層目と同じ開始位置から始まる一層の追加を実施するとよいが、これには限らない。n層目を積層した後、黒塗りした不足部分をなくす処理であれば、如何なる処理を行ってもよい。
[本実施の形態の機能構成]
(積層計画装置の機能構成)
図9は、本実施の形態における積層計画装置30の機能構成例を示した図である。図示するように、本実施の形態における積層計画装置30は、CADデータ取得部41と、CADデータ分割部42と、積層計画部43と、制御プログラム生成部44と、計画外形線抽出部45と、情報出力部46とを備える。
CADデータ取得部41は、CAD装置20から、積層造形物100の三次元形状を表す三次元CADデータを取得する。本実施の形態では、造形物の形状を表す形状データの一例として、三次元CADデータを用いている。
CADデータ分割部42は、CADデータ取得部41が取得した三次元CADデータを複数の層に分割(スライス)することで、各層の形状をそれぞれが表す複数の層形状データを生成する。その際、CADデータ分割部42は、三次元CADデータを複数の層に分割し易い内部形式に変換してもよい。
積層計画部43は、CADデータ分割部42が生成した複数の層形状データの各層の高さ及び幅に合ったビード101を溶着する際の溶接条件や溶接トーチ13の軌道位置を含む積層計画を生成する。このような積層計画を生成するには、ビード101の高さや幅の他、ビード101の断面形状を近似するモデルが必要である。これらは測定実験の実測値や、溶着金属量の断面積から計算して推定したものでもよい。本実施の形態では、溶接速度やワイヤ送給速度を数条件振って溶着量を変えつつ、ビードオンプレート溶接や鉛直に数層の積層を行い、各々の条件にて1層当たりの高さや幅を測定した結果をデータベース化する。そして、積層する際に積層する所望の高さや幅を満たす溶接速度と溶着量を選択し、測定した結果から各層のビード101の推定形状を随時計算し、溶接トーチ13の軌道位置を決める。尚、溶着断面の計算は溶加材14の材質や、既に積層した部位の形状の状態によって計算方法を変えるようにしてもよい。この計算方法によって造形物を内包する積層を計画していく。
制御プログラム生成部44は、積層計画部43が生成した積層計画に従って溶接を行うように溶接ロボット10を制御するための制御プログラムを生成する。
計画外形線抽出部45は、CADデータ分割部42が生成した複数の層形状データから、計画上の外形線(以下、「計画外形線」という)を抽出する。例えば、層形状データごとに、その層形状データを構成する複数の点のうち、同一の方向において積層造形物100の最も外側に位置する点を選択し、層形状データごとの選択された点を結ぶことにより、計画外形線を抽出するとよい。或いは、層形状データごとに、その層形状データを構成する複数の点のうち、任意の条件を満たす点(例えば層の一端の高さ方向の中点)を選択し、層形状データごとの選択された点を結ぶことにより、計画外形線を抽出してもよい。
情報出力部46は、制御プログラム生成部44が生成した制御プログラムと、計画外形線抽出部45が抽出した計画外形線とを含む情報を記録媒体70に出力する。
(制御装置の機能構成)
図10は、本実施の形態における制御装置50の機能構成例を示した図である。図示するように、本実施の形態における制御装置50は、情報取得部61と、制御プログラム記憶部62と、制御プログラム実行部63と、計画外形線記憶部64と、計測データ受信部65と、実績外形線抽出部66と、溶接条件修正部67とを備える。
情報取得部61は、記録媒体70に記録された情報を取得する。この情報には、制御プログラムと、計画外形線とが含まれる。
制御プログラム記憶部62は、情報取得部61が取得した情報のうち、制御プログラムを記憶する。
制御プログラム実行部63は、制御プログラム記憶部62に記憶された制御プログラムを読み出して実行する。これにより、制御プログラム実行部63は、積層計画部43が生成した積層計画に含まれる複数の層形状データに従って複数層のビード101を積層するよう、溶接ロボット10を制御する。これは、積層造形物100の途中までの造形に着目すれば、複数の層形状データのうちの少なくとも1つの層形状データに従って少なくとも1層のビード101を積層するよう、溶接ロボット10を制御する、ものと言うことができる。また、制御プログラム実行部63は、例えば、1層のビード101の積層を終了するごとに、計測データ受信部65を制御して計測装置15から実績外形線を受信させ、溶接条件修正部67を呼び出して溶接条件を修正させる。
計画外形線記憶部64は、情報取得部61が取得した情報のうち、計画外形線を記憶する。
計測データ受信部65は、制御プログラム実行部63の指示により計測装置15を制御して造形中の積層造形物100のビード101、つまり少なくとも1層のビード101の形状を計測させる。そして、計測装置15からその計測した結果である計測データを受信する。ここで、計測装置15は、制御装置50に電気的に接続され、ビード101の高さ及び幅を含む形状を測定する装置である。計測装置15によるビード101の形状の計測方法としては、接触式、非接触式等の任意の計測方法を用いてよいが、形成直後のビード101は高温であるため、レーザ式、撮像式等の非接触式の計測方法を用いるのが好ましい。尚、図1は一般的な金属積層造形システム1を示しているので、計測装置15は図1には示されていない。本実施の形態では、積層された少なくとも1層の溶接ビードの形状を取得する取得手段の一例として、計測データ受信部65を設けている。
実績外形線抽出部66は、計測データ受信部65が受信した計測データにより示される造形中の積層造形物100のビード101の形状から、実績上の外形線(以下、「実績外形線」という)を抽出する。例えば、造形中の積層造形物100の層ごとに、その層を構成する複数の点のうち、同一の方向において積層造形物100の最も外側に位置する点を選択し、層ごとの選択された点を結ぶことにより、実績外形線を抽出するとよい。この場合、ビード末端やビード側面の変形や垂れもよく反映した外形の特徴を把握できる。或いは、造形中の積層造形物100の層ごとに、その層を構成する複数の点のうち、任意の条件を満たす点(例えば層の一端の高さ方向の中点)を選択し、層ごとの選択された点を結ぶことにより、実績外形線を抽出してもよい。この場合、外形の全体的な傾向を把握できる。本実施の形態では、少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する抽出手段の一例として、実績外形線抽出部66を設けている。
溶接条件修正部67は、制御プログラム実行部63から呼び出されると、計画外形線記憶部64に記憶された計画外形線と、実績外形線抽出部66が抽出した実績外形線とを比較し、これらの外形線の乖離を評価する。そして、この乖離が解消するように他の層の溶接条件を修正する。ここで、溶接条件としては、ビード101の積層位置、長さ、幅及び高さの少なくとも何れか1つが例示されるが、これに限られるものではない。本実施の形態では、実績上の外形線と計画上の外形線との乖離を評価し、乖離を解消する方向に他の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れか1つを修正する修正手段の一例として、溶接条件修正部67を設けている。
また、溶接条件修正部67は、実績外形線抽出部66が抽出した実績外形線を延長し、計画外形線記憶部64に記憶された計画外形線を所定の余肉量分移動させた外形線をその延長した実績外形線が下回ることとなる層を求め、少なくともその層から修正を開始するようにしてもよい。本実施の形態では、実績上の外形線を延長して、計画上の外形線を所定の余肉量分移動させた外形線を実績上の外形線が下回ることとなる特定の層を求め、少なくとも特定の層から修正を開始する修正手段の一例として、溶接条件修正部67を設けている。但し、計画外形線を所定の余肉量分移動させた外形線を実績外形線が下回ることとなる層よりも幾つか前の層から段階的に修正を行ってもよい。この場合、溶接条件修正部67は、特定の層よりも前の層から特定の層まで段階的に修正する修正手段の一例である。
[本実施の形態の動作]
(積層計画装置の動作)
図11は、本実施の形態における積層計画装置30の動作例を示したフローチャートである。
積層計画装置30では、まず、CADデータ取得部41が、CAD装置20から三次元CADデータを取得する(ステップ301)。
次に、CADデータ分割部42が、ステップ301で取得された三次元CADデータを複数の層に分割して、層形状データを生成する(ステップ302)。
次に、積層計画部43が、ステップ302で生成された層形状データから積層計画を生成する(ステップ303)。
次に、制御プログラム生成部44が、ステップ303で生成された積層計画に従ってビード101を形成することにより積層造形物100を造形するように溶接ロボット10を制御する制御プログラムを生成する(ステップ304)。
一方、計画外形線抽出部45が、ステップ302で生成された層形状データから、計画外形線を抽出する(ステップ305)。
最後に、情報出力部46が、ステップ304で生成された制御プログラムと、ステップ305で抽出された計画外形線とを記録媒体70に出力する(ステップ306)。
(制御装置の動作)
制御装置50では、まず、情報取得部61が、記録媒体70から制御プログラムと計画外形線とを取得し、制御プログラムを制御プログラム記憶部62に、計画外形線を計画外形線記憶部64にそれぞれ記憶する。そして、制御プログラム実行部63が制御プログラム記憶部62に記憶された制御プログラムを読み出してこれを実行する。
その際、制御プログラム実行部63が実行する制御プログラムは、例えば、1層のビード101の積層を終了するごとに、溶接条件修正部67を呼び出して実行する。
図12は、この溶接条件修正部67の動作例を示したフローチャートである。尚、このフローチャートは、制御プログラムがi層目のビード101を積層した後に呼び出した溶接条件修正部67の動作例を示したものである。その際、制御プログラムは計測データ受信部65も呼び出して計測装置15からi層目までのビード101の形状の計測データを受信させ、実績外形線抽出部66がこの計測データにより示される形状からi層目までの実績外形線を抽出しているものとする。また、溶接条件修正部67は、計画外形線記憶部64に記憶された計画外形線を取得しているものとする。更に、積層造形物100は全部でN層のビード101から構成されるものとする。
図示するように、溶接条件修正部67は、制御プログラムから呼び出されると、まず、実績外形線抽出部66からi層目までの実績外形線を取得する(ステップ501)。
次に、溶接条件修正部67は、層の番号を表すjをi層目の次の層の番号である(i+1)に設定する(ステップ502)。
そして、溶接条件修正部67は、ステップ501で取得されたi層目までの実績外形線から、j層目の実績外形線を予測する(ステップ503)。ここで、j層目の実績外形線を予測する方法は、例えば、i層目までの高さズレと同様の1層ごとの高さズレがj層目まで生じるものとして予測する方法であってよい。
これにより、溶接条件修正部67は、ステップ503で予測したj層目の実績外形線の、先に取得しておいたj層目の計画外形線に対する乖離度を算出する(ステップ504)。
そして、溶接条件修正部67は、ステップ504で算出した乖離度が閾値よりも大きいかどうかを判定する(ステップ505)。
ステップ505で乖離度が閾値よりも大きいと判定されれば、j層目で乖離度が閾値よりも大きくなるので、少なくともj層目で修正を開始する必要があると判断される。但し、この動作例では、j層目で初めて修正を開始するのではなく、j層目よりもk層前から修正を開始して段階的に修正を行うものとする。そこで、溶接条件修正部67は、iが(j-k)以上であるかどうかを判定する(ステップ506)。その結果、iが(j-k)以上であると判定すれば、溶接条件修正部67は、乖離度が小さくなるように溶接条件を修正する(ステップ507)。尚、i層目における修正の量は、例えば、j層目で修正すべき量を(k+1)層に均等に配分した量としてよい。その後、溶接条件修正部67は、処理を終了する。一方、iが(j-k)以上であると判定しなければ、溶接条件修正部67は、溶接条件を修正することなく、処理を終了する。
ステップ505で乖離度が閾値よりも大きいと判定しなければ、j層目で乖離度が閾値よりも大きくはならないので、j層目で修正を開始する必要があるとは判断されず、次の層が評価されることになる。そこで、溶接条件修正部67は、jに1を加算して(ステップ508)、jがNを超えたかどうかを判定する(ステップ508)。その結果、jがNを超えたと判定しなければ、溶接条件修正部67は、処理をステップ503へ戻す。一方、jがNを超えたと判定すれば、溶接条件修正部67は、処理を終了する。
[本実施の形態の効果]
以上述べたように、本実施の形態では、途中の層までの実績の傾向に基づく実績上の外形線の計画上の外形線からの乖離を評価して修正を行うようにした。これにより、局所的な修正ではなく、全体にわたってバランスよく溶接条件(積層位置やビード長さ等)を修正することができるようになった。また、積層高さだけでなく、横方向のズレも考慮して修正することができるようになった。
1…金属積層造形システム、10…溶接ロボット、20…CAD装置、30…積層計画装置、41…CADデータ取得部、42…CADデータ分割部、43…積層計画部、44…制御プログラム生成部、45…計画外形線抽出部、46…情報出力部、50…制御装置、61…情報取得部、62…制御プログラム記憶部、63…制御プログラム実行部、64…計画外形線記憶部、65…計測データ受信部、66…実績外形線抽出部、67…溶接条件修正部、70…記録媒体

Claims (8)

  1. 造形物の形状を表す形状データを取得する工程と、
    前記形状データを複数の層に分割し、当該複数の層の形状をそれぞれ表す複数の層形状データを生成する工程と、
    前記複数の層形状データのうちの少なくとも1つの層形状データに従って少なくとも1層の溶接ビードを積層する工程と、
    積層された前記少なくとも1層の溶接ビードの形状を計測する工程と、
    計測された前記少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する工程と、
    前記実績上の外形線と、前記複数の層形状データから抽出される計画上の外形線との、前記少なくとも1層の後に積層される特定の層における乖離を評価し、当該乖離を解消する方向に少なくとも当該特定の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れかの溶接条件を修正する工程と
    を含むことを特徴とする造形物の製造方法。
  2. 前記乖離を解消する方向は、前記計画上の外形線における前記少なくとも1層の点から前記実績上の外形線における当該少なくとも1層の対応する点へそれぞれ向かう複数の方向に対して略逆の方向であることを特徴とする請求項1に記載の造形物の製造方法。
  3. 前記乖離を解消する方向は、前記複数の方向を平均した方向に対して逆の方向であることを特徴とする請求項2に記載の造形物の製造方法。
  4. 前記修正する工程では、前記実績上の外形線を延長して、前記計画上の外形線を所定の余肉量分移動させた外形線を当該実績上の外形線が下回ることとなる前記特定の層を求め、少なくとも当該特定の層から修正を開始することを特徴とする請求項1に記載の造形物の製造方法。
  5. 前記修正する工程では、前記特定の層よりも前の層から当該特定の層まで、段階的に修正することを特徴とする請求項4に記載の造形物の製造方法。
  6. 造形物の形状を表す形状データを複数の層に分割した複数の層形状データのうちの少なくとも1つの層形状データに従って積層された少なくとも1層の溶接ビードの形状を取得する工程と、
    取得された前記少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する工程と、
    前記実績上の外形線と、前記複数の層形状データから抽出される計画上の外形線との、前記少なくとも1層の後に積層される特定の層における乖離を評価し、当該乖離を解消する方向に少なくとも当該特定の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れかの溶接条件を修正する工程と
    を含むことを特徴とする造形物の製造方法。
  7. 造形物の形状を表す形状データを複数の層に分割した複数の層形状データのうちの少なくとも1つの層形状データに従って積層された少なくとも1層の溶接ビードの形状を取得する取得手段と、
    前記取得手段により取得された前記少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する抽出手段と、
    前記実績上の外形線と、前記複数の層形状データから抽出される計画上の外形線との、前記少なくとも1層の後に積層される特定の層における乖離を評価し、当該乖離を解消する方向に少なくとも当該特定の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れかの溶接条件を修正する修正手段と
    を備えたことを特徴とする造形物の製造装置。
  8. コンピュータに、
    造形物の形状を表す形状データを複数の層に分割した複数の層形状データのうちの少なくとも1つの層形状データに従って積層された少なくとも1層の溶接ビードの形状を取得する機能と、
    取得された前記少なくとも1層の溶接ビードの形状から実績上の外形線を抽出する機能と、
    前記実績上の外形線と、前記複数の層形状データから抽出される計画上の外形線との、前記少なくとも1層の後に積層される特定の層における乖離を評価し、当該乖離を解消する方向に少なくとも当該特定の層の溶接ビードの積層位置、長さ、幅及び高さの少なくとも何れかの溶接条件を修正する機能と
    を実現させるためのプログラム。
JP2019204102A 2019-11-11 2019-11-11 造形物の製造方法、造形物の製造装置、及びプログラム Active JP7288391B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019204102A JP7288391B2 (ja) 2019-11-11 2019-11-11 造形物の製造方法、造形物の製造装置、及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019204102A JP7288391B2 (ja) 2019-11-11 2019-11-11 造形物の製造方法、造形物の製造装置、及びプログラム

Publications (2)

Publication Number Publication Date
JP2021074981A JP2021074981A (ja) 2021-05-20
JP7288391B2 true JP7288391B2 (ja) 2023-06-07

Family

ID=75897804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019204102A Active JP7288391B2 (ja) 2019-11-11 2019-11-11 造形物の製造方法、造形物の製造装置、及びプログラム

Country Status (1)

Country Link
JP (1) JP7288391B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023114157A (ja) * 2022-02-04 2023-08-17 株式会社神戸製鋼所 制御情報生成装置、制御情報生成方法、溶接制御装置及び制御情報生成プログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143137A1 (ja) 2015-03-12 2016-09-15 株式会社ニコン 三次元造形物製造装置および構造物の製造方法
JP6452920B1 (ja) 2018-03-02 2019-01-16 三菱電機株式会社 付加製造装置および付加製造方法
JP2019076916A (ja) 2017-10-23 2019-05-23 株式会社神戸製鋼所 積層造形物の製造方法及び積層造形物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347761A (ja) * 1998-06-12 1999-12-21 Mitsubishi Heavy Ind Ltd レーザによる3次元造形装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016143137A1 (ja) 2015-03-12 2016-09-15 株式会社ニコン 三次元造形物製造装置および構造物の製造方法
JP2019076916A (ja) 2017-10-23 2019-05-23 株式会社神戸製鋼所 積層造形物の製造方法及び積層造形物
JP6452920B1 (ja) 2018-03-02 2019-01-16 三菱電機株式会社 付加製造装置および付加製造方法

Also Published As

Publication number Publication date
JP2021074981A (ja) 2021-05-20

Similar Documents

Publication Publication Date Title
US10994370B2 (en) Lamination control device, and lamination control method and program
JP6552771B1 (ja) 積層造形方法および加工経路生成方法
JP7048435B2 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
WO2017141639A1 (ja) 積層制御装置、積層制御方法及びプログラム
US9757902B2 (en) Additive layering method using improved build description
JP7288391B2 (ja) 造形物の製造方法、造形物の製造装置、及びプログラム
WO2022191301A1 (ja) 加熱方案の算出方法、プログラム、記録媒体、装置、変形方法、板変形装置、および変形板の製造方法
Shen et al. Wire and arc additive remanufacturing of hot-forging dies: a preliminary study
Horváth et al. Bead geometry modeling on uneven base metal surface by fuzzy systems for multi-pass welding
JP6753990B1 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP7391709B2 (ja) 造形物の製造方法、造形物の製造装置、及びプログラム
JP6753989B1 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP7499221B2 (ja) 積層造形システムの制御方法、積層造形システム、及びプログラム
Mvolo et al. An investigation of key parameters in metal additive manufacturing for robotic paths planning of large parts
JP7158351B2 (ja) 造形物の製造方法、造形物の製造手順生成装置、及びプログラム
JP7183138B2 (ja) 造形物の製造方法、造形物の製造装置、及びプログラム
WO2023140015A1 (ja) 積層造形物の製造方法及び製造装置、制御支援装置、並びにプログラム
JP7505999B2 (ja) 積層造形物の変形予測方法
JP2024071271A (ja) 断面形状データ生成方法、断面形状データ生成装置及びプログラム
WO2021029297A1 (ja) 積層造形物の積層計画方法、積層造形物の製造方法及び製造装置
JP2021000644A (ja) 造形物の製造方法、造形物の製造制御方法、造形物の製造制御装置、及びプログラム
Massoni et al. Automated decomposition of complex parts for manufacturing with advanced joining processes
JP2023161468A (ja) 造形物の製造システム、造形物の製造制御装置、造形物の製造制御方法、及びプログラム
Nguyen Tool path planning for wire-arc additive manufacturing processes
JP2024029805A (ja) 積層造形システム、制御方法、及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230526

R150 Certificate of patent or registration of utility model

Ref document number: 7288391

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150