JP7281863B2 - Method for producing rubber composition for tire - Google Patents

Method for producing rubber composition for tire Download PDF

Info

Publication number
JP7281863B2
JP7281863B2 JP2017097262A JP2017097262A JP7281863B2 JP 7281863 B2 JP7281863 B2 JP 7281863B2 JP 2017097262 A JP2017097262 A JP 2017097262A JP 2017097262 A JP2017097262 A JP 2017097262A JP 7281863 B2 JP7281863 B2 JP 7281863B2
Authority
JP
Japan
Prior art keywords
rubber composition
kneading
kneading step
silica
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017097262A
Other languages
Japanese (ja)
Other versions
JP2018193450A (en
Inventor
健夫 中園
隆一 時宗
智大 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2017097262A priority Critical patent/JP7281863B2/en
Publication of JP2018193450A publication Critical patent/JP2018193450A/en
Application granted granted Critical
Publication of JP7281863B2 publication Critical patent/JP7281863B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Tyre Moulding (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、タイヤ用ゴム組成物の製造方法に関する。 The present invention relates to a method for producing a rubber composition for tires.

タイヤ用ゴム組成物においては、低燃費性及びウェットグリップ性をバランスよく向上させる目的で、シリカを配合する技術が広く使用されている。 In rubber compositions for tires, a technique of compounding silica is widely used for the purpose of improving fuel efficiency and wet grip performance in a well-balanced manner.

シリカは、凝集性が高く、ゴム中に均一に分散させることは困難であるため、シリカと結合し、シリカの分散を促進するシランカップリング剤と併用することが一般的である。従来から、シリカの分散性の向上のために、シランカップリング剤の反応性を高める手法が種々検討されており、例えば、特許文献1では、ヒドロキシ酸、イタコン酸をゴム組成物に配合する手法が開示されている。また、シランカップリング剤の反応性を高める他の手法として、通常は仕上げ練り工程で投入する加硫促進剤を、ゴム成分、シリカ及びシランカップリング剤とともにベース練り工程で投入する手法も知られている。しかしながら、近年では、シリカの分散性の更なる向上が求められている。 Silica is highly cohesive and difficult to disperse uniformly in rubber. Therefore, it is common to combine silica with a silane coupling agent that promotes the dispersion of silica. Conventionally, in order to improve the dispersibility of silica, various techniques for increasing the reactivity of a silane coupling agent have been studied. is disclosed. In addition, as another method for increasing the reactivity of the silane coupling agent, a method is known in which a vulcanization accelerator, which is usually added in the finishing kneading process, is added in the base kneading process together with the rubber component, silica and silane coupling agent. ing. However, in recent years, there has been a demand for further improvement in the dispersibility of silica.

国際公開第2011/062099号WO2011/062099

本発明は、前記課題を解決し、良好な加工性を確保しながら、シリカの分散性を向上させ、低燃費性に優れたタイヤ用ゴム組成物が得られるタイヤ用ゴム組成物の製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and provides a method for producing a rubber composition for tires in which a rubber composition for tires having excellent fuel efficiency can be obtained by improving the dispersibility of silica while ensuring good processability. intended to provide

本発明は、ゴム成分、シリカ、シランカップリング剤及び加硫促進剤を混練するベース練り工程と、前記ベース練り工程で得られた第一混練物及び加硫剤を混練する仕上げ練り工程と、シリンダ及びスクリューを備えた押出機により、前記仕上げ練り工程で得られた第二混練物を押し出す押出工程とを含み、前記押出工程において、押出物のライン速度が20~50m/分であるタイヤ用ゴム組成物の製造方法に関する。 The present invention comprises a base kneading step of kneading a rubber component, silica, a silane coupling agent and a vulcanization accelerator, a finishing kneading step of kneading the first kneaded product obtained in the base kneading step and a vulcanizing agent, An extruding step of extruding the second kneaded product obtained in the finish kneading step by an extruder equipped with a cylinder and a screw, and in the extrusion step, the line speed of the extruded product is 20 to 50 m / min. The present invention relates to a method for producing a rubber composition.

本発明によれば、加硫促進剤をベース練りで投入するとともに、押出工程において、押出物のライン速度を所定の範囲に調節したタイヤ用ゴム組成物の製造方法であるので、良好な加工性を確保しながら、シリカの分散性を向上させ、低燃費性に優れたタイヤ用ゴム組成物を提供できる。 According to the present invention, a vulcanization accelerator is added in the base kneading process, and in the extrusion process, the line speed of the extrudate is adjusted to a predetermined range, so that the processability is excellent. While ensuring the dispersibility of silica is improved, it is possible to provide a rubber composition for tires excellent in fuel efficiency.

本発明は、ゴム成分、シリカ、シランカップリング剤及び加硫促進剤を混練するベース練り工程と、前記ベース練り工程で得られた第一混練物及び加硫剤を混練する仕上げ練り工程と、シリンダ及びスクリューを備えた押出機により、前記仕上げ練り工程で得られた第二混練物を押し出す押出工程とを含み、前記押出工程において、押出物のライン速度が20~50m/分であるタイヤ用ゴム組成物の製造方法である。 The present invention comprises a base kneading step of kneading a rubber component, silica, a silane coupling agent and a vulcanization accelerator, a finishing kneading step of kneading the first kneaded product obtained in the base kneading step and a vulcanizing agent, An extruding step of extruding the second kneaded product obtained in the finish kneading step by an extruder equipped with a cylinder and a screw, and in the extrusion step, the line speed of the extruded product is 20 to 50 m / min. A method for producing a rubber composition.

押出工程では、押出物のライン速度(コンベアやロール等によって搬送される押出物の移動速度)を速くすると、押出速度(押出機のスクリューの回転速度)も速くすることができる。これにより、押出機内での混練作用を高め、シリカの分散性を向上させることができるが、その一方で、スコーチが発生しやすくなる傾向がある。
これに対し、本発明では、加硫促進剤をベース練り工程で投入することで、混練物の粘度が低下し、良好な加工性(混練加工性、押出加工性)が得られるとともに、混練物が発熱しにくくなるため、押出速度を速くしても、スコーチが発生しにくい。これを利用して、スコーチの発生を抑制しながら、通常よりも押出速度を速くして、シリカの分散性を向上させ、低燃費性が改善されたタイヤ用ゴム組成物を得ることが可能となる。また、ライン速度を速くすることで、生産性の改善も期待できる。
In the extrusion step, increasing the line speed of the extrudate (moving speed of the extrudate conveyed by a conveyor, rolls, etc.) can also increase the extrusion speed (the rotation speed of the screw of the extruder). As a result, the kneading action in the extruder can be enhanced and the dispersibility of silica can be improved, but on the other hand scorch tends to occur easily.
On the other hand, in the present invention, by adding a vulcanization accelerator in the base kneading step, the viscosity of the kneaded product is reduced, good processability (kneading processability, extrusion processability) is obtained, and the kneaded product becomes less likely to generate heat, scorching is less likely to occur even if the extrusion speed is increased. Utilizing this, it is possible to increase the extrusion speed, improve silica dispersibility, and obtain a rubber composition for tires with improved fuel efficiency while suppressing the occurrence of scorch. Become. Also, by increasing the line speed, an improvement in productivity can be expected.

以下、各工程の詳細について説明する。 Details of each step will be described below.

(ベース練り工程)
ベース練り工程では、ゴム成分、シリカ、シランカップリング剤及び加硫促進剤を混練する。
(Base kneading process)
In the base kneading step, the rubber component, silica, silane coupling agent and vulcanization accelerator are kneaded.

ゴム成分としては、例えば、天然ゴム(NR)、エポキシ化天然ゴム(ENR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)等のジエン系ゴムが挙げられる。これらは、単独で用いてもよく、2種以上を併用してもよい。なかでも、SBR、BRが好ましく、SBR、BRの併用がより好ましい。 Examples of rubber components include diene rubbers such as natural rubber (NR), epoxidized natural rubber (ENR), isoprene rubber (IR), butadiene rubber (BR), and styrene-butadiene rubber (SBR). These may be used alone or in combination of two or more. Among them, SBR and BR are preferable, and combined use of SBR and BR is more preferable.

シランカップリング剤としては特に限定されないが、例えば、スルフィド系、ビニル系、アミノ系、グリシドキシ系、ニトロ系、クロロ系シランカップリング剤等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、スルフィド系シランカップリング剤が好ましく、ビス(3-トリエトキシシリルプロピル)テトラスルフィドがより好ましい。 Although the silane coupling agent is not particularly limited, examples thereof include sulfide-based, vinyl-based, amino-based, glycidoxy-based, nitro-based, and chloro-based silane coupling agents. These may be used individually by 1 type, and may use 2 or more types together. Among them, sulfide-based silane coupling agents are preferred, and bis(3-triethoxysilylpropyl)tetrasulfide is more preferred.

シリカとしては特に限定されず、タイヤ工業において一般的なものを使用できる。シリカの窒素吸着比表面積(NSA)は、好ましくは50~250m/g、より好ましくは120~200m/gである。
なお、シリカの窒素吸着比表面積は、ASTM D3037-81に準じてBET法で測定される値である。
Silica is not particularly limited, and one commonly used in the tire industry can be used. The nitrogen adsorption specific surface area (N 2 SA) of silica is preferably 50-250 m 2 /g, more preferably 120-200 m 2 /g.
The nitrogen adsorption specific surface area of silica is a value measured by the BET method according to ASTM D3037-81.

加硫促進剤としては特に限定されないが、例えば、グアニジン類、スルフェンアミド類、チアゾール類、チウラム類、ジチオカルバミン酸塩類、チオウレア類、キサントゲン酸塩類等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、本発明の効果が良好に得られるという理由から、グアニジン類、スルフェンアミド類、チアゾール類、チウラム類が好ましい。 Vulcanization accelerators are not particularly limited, but include, for example, guanidines, sulfenamides, thiazoles, thiurams, dithiocarbamates, thioureas, xanthates and the like. These may be used individually by 1 type, and may use 2 or more types together. Among them, guanidines, sulfenamides, thiazoles, and thiurams are preferable because the effects of the present invention can be obtained satisfactorily.

グアニジン類としては、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジン、1-o-トリルビグアニド、ジカテコールボレートのジ-o-トリルグアニジン塩、1,3-ジ-o-クメニルグアニジン、1,3-ジ-o-ビフェニルグアニジン、1,3-ジ-o-クメニル-2-プロピオニルグアニジン等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、1,3-ジフェニルグアニジン、1,3-ジ-o-トリルグアニジンが好ましい。 Guanidines include 1,3-diphenylguanidine, 1,3-di-o-tolylguanidine, 1-o-tolylbiguanide, dicatechol borate di-o-tolylguanidine salt, 1,3-di-o- cumenylguanidine, 1,3-di-o-biphenylguanidine, 1,3-di-o-cumenyl-2-propionylguanidine and the like. These may be used individually by 1 type, and may use 2 or more types together. Among them, 1,3-diphenylguanidine and 1,3-di-o-tolylguanidine are preferred.

スルフェンアミド類としては、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド、N-オキシジエチレン-2-ベンゾチアゾリルスルフェンアミド、N-メチル-2-ベンゾチアゾリルスルフェンアミド等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミドが好ましい。 Sulfenamides include N-cyclohexyl-2-benzothiazolylsulfenamide, N,N-dicyclohexyl-2-benzothiazolylsulfenamide, N-tert-butyl-2-benzothiazolylsulfenamide, N-oxydiethylene-2-benzothiazolylsulfenamide, N-methyl-2-benzothiazolylsulfenamide and the like. These may be used individually by 1 type, and may use 2 or more types together. Among them, N-cyclohexyl-2-benzothiazolylsulfenamide is preferred.

チアゾール類としては、2-メルカプトベンゾチアゾール(MBT)、ジベンゾチアジルジスルフィド(MBTS)、2-(2,4-ジニトロフェニル)メルカプトベンゾチアゾール、2-(2,6-ジエチル-4-モリホリノチオ)ベンゾチアゾール等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、2-メルカプトベンゾチアゾール、ジベンゾチアジルジスルフィドが好ましい。 Thiazoles include 2-mercaptobenzothiazole (MBT), dibenzothiazyl disulfide (MBTS), 2-(2,4-dinitrophenyl)mercaptobenzothiazole, 2-(2,6-diethyl-4-molypholinothio)benzo thiazole and the like. These may be used individually by 1 type, and may use 2 or more types together. Among them, 2-mercaptobenzothiazole and dibenzothiazyl disulfide are preferred.

チウラム類としては、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラベンジルチウラムジスルフィド、テトラメチルチウラムジスルフィド、テトラエチルチウラムジスルフィド、ジペンタメチレンチウラムテトラスルフィド等が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、テトラキス(2-エチルヘキシル)チウラムジスルフィド、テトラベンジルチウラムジスルフィドが好ましい。 Thiurams include tetrakis(2-ethylhexyl)thiuram disulfide, tetrabenzylthiuram disulfide, tetramethylthiuram disulfide, tetraethylthiuram disulfide, dipentamethylenethiuram tetrasulfide and the like. These may be used individually by 1 type, and may use 2 or more types together. Among them, tetrakis(2-ethylhexyl)thiuram disulfide and tetrabenzylthiuram disulfide are preferable.

ベース練り工程において、加硫促進剤の投入量は、シランカップリング剤とシリカの反応促進効果の観点から、シリカの投入量100質量部に対して、0.1~10質量部に設定することが好ましい。 In the base kneading step, the amount of the vulcanization accelerator to be added should be set to 0.1 to 10 parts by mass with respect to 100 parts by mass of silica to be added, from the viewpoint of promoting the reaction between the silane coupling agent and silica. is preferred.

ベース練り工程では、上述のゴム成分、シリカ、シランカップリング剤、加硫促進剤以外に、他の成分を投入して混練してもよい。他の成分としては、仕上げ練り工程で投入する加硫剤以外であれば特に限定されないが、例えば、カーボンブラック、オイル、ステアリン酸、老化防止剤等が挙げられる。 In the base kneading step, other components may be added and kneaded in addition to the rubber component, silica, silane coupling agent, and vulcanization accelerator described above. Other components are not particularly limited as long as they are other than the vulcanizing agent added in the finishing kneading step, and examples thereof include carbon black, oil, stearic acid, anti-aging agents, and the like.

ベース練り工程において、ゴム成分、シリカ、シランカップリング剤及び加硫促進剤の投入量は、全量(全工程で使用する合計量)であってもよいし、一部であってもよい。
シリカの分散をより促進できるという理由から、ゴム成分、シリカ及びシランカップリング剤は、ベース練り工程で全量を投入して混練することが好ましく、加硫促進剤は、一部をベース練り工程で投入して混練し、残部を仕上げ練り工程で投入して混練することが好ましい。
In the base kneading step, the amount of the rubber component, silica, silane coupling agent and vulcanization accelerator added may be the entire amount (total amount used in all steps) or a portion thereof.
The rubber component, silica and silane coupling agent are preferably added in their entirety and kneaded in the base kneading step because the dispersion of silica can be further promoted, and a part of the vulcanization accelerator is added in the base kneading step. It is preferable to add and knead the mixture, and then add and knead the remainder in the finishing kneading step.

ベース練り工程で使用する混練機としては、密閉型のバンバリーミキサーが好ましい。バンバリーミキサーのローターの形状は、接線式、噛合式のいずれであってもよい。 As a kneader used in the base kneading step, a closed Banbury mixer is preferable. The shape of the rotor of the Banbury mixer may be either tangential or intermeshing.

ベース練り工程において、排出温度は、シリカ及びシランカップリング剤の反応促進効果の観点から、130~160℃が好ましい。 In the base kneading step, the discharge temperature is preferably 130 to 160° C. from the viewpoint of promoting the reaction of silica and the silane coupling agent.

(仕上げ練り工程)
仕上げ練り工程では、ベース練り工程で得られた第一混練物及び加硫剤を混練する。
(Finish kneading process)
In the finishing kneading step, the first kneaded material obtained in the base kneading step and the vulcanizing agent are kneaded.

仕上げ練り工程の混練方法としては特に限定されず、例えば、オープンロール等の公知の混練機を用いることができる。また、排出温度は、80~120℃が好ましい。 The kneading method in the finishing kneading step is not particularly limited, and for example, a known kneader such as an open roll can be used. Moreover, the discharge temperature is preferably 80 to 120°C.

仕上げ練り工程で投入する加硫剤としては、ゴム成分を架橋可能な薬品であれば特に限定されないが、例えば、硫黄等が挙げられる。また、ハイブリッド架橋剤(有機架橋剤)についても本発明における加硫剤として使用できる。これらは、1種を単独で用いてもよいし、2種以上を併用してもよい。なかでも、硫黄が好ましい。 The vulcanizing agent introduced in the finishing kneading step is not particularly limited as long as it is a chemical capable of cross-linking the rubber component, and examples thereof include sulfur. A hybrid cross-linking agent (organic cross-linking agent) can also be used as a vulcanizing agent in the present invention. These may be used individually by 1 type, and may use 2 or more types together. Among them, sulfur is preferred.

なお、仕上げ練り工程では、上述の第一混練物、加硫剤以外に、他の成分を投入して混練してもよい。他の成分としては、例えば、加硫促進剤、酸化亜鉛等が挙げられる。 In addition, in the finishing kneading step, other components may be added and kneaded in addition to the above-described first kneaded material and vulcanizing agent. Other components include, for example, a vulcanization accelerator, zinc oxide, and the like.

仕上げ練り工程で投入する加硫促進剤としては、ベース練り工程で投入する加硫促進剤と同様のものを使用できるが、グアニジン類、チアゾール類、スルフェンアミド類が好ましく、グアニジン類、チアゾール類、スルフェンアミド類の併用がより好ましい。 As the vulcanization accelerator introduced in the finishing kneading step, the same vulcanization accelerator as that introduced in the base kneading step can be used, but guanidines, thiazoles and sulfenamides are preferred, and guanidines and thiazoles are preferred. , combined use of sulfenamides is more preferred.

(押出工程)
押出工程では、シリンダ及びスクリューを備えた押出機により、仕上げ練り工程で得られた第二混練物を押し出し、シート状等に押出成形する。
(Extrusion process)
In the extrusion step, the second kneaded product obtained in the finish kneading step is extruded using an extruder equipped with a cylinder and a screw, and extrusion-molded into a sheet or the like.

押出機は、通常、シリンダ、スクリュー、及び前記シリンダの内面に突設したピン(シリンダの内面に突出するように取り付けたピン)を備えている。この押出機では、押出機の材料供給部から供給された混練物が、シリンダ内のピンが所定個数突設された混練室内において、スクリューの回転により順次移動し、ピンとスクリューとの共同作業で混練、可塑化され、先端の射出ノズルの金型に射出され、シート状に成形される。 An extruder usually includes a cylinder, a screw, and a pin protruding from the inner surface of the cylinder (a pin attached to protrude from the inner surface of the cylinder). In this extruder, the kneaded material supplied from the material supply section of the extruder is sequentially moved by the rotation of the screw in the kneading chamber in which a predetermined number of pins in the cylinder protrude, and kneaded by the joint work of the pins and screws. , is plasticized, injected into the mold of the injection nozzle at the tip, and formed into a sheet.

シート等の押出物のライン速度は、20~50m/分であればよいが、シリカの分散性、生産性の観点から、好ましくは22m/分以上であり、また、スコーチ抑制の観点から、好ましくは45m/分以下である。
なお、ライン速度は、押出物を搬送するコンベアやロール等の速度によって調節が可能である。また、押出機の押出速度(スクリューの回転速度)は、ライン速度に合わせて適宜調整すればよい。
The line speed of extrudates such as sheets may be 20 to 50 m / min, but from the viewpoint of dispersibility of silica and productivity, it is preferably 22 m / min or more, and from the viewpoint of scorch suppression, it is preferable. is 45 m/min or less.
In addition, the line speed can be adjusted by the speed of a conveyor, roll, or the like that conveys the extrudate. In addition, the extrusion speed of the extruder (screw rotation speed) may be appropriately adjusted according to the line speed.

(加硫工程)
前述の工程で作製された混練物(未加硫ゴム組成物)は、通常、その後加硫される。例えば、未加硫ゴム組成物を、トレッド等のタイヤ部材の形状に合わせて押し出し加工し、タイヤ成型機上にて通常の方法にて成形し、他のタイヤ部材とともに貼り合わせ、未加硫タイヤを形成した後、加硫機中で加熱加圧することで、タイヤを製造することができる。加硫温度は、130~200℃が好ましく、加硫時間は、5~15分が好ましい。
(Vulcanization process)
The kneaded material (unvulcanized rubber composition) produced in the above steps is usually vulcanized thereafter. For example, an unvulcanized rubber composition is extruded according to the shape of a tire member such as a tread, molded in a conventional manner on a tire building machine, and laminated with other tire members to obtain an unvulcanized tire. After forming, a tire can be manufactured by heating and pressurizing in a vulcanizer. The vulcanization temperature is preferably 130-200° C., and the vulcanization time is preferably 5-15 minutes.

良好な低燃費性が得られるという理由から、本発明の製造方法により得られるゴム組成物において、シリカの含有量は、ゴム成分100質量部に対して、好ましくは30質量部以上、より好ましくは60質量部以上であり、また、好ましくは200質量部以下、より好ましくは100質量部以下である。 In the rubber composition obtained by the production method of the present invention, the content of silica is preferably 30 parts by mass or more, more preferably 30 parts by mass or more, more preferably It is 60 parts by mass or more, preferably 200 parts by mass or less, and more preferably 100 parts by mass or less.

良好な低燃費性が得られるという理由から、本発明の製造方法により得られるゴム組成物において、シランカップリング剤の含有量は、シリカ100質量部に対して、好ましくは5質量部以上、より好ましくは8質量部以上であり、また、好ましくは20質量部以下、より好ましくは15質量部以下である。 For the reason that good fuel economy can be obtained, the content of the silane coupling agent in the rubber composition obtained by the production method of the present invention is preferably 5 parts by mass or more, or more, relative to 100 parts by mass of silica. It is preferably 8 parts by mass or more, preferably 20 parts by mass or less, and more preferably 15 parts by mass or less.

実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。 EXAMPLES The present invention will be specifically described based on Examples, but the present invention is not limited to these.

以下、実施例及び比較例で使用した各種薬品について、まとめて説明する。
SBR:日本ゼオン(株)製のNipol NS210(S-SBR)
BR:宇部興産(株)製のBR150B
シリカ:エボニックデグッサ社製のウルトラシルVN3(NSA:175m/g)
シランカップリング剤:エボニックデグッサ社製のSi69(ビス(3-トリエトキシシリルプロピル)テトラスルフィド)
カーボンブラック:三菱化学(株)製のダイヤブラックN220(NSA:114m/g)
オイル:(株)ジャパンエナジー製のX140(アロマオイル)
老化防止剤:大内新興化学工業(株)製のノクラック6C(N-(1,3-ジメチルブチル)-N-フェニル-p-フェニレンジアミン)
ステアリン酸:日油(株)製のビーズステアリン酸つばき
加硫促進剤D:大内新興化学工業(株)製のノクセラーD(1,3-ジフェニルグアニジン)
加硫促進剤DT:大内新興化学工業(株)製のノクセラーDT(1,3-ジ-o-トリルグアニジン)
加硫促進剤CZ:大内新興化学工業(株)製のノクセラーCZ(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド)
加硫促進剤M-P:大内新興化学工業(株)製のノクセラーM-P(2-メルカプトベンゾチアゾール)
加硫促進剤TOT-N:大内新興化学工業(株)製のノクセラーTOT-N(テトラキス(2-エチルヘキシル)チウラムジスルフィド)
加硫促進剤TBZTD:三新化学工業(株)製のサンセラーTBZTD(テトラベンジルチウラムジスルフィド)
加硫促進剤MBTS:大内新興化学工業(株)製のノクセラーDM(ジベンゾチアジルジスルフィド)
酸化亜鉛:三井金属鉱業(株)製の酸化亜鉛2種
硫黄:鶴見化学工業(株)製の粉末硫黄
Various chemicals used in Examples and Comparative Examples are collectively described below.
SBR: Nipol NS210 (S-SBR) manufactured by Nippon Zeon Co., Ltd.
BR: BR150B manufactured by Ube Industries, Ltd.
Silica: Ultrasil VN3 from Evonik Degussa (N 2 SA: 175 m 2 /g)
Silane coupling agent: Si69 (bis (3-triethoxysilylpropyl) tetrasulfide) manufactured by Evonik Degussa
Carbon black: Dia Black N220 (N 2 SA: 114 m 2 /g) manufactured by Mitsubishi Chemical Corporation
Oil: X140 (aroma oil) manufactured by Japan Energy Co., Ltd.
Anti-aging agent: Nocrac 6C (N-(1,3-dimethylbutyl)-N-phenyl-p-phenylenediamine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Stearic acid: Beads stearic acid manufactured by NOF Corporation Tsubaki Vulcanization Accelerator D: Noccellar D (1,3-diphenylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Vulcanization accelerator DT: Noxceler DT (1,3-di-o-tolylguanidine) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Vulcanization accelerator CZ: Noxceler CZ (N-cyclohexyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Vulcanization accelerator MP: Noxceler MP (2-mercaptobenzothiazole) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Vulcanization accelerator TOT-N: Noxceler TOT-N (tetrakis (2-ethylhexyl) thiuram disulfide) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Vulcanization accelerator TBZTD: Suncellar TBZTD (tetrabenzylthiuram disulfide) manufactured by Sanshin Chemical Industry Co., Ltd.
Vulcanization accelerator MBTS: Noxceler DM (dibenzothiazyl disulfide) manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.
Zinc oxide: Type 2 zinc oxide manufactured by Mitsui Mining & Smelting Co., Ltd. Sulfur: Powdered sulfur manufactured by Tsurumi Chemical Industry Co., Ltd.

(実施例及び比較例)
(1)ベース練り工程
バンバリーミキサーを用いて、表1~5のベース練り工程の項目に記載の材料を混練し、ゴム温度(混練物の温度)が約150℃になった時点で排出した。
(2)仕上げ練り工程
オープンロールを用いて、ベース練り工程で得られた第一混練物と、表1~5の仕上げ練り工程の項目に記載の材料とを混練し、ゴム温度が約110℃になった時点で排出した。
(3)押出工程
仕上げ練り工程で得られた第二混練物を、押出機(スクリュー径:φ80mm、L/D:50、ダイギャップ幅:40mm、シリンダ温度:220℃)を用いて、表1~5に記載のライン速度となるようにリボン状のシートを押出し、未加硫ゴム組成物を得た。
(4)加硫工程
押出工程で得られた未加硫ゴム組成物を170℃で10分間、0.5mm厚の金型でプレス加硫し、加硫ゴム組成物を得た。
(Examples and Comparative Examples)
(1) Base kneading process Using a Banbury mixer, the materials listed in the items of the base kneading process in Tables 1 to 5 were kneaded, and discharged when the rubber temperature (kneaded product temperature) reached about 150°C.
(2) Finish kneading process Using an open roll, the first kneaded material obtained in the base kneading process and the materials listed in the items of the finish kneading process in Tables 1 to 5 are kneaded to obtain a rubber temperature of about 110°C. It was discharged when it became
(3) Extrusion process The second kneaded product obtained in the finishing kneading process is extruded using an extruder (screw diameter: φ80 mm, L / D: 50, die gap width: 40 mm, cylinder temperature: 220 ° C.), Table 1 The ribbon-like sheet was extruded at the line speed described in 1 to 5 to obtain an unvulcanized rubber composition.
(4) Vulcanization step The unvulcanized rubber composition obtained in the extrusion step was press-vulcanized at 170°C for 10 minutes in a mold having a thickness of 0.5 mm to obtain a vulcanized rubber composition.

得られた未加硫ゴム組成物及び加硫ゴム組成物について、下記の評価を行った。結果を表1~5に示す。なお、各表における基準配合は以下のとおりである。
表1:比較例1-1
表2:比較例2-1
表3:比較例3-1
表4:比較例4-1
表5:比較例5-1
The unvulcanized rubber composition and the vulcanized rubber composition thus obtained were evaluated as follows. The results are shown in Tables 1-5. The standard formulations in each table are as follows.
Table 1: Comparative Example 1-1
Table 2: Comparative Example 2-1
Table 3: Comparative Example 3-1
Table 4: Comparative Example 4-1
Table 5: Comparative Example 5-1

(生地肌)
上記未加硫ゴム組成物をロールにて1.0mm厚さのゴムシートに押出し成形し、得られたゴムシートの生地の状態を確認した。耳切れが発生しておらず、更に生地肌に問題がないものを○、問題が少しあるものを△、そうでないものを×で表記した。
(Fabric skin)
The unvulcanized rubber composition was extruded into a rubber sheet having a thickness of 1.0 mm with a roll, and the texture of the obtained rubber sheet was checked. ◯ indicates that there is no edge breakage and no problem with the texture of the fabric, Δ indicates that there is a slight problem, and x indicates that there is no problem.

(ムーニー粘度指数)
JIS K6300に準拠したムーニー粘度の測定方法に従い、上記未加硫ゴム組成物のムーニー粘度を130℃で測定し、基準配合の値を100として指数表示した。指数が大きいほど、ムーニー粘度が低く、加工性が優れていることを示す。
(Mooney viscosity index)
The Mooney viscosity of the unvulcanized rubber composition was measured at 130° C. in accordance with the method for measuring Mooney viscosity in accordance with JIS K6300, and expressed as an index with the value of the standard compound being 100. A larger index indicates lower Mooney viscosity and better processability.

(シリカ分散指数)
アルファーテクノロジー社製RPA2000を用いて、測定温度110℃(予熱1分)、周波数6cpm、振幅0.28~10%の条件で、上記加硫ゴム組成物の貯蔵弾性率の歪依存性を測定し、歪量0.56%時の貯蔵弾性率の値を求め、基準配合の値を100として指数表示した。指数が大きいほど、シリカの分散不良が少なく、シリカが良好に分散していることを示す。
(Silica dispersion index)
Using an RPA2000 manufactured by Alpha Technology Co., Ltd., the strain dependence of the storage modulus of the vulcanized rubber composition was measured under the conditions of a measurement temperature of 110° C. (1 minute of preheating), a frequency of 6 cpm, and an amplitude of 0.28 to 10%. , and the value of the storage elastic modulus at a strain of 0.56% was obtained, and expressed as an index with the value of the standard compound as 100. A larger index indicates less poor dispersion of silica and better dispersion of silica.

(RR指数)
粘弾性スペクトロメーターVES((株)岩本製作所製)を用いて、温度30℃、周波数10Hz、初期歪10%及び動歪2%の条件下で、上記加硫ゴム組成物の損失正接(tanδ)を測定し、基準配合を100として指数表示した。指数が大きいほど、転がり抵抗が低く、低燃費性に優れることを示す。
(RR index)
Using a viscoelastic spectrometer VES (manufactured by Iwamoto Seisakusho Co., Ltd.), the loss tangent (tan δ) of the vulcanized rubber composition was measured under the conditions of a temperature of 30 ° C., a frequency of 10 Hz, an initial strain of 10% and a dynamic strain of 2%. was measured and indexed with 100 as the standard formulation. A larger index indicates lower rolling resistance and better fuel efficiency.

Figure 0007281863000001
Figure 0007281863000001

Figure 0007281863000002
Figure 0007281863000002

Figure 0007281863000003
Figure 0007281863000003

Figure 0007281863000004
Figure 0007281863000004

Figure 0007281863000005
Figure 0007281863000005

表1~5より、加硫促進剤をベース練りで投入するとともに、押出工程において、ライン速度を所定の範囲に調節した実施例は、シリカの分散性が顕著に向上し、低燃費性が改善され、良好な加工性(混練加工性、押出加工性)も得られた。また、基準配合と比較して、ライン速度が速く、生産性も良好であった。 From Tables 1 to 5, the examples in which the vulcanization accelerator was added in the base kneading process and the line speed was adjusted to a predetermined range in the extrusion process showed significantly improved silica dispersibility and improved fuel efficiency. and good processability (kneading processability, extrusion processability) was also obtained. In addition, the line speed was faster and the productivity was better than that of the standard formulation.

Claims (5)

ゴム成分、シリカ、シランカップリング剤及び加硫促進剤を混練するベース練り工程と、
前記ベース練り工程で得られた第一混練物及び加硫剤を混練する仕上げ練り工程と、
シリンダ及びスクリューを備えた押出機により、前記仕上げ練り工程で得られた第二混練物を押し出す押出工程とを含み、
前記押出工程において、押出物のライン速度が20~50m/分であるタイヤ用ゴム組成物の製造方法(但し、押出工程で押出機に加硫剤を投入する製造方法を除く)
a base kneading step of kneading a rubber component, silica, a silane coupling agent and a vulcanization accelerator;
A finishing kneading step of kneading the first kneaded product obtained in the base kneading step and a vulcanizing agent;
An extruding step of extruding the second kneaded product obtained in the finish kneading step with an extruder equipped with a cylinder and a screw,
A method for producing a rubber composition for tires, wherein in the extrusion step, the line speed of the extruded product is 20 to 50 m/min (however, this method excludes a production method in which a vulcanizing agent is introduced into an extruder in the extrusion step) .
前記仕上げ練り工程でステアリン酸を投入する製造方法を除く請求項1記載のタイヤ用ゴム組成物の製造方法。2. The method for producing a rubber composition for tires according to claim 1, excluding the production method in which stearic acid is added in the finishing kneading step. 前記仕上げ練り工程で老化防止剤を投入する製造方法を除く請求項1又は2記載のタイヤ用ゴム組成物の製造方法。3. The method for producing a rubber composition for tires according to claim 1 or 2, excluding the production method in which an anti-aging agent is added in the finishing kneading step. 前記ベース練り工程は、1,3-ジ-o-トリルグアニジン、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、2-メルカプトベンゾチアゾール、テトラキス(2-エチルヘキシル)チウラムジスルフィド及びテトラベンジルチウラムジスルフィドからなる群より選択される少なくとも1種を混練するものである請求項1~3のいずれかに記載のタイヤ用ゴム組成物の製造方法。From 1,3-di-o-tolylguanidine, N-cyclohexyl-2-benzothiazolylsulfenamide, 2-mercaptobenzothiazole, tetrakis(2-ethylhexyl)thiuram disulfide and tetrabenzylthiuram disulfide The method for producing a rubber composition for tires according to any one of claims 1 to 3, wherein at least one kind selected from the group consisting of kneading. 前記仕上げ練り工程は、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミドを混練するものである請求項1~4のいずれかに記載のタイヤ用ゴム組成物の製造方法。The method for producing a rubber composition for tires according to any one of claims 1 to 4, wherein the finishing kneading step includes kneading N-cyclohexyl-2-benzothiazolylsulfenamide.
JP2017097262A 2017-05-16 2017-05-16 Method for producing rubber composition for tire Active JP7281863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017097262A JP7281863B2 (en) 2017-05-16 2017-05-16 Method for producing rubber composition for tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097262A JP7281863B2 (en) 2017-05-16 2017-05-16 Method for producing rubber composition for tire

Publications (2)

Publication Number Publication Date
JP2018193450A JP2018193450A (en) 2018-12-06
JP7281863B2 true JP7281863B2 (en) 2023-05-26

Family

ID=64571474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097262A Active JP7281863B2 (en) 2017-05-16 2017-05-16 Method for producing rubber composition for tire

Country Status (1)

Country Link
JP (1) JP7281863B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200672B2 (en) * 2018-12-27 2023-01-10 住友ゴム工業株式会社 Method for producing rubber composition for tire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223752A (en) 2003-01-20 2004-08-12 Bridgestone Corp Method for producing rubber composition and method for producing rubber article
WO2012147891A1 (en) 2011-04-28 2012-11-01 株式会社ブリヂストン Rubber composition
WO2012147895A1 (en) 2011-04-28 2012-11-01 株式会社ブリヂストン Rubber composition
WO2016140251A1 (en) 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004223752A (en) 2003-01-20 2004-08-12 Bridgestone Corp Method for producing rubber composition and method for producing rubber article
WO2012147891A1 (en) 2011-04-28 2012-11-01 株式会社ブリヂストン Rubber composition
WO2012147895A1 (en) 2011-04-28 2012-11-01 株式会社ブリヂストン Rubber composition
WO2016140251A1 (en) 2015-03-03 2016-09-09 古河電気工業株式会社 Silane-crosslinkable rubber composition, silane-crosslinked rubber molded body, production method for said composition and said molded body, and silane-crosslinked rubber molded article

Also Published As

Publication number Publication date
JP2018193450A (en) 2018-12-06

Similar Documents

Publication Publication Date Title
JP6522113B2 (en) Method of manufacturing rubber composition for tire and method of manufacturing tire
JP2014095013A (en) Rubber composition and pneumatic tire
JP5719822B2 (en) Rubber composition and pneumatic tire
JP2013147581A (en) Rubber composition and tire using the same
JP7281863B2 (en) Method for producing rubber composition for tire
JP5631761B2 (en) Method for producing rubber composition for tire
JP6946755B2 (en) Manufacturing method of rubber composition for tires
JP2012153758A (en) Production method for rubber composition for tire
JP6939084B2 (en) Manufacturing method of rubber composition for tires
JP6939163B2 (en) Manufacturing method of rubber composition for tires
JP6958006B2 (en) Manufacturing method of rubber composition for tires
JP6939164B2 (en) Manufacturing method of rubber composition for tires
JP6946731B2 (en) Manufacturing method of rubber composition for tires
JP6946732B2 (en) Manufacturing method of rubber composition for tires
JP6965574B2 (en) Manufacturing method of rubber composition for tires
JP2011038058A (en) Rubber composition for base tread and studless tire
JP6907660B2 (en) Manufacturing method of rubber composition for tires
JP6958005B2 (en) Manufacturing method of rubber composition for tires
JP6863086B2 (en) Manufacturing method of rubber composition for tires
JP5437695B2 (en) Rubber composition for tire and pneumatic tire
JP7200672B2 (en) Method for producing rubber composition for tire
JP6859816B2 (en) Manufacturing method of rubber composition for tires
JP6946756B2 (en) Manufacturing method of rubber composition for tires
JP6196872B2 (en) Method for producing rubber composition
JP2010285545A (en) Rubber composition for tread and pneumatic tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210914

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211206

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230104

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230228

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230516

R150 Certificate of patent or registration of utility model

Ref document number: 7281863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150