JP7278181B2 - 放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法 - Google Patents

放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法 Download PDF

Info

Publication number
JP7278181B2
JP7278181B2 JP2019166445A JP2019166445A JP7278181B2 JP 7278181 B2 JP7278181 B2 JP 7278181B2 JP 2019166445 A JP2019166445 A JP 2019166445A JP 2019166445 A JP2019166445 A JP 2019166445A JP 7278181 B2 JP7278181 B2 JP 7278181B2
Authority
JP
Japan
Prior art keywords
radiographic
radiographic test
test
simulated
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019166445A
Other languages
English (en)
Other versions
JP2021043106A (ja
Inventor
宗隆 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2019166445A priority Critical patent/JP7278181B2/ja
Publication of JP2021043106A publication Critical patent/JP2021043106A/ja
Application granted granted Critical
Publication of JP7278181B2 publication Critical patent/JP7278181B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法に関する。
例えば、特許文献1には、放射線透過試験について、デジタル画像データを用い、解像力確認チャートによるスケール像により試験対象物の欠陥概略寸法を判定することが開示されている。
例えば、特許文献2には、鋼板と放射線的に同等の性質を有する基準片を鋼板に重ね合わせて、X線を照射して撮影し、欠陥高さを評価することが開示されている。
特開2006-38521号公報 特許第3384863号公報
非破壊検査のうち体積検査を行う放射線透過試験(RT:Radiographic Testing)では、試験体を撮影した検査フィルムやデジタルデータなどの画像に写された試験体体積全体の欠陥を判定する。
判定を行う検査員は、判定の技術向上のため数多くの画像を観察し、判定練習を行うことが必要である。ところが、加工精度の向上に伴い、検査員が判定結果に自信を持つようになるだけの欠陥を有する画像が少ない。そのため、模擬欠陥入りの模擬部材を撮影して判定練習用画像を作成することが望まれている。判定練習用画像を1枚作成するにあたり、1つの模擬部材を要するが、多種の不連続部のような欠陥や、欠陥位置に応じて数多くの模擬部材を作成するには多大なコストが生じる。
本開示は、上述した課題を解決するものであり、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成することのできる放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法を提供することを目的とする。
上述の目的を達成するために、本開示の一態様に係る放射線透過試験用模擬部材は、複数の板材が積層されて構成される放射線透過試験用模擬部材であって、少なくとも1つの前記板材は、少なくとも1つの不連続部を有する。
上述の目的を達成するために、本開示の一態様に係る放射線透過試験用模擬画像作成方法は、上述した放射線透過試験用模擬部材を用い、各前記板材の積層方向に放射線を透過して模擬画像を作成する。
上述の目的を達成するために、本開示の一態様に係る放射線透過試験装置は、放射線源と、模擬部材と、を有し、前記放射線源から照射した放射線を前記模擬部材に透過して模擬画像を作成する放射線透過試験装置であって、前記模擬部材は、上述した放射線透過試験用模擬部材からなる。
上述の目的を達成するために、本開示の一態様に係る放射線透過試験手法評価方法は、検査対象物に対してターゲットとなる不連続部を選定するステップと、前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、前記放射線透過試験用模擬部材で放射線透過試験を実施し画像を生成するステップと、前記画像から放射線透過試験の手法の良否を評価するステップと、を含む。
上述の目的を達成するために、本開示の一態様に係る放射線透過試験手法選定方法は、検査対象物に対してターゲットとなる不連続部を選定するステップと、前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、前記放射線透過試験用模擬部材で複数の手法により放射線透過試験を実施し複数の画像を生成するステップと、複数の前記画像を比較して放射線透過試験の手法を選定するステップと、を含む。
上述の目的を達成するために、本開示の一態様に係る放射線透過試験データ評価方法は、画像から検査対象物の不連続部を推定するステップと、前記不連続部を有する板材を含む複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、前記放射線透過試験用模擬部材で前記画像と同じ手法により放射線透過試験を実施し模擬画像を生成するステップと、前記画像と前記模擬画像とを比較して前記不連続部の推定の妥当性を評価するステップと、を含む。
上述の目的を達成するために、本開示の一態様に係る放射線透過試験学習データ生成方法は、複数の検査対象物の条件を選出するステップと、各前記検査対象物の前記条件に従って複数の板材を積層して放射線透過試験用模擬部材を組み立てるステップと、各前記検査対象物の前記条件に従う複数の前記放射線透過試験用模擬部材で放射線透過試験を実施し複数の模擬画像を生成するステップと、を含む。
本開示によれば、放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、および放射線透過試験装置により、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。また、本開示によれば、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法により、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成し、当該画像を用いて様々な手法評価や手法選定やデータ評価や学習データ生成を行うことができる。
図1は、本開示の実施形態に係る放射線透過試験装置の平面図および側面図である。 図2は、図1に示す放射線透過試験装置により生成された模擬画像を示す図である。 図3は、本開示の実施形態に係る放射線透過試験装置の他の例の平面図および側面図である。 図4は、図3に示す放射線透過試験装置により生成された模擬画像を示す図である。 図5は、本開示の実施形態に係る放射線透過試験手法評価方法を示すフローチャートである。 図6は、本開示の実施形態に係る放射線透過試験手法選定方法を示すフローチャートである。 図7は、本開示の実施形態に係る放射線透過試験データ評価方法を示すフローチャートである。 図8は、本開示の実施形態に係る放射線透過試験学習データ生成方法を示すフローチャートである。
以下に、本開示に係る実施形態を図面に基づいて詳細に説明する。なお、この実施形態によりこの発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。
図1は、本実施形態に係る放射線透過試験装置の平面図および側面図である。図2は、図1に示す放射線透過試験装置により生成された模擬画像を示す図である。
図1において、(a)は平面図、(b)は側面図を示す。図1に示すように放射線透過試験装置は、放射線源1と、模擬部材2と、を有し、放射線源1から照射した放射線を模擬部材2に透過して模擬画像3を作成する。また、放射線透過試験装置は、マークベース4を有している。
放射線源1は、放射線を照射するものである。具体的に、放射線源1は、X線を照射する。放射線透過試験装置において、放射線源1から照射されて模擬部材2を透過したX線は、フィルムやイメージングプレートなどに写されて模擬画像3として生成される。放射線源1は、照射する放射線として、X線以外に、ガンマ線などの放射線透過用試験装置の模擬部材2やマークベース4を透過し模擬画像3を生成できるものであればよい。
模擬部材2は、複数の板材21,22,23,24,25,26,27,28,29が上から順次積層されて構成される。
板材21,22,23,24,25,26,27,28は、平面視で矩形短冊状に形成され、一定の厚さに形成されている。これら板材21,22,23,24,25,26,27,28は、短手方向の短手幅Wと、長手方向の長さWと、厚さが等しく形成されている。なお、板材21,22,23,24,25,26,27,28は、厚さが異なっていてもよい。そして、積層にあたり、各板材21,22,23,24,25,26,27,28は、短手方向の短手幅Wを揃えて積層されても、板面方向にずらして積層されてもよい。また、積層にあたり、各板材21,22,23,24,25,26,27,28は、長手方向の長さWを揃えて積層されても、板面方向にずらして積層されてもよい。これらの板材21,22,23,24,25,26,27,28は、積層において接触する板面である積層面が平らに形成されていることが望ましい。これにより積層面の歪みが抑えられるため、相互間に隙間ができないように積層可能である。なお、放射線透過試験への影響が少ないことから、相互間に多少の隙間があってもよい。
板材21,22,23,24,25,26,27は、少なくとも1つの不連続部21a,22a,23a,24a(板材25,26,27の不連続部は図示せず)を有している。不連続部21a,22a,23a,24a…は、溶接の欠陥のように溶接が不連続になった部分であり、例えば、ポロシティ、融合不良、溶け込み不足、縦割れ、横割れ、スラグ巻き込み、パイプ、集中ブロー、クレータ割れが該当する。ただし、不連続部21a,22a,23a,24a…については、これらに限定されるものではない。不連続部21a,22a,23a,24a…を有する板材21,22,23,24,25,26,27は、図に示す7枚に限らず、それよりも少なくても多くてもよい。
不連続部21a,22a,23a,24a…を有する板材21,22,23,24,25,26,27は、不連続部21a,22a,23a,24a…が、板面の中心Sから外れた位置に設けられている。即ち、板材21,22,23,24,25,26,27は、不連続部21a,22a,23a,24a…が、短手幅Wの中心を連続し長手方向に延びる中心線SL1、および長手方向の長さWの中心を連続し短手方向に延びる中心線SL2から外れた位置に設けられている。
不連続部21a,22a,23a,24a…を有する板材21,22,23,24,25,26,27は、不連続部21a,22a,23a,24a…が設けられた位置を示す不連続部目印21b,22b,23b,24b,25b,26b,27bが設けられている。不連続部目印21b,22b,23b,24b,25b,26b,27bは、不連続部21a,22a,23a,24a…の位置から短手方向に沿って長手辺に向けて投影して長手辺の端であり、側面視において確認可能な位置に設けられている。不連続部目印21b,22b,23b,24b,25b,26b,27bは、両側の長手辺の端に設けられていることが好ましい。不連続部目印21b,22b,23b,24b,25b,26b,27bは、着色や凹部や凸部で示されている。これにより、不連続部目印21b,22b,23b,24b,25b,26b,27bを側面視することで、不連続部21a,22a,23a,24a…の位置を確認できる。
不連続部21a,22a,23a,24a…を有する板材21,22,23,24,25,26,27は、配置の向きを示す第一向き目印21c、22c(板材23,24,25,26,27の第一向き目印は図示せず)と、第二向き目印21d,22d,23d,24d,25d,26d,27dが設けられている。板材21,22,23,24,25,26,27の配置の向きとは、図1において板材21,22,23,24,25,26,27の短手辺が左右のどちらに向けて配置されているかをいう。第一向き目印21c、22cは、板材21,22,23,24,25,26,27の板面であって、長手方向の一方の角部に設けられた、着色や凹部で示されている。第二向き目印21d,22d,23d,24d,25d,26d,27dは、第一向き目印21c、22cが設けられた位置から短手方向に沿って長手辺に向けて投影して長手辺の端であり、側面視において確認可能な位置に設けられている。第二向き目印21d,22d,23d,24d,25d,26d,27dは、両側の長手辺の端に設けられていることが好ましい。第二向き目印21d,22d,23d,24d,25d,26d,27dは、着色や凹部や凸部で示されている。これにより、第一向き目印21c、22cまたは第二向き目印21d,22d,23d,24d,25d,26d,27dを側面視することで、板材21,22,23,24,25,26,27の配置の向きを確認できる。
板材28は、余盛や裏波などの溶接仕上げ条件のような、溶接条件(溶接による形状変化部分)を有する。溶接条件は、短手幅Wの中心を連続し長手方向に延びる中心線SL上に沿って帯状に設けられている。なお、不連続部21a,22a,23a,24a…は、溶接の欠陥のように溶接が不連続になった部分であり、溶接条件の帯状内と想定される位置に重ね合わせて配置される。溶接条件を有する板材28は、図1の(b)や図3の(b)に示すように、模擬部材2における組み合わせの最下段や、図示しないが模擬部材2における組み合わせの最上段に配置することが望ましい。
板材29は、無垢の板材であり、上記不連続部や溶接条件を有さない。板材29は、平面視で矩形状に形成され、一定の厚さに形成されている。板材29は、上述した板材21,22,23,24,25,26,27,28と同様に、短手方向の短手幅Wと、長手方向の長さWと、厚さが等しく形成されていてもよいが、本実施形態では、板材21,22,23,24,25,26,27,28よりも短手方向の短手幅が大きく、長手方向の長さが小さく、厚さが厚い。無垢の板材29は、模擬部材2において対象物の厚さと同時に深さを模擬するために、不連続部を有する板材21,22,23,24,25,26,27の上側や下側に配置されたり、板材21,22,23,24,25,26,27の間に挿入されたりする。無垢の板材29は、1枚に限らず複数毎配置されてもよい。
マークベース4は、画像には写らないシート(例えば、樹脂シート)であって、マークベース4は、板状に形成され、模擬する対象物を識別するための識別マーク4aや、放射線透過試験範囲を示す範囲指定マーク4bや、図には明示しない透過度計などが貼り付けて設けられる。マークベース4は、放射線透過画像の作成時に、識別マーク4aや範囲指定マーク4bや透過度計などの配置の手間を軽減する目的で使用される。マークベース4は、板状に形成され、模擬部材2の上端表面または下端表面に積層される。なお、マークベース4を使用せずに、識別マーク4aや範囲指定マーク4bや透過度計などを模擬部材2の上端表面または下端表面に個別に設置することもある。
そして、最下位置に模擬画像3となるフィルムやイメージングプレートなどを置き、最上位置のマークベース4側より放射線源1から放射線を照射し、この放射線がマークベース4および模擬部材2に透過してフィルムやイメージングプレートなどに至り、図2に示すように、模擬画像3が作成される。
ここで、板材25,26,27の不連続部は、不連続部目印25b,26b,27bで示すようにフィルムやイメージングプレートなどの上方に存在していないため、模擬画像3にはあらわれない。
図3は、本実施形態に係る放射線透過試験装置の他の例の平面図および側面図である。図4は、図3に示す放射線透過試験装置により生成された模擬画像を示す図である。
図3に示す放射線透過試験装置は、図1に示す放射線透過試験装置に対し、模擬部材2の板材21,23,24の配置を変えたものである。具体的に、板材21は、図3において不連続部目印21bの位置からわかるように、図中の右側に位置をずらしている。また、板材23は、図3において第二向き目印23dの位置からわかるように、回転させて左右の位置を変えている。また、板材24は、図3において不連続部目印24bの位置からわかるように、図中に左に位置をずらしている。板材22は、位置を変えていない。
従って、板材21,23,24の配置を変えることで、不連続部21a,23a,24aの配置を変えることができ、図4に示すように、図2と比較して不連続部21a,23a,24aの配置が異なる模擬画像3を作成できる。
ここで、不連続部21a,22a,23a,24a…は、上述したように板材21,22,23,24,25,26,27の板面の中心Sから外れた位置に設けられている。このため、板材21,22,23,24,25,26,27を中心Sで回転させても不連続部21a,22a,23a,24a…が同じ配置にならない。即ち、板材21,22,23,24,25,26,27を中心Sで回転させることで、不連続部21a,22a,23a,24a…の配置を変えた模擬画像3を作成できる。
また、不連続部21a,22a,23a,24a…は、上述したように中心Sであって板材21,22,23,24,25,26,27の長手方向に延びる中心線SL1から外れた位置に設けられている。このため、板材21,22,23,24,25,26,27を中心線SL1で反転させても不連続部21a,22a,23a,24a…が同じ配置にならない。即ち、板材21,22,23,24,25,26,27を中心線SL1で反転させることで、不連続部21a,22a,23a,24a…の配置を変えた模擬画像3を作成できる。なお、不連続部24aのように、中心線SL1で反転することで向きを変えることのできる不連続部も存在する。また、不連続部21a,22a,23a,24a…は、上述したように中心Sであって板材21,22,23,24,25,26,27の短手方向に延びる中心線SL2から外れた位置に設けられている。このため、板材21,22,23,24,25,26,27を中心線SL2で反転させても不連続部21a,22a,23a,24a…が同じ配置にならない。即ち、板材21,22,23,24,25,26,27を中心線SL2で反転させることで、不連続部21a,22a,23a,24a…の配置を変えた模擬画像3を作成できる。なお、不連続部24aのように、中心線SL2で反転することで向きを変えることのできる不連続部も存在する。
なお、図には明示していないが、板材21,22,23,24,25,26,27の積層順を変更することで、不連続部21a,22a,23a,24a…深さ方向の配置を変更できる。即ち、不連続部21a,22a,23a,24a…深さ方向の配置を変えた模擬画像3を作成できる。
上述したように、本実施形態の放射線透過試験用模擬部材2は、複数の板材21,22,23,24,25,26,27が積層されて構成され、少なくとも1つの板材21,22,23,24,25,26,27は、少なくとも1つの不連続部21a,22a,23a,24a…を有する。
従って、各板材21,22,23,24,25,26,27の配置を変更することで、不連続部21a,22a,23a,24a…の配置を模擬し、かつ容易に変えることができる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。
従来の放射線透過試験用模擬部材は、不連続部を有した一塊のものであった。その付与した不連続部の形状、位置、大きさ等の確認には、超音波試験や放射線透過試験といった非破壊検査を行うが、一塊であり厚さがあるため、その計測精度には限界があった。一方で、本実施形態の放射線透過試験用模擬部材2は、複数の板材21,22,23,24,25,26,27が積層されて構成されるため、積層に使う板材21,22,23,24,25,26,27は比較的薄く作成できる。不連続部の形状、位置、大きさなどの確認は、積層した全体に対してではなく不連続部を含む薄い板材の単体に対して非破壊検査を行うことで可能であり、従来の放射線透過試験用模擬部材に対する計測より高い精度で不連続部を計測することが可能である。すなわち、より正確な不連続部の情報を有する模擬部材を準備することが可能である。
また、本実施形態の放射線透過試験用模擬部材2では、板材29は、無垢の板材を含むことが好ましい。
従って、無垢の板材29により、不連続部21a,22a,23a,24a…が模擬部材2の内に設けられていることを模擬できる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。複数の無垢の板材29を組み合わせて積層位置を変更することで、不連続部21a,22a,23a,24a…の深さ方向の配置の自由度を向上させることができる。即ち、不連続部21a,22a,23a,24a…の深さ方向の配置を変えた模擬画像3を作成できる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。
また、本実施形態の放射線透過試験用模擬部材2では、少なくとも1つの板材28は、少なくとも1つの溶接条件を有するを含むことが好ましい。
従って、溶接条件を模擬できる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。
また、本実施形態の放射線透過試験用模擬部材2では、溶接条件を有する板材28は、さらに不連続部を有することが好ましい。
従って、1つの板材28において溶接条件と共に不連続部を模擬できる。例えば、余盛や裏波などの溶接仕上げ条件に、アンダーカット、オーバーラップ、凹み、垂れなどの欠陥である不連続部を付与することを模擬できる。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。
また、本実施形態の放射線透過試験用模擬部材2では、不連続部21a,22a,23a,24a…は、板材21,22,23,24,25,26,27の板面の中心Sから外れた位置に設けられていることが好ましい。
従って、各板材21,22,23,24,25,26,27を板面方向にずらすことに加え、各板材21,22,23,24,25,26,27を、中心Sを軸として水平回転したり、中心線SL1に基づき表裏反転したり、中心軸SL2に基づき表裏反転したり、およびこれらの組み合わせで不連続部の位置を変更できる。この結果、各板材21,22,23,24,25,26,27を板面方向にのみずらすことに比較してずらし量を低減することが可能になり、各板材21,22,23,24,25,26,27および模擬部材2の小型化を図ることが可能である。この結果、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。
また、本実施形態の放射線透過試験用模擬部材2では、各板材21,22,23,24,25,26,27には、不連続部21a,22a,23a,24a…が設けられた位置を示す不連続部目印21b,22b,23b,24b,25b,26b,27bが設けられていることが好ましい。
従って、不連続部目印21b,22b,23b,24b,25b,26b,27bにより不連続部21a,22a,23a,24a…の位置を確認できる。
また、本実施形態の放射線透過試験用模擬部材2では、各板材21,22,23,24,25,26,27には、板材21,22,23,24,25,26,27の配置の向きを示す向き目印(第一向き目印21c、22c…や、第二向き目印21d,22d,23d,24d,25d,26d,27d)が設けられていることが好ましい。
従って、向き目印により各板材21,22,23,24,25,26,27の配置の向きを確認できる。
本実施形態の放射線透過試験用模擬画像作成方法は、上述した放射線透過試験用模擬部材2を用い、各板材21,22,23,24,25,26,27(,28,29)の積層方向に放射線を透過して模擬画像3を作成する。
従って、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。
本実施形態の放射線透過試験装置は、放射線源1と、模擬部材2と、を有し、放射線源1から照射した放射線を模擬部材2に透過して模擬画像3を作成する装置であって、模擬部材2は、上述した放射線透過試験用模擬部材2からなる。
従って、多種の不連続部や、不連続部位置に応じた多数の画像を容易に作成できる。
上述した、放射線透過試験用模擬部材2、放射線透過試験用模擬画像作成方法、および放射線透過試験装置によれば、判定練習用の模擬画像3を効率的に作成できる。この結果、検査員の判定練習用の多くの模擬画像3を低コストで得ることができる。
図5は、本実施形態に係る放射線透過試験手法評価方法を示すフローチャートである。
本実施形態の放射線透過試験手法評価方法は、検査対象物に対し、放射線透過試験用模擬部材2を組み立てる放射線透過試験の手法の良否を評価することにある。
このため、本実施形態の放射線透過試験手法評価方法は、図5に示すように、検査対象物に対してターゲットとなる不連続部を選定する(ステップS1)。ステップS1では、検査対象物の放射線透過試験の手法を評価するうえで、検査対象物において検出が必要な不連続部を種類、形状、大きさ、積層方向深さや水平方向の位置や向きや、さらに溶接条件なども含めてターゲットとして選定する。次に、複数の板材21,22,23,24,25,26,27,28,29を積層して放射線透過試験用模擬部材2を組み立てる(ステップS2)。ステップS2において、板材21,22,23,24,25,26,27,28,29をターゲットとなる不連続部を含む検査対象物を模擬する形で積層し放射線透過試験用模擬部材2を組み立てる。次に、ステップS2にて組み立てた放射線透過試験用模擬部材2で放射線透過試験を実施し画像を生成する(ステップS3)。次に、ステップS3で生成した画像から放射線透過試験の手法の良否を評価する(ステップS4)。ステップS4では、ターゲットとなる不連続物が画像で視認可能かを評価することで放射線透過試験の手法の良否を評価する。
このように、本実施形態の放射線透過試験手法評価方法によれば、検査対象物に対してターゲットとなる不連続部を選定し、この不連続部を模擬するように放射線透過試験用模擬部材2を組み立て、その放射線透過試験用模擬部材2から生成した画像により放射線透過試験の手法の良否を評価できる。検査対象物によって、不連続部の種類、形状、大きさ、積層方向深さや水平方向の位置や向きや、さらに溶接条件などの条件が異なるため、検査対象物に対してターゲットとなる不連続部を選定し、この不連続部を模擬するように複数の板材の積層により放射線透過試験用模擬部材2を組み立てることで、放射線透過試験用模擬部材2の製作にかかるコストや時間を削減できる。また段落0040で説明したように不連続部の情報は従来よりも正確であり、より正確な手法の良否評価を行うことが可能である。
図6は、本実施形態に係る放射線透過試験手法選定方法を示すフローチャートである。
本実施形態の放射線透過試験手法選定方法は、検査対象物に対し、放射線透過試験用模擬部材2を組み立てる放射線透過試験の手法を選定することにある。
このため、本実施形態の放射線透過試験手法選定方法は、図6に示すように、検査対象物に対してターゲットとなる不連続部を選定する(ステップS11)。ステップS11では、検査対象物の放射線透過試験の手法を選定するうえで、検査対象物において存在すると想定される不連続部をターゲットとして選定する。また、ステップS11にて不連続部の選定は、不連続部の種類や形状や大きさ、積層方向深さや水平方向の位置や向きや、さらに溶接条件なども含めてターゲットとして選定する。次に複数の板材21,22,23,24,25,26,27,28,29をターゲットとなる不連続部を含む検査対象物を模擬する形で積層し放射線透過試験用模擬部材2を組み立てる(ステップS12)。次に、ステップS12にて組み立てた放射線透過試験用模擬部材2に対して複数の手法で放射線透過試験を実施し複数の画像を生成する(ステップS13)。この複数の手法とは、線源、照射時間、照射位置などの条件が異なる複数の手法を示す。次に、ステップS13で生成した複数の画像を比較して放射線透過試験の手法を選定する(ステップS14)。ステップS14では、各画像における不連続物の視認性の程度を比較することで放射線透過試験の手法を選定する。
このように、本実施形態の放射線透過試験手法選定方法によれば、検査対象物に対してターゲットとなる不連続部を選定し、この不連続部を模擬するように放射線透過試験用模擬部材2を組み立て、放射線透過試験用模擬部材2に対して複数の手法で生成した複数の画像の比較により放射線透過試験の手法を選定できる。検査対象物によって、不連続部の種類や形状や大きさなどの条件が異なるため、その都度従来のような一塊の放射線透過試験用模擬部材を個々に製作することはコストおよび時間を要する。さらに生成した不連続部の情報も非破壊検査手法を使って都度計測する必要があり、またその計測精度にも限界がある。この点、本実施形態の放射線透過試験手法選定方法によれば、複数の板材21,22,23,24,25,26,27,28,29を積層して放射線透過試験用模擬部材2を組み立てるため、迅速かつ低コストで放射線透過試験用模擬部材2を組み立てることができる。また、段落0040で説明したように不連続部の情報は従来よりも正確であり、より正確に手法選定を行うことが可能である。
図7は、本実施形態に係る放射線透過試験データ評価方法を示すフローチャートである。
本実施形態の本実施形態の放射線透過試験データ評価方法は、放射線透過試験の画像に対し、不連続部の推定の妥当性を評価することにある。
このため、本実施形態の放射線透過試験データ評価方法は、図7に示すように、放射線透過試験の画像から不連続部を推定する(ステップS21)。不連続部の推定は、不連続部の種類や形状や大きさ、積層方向深さや水平方向の位置や向きや、さらに溶接条件なども含めて推定する。次に複数の板材21,22,23,24,25,26,27,28,29を推定結果および画像の撮像対象物に基づいて積層して放射線透過試験用模擬部材2を組み立てる(ステップS22)。次に、ステップS22にて組み立てた放射線透過試験用模擬部材2で先の画像と同じ手法により放射線透過試験を実施し模擬画像を生成する(ステップS23)。次に、先の画像とステップS23で生成した模擬画像とを比較して、その画像の一致の程度から不連続部の推定の妥当性を評価する(ステップS24)。
このように、本実施形態の放射線透過試験データ評価方法によれば、放射線透過試験の画像から不連続部を推定し、この推定に基づいて放射線透過試験用模擬部材2を組み立て、その放射線透過試験用模擬部材2から生成した模擬画像を先の画像と比較し、その一致の程度を評価することで、不連続部の推定の妥当性を評価できる。一般に、実機の放射線透過試験で不連続部が検出されても、実機を破壊して確認することが困難な場合がある。その場合、実機の画像データから不連続部の性状や条件について仮説を設定することができても、その妥当性を確認することはできない。本実施形態の放射線透過試験データ評価方法によれば、仮説に基づいて実機と同じ条件の放射線透過試験用模擬部材2を迅速かつ低コストで準備し、放射線透過試験で模擬画像データを得ることができる。そして、実機の画像データと模擬画像データとを比較することで、放射線透過試験用模擬部材2の不連続部に対する実機の不連続部の一致の程度、あるいは大小などを評価できる。段落0040で説明したように模擬部材2はより正確な不連続部の情報を有しているため、実機の画像データとの比較は、より正確な仮説の妥当性確認を実現する。実機の不連続部の画像データの仮説として、余盛や裏波などの溶接仕上げ条件のような溶接条件の存在を仮説とした場合も、同様に放射線透過試験用模擬部材2を迅速かつ低コストで準備し、その模擬画像データと比較することで、仮説として成立し得るかどうかを評価できる。
図8は、本実施形態に係る放射線透過試験学習データ生成方法を示すフローチャートである。
本実施形態の放射線透過試験学習データ生成方法は、放射線透過試験の学習データを複数生成することにある。
このため、本実施形態の放射線透過試験学習データ生成方法は、図8に示すように、複数の検査対象物の条件を選出する(ステップS31)。選出する検査対象物の条件は、不連続部の種類や形状や大きさなどの性状、および不連続部の積層方向深さや不連続部の水平方向の位置や不連続部の向きや溶接条件などを含む。従って、ステップS31では、複数の検査対象物からそれぞれ条件を選出する。次に、ステップS31で選出した各検査対象物の条件に従って複数の板材21,22,23,24,25,26,27,28,29を積層して放射線透過試験用模擬部材2を組み立てる(ステップS32)。ステップS32では、各検査対象物の条件に従った複数の放射線透過試験用模擬部材2が得られる。次に、ステップS32にて組み立てた複数の放射線透過試験用模擬部材2で放射線透過試験を実施し複数の模擬画像を生成する(ステップS33)。
このように、本実施形態の放射線透過試験学習データ生成方法によれば、複数の検査対象物の条件に応じた複数の模擬画像により複数の学習データを生成できる。昨今、不連続部の識別を深層学習などの機械学習手法を用いることが一般的になりつつあり、その際に網羅的で十分な数の放射線透過試験用模擬部材を準備して学習データを製作するが、一塊の放射線透過試験用模擬部材を個々に製作することはコストおよび時間を要する課題がある。また、一塊の放射線透過試験用模擬部材を製作した場合、不連続部の形状、位置、大きさなどの条件の情報の精度が一塊の厚さにより低くなり、学習データの質の低下に繋がる課題がある。この点、本実施形態の放射線透過試験学習データ生成方法によれば、様々な条件に応じて複数の板材21,22,23,24,25,26,27,28,29を積層し放射線透過試験用模擬部材2を組み立て複数の模擬画像を生成するため、網羅的で十分な数の学習データを容易に準備できる。さらに、複数の板材21,22,23,24,25,26,27,28,29の不連続部の情報は段落0040で説明したように従来よりも正確であり、そのためより正しい情報を伴う学習データが準備でき、機械学習の識別精度を向上できる。また、多様な模擬画像の学習データを蓄積することで、例えば、人工知能に対する入力として活用できる。
1 放射線源
2 模擬部材(放射線透過試験用模擬部材)
3 模擬画像
21,22,23,24,25,26,27,28 板材
21a,22a,23a,24a 不連続部
21b,22b,23b,24b,25b,26b,27b 不連続部目印
21c,22c 第一向き目印(向き目印)
21d,22d,23d,24d,25d,26d,27d 第二向き目印(向き目印)

Claims (13)

  1. 複数の板材が積層されて構成される放射線透過試験用模擬部材であって、
    少なくとも1つの前記板材は、少なくとも1つの不連続部を有
    試験後に前記板材の配置を変えることができる、放射線透過試験用模擬部材。
  2. 前記板材に無垢の板材を含む、請求項1に記載の放射線透過試験用模擬部材。
  3. 少なくとも1つの前記板材は、少なくとも1つの溶接条件を有する、請求項1または2に記載の放射線透過試験用模擬部材。
  4. 溶接条件を有する前記板材は、さらに前記不連続部を有する、請求項3に記載の放射線透過試験用模擬部材。
  5. 前記不連続部は、前記板材の板面の中心から外れた位置に設けられている、
    請求項1から4のいずれか1つに記載の放射線透過試験用模擬部材。
  6. 各前記板材には、前記不連続部が設けられた位置を示す不連続部目印が設けられている、請求項1から5のいずれか1つに記載の放射線透過試験用模擬部材。
  7. 各前記板材には、前記板材の配置の向きを示す向き目印が設けられている、請求項1から6のいずれか1つに記載の放射線透過試験用模擬部材。
  8. 請求項1から7のいずれか1つに記載の放射線透過試験用模擬部材を用い、
    各前記板材の積層方向に放射線を透過して模擬画像を作成する、放射線透過試験用模擬画像作成方法。
  9. 放射線源と、
    模擬部材と、
    を有し、前記放射線源から照射した放射線を前記模擬部材に透過して模擬画像を作成する放射線透過試験装置であって、
    前記模擬部材は、請求項1から7のいずれか1つに記載の放射線透過試験用模擬部材からなる、放射線透過試験装置。
  10. 検査対象物に対してターゲットとなる不連続部を選定するステップと、
    請求項1から7のいずれか1つに記載の放射線透過試験用模擬部材を用い、前記不連続部を有する板材を含む複数の板材を積層して前記放射線透過試験用模擬部材を組み立てるステップと、
    前記放射線透過試験用模擬部材で放射線透過試験を実施し画像を生成するステップと、
    前記画像から放射線透過試験の手法の良否を評価するステップと、
    を含む、放射線透過試験手法評価方法。
  11. 検査対象物に対してターゲットとなる不連続部を選定するステップと、
    請求項1から7のいずれか1つに記載の放射線透過試験用模擬部材を用い、前記不連続部を有する板材を含む複数の板材を積層して前記放射線透過試験用模擬部材を組み立てるステップと、
    前記放射線透過試験用模擬部材で複数の手法により放射線透過試験を実施し複数の画像を生成するステップと、
    複数の前記画像を比較して放射線透過試験の手法を選定するステップと、
    を含む、放射線透過試験手法選定方法。
  12. 画像から検査対象物の不連続部を推定するステップと、
    請求項1から7のいずれか1つに記載の放射線透過試験用模擬部材を用い、前記不連続部を有する板材を含む複数の板材を積層して前記放射線透過試験用模擬部材を組み立てるステップと、
    前記放射線透過試験用模擬部材で前記画像と同じ手法により放射線透過試験を実施し模擬画像を生成するステップと、
    前記画像と前記模擬画像とを比較して前記不連続部の推定の妥当性を評価するステップと、
    を含む、放射線透過試験データ評価方法。
  13. 複数の検査対象物の条件を選出するステップと、
    請求項1から7のいずれか1つに記載の放射線透過試験用模擬部材を用い、各前記検査対象物の前記条件に従って複数の板材を積層して前記放射線透過試験用模擬部材を組み立てるステップと、
    各前記検査対象物の前記条件に従う複数の前記放射線透過試験用模擬部材で放射線透過試験を実施し複数の模擬画像を生成するステップと、
    を含む、放射線透過試験学習データ生成方法。
JP2019166445A 2019-09-12 2019-09-12 放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法 Active JP7278181B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019166445A JP7278181B2 (ja) 2019-09-12 2019-09-12 放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019166445A JP7278181B2 (ja) 2019-09-12 2019-09-12 放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法

Publications (2)

Publication Number Publication Date
JP2021043106A JP2021043106A (ja) 2021-03-18
JP7278181B2 true JP7278181B2 (ja) 2023-05-19

Family

ID=74863913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019166445A Active JP7278181B2 (ja) 2019-09-12 2019-09-12 放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法

Country Status (1)

Country Link
JP (1) JP7278181B2 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070028661A1 (en) 2005-08-04 2007-02-08 Israel Aircraft Industries Ltd. Composite articles with artificial defects and methods for making them
JP2014174148A (ja) 2013-03-13 2014-09-22 Ntn Corp 標準試験片、分析装置、機械部品および標準試験片の製造方法
JP2016005818A (ja) 2015-10-14 2016-01-14 国立大学法人東北大学 評価用補助具

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855752A (ja) * 1981-09-28 1983-04-02 Kawasaki Heavy Ind Ltd 非破壊検査用模擬欠陥標準試験片の製造方法
JPS61265565A (ja) * 1985-05-21 1986-11-25 Mitsubishi Heavy Ind Ltd 非破壊検査用標準欠陥の製作方法
JPH01223342A (ja) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd 非破壊検査用標準試験体の製造方法
JPH01223341A (ja) * 1988-03-03 1989-09-06 Kawasaki Heavy Ind Ltd 非破壊検査用標準試験体の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070028661A1 (en) 2005-08-04 2007-02-08 Israel Aircraft Industries Ltd. Composite articles with artificial defects and methods for making them
JP2014174148A (ja) 2013-03-13 2014-09-22 Ntn Corp 標準試験片、分析装置、機械部品および標準試験片の製造方法
JP2016005818A (ja) 2015-10-14 2016-01-14 国立大学法人東北大学 評価用補助具

Also Published As

Publication number Publication date
JP2021043106A (ja) 2021-03-18

Similar Documents

Publication Publication Date Title
US4694479A (en) Video-radiographic process and equipment for a quality controlled weld seam
US8020445B2 (en) Three-dimensional ultrasonic imaging device
JP5671232B2 (ja) パーツの偏差の自動的画像化方法
CN102639996A (zh) 三维超声波检查设备
US7197830B2 (en) Alignment quality indicator
TWI404911B (zh) 厚度測量之校正方法及厚度測量方法
CN109828028A (zh) 一种超声检测缺陷定性系统和定性方法
WO2007010875A1 (ja) 形状検査方法および装置
JP2020134187A (ja) 傷検査装置および方法
US7092484B1 (en) Model-assisted reconstruction of volumetric data
Fricke et al. Consideration of influence factors between small‐scale specimens and large components on the fatigue strength of thin‐plated block joints in shipbuilding
CN112986261A (zh) 基于机器视觉和图像处理技术的钢结构建筑质量监理验收检测分析方法
JP7278181B2 (ja) 放射線透過試験用模擬部材、放射線透過試験用模擬画像作成方法、放射線透過試験装置、放射線透過試験手法評価方法、放射線透過試験手法選定方法、放射線透過試験データ評価方法、および放射線透過試験学習データ生成方法
KR101557308B1 (ko) 외관조사망도 작성 오류 검색 기능을 갖는 외관조사망도에 근거한 구조물의 손상물량 자동 집계 방법이 구현된 컴퓨터 판독가능한 기록매체
Chapuis et al. Simulation supported POD curves for automated ultrasonic testing of pipeline girth welds
JP6510823B2 (ja) オーバーレイ計測装置およびオーバーレイ計測方法
US6317482B1 (en) Radiological image quality indicator
Hoegh et al. Ultrasonic linear array validation via concrete test blocks
US20070102556A1 (en) Apparatus and method for measuring roll sidewall quality
Pörtzgen et al. Validation Process of IWEX 3D Ultrasonic Imaging for Girth Weld Inspection
RU2437081C1 (ru) Способ определения глубины залегания дефекта
HU187820B (en) Method and device /modification body/ for generating radiology image, preferably for applying at material testing
Center Engineering Directorate Structural Engineering Division
Spencer et al. Advanced Technologies and Methodology for Automated Ultrasonic Testing Systems Quantification
JP2021060287A (ja) 塗膜状態の評価装置および塗膜状態の評価方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278181

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150