JP7278114B2 - Method for manufacturing printed wiring board - Google Patents

Method for manufacturing printed wiring board Download PDF

Info

Publication number
JP7278114B2
JP7278114B2 JP2019045472A JP2019045472A JP7278114B2 JP 7278114 B2 JP7278114 B2 JP 7278114B2 JP 2019045472 A JP2019045472 A JP 2019045472A JP 2019045472 A JP2019045472 A JP 2019045472A JP 7278114 B2 JP7278114 B2 JP 7278114B2
Authority
JP
Japan
Prior art keywords
core substrate
printed wiring
wiring board
hole
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019045472A
Other languages
Japanese (ja)
Other versions
JP2020150096A (en
Inventor
敬介 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP2019045472A priority Critical patent/JP7278114B2/en
Publication of JP2020150096A publication Critical patent/JP2020150096A/en
Application granted granted Critical
Publication of JP7278114B2 publication Critical patent/JP7278114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

本発明は、コア基板の開口内に電子部品を内蔵するプリント配線板の製造方法に関する。 The present invention relates to a method of manufacturing a printed wiring board having electronic components embedded in openings of a core substrate.

近年のプリント配線板の高密度化および低背化の要求に対して、樹脂などでガラス基板を被覆するプリント基板のデザインが提案されている(例えば特許文献1参照)。 2. Description of the Related Art In response to recent demands for higher density and lower height of printed wiring boards, there has been proposed a design of a printed circuit board in which a glass substrate is coated with a resin or the like (see, for example, Patent Document 1).

このようなプリント配線板を製造するにあたり、図3(a)に示すように、テープ51上の樹脂製コア基板52の開口53内に電子部品54を搭載し、図3(b)に示すように、コア基板52と電子部品54との上側の表面、および、開口53内に、樹脂を充填して絶縁層55を形成し、図3(c)に示すように、テープ51を剥離し、図3(d)に示すように、コア基板52と電子部品54との下側の表面に、組合せプレスにより樹脂からなる絶縁層56を形成し、図3(e)に示すように、絶縁層55上に配線57を形成し、絶縁層56上に配線58を形成するのが通常である。 In manufacturing such a printed wiring board, as shown in FIG. Then, the upper surfaces of the core substrate 52 and the electronic component 54 and the openings 53 are filled with resin to form an insulating layer 55, and as shown in FIG. As shown in FIG. 3(d), an insulating layer 56 made of resin is formed on the lower surfaces of the core substrate 52 and the electronic component 54 by combination pressing, and as shown in FIG. A wiring 57 is formed on the insulating layer 55 and a wiring 58 is normally formed on the insulating layer 56 .

特許6148764号公報Japanese Patent No. 6148764

しかしながら、電子部品54およびコア基板52の両表面には、絶縁層55、56が形成されているため、電子部品54と配線57、58との電気的な導通は、電子部品54の表面に形成したパッド59および接続ビア60、61を介して行う必要があった。そのため、基板プロセスで電子部品54上に直接配線形成できる技術がなかった。 However, since the insulating layers 55 and 56 are formed on both surfaces of the electronic component 54 and the core substrate 52, electrical continuity between the electronic component 54 and the wirings 57 and 58 is formed on the surface of the electronic component 54. It had to be done through the attached pad 59 and connection vias 60 and 61 . Therefore, there has been no technique for directly forming wiring on the electronic component 54 in a substrate process.

本発明に係るプリント配線板の製造方法は、コア基板の開口内に電子部品を内蔵するプリント配線板の製造方法であって、コア基板の開口内に電子部品を搭載し、開口と電子部品との間に樹脂を充填し、コア基板および電子部品の表面を平坦化し、コア基板および電子部品の表面に配線パターンを形成する。 A method for manufacturing a printed wiring board according to the present invention is a method for manufacturing a printed wiring board having an electronic component embedded in an opening of a core substrate, wherein the electronic component is mounted in the opening of the core substrate, and the opening and the electronic component are mounted. A resin is filled between them, the surfaces of the core substrate and the electronic components are flattened, and wiring patterns are formed on the surfaces of the core substrate and the electronic components.

本発明の実施形態によれば、樹脂をコア基板の開口と電子部品との間にのみ充填して、各部材の表面には樹脂からなる絶縁層を形成していないため、絶縁層を介さずにコア基板および電子部品の表面に直接配線パターンを形成することができる。また、後の表裏に形成する絶縁層の厚みのバラツキを低減することができる。さらに、配線パターンをセミアディティブ法で形成した場合は、サブトラクティブ法よりファインな配線パターンを形成することができる。 According to the embodiment of the present invention, the resin is filled only between the opening of the core substrate and the electronic component, and the insulating layer made of resin is not formed on the surface of each member. A wiring pattern can be formed directly on the surface of the core substrate and the electronic component. In addition, it is possible to reduce variations in the thickness of the insulating layers to be formed later on the front and back surfaces. Furthermore, when the wiring pattern is formed by the semi-additive method, a finer wiring pattern can be formed than by the subtractive method.

本発明の一実施形態の製造方法に従って製造したプリント配線板を示す断面図である。1 is a cross-sectional view showing a printed wiring board manufactured according to a manufacturing method of one embodiment of the present invention; FIG. (a)~(g)は、図1に示される実施形態のプリント配線板の製造方法の各工程を説明する断面図である。2(a) to 2(g) are cross-sectional views for explaining each step of the method for manufacturing the printed wiring board of the embodiment shown in FIG. 1. FIG. (a)~(e)は、従来のプリント配線板の製造方法の各工程を説明する断面図である。(a) to (e) are cross-sectional views for explaining each step of a conventional printed wiring board manufacturing method.

以下、図面を参照して本発明に係るプリント配線板の製造方法の一実施形態について説明する。図面の説明において、同様の要素には同一符号を付し、重複説明は省略する。 An embodiment of the printed wiring board manufacturing method according to the present invention will be described below with reference to the drawings. In the description of the drawings, the same elements are given the same reference numerals, and redundant description is omitted.

<本発明が対象とするプリント配線板>
図1は、本発明の一実施形態に係るプリント配線板を示す断面図である。この実施形態のプリント配線板10は、コア基板12と、ビルドアップ層14とを具える。
<Printed wiring board targeted by the present invention>
FIG. 1 is a cross-sectional view showing a printed wiring board according to one embodiment of the present invention. A printed wiring board 10 of this embodiment comprises a core substrate 12 and a buildup layer 14 .

コア基板12は、例えばシリカやアルミナ等の無機フィラーを含有するエポキシ樹脂やBT(ビスマレイミドトリアジン)樹脂等の絶縁性樹脂組成物で構成されており、ガラスクロス等の補強材を含んでいる。その他、ベークライト、ポリイミド、セラミックス、ガラスなどの材料も使用することができる。コア基板12の表側の面であるF面12Fと、コア基板12の裏側の面であるB面12Bとにはそれぞれ、導体回路層22が形成されている。導体回路層22は、導電性金属、例えば銅で形成される。コア基板12には複数のスルーホール導体24が形成されている。スルーホール導体24は各々、導電性金属、例えば銅で形成され、コア基板12の表側の面であるF面12Fおよび裏側の面であるB面12B上の導体回路層22同士を電気的に接続している。 The core substrate 12 is made of an insulating resin composition such as epoxy resin or BT (bismaleimide triazine) resin containing inorganic filler such as silica or alumina, and includes reinforcing material such as glass cloth. In addition, materials such as bakelite, polyimide, ceramics, and glass can also be used. A conductive circuit layer 22 is formed on each of the F surface 12F, which is the surface on the front side of the core substrate 12, and the B surface 12B, which is the surface on the back side of the core substrate 12. As shown in FIG. The conductor circuit layer 22 is made of a conductive metal such as copper. A plurality of through-hole conductors 24 are formed in the core substrate 12 . Each of the through-hole conductors 24 is made of a conductive metal such as copper, and electrically connects the conductor circuit layers 22 on the F surface 12F, which is the front surface of the core substrate 12, and the B surface 12B, which is the rear surface. are doing.

コア基板12は、中央部に矩形の開口を画成する部品収容部26を有し、部品収容部26は、コア基板12をその厚み方向に貫通する貫通孔からなる。部品収容部26には電子部品としてのガラス基板28が収容されている。ガラス基板28の表側の面であるF面28Fと、ガラス基板28の裏側の面であるB面28Bとにはそれぞれ、導体回路層30が形成されている。導体回路層30は、導電性金属、例えば銅で形成される。ガラス基板28は、そのガラス基板28をその厚み方向に貫通する例えば複数のスルーホールを有し、各スルーホールの内周面上には円筒状のスルーホール導体32が形成されている。スルーホール導体32は各々、導電性金属、例えば銅で形成され、ガラス基板28のF面28FおよびB面28B上の導体回路層30同士を電気的に接続している。各スルーホール導体32の中心部には微細な貫通孔34が形成されている。 The core substrate 12 has a component housing portion 26 defining a rectangular opening in the central portion, and the component housing portion 26 is a through hole penetrating the core substrate 12 in its thickness direction. A glass substrate 28 as an electronic component is accommodated in the component accommodation section 26 . A conductive circuit layer 30 is formed on each of the F surface 28F, which is the surface on the front side of the glass substrate 28, and the B surface 28B, which is the surface on the back side of the glass substrate 28. As shown in FIG. The conductor circuit layer 30 is made of a conductive metal such as copper. The glass substrate 28 has, for example, a plurality of through holes penetrating the glass substrate 28 in its thickness direction, and a cylindrical through hole conductor 32 is formed on the inner peripheral surface of each through hole. The through-hole conductors 32 are each made of a conductive metal such as copper, and electrically connect the conductive circuit layers 30 on the F surface 28F and the B surface 28B of the glass substrate 28 to each other. A fine through-hole 34 is formed in the center of each through-hole conductor 32 .

ビルドアップ層14は、コア基板12のF面12F上およびB面12B上にそれぞれ形成されている。ビルドアップ層14は、層間絶縁層36と導体回路層38とを交互に積層してなる。層間絶縁層36は、例えばシリカやアルミナ等の無機フィラーを含有するエポキシ樹脂やBT(ビスマレイミドトリアジン)樹脂等の樹脂組成物からなる。層間絶縁層36は、好ましくは、ガラスクロス等の補強材を含んでいる。導体回路層38は、導電性金属、例えば銅で形成される。 The buildup layers 14 are formed on the F surface 12F and the B surface 12B of the core substrate 12, respectively. The buildup layer 14 is formed by alternately laminating interlayer insulating layers 36 and conductor circuit layers 38 . The interlayer insulating layer 36 is made of a resin composition such as an epoxy resin or BT (bismaleimide triazine) resin containing an inorganic filler such as silica or alumina. The interlayer insulating layer 36 preferably contains a reinforcing material such as glass cloth. Conductive circuit layer 38 is formed of a conductive metal such as copper.

部品収容部26内のガラス基板28の周囲の隙間およびスルーホール導体32の貫通孔34内には、コア基板12を構成する絶縁性樹脂組成物と同一組成の絶縁性樹脂40が充填されて固化しており、絶縁性樹脂40により、ガラス基板28が部品収容部26内の所定位置に固定されるとともに、スルーホール導体32と空気との接触を遮ってスルーホール導体32の腐食を防止している。この絶縁性樹脂40は、好ましくは例えばシリカやアルミナ等の無機フィラーを含有する。 The insulating resin 40 having the same composition as the insulating resin composition forming the core substrate 12 is filled in the gaps around the glass substrate 28 in the component housing portion 26 and in the through holes 34 of the through-hole conductors 32 and solidified. The insulating resin 40 fixes the glass substrate 28 at a predetermined position in the component housing section 26 and prevents the through-hole conductors 32 from corroding by blocking contact between the through-hole conductors 32 and the air. there is This insulating resin 40 preferably contains an inorganic filler such as silica or alumina.

コア基板12のF面12F上およびB面12B上のビルドアップ層14の導体回路層38は、コア基板12のF面12FおよびB面12B上の導体回路層22に、それらのビルドアップ層14の層間絶縁層36を貫通するバイアホール導体42を介してそれぞれ電気的に接続されている。F面12F上のビルドアップ層14の導体回路層38はまた、コア基板12の部品収容部26内のガラス基板28のF面28F上の導体回路層30に、そのビルドアップ層14のバイアホール導体42を介して電気的に接続されている。バイアホール導体42は、導体回路層22、導体回路層30および導体回路層38と同じ導電性金属、例えば銅で形成することができる。 The conductor circuit layers 38 of the buildup layers 14 on the F surface 12F and the B surface 12B of the core substrate 12 are connected to the conductor circuit layers 22 on the F surface 12F and the B surface 12B of the core substrate 12. are electrically connected to each other through via-hole conductors 42 penetrating through the interlayer insulating layer 36 . The conductor circuit layer 38 of the buildup layer 14 on the F surface 12F is also connected to the conductor circuit layer 30 on the F surface 28F of the glass substrate 28 in the component housing portion 26 of the core substrate 12, and the via hole of the buildup layer 14. They are electrically connected via a conductor 42 . The via-hole conductors 42 can be made of the same conductive metal as the conductive circuit layers 22, 30 and 38, such as copper.

この実施形態のプリント配線板10によれば、部品収容部26内に内蔵されたガラス基板28を例えばインターポーザとして、この実施形態のプリント配線板10上にフリップチップ実装される複数のICチップのピッチの異なる電極同士や、それらのICチップの電極とビルドアップ層14の導体回路層38の電極パッドとの間の電気的接続に使用することができる。また、部品収容部26内に内蔵されたガラス基板28の周囲およびそのガラス基板28のスルーホール導体32の貫通孔34内のみに充填された、コア基板12を構成する絶縁性樹脂組成物と同一組成の絶縁性樹脂40が固化しているので、部品収容部26内でガラス基板28を精度良く位置決め固定できるとともに、ガラス基板28の両面上に直接形成された導体回路層30のスルーホール導体32による電気的接続の信頼性を向上させることができる。 According to the printed wiring board 10 of this embodiment, the pitch of a plurality of IC chips flip-chip mounted on the printed wiring board 10 of this embodiment is determined by using the glass substrate 28 built in the component housing portion 26 as an interposer, for example. can be used for electrical connection between different electrodes of the IC chip and electrode pads of the conductive circuit layer 38 of the buildup layer 14 . In addition, the same insulating resin composition that constitutes the core substrate 12 is filled only in the periphery of the glass substrate 28 built in the component housing portion 26 and in the through holes 34 of the through-hole conductors 32 of the glass substrate 28. Since the insulating resin 40 of the composition is solidified, the glass substrate 28 can be positioned and fixed with high precision in the component housing portion 26, and the through-hole conductors 32 of the conductive circuit layer 30 directly formed on both surfaces of the glass substrate 28. It is possible to improve the reliability of the electrical connection by

<本発明が対象とするプリント配線板の製造方法>
次に、本発明のプリント配線板の製造方法の一実施形態が、図2(a)~図2(g)を参照して説明される。図1で説明された要素と同様の要素には、同じ符号が付され、適宜説明が省略される。
<Method for manufacturing printed wiring board targeted by the present invention>
Next, one embodiment of the printed wiring board manufacturing method of the present invention will be described with reference to FIGS. 2(a) to 2(g). Elements similar to those described in FIG. 1 are assigned the same reference numerals, and description thereof is omitted as appropriate.

(1)先ず、図2(a)に示されるようなコア基板12の材料として、エポキシ樹脂又はBT(ビスマレイミドトリアジン)樹脂とガラスクロスなどの補強材とからなる絶縁性基材の表裏両面が銅箔でラミネートされたものが用意される。 (1) First, as the material of the core substrate 12 as shown in FIG. A copper foil-laminated one is prepared.

(2)次いで、その絶縁性基材の表面側から例えば炭酸ガスレーザが照射されて、スルーホール導体用貫通孔を形成するためのテーパ孔が穿孔される。また、絶縁性基材の裏面側のうち前述した表面のテーパ孔の真裏となる位置に例えば炭酸ガスレーザが照射されてテーパ孔が穿孔され、それら表面および裏面のテーパ孔が繋がることで、スルーホール導体24用の貫通孔を有するコア基板12が形成される。また、そのコア基板12の中央部には、例えば炭酸ガスレーザの照射により、矩形の開口を持つ貫通孔としての部品収容部26が形成される。 (2) Next, a tapered hole for forming a through hole for a through-hole conductor is formed by irradiating, for example, a carbon dioxide laser from the surface side of the insulating base material. Further, a tapered hole is formed by irradiating, for example, a carbon dioxide laser at a position directly behind the tapered hole on the front surface of the back surface of the insulating base material, and the tapered holes on the front surface and the back surface are connected to form a through hole. A core substrate 12 having through holes for conductors 24 is formed. Also, in the central portion of the core substrate 12, a component housing portion 26 as a through hole having a rectangular opening is formed by, for example, carbon dioxide laser irradiation.

(3)次いで、無電解めっき処理が行われ、コア基板12の表側の面であるF面12Fおよび裏側の面であるB面12Bの銅箔上と貫通孔の内周面とに無電解めっき膜が形成される。そして銅箔上の無電解めっき膜上に、所定パターンのめっきレジストが形成され、そのめっきレジストは、部品収容部26を覆っているが、スルーホール導体用貫通孔は露出させている。 (3) Next, an electroless plating process is performed to electrolessly plate the copper foil on the F surface 12F, which is the front side surface of the core substrate 12, and the B surface 12B, which is the back side surface, and the inner peripheral surface of the through hole. A film is formed. A plating resist having a predetermined pattern is formed on the electroless plating film on the copper foil, and the plating resist covers the component housing portion 26 but exposes the through-hole conductor through holes.

(4)次いで、電解めっき処理が行われ、電解めっきがスルーホール導体用貫通孔内に充填されてスルーホール導体24が形成されるとともに、銅箔上の無電解めっき膜のうちめっきレジストから露出している部分に電解めっき膜が形成される。その後、めっきレジストが剥離されるとともにめっきレジストの下方の無電解めっき膜及び銅箔が除去され、残された電解めっき膜と無電解めっき膜と銅箔とにより、コア基板12のF面12FおよびB面12B上に導体回路層22がそれぞれ形成される。コア基板12のF面12FおよびB面12B上の導体回路層22は、スルーホール導体24によって互いに電気的に接続されている。 (4) Next, electrolytic plating is performed to fill the through holes for through-hole conductors with electrolytic plating to form through-hole conductors 24, and the electroless plating film on the copper foil is exposed from the plating resist. An electrolytic plated film is formed on the portion where the Thereafter, the plating resist is peeled off, and the electroless plating film and copper foil below the plating resist are removed. A conductive circuit layer 22 is formed on each B surface 12B. The conductor circuit layers 22 on the F surface 12F and the B surface 12B of the core substrate 12 are electrically connected to each other by through-hole conductors 24 .

(5)しかる後、図2(a)に示されるように、例えば粘着テープからなるテープ44が、図では下向きとされている上記のコア基板12のB面12B側の導体回路層22上に、部品収容部26を塞ぐように張り付けられる。次いで、プリント配線板10の部品収容部26内に内蔵されるべきガラス基板28が準備され、そのガラス基板28がマウンタ(図示せず)によって部品収容部26の所定位置に配置される。 (5) After that, as shown in FIG. 2(a), a tape 44 made of, for example, an adhesive tape is placed on the conductor circuit layer 22 on the side B 12B of the core substrate 12 facing downward in the figure. , is affixed so as to block the component housing portion 26 . Next, a glass substrate 28 to be incorporated in the component housing portion 26 of the printed wiring board 10 is prepared, and the glass substrate 28 is placed at a predetermined position in the component housing portion 26 by a mounter (not shown).

(6)ガラス基板28も、例えばコア基板12と同様にして、表側の面であるF面28Fおよび裏側の面であるB面28B上に導体回路層30とされる導体層がそれぞれ形成される。ガラス基板28のF面28FおよびB面28B上の導体層は、スルーホール導体32によって互いに電気的に接続されている。また、各スルーホール導体32の中心部にはガラス基板28のF面28F側からB面28B側までは貫通する微細な貫通孔34が形成されている。 (6) For the glass substrate 28 as well, for example, in the same manner as the core substrate 12, conductor layers serving as conductor circuit layers 30 are formed on the F surface 28F, which is the front surface, and the B surface 28B, which is the back surface. . The conductor layers on the F surface 28F and the B surface 28B of the glass substrate 28 are electrically connected to each other by through-hole conductors 32. FIG. A fine through-hole 34 is formed at the center of each through-hole conductor 32 so as to penetrate from the F surface 28F side of the glass substrate 28 to the B surface 28B side.

(7)次いで、このテープ44上のコア基板12とその部品収容部26内に配置されたガラス基板28とが、その部品収容部26のみを露出させる図示しないマスクでコア基板12のF面12Fを全体的に覆われた状態で、コア基板12を構成する絶縁性樹脂組成物と同一組成の溶融状態の絶縁性樹脂材料が例えば印刷塗布、若しくは、ABFのラミネートにより選択的に部品収容部26内に供給されて、部品収容部26内のガラス基板28の周囲およびスルーホール導体32の中心部の貫通孔34内にのみ充填される。さらに、溶融樹脂が含有するフィラーは、中心粒径が0.1μm~20μmのものであると、貫通孔34内への溶融樹脂の充填がより確実に行われる。 (7) Next, the core substrate 12 on the tape 44 and the glass substrate 28 placed in the component housing portion 26 are separated from each other by a mask (not shown) that exposes only the component housing portion 26. is entirely covered, a molten insulating resin material having the same composition as the insulating resin composition constituting the core substrate 12 is selectively applied to the component housing portion 26 by, for example, printing or ABF lamination. It is supplied into the inside of the component housing portion 26 and filled only in the through holes 34 around the glass substrate 28 and in the center of the through hole conductors 32 . Furthermore, if the filler contained in the molten resin has a median particle diameter of 0.1 μm to 20 μm, the through hole 34 can be filled with the molten resin more reliably.

(8)その後、部品収容部26内のガラス基板28の周囲およびスルーホール導体32の中心部において、図2(b)に示されるように、ガラス基板28を部品収容部26内の所定位置に精度良く位置決め固定するとともに、スルーホール導体32の中心部の貫通孔34の内周面と空気との接触を遮断する。樹脂の材料としては、ABFの他、感光性樹脂も使用することができる。 (8) After that, as shown in FIG. Positioning and fixing are performed with high accuracy, and contact between the inner peripheral surface of the through-hole 34 at the center of the through-hole conductor 32 and the air is cut off. As the resin material, in addition to ABF, a photosensitive resin can also be used.

(9)次いで、図2(c)に示されるように、コア基板12とその部品収容部26内に配置されたガラス基板28とからテープ44が剥離される。 (9) Next, as shown in FIG. 2(c), the tape 44 is peeled off from the core substrate 12 and the glass substrate 28 placed in the component housing portion 26 thereof.

(10)次いで、図2(d)に示されるように、コア基板12のF面12F上およびB面12B上の導体回路層22と、ガラス基板28のF面28F上およびB面28B上の導体層とが例えばエッチングにより除去される。また、コア基板12のF面12FおよびB面12Bから突出する樹脂およびガラス基板28のF面28FおよびB面28Bから突出する樹脂は例えば切削や研削等により除去され、コア基板12のF面12Fおよびガラス基板28のF面28Fは平坦かつ面一にされ、コア基板12のB面12Bおよびガラス基板28のB面28Bも平坦かつ面一にされる。 (10) Next, as shown in FIG. 2(d), the conductive circuit layer 22 on the F surface 12F and the B surface 12B of the core substrate 12 and the F surface 28F and the B surface 28B of the glass substrate 28 are formed. The conductor layer is removed, for example by etching. Further, the resin protruding from the F surface 12F and the B surface 12B of the core substrate 12 and the resin protruding from the F surface 28F and the B surface 28B of the glass substrate 28 are removed by, for example, cutting or grinding, and the F surface 12F of the core substrate 12 is removed. and the F surface 28F of the glass substrate 28 are flat and flush, and the B surface 12B of the core substrate 12 and the B surface 28B of the glass substrate 28 are also flat and flush.

(11)次いで、図2(e)に示されるように、コア基板12のF面12F上およびB面12B上と、ガラス基板28のF面28F上およびB面28B上とに、電解めっきによる導体回路層の形成のためのシード層となる無電解めっき膜46が形成される。 (11) Next, as shown in FIG. 2(e), electrolytic plating is performed on the F surface 12F and B surface 12B of the core substrate 12 and on the F surface 28F and B surface 28B of the glass substrate 28. An electroless plated film 46 is formed as a seed layer for forming a conductor circuit layer.

(12)次いで、図2(f)に示されるように、セミアディティブ法により、コア基板12のF面12F上およびB面12B上と、ガラス基板28のF面28F上およびB面28B上との無電解めっき膜46上にそれぞれ所定パターンのめっきレジストが形成され、次に、電解めっき処理が行われ、無電解めっき膜46のうちめっきレジストから露出している部分に電解めっき膜が形成される。その後、めっきレジストが剥離されるとともにめっきレジストの下方の無電解めっき膜が除去され、残された電解めっき膜と無電解めっき膜とにより、コア基板12のF面12FおよびB面12B上に導体回路層22がそれぞれ形成されるとともに、ガラス基板28のF面28F上およびB面28B上にも導体回路層30がそれぞれ形成される。 (12) Next, as shown in FIG. 2( f ), by a semi-additive method, on the F surface 12F and the B surface 12B of the core substrate 12 and on the F surface 28F and the B surface 28B of the glass substrate 28 . A plating resist having a predetermined pattern is formed on each of the electroless plated films 46, and then electrolytic plating is performed to form an electrolytic plated film on the portion of the electroless plated film 46 exposed from the plating resist. be. After that, the plating resist is stripped and the electroless plating film under the plating resist is removed, and the remaining electrolytic plating film and electroless plating film form conductors on the F surface 12F and the B surface 12B of the core substrate 12. The circuit layers 22 are formed respectively, and the conductor circuit layers 30 are also formed on the F surface 28F and the B surface 28B of the glass substrate 28, respectively.

(13)次いで、図2(g)に示されるように、図では上向きとされているコア基板12のF面12F側の導体回路層22上およびガラス基板28のF面28F側の導体回路層30上に、層間絶縁層36を形成するための、ガラスクロス等の補強材にエポキシ樹脂やBT樹脂等の絶縁性樹脂が含浸したBステージのプリプレグ48、若しくは、ガラスクロスを含まないABF48が積層され、そのプリプレグ48若しくはガラスクロスを含まないABF48上に銅箔(図示せず)が積層され、その後、プリプレグ48若しくはガラスクロスを含まないABF48とその上の銅箔とが加熱プレスされる。 (13) Next, as shown in FIG. 2(g), on the conductor circuit layer 22 on the F surface 12F side of the core substrate 12 and on the F surface 28F side of the glass substrate 28 facing upward in the figure 30, a B-stage prepreg 48 in which a reinforcing material such as glass cloth is impregnated with an insulating resin such as epoxy resin or BT resin, or an ABF 48 that does not contain glass cloth is laminated. A copper foil (not shown) is laminated on the prepreg 48 or ABF 48 that does not contain glass cloth, and then the prepreg 48 or ABF 48 that does not contain glass cloth and the copper foil thereon are hot-pressed.

(14)次いで、上記と同様にして、図では下向きとされているコア基板12のB面12B側の導体回路層22上およびガラス基板28のB面28B側の導体回路層30上にも、層間絶縁層36を形成するための、ガラスクロス等の補強材にエポキシ樹脂やBT樹脂等の絶縁性樹脂が含浸したBステージのプリプレグ48、若しくは、ガラスクロスを含まないABF48が積層され、そのプリプレグ48若しくはガラスクロスを含まないABF48上に銅箔(図示せず)が積層され、その後、プリプレグ48若しくはガラスクロスを含まないABF48とその上の銅箔とが加熱プレスされる。 (14) Next, in the same manner as above, on the conductor circuit layer 22 on the B surface 12B side of the core substrate 12 and on the conductor circuit layer 30 on the B surface 28B side of the glass substrate 28, which is directed downward in the drawing, For forming the interlayer insulating layer 36, a B-stage prepreg 48 in which a reinforcing material such as glass cloth is impregnated with an insulating resin such as epoxy resin or BT resin, or an ABF 48 that does not contain glass cloth is laminated. A copper foil (not shown) is laminated on 48 or ABF 48 without glass cloth, and then the prepreg 48 or ABF 48 without glass cloth and the copper foil thereon are hot pressed.

(15)このようにしてプリプレグ48の樹脂成分が加熱プレスにより固化されて、コア基板12のF面12Fおよびガラス基板28のF面28F上に層間絶縁層36が形成されるとともにコア基板12のB面12B上およびガラス基板28のB面28B上にも層間絶縁層36が形成された後、それらの層間絶縁層36上の銅箔の上から所定の位置に例えば炭酸ガスレーザが照射され、銅箔および層間絶縁層36を貫くバイアホールが形成される。バイアホールは、導体回路層22および導体回路層30を部分的に露出させる。 (15) In this manner, the resin component of the prepreg 48 is solidified by heat pressing, and the interlayer insulating layer 36 is formed on the F surface 12F of the core substrate 12 and the F surface 28F of the glass substrate 28, and the core substrate 12 is formed. After the interlayer insulating layer 36 is also formed on the B surface 12B and on the B surface 28B of the glass substrate 28, a predetermined position on the copper foil on the interlayer insulating layer 36 is irradiated with, for example, a carbon dioxide gas laser. Via holes are formed through the foil and interlayer insulating layer 36 . The via holes partially expose the conductive circuit layer 22 and the conductive circuit layer 30 .

(16)次いで、それらの層間絶縁層36上の銅箔の上に、例えばフォトリソグラフィ法によって、上記バイアホールの位置に加えて導体回路層22および導体回路層30が形成される位置に開口を有するめっきレジストが形成される。 (16) Then, on the copper foils on the interlayer insulating layers 36, openings are formed at positions where the conductor circuit layers 22 and 30 are formed in addition to the positions of the via holes by, for example, photolithography. A plating resist having

(17)次いで、上記めっきレジストの開口およびバイアホールの内面上に、例えば無電解めっき処理により金属膜(図示せず)が形成される。金属膜は、スパッタリングや真空蒸着により形成されてもよい。この金属膜をシード層とした電解めっき処理により、バイアホール導体42および銅箔上のめっき膜が形成される。電解めっき処理は、好ましくは、電解銅めっき処理である。その後、めっきレジストは剥離により除去される。 (17) Next, a metal film (not shown) is formed on the openings of the plating resist and the inner surfaces of the via holes by electroless plating, for example. The metal film may be formed by sputtering or vacuum deposition. By electroplating using this metal film as a seed layer, a plated film is formed on the via-hole conductor 42 and the copper foil. The electrolytic plating treatment is preferably electrolytic copper plating treatment. After that, the plating resist is removed by stripping.

(18)次いで、表面にめっき膜が形成されていない銅箔の部分がエッチングにより除去される。これによりコア基板12のF面12FおよびB面12B上並びにガラス基板28のF面28FおよびB面28B上の層間絶縁層36上に、銅箔およびめっき膜からなる導体回路層38が形成される。図1に示されるように、層間絶縁層36上の導体回路層38はバイアホール導体42によって、コア基板12のF面12FおよびB面12B上の導体回路層22に電気的に接続されるとともに、部品収容部26内のガラス基板28のF面28F上の導体回路層30にも電気的に接続されている。 (18) Next, a portion of the copper foil on which the plating film is not formed is removed by etching. As a result, a conductor circuit layer 38 made of copper foil and a plating film is formed on the F surface 12F and B surface 12B of the core substrate 12 and on the interlayer insulating layer 36 on the F surface 28F and B surface 28B of the glass substrate 28. . As shown in FIG. 1, the conductor circuit layer 38 on the interlayer insulating layer 36 is electrically connected to the conductor circuit layers 22 on the F surface 12F and the B surface 12B of the core substrate 12 by via-hole conductors 42. , is also electrically connected to the conductor circuit layer 30 on the F surface 28F of the glass substrate 28 in the component housing portion 26. As shown in FIG.

本発明は、上記実施形態に限定されず、請求の範囲の記載から逸脱しない範囲で種々の変更、修正が可能である。例えば、図1に示される実施形態のプリント配線板および図2(a)~(g)に示される実施形態のプリント配線板の製造方法では、コア基板の表面および裏面上に、層間絶縁層を有する1層のビルドアップ層を具えているが、本発明のプリント配線板および本発明のプリント配線板の製造方法はこれに限られず、コア基板の表面および裏面の少なくとも一方の上に、各々層間絶縁層を有する2層以上のビルドアップ層を具えるものでも良い。 The present invention is not limited to the above embodiments, and various changes and modifications are possible without departing from the scope of the claims. For example, in the method of manufacturing the printed wiring board of the embodiment shown in FIG. 1 and the printed wiring board of the embodiment shown in FIGS. However, the printed wiring board of the present invention and the method for manufacturing the printed wiring board of the present invention are not limited to this, and each interlayer is provided on at least one of the front surface and the back surface of the core substrate. Two or more build-up layers having insulating layers may be provided.

10 プリント配線板
12 コア基板
12F 表側の面(F面)
12B 裏側の面(B面)
14 ビルドアップ層
22 導体回路層
24 スルーホール導体
26 部品収容部
28 ガラス基板
28F 表側の面(F面)
28B 裏側の面(B面)
30 導体回路層
32 スルーホール導体
34 貫通孔
36 層間絶縁層
38 導体回路層
40 絶縁性樹脂
42 バイアホール導体
44 テープ
46 無電解めっき膜
48 プリプレグ若しくはガラスクロスを含まないABF
10 Printed wiring board 12 Core substrate 12F Front surface (F surface)
12B back surface (B surface)
REFERENCE SIGNS LIST 14 build-up layer 22 conductor circuit layer 24 through-hole conductor 26 component accommodating portion 28 glass substrate 28F front surface (F surface)
28B back surface (B surface)
30 conductor circuit layer 32 through-hole conductor 34 through-hole 36 interlayer insulating layer 38 conductor circuit layer 40 insulating resin 42 via-hole conductor 44 tape 46 electroless plated film 48 ABF containing no prepreg or glass cloth

Claims (2)

コア基板の開口内に電子部品を内蔵するプリント配線板の製造方法であって、
コア基板の開口内に電子部品を搭載し、
開口と電子部品との間に樹脂を充填し、
前記電子部品の貫通孔に、前記開口への樹脂充填と同時に同じ樹脂を充填し、
コア基板および電子部品の表面を平坦化し、
コア基板および電子部品の表面に配線パターンを形成する。
A method for manufacturing a printed wiring board in which electronic components are embedded in openings of a core substrate,
Electronic parts are mounted in the opening of the core substrate,
Fill resin between the opening and the electronic component,
Filling the through-hole of the electronic component with the same resin at the same time as filling the opening with the resin,
Flatten the surface of the core substrate and electronic components,
A wiring pattern is formed on the surfaces of the core substrate and the electronic component.
請求項1に記載のプリント配線板の製造方法であって、
前記配線パターンを、セミアディティブ法により形成する。
A method for manufacturing a printed wiring board according to claim 1 ,
The wiring pattern is formed by a semi-additive method.
JP2019045472A 2019-03-13 2019-03-13 Method for manufacturing printed wiring board Active JP7278114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019045472A JP7278114B2 (en) 2019-03-13 2019-03-13 Method for manufacturing printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019045472A JP7278114B2 (en) 2019-03-13 2019-03-13 Method for manufacturing printed wiring board

Publications (2)

Publication Number Publication Date
JP2020150096A JP2020150096A (en) 2020-09-17
JP7278114B2 true JP7278114B2 (en) 2023-05-19

Family

ID=72429874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019045472A Active JP7278114B2 (en) 2019-03-13 2019-03-13 Method for manufacturing printed wiring board

Country Status (1)

Country Link
JP (1) JP7278114B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217544A (en) 2001-01-18 2002-08-02 Ngk Spark Plug Co Ltd Wiring board
JP2013074178A (en) 2011-09-28 2013-04-22 Ngk Spark Plug Co Ltd Method for manufacturing wiring board with built-in component
JP2016195238A (en) 2015-03-31 2016-11-17 新光電気工業株式会社 Wiring board and semiconductor package

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002217544A (en) 2001-01-18 2002-08-02 Ngk Spark Plug Co Ltd Wiring board
JP2013074178A (en) 2011-09-28 2013-04-22 Ngk Spark Plug Co Ltd Method for manufacturing wiring board with built-in component
JP2016195238A (en) 2015-03-31 2016-11-17 新光電気工業株式会社 Wiring board and semiconductor package

Also Published As

Publication number Publication date
JP2020150096A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP4538486B2 (en) Multilayer substrate and manufacturing method thereof
US8945329B2 (en) Printed wiring board and method for manufacturing printed wiring board
US20080098595A1 (en) Method of making a circuitized substrate with enhanced circuitry and electrical assembly utilizing said substrate
TWI407869B (en) Method of making circuitized substrate
JP2010135721A (en) Printed circuit board comprising metal bump and method of manufacturing the same
KR101067199B1 (en) A printed circuit board and a method of manufacturing the same
JP5048005B2 (en) Printed circuit board having metal bumps and manufacturing method thereof
KR20090130727A (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
JP2007324559A (en) Multilayer circuit board with fine pitch and fabricating method thereof
US9185806B2 (en) Method for manufacturing printed wiring board and printed wiring board
TW200945987A (en) Multilayer flexible printed wiring board and the manufacturing method thereof
KR20110003093A (en) A method of manufacturing a printed circuit board comprising a metal bump
CN107770946B (en) Printed wiring board and method for manufacturing the same
US6455783B1 (en) Multilayer printed wiring board and method for manufacturing the same
JP7184679B2 (en) Printed wiring board and manufacturing method thereof
JP7278114B2 (en) Method for manufacturing printed wiring board
US11363719B2 (en) Wiring substrate and component built-in wiring substrate
KR20020028597A (en) A method for manufacturing a multi-layer circuit board for packaging the semi-conductor chips, substrate and FCIP obtained therefrom
JP2005236220A (en) Wiring substrate and its manufacturing method, and semiconductor package
JP5565951B2 (en) Wiring board and manufacturing method thereof
JP2001015912A (en) Multilayered printed wiring board and production thereof
KR100658437B1 (en) Pcb and it&#39;s manufacturing method used bump board
KR20170079542A (en) Printed circuit board
JP2019186256A (en) Printed wiring board and manufacturing method of the same
JP2021168349A (en) Component built-in wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230411

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150