JP7276789B1 - 海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法 - Google Patents

海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法 Download PDF

Info

Publication number
JP7276789B1
JP7276789B1 JP2022180815A JP2022180815A JP7276789B1 JP 7276789 B1 JP7276789 B1 JP 7276789B1 JP 2022180815 A JP2022180815 A JP 2022180815A JP 2022180815 A JP2022180815 A JP 2022180815A JP 7276789 B1 JP7276789 B1 JP 7276789B1
Authority
JP
Japan
Prior art keywords
rope
suspension rope
plate
fixed pulley
lifting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022180815A
Other languages
English (en)
Other versions
JP2024012035A (ja
Inventor
成宝 胡
冰 李
綱 魏
吉清 蒋
熙 呉
智 丁
斌 陳
剣英 余
淑銘 蘇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University City College ZUCC
Original Assignee
Zhejiang University City College ZUCC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University City College ZUCC filed Critical Zhejiang University City College ZUCC
Application granted granted Critical
Publication of JP7276789B1 publication Critical patent/JP7276789B1/ja
Publication of JP2024012035A publication Critical patent/JP2024012035A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/007Subject matter not provided for in other groups of this subclass by applying a load, e.g. for resistance or wear testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

【課題】海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法を提供する。【解決手段】一実施例による試験装置は、支持フレーム1と、巻上げ機2と、引き上げプレート3と、巻上げ機2と引き上げプレート3とを接続する上吊りロープ4と、上吊りロープ4に取り付けられる力測定機構5と、二つのアンカープレート機構と、二本の下吊りロープ7a、7bとを含む。下吊りロープ7a、7bとアンカープレート機構はいずれも上吊りロープ4の両側に位置し、アンカープレート機構は、模型箱61と、模型箱61内に充填される原土62と、原土62内に埋設されるアンカープレート63と、アンカープレート63の引抜角度を調整するためのプーリアセンブリ64とを含み、各下吊りロープ7a、7bの一端は、引き上げプレート3に接続され、他端は、対応するアンカープレート機構のアンカープレート63に接続される。【選択図】図1

Description

本発明は、アンカープレート試験領域、特に海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法に関する。
巨大な海洋エネルギーにおいて、海洋原油と海洋天然ガスは、主要な地位を占めている。海洋石油ガス資源は、主に海洋配管を通って陸地又は中継局に運ばれる。海洋洋流、波及び海水の浮力の多重作用下で、石油ガス配管の安定性は、石油ガス資源の円滑な輸送を保障するキーポイントである。海洋石油ガス配管は、長く(縦長)、大きく(直径)、深い(深く埋められている)という特徴を有し、それは、主に固定フレーム(プラットフォーム)によって複数対のアンカープレートを介して海洋の底部にアンカー固定される。上記アンカー固定方式によれば、海洋石油ガス配管の自重と複雑な外部荷重がまず固定フレーム(プラットフォーム)に伝達され、さらに固定フレーム(プラットフォーム)を介して、配管の縦方向に沿って対をなして配列されたアンカープレートに作用し、最後にアンカープレート基礎から海底基床に拡張される。複雑な海洋環境での石油ガス配管の安定性を有効に評価するために、異なる運転条件下での石油ガス配管のアンカー固定方案が提案されており、アンカーグループ作用下での固定フレーム(プラットホーム)の受力メカニズムの展開により、海底地盤におけるアンカーグループ基礎の変形破壊メカニズムを明らかにする必要がある。
コストが低く、操作可能性が強く、シミュレーション性が高いため、室内縮尺模型試験は、上記研究を展開するための有効な手段の一つとなっている。公開又は認可された特許を参照すれば分かるように、アンカープレート室内模型試験のために与えられた試験装置は、主に以下のいくつかのものを含む。
出願番号がCN202110789347.9である特許1において、強降雨-干ばつ極端気候模擬システムを含む可視化アンカープレート引抜試験装置を与えることで、強降雨-干ばつ極端気候条件下での水平アンカープレート基礎の弱化効果を模擬する。
出願番号がCN202010750278.6である特許2において、透明な土に基づくアンカープレート引抜試験装置が設計されおり、これは、単一の垂直アンカープレートの引抜過程での周辺土体の三次元変形の観測の問題を主に解決する。
出願番号がCN202111431236.7である特許3において、平面内での単一アンカーの引抜故障試験装置を設計することで、異なる引抜方向で単一のアンカープレート面内で力が受けることにより破壊される過程の模擬を実現した。
上記試験装置が特定の目的のアンカープレート引抜試験を実現できるが、アンカープレート基礎に基づく海洋パイプライン類構造にとって、依然として多くの欠点が存在する。
(1)奥行きの大きいパイプライン構造は、配管の縦方向の両側に位置する複数対の二重アンカープレートによってアンカー固定され、且つアンカープレートの上部が固定フレーム(プラットフォーム)に接続され、従来の試験装置はいずれも二重アンカープレートの引抜過程の模擬を実現できず、且つ引抜力をアンカープレートのタイバーに直接に加え、固定フレーム(プラットフォーム)とアンカープレートとの間の相互反応メカニズムが考慮されていない。
(2)海洋底部が平坦なサイトではなく、対をなすアンカープレート基礎の埋設深さ、角度及び海床の具体的な形態は、地質条件に密に関わり、従来の試験装置は、二重アンカープレートの任意の埋設深さと傾斜角での引抜破壊過程、及びこの複雑な埋設条件下でのアンカープレートと固定フレーム(プラットフォーム)の応答規則を模擬できない。
これによれば、従来のアンカープレート引抜力測定試験装置が二重アンカープレートの任意の埋設深さと傾斜角での引抜破壊過程を模擬できないという問題に対して、本発明は、二重アンカープレート引抜試験を行い、二重アンカープレートの共同作用での破壊モードと引抜抵抗力の規則分析を明らかにすることができ、異なる埋設深さ、埋設角度及び相対的位置の組み合わせ作用下で、二重アンカープレートがアンカープレートの限界引抜力に及ぼす影響の規則及び発揮過程を得て、アンカープレートの工事設計を指導する目的を達成することができる、海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法を提供する。
上記目的を実現するために、本発明が採用する技術案は以下のとおりである。
海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置は、支持フレームと、前記支持フレームに取り付けられる巻上げ機と、前記巻上げ機の下方に位置する引き上げプレートと、前記巻上げ機と前記引き上げプレートとを接続する上吊りロープと、前記上吊りロープに取り付けられる力測定機構と、前記引き上げプレートの下方に設けられる二つのアンカープレート機構と、二本の下吊りロープとを含み、前記下吊りロープと前記アンカープレート機構はいずれも前記上吊りロープの両側に位置し、且つ一対一に対応して設置され、前記アンカープレート機構は、模型箱と、前記模型箱内に充填される原土と、前記原土内に埋設されるアンカープレートと、プーリアセンブリとを含み、前記模型箱内に、前記引き上げプレートに近い近側壁を有し、前記近側壁に縦方向スリットが設けられ、前記プーリアセンブリは、前記縦方向スリットに対応して前記近側壁に摺動可能に取り付けられ、前記プーリアセンブリは、固定プーリを含み、各前記下吊りロープの一端は、引き上げプレートに接続され、他端は、対応する前記アンカープレート機構のアンカープレートに接続され、
前記下吊りロープは、第一の状態と第二の状態を有し、前記下吊りロープが第一の状態にある時、前記下吊りロープの前記引き上げプレートから離れる端は、模型箱の頂部開口を貫通して前記アンカープレートに接続され、前記下吊りロープが第二の状態にある時、前記下吊りロープの前記引き上げプレートから離れる端は、前記プーリアセンブリを迂回して前記縦方向スリットを貫通した後に、前記アンカープレートに接続される。
本発明に記載の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置は、二つの模型箱を設置することで、二つのアンカープレートを模型箱の原土内にそれぞれ埋設し、さらに巻上げ機、引き上げプレート及び巻上げ機と引き上げプレートとを接続する上吊りロープを設置し、二つの下吊りロープを引き上げプレートに接続し、そして各模型箱の引き上げプレートに近い近側壁に縦方向スリットを設置し、近側壁に対して摺動できるプーリアセンブリを取り付け、試験時、巻上げ機は、上吊りロープ、引き上げプレート及び二つの下吊りロープによって、二つの模型箱内に置かれたアンカープレートにそれぞれ引抜力を加え、二重アンカープレートの引抜試験を実現することができ、そして模型箱の縦方向スリットと摺動可能なプーリアセンブリを組み合わせることで、アンカープレートに近い下吊りロープと水平線とのなす角を調整し、0°-90°範囲内のいずれか一つの角度でアンカープレートを引抜することを実現することもできる。そのため、本発明の試験装置は、二重アンカープレートの引抜力測定試験を行い、二重アンカープレートの共同作用での破壊モードと引抜力の規則分析を明らかにすることができ、異なる埋設深さ、埋設角度及び相対的位置の組み合わせ作用下で、二重アンカープレートがアンカープレートの限界引抜力に及ぼす影響の規則及び発揮過程を得て、アンカープレートの工事設計を指導する目的を達成することができ、そして本発明の試験装置は、構造が簡単であり、コストが低いという利点をさらに有する。
ここで、一実施例では、前記支持フレームは、支持トッププレートと、支持脚プレートと、支持レバーとを含み、前記支持トッププレートにロープ通し孔が設けられ、前記上吊りロープは、前記ロープ通し孔を貫通し、前記支持脚プレートは、前記支持トッププレートの下方に位置し、前記支持レバーの数は、前記支持脚プレートの数に等しく、且つ一対一に対応して設置され、各前記支持レバーの一端はいずれも前記支持トッププレートに接続され、他端はそれぞれ対応する前記支持脚プレートに接続される。
ここで、一実施例では、前記上吊りロープの中心線と二つの前記下吊りロープの中心線は同一の平面に位置して設置される。
ここで、一実施例では、前記模型箱にサイドカメラとレーザー変位センサが設置され、ここで、前記サイドカメラは、巻上げ機を巻き取る過程での原土の上面の変形を捕捉するために用いられ、前記レーザー変位センサは、巻上げ機を巻き取る過程での原土の上面の変位を捕捉するために用いられる。
ここで、一実施例では、前記模型箱は前壁をさらに有し、前記前壁は透明材料で製造され、前記前壁の前方に、前記原土の側部の変形を捕捉するためのフロントカメラが架設される。
ここで、一実施例では、前記引き上げプレートに二つの下ロープ接続点を有し、二つの前記下ロープ接続点は、前記引き上げプレートの中心線に関して対称的に設置され、二つの前記下吊りロープはそれぞれ二つの前記下ロープ接続点に接続される。
海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法であって、上述した海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置によれば、具体的な測定ステップは、
支持フレームを試験サイトに取り付けるステップS1と、
巻上げ機を前記支持フレームに取り付けるステップS2と、
上吊りロープに力測定機構を取り付け、前記上吊りロープを介して前記引き上げプレートの中心と前記巻上げ機を接続するステップS3であって、前記引き上げプレートは二つの下ロープ接続点を有し、二つの下ロープ接続点は、前記引き上げプレートの中心線に関して対称的であるステップS3と、
二つの前記プーリアセンブリの前記固定プーリから対応する前記引き上げプレートの前記下ロープ接続点までの水平距離tcpを予め設定し、この予め設定された水平距離tcpに基づいて、前記縦方向スリットが開設され及び前記プーリアセンブリが取り付けられた二つの前記模型箱を試験サイトに置いて位置を決めるステップS4と、
Figure 0007276789000002
Figure 0007276789000003
Figure 0007276789000004
ステップS5で得られたデータに基づいて、前記下吊りロープの長さを計算し、前記下吊りロープが固定プーリを迂回する必要があれば、前記固定プーリの中心から前記模型箱の上縁までの縦方向距離をさらに計算し、前記固定プーリを対応する位置に摺動させて固定するステップS6と、
ステップS6の計算結果に基づいて、必要な長さの二本の下吊りロープを提供し、二本の前記下吊りロープと前記模型箱を一対一に対応して設置し、二本の前記下吊りロープの一端をそれぞれ前記引き上げプレートの二つの下ロープ接続点に接続し、他端について、事前引抜角度θと対応する臨界角度θ’との比較結果に基づいて、対応する前記模型箱の鉛直スリットを貫通せずに、対応するアンカープレートに直接接続し、又は、前記固定プーリを迂回して前記鉛直スリットを貫通した後に、対応するアンカープレートに接続するステップS7と、
原土を模型箱内に充填し、充填高さが前記アンカープレートの事前埋設深さhに等しい場合、事前埋設深さhと事前埋設水平距離tsbに基づいて、前記アンカープレートを原土の表面の指定位置に入れて固定し、そして原土が指定の高さに充填されるまで、原土を模型箱内に充填し続けるステップS8と、
前記模型箱が透明な前壁を有し、各前記模型箱にサイドカメラとレーザー変位センサを取り付け、各前記模型箱の前壁の直前にフロントカメラを架設するステップS9と、
巻上げ機を起動してローディングを行い、前記サイドカメラと前記フロントカメラをオンにし、前記原土の変形を捕捉するステップS10とを含む。
ここで、一実施例では、ステップS6では、下記式によって下吊りロープの長さを計算し、具体的には、
θ’<θ<90°の場合、前記下吊りロープの長さは、
Figure 0007276789000005
アンカープレートの中心から固定プーリの下縁の接点までの下吊りロープの長さは、
Figure 0007276789000006
Figure 0007276789000007
上記式において、
は、前記模型箱の上縁から前記引き上げプレートが前記下吊りロープに接続された下ロープ接続点までの縦方向距離であり、
は、前記模型箱の正味の高さであり、模型箱の底板の厚さを含まず、
は、前記原土の充填高さであり、
は、前記アンカープレートの埋められた深さであり、
は、前記固定プーリの幾何中心から前記模型箱の上縁までの縦方向距離であり、
Hは、前記アンカープレートの中心点から引き上げプレートの下ロープ接続点の位置する水平面までの縦方向距離であり、
Tは、前記引き上げプレートの下ロープ接続点から前記アンカープレートの幾何中心までの水平距離であり、
は、前記アンカープレートの厚さであり、
θは、前記下吊りロープと水平線とのなす角であり、
θは、前記固定プーリを使用する場合、この時、前記固定プーリの下方に位置する前記下吊りロープと水平線とのなす角であり、
θは、前記固定プーリを使用する場合、この時、前記固定プーリの上方に位置する前記下吊りロープと水平線とのなす角であり、
θ’は、前記引き上げプレートの下ロープ接続点、前記アンカープレートの幾何中心及び前記固定プーリと前記下吊りロープの接触点が同一の直線にある時、前記下吊りロープと水平線とのなす角であり、
sbは、前記アンカープレートの幾何中心から前記模型箱の近側壁の内側までの水平距離であり、
は、前記模型箱の前記近側壁の厚さであり、
cpは、前記固定プーリの中心点から前記引き上げプレートの下ロープ接続点までの水平距離であり、
bcは、前記固定プーリの中心から前記模型箱の近側壁の外側面までの水平距離であり、
Rは、前記固定プーリの半径であり、
ここで、h、h、t、θ、t、tbc、tcp、Rはいずれも測定によって得られたものであるが、θ、θ、h、h、tsbは、試験の必要に応じて予め設定されたデータである。
ここで、一実施例では、前記ステップS10の後に、
前記力測定機構によって、試験過程で前記巻上げ機により加えられたけん引力を読み出し、前記二つの下吊りロープが受けた引抜力をそれぞれ計算するステップS11をさらに含む。
ここで、一実施例では、二つの前記下吊りロープをそれぞれ第一の下吊りロープと第二の下吊りロープとして設定すれば、前記第一の下吊りロープの引抜力Fと前記第二の下吊りロープの引抜力Fは、下記式によって算出され、
前記引き上げプレートが水平に保持されば、
前記第一の下吊りロープが受けた引抜力F
Figure 0007276789000008
Figure 0007276789000009
上記式において、
αは、前記引き上げプレートが傾斜した角度であり、
Fは、力測定機構の測定数値であり、
は、前記引き上げプレートの下ロープ接続点から前記引き上げプレートの中心線までの垂直距離であり、
は、前記引き上げプレートが傾斜した後にその半分の鉛直線での投影距離であり、
前記第一の下吊りロープが前記固定プーリを迂回しない場合、θは、前記第一の下吊りロープと水平線とのなす角であり、前記第一の下吊りロープが前記固定プーリを迂回する場合、θは、前記固定プーリの上方に位置する第一の下吊りロープと水平線とのなす角であり、
前記第二の下吊りロープが前記固定プーリを迂回しない場合、θは、前記第二の下吊りロープと水平線とのなす角であり、前記第二の下吊りロープが前記固定プーリを迂回する場合、θは、前記固定プーリと前記引き上げプレートとの間に位置する前記第二の下吊りロープと水平線とのなす角であり、
Fは、前記力測定機構によって測定され、L、hは、測定によって得られ、前記第一の下吊りロープが前記固定プーリを迂回しない場合、θは、実験の必要に応じて予め設定された角度であり、前記第一の下吊りロープが前記固定プーリを迂回する場合、θは、測定によって得られ、第二の下吊りロープが前記固定プーリを迂回しない場合、θは、実験の必要に応じて予め設定された角度であり、第二の下吊りロープが前記固定プーリを迂回する場合、θは、測定によって得られる。
本発明の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法は、試験を行う場合、二つの下吊りロープを密に組み合わせ、そしてプーリアセンブリと縦方向スリットを組み合わせることで、同一の相対的位置での異なる埋設角度が二つのアンカープレートの荷重力に及ぼす影響を模擬することができ、そして同一の埋設角度での異なる相対的位置が二つのアンカープレートの荷重力に及ぼす影響を模擬することもでき、それによってアンカープレートの工事設計を指導する目的を達成することができる。
なお、二つの模型箱の前壁を透明材料で製造するようにして位置決めマーク点を予め設け、近側壁にサイドカメラとレーザー変位センサを取り付け、そして前壁の直前にフロントカメラを架設することで、アンカープレートの運動軌跡及び原土の変形と破壊形態をリアルタイムで正確に捕捉することができる。
本発明の一実施例に記載の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の構造正面図である。 図1における模型箱の近側壁の側面図である。 図1に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、アンカープレートに接続された下吊りロープと水平線とのなす角がにある時の部分概略図である。 図1に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、アンカープレートに接続された下吊りロープと水平線とのなす角がにある時の部分概略図である。 図1に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、アンカープレートに接続された下吊りロープと水平線とのなす角がにある時の部分概略図である。 ここで、一実施例に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープと第二の下吊りロープがいずれも固定プーリを迂回せず、引き上げプレートが水平に保持される時の部分概略図である。 図6に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープと第二の下吊りロープがいずれも固定プーリを迂回せず、引き上げプレートの左側が跳ね上がって右側が傾斜する時の部分概略図である。 図6に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープと第二の下吊りロープがいずれも固定プーリを迂回せず、引き上げプレートが左側が傾斜して右側が跳ね上がるように保持される時の部分概略図である。 本発明の一実施例に記載の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープと第二の下吊りロープがいずれも固定プーリを迂回し、引き上げプレートが水平に保持される時の部分概略図である。 図9に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープと第二の下吊りロープがいずれも固定プーリを迂回し、引き上げプレートの左側が跳ね上がって右側が傾斜する時の部分概略図である。 図9に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープと第二の下吊りロープがいずれも固定プーリを迂回し、引き上げプレートの左側が傾斜して右側が跳ね上がる時の部分概略図である。 本発明の一実施例に記載の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープが固定プーリを迂回し、第二の下吊りロープが固定プーリを迂回せず、引き上げプレートが水平に保持される時の部分概略図である。 図12に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープが固定プーリを迂回し、第二の下吊りロープが固定プーリを迂回せず、引き上げプレートの左側が跳ね上がって右側が傾斜する時の部分概略図である。 図12に示す海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の、第一の下吊りロープが固定プーリを迂回し、第二の下吊りロープが固定プーリを迂回せず、引き上げプレートの左側が傾斜して右側が跳ね上がる時の部分概略図である。 本発明におけるアンカープレートと引き上げプレートとの間に位置する下吊りロープの長さが調整可能である海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の部分概略図である。
以下、図面を結び付けながら本発明を詳細に説明する。
<実施例1>
図1から図15を参照すると、本発明の実施例に記載の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置であり、この装置は、二つのアンカープレートの引抜力測定試験を実現することができ、それは、支持フレーム1と、支持フレーム1に取り付けられる巻上げ機2と、巻上げ機2の下方に位置する引き上げプレート3と、巻上げ機2と引き上げプレート3の中心を接続する上吊りロープ4と、上吊りロープ4に取り付けられる力測定機構5と、引き上げプレート3の下方に設けられる二つのアンカープレート機構と、二本の下吊りロープ7とを含み、下吊りロープ7とアンカープレート機構はいずれも上吊りロープ4の両側に位置し、且つ一対一に対応して設置され、アンカープレート機構は、模型箱61と、模型箱61内に充填される原土62と、原土62内に埋設されるアンカープレート63と、模型箱61に対して摺動可能に設置されるプーリアセンブリ64とを含み、模型箱61内に、引き上げプレート3に近く且つ上吊りロープ4に平行である近側壁611を有し、近側壁611に縦方向スリット612が設けられ、プーリアセンブリは、縦方向スリット612に対応して近側壁611に取り付けられ、プーリアセンブリ64は、固定プーリ641を含み、下吊りロープ7の一端は、引き上げプレート3に接続され、他端は、対応するアンカープレート機構のアンカープレート63に接続され、
二本の下吊りロープ7をそれぞれ第一の下吊りロープ7aと第二の下吊りロープ7bとして設定し、各下吊りロープ7は、第一の状態と第二の状態を有し、下吊りロープ7が第一の状態にある時、図3と図5に示すように、下吊りロープ7の引き上げプレート3から離れる端は、模型箱61の頂部開口を貫通してアンカープレート63に接続され、下吊りロープ7が第二の状態にある時、図4に示すように、下吊りロープ7の引き上げプレート3から離れる端は、プーリアセンブリ64を迂回して縦方向スリット612を貫通した後に、アンカープレート63に接続される。
試験時、巻上げ機2は、上吊りロープ4、引き上げプレート3、二つの下吊りロープ7によって、二つの模型箱61内に埋設されたアンカープレート63を引き上げ、試験の目的を達成する。説明すべきこととして、引き上げプレート3は、実際のプラットフォーム構造又はフレーム構造の簡略化構造と見なされる。
アンカープレート63に近い下吊りロープ7の部分と水平線とのなす角をθに設定し、そしてこの角度をアンカープレート63の埋められた角度と呼び、試験時、本発明は、二つのアンカープレート63に対して異なる深さと角度の試験を行い、アンカープレート63の深さと角度が変化した場合、アンカープレート63に接続される下吊りロープ7と水平線とのなす角θにも、対応する角度変化が生じる。θ角度が、下吊りロープ7と引き上げプレート3の下ロープ接続点、アンカープレート63の幾何中心及び固定プーリ641と下吊りロープ7が同一の直線にあるまで調整された場合、この時、下吊りロープ7と水平線とのなす角度θ=θ’であり、この角度値θ’は、下吊りロープ7がプーリアセンブリ64を迂回する必要があるかどうかを決定する臨界角度値である。
Figure 0007276789000010
図1に示すように、支持フレーム1は、支持トッププレート11と、支持脚プレート12と、支持レバー14とを含み、支持トッププレート11に、上吊りロープ4が貫通するのに供するためのロープ通し孔111が設けられ、支持脚プレート12は、支持トッププレート11の下方に位置し、支持レバー14の数は、支持脚プレート12の数に等しく、且つ一対一に対応して設置され、各支持レバー14の一端はいずれも支持トッププレート11に接続され、他端はそれぞれ対応する支持脚プレート12に接続される。
支持トッププレート11は、円盤状、方形盤状又は他の形状の盤状である。本実施例において、支持トッププレート11は、好ましくは、円盤状である。
本実施例において、支持フレーム1として、好ましくは、支持四脚フレームを採用し、即ち、支持レバー14の数は四つである。さらに、各支持レバー14として、好ましくは、鉄筋を採用する。
各支持脚プレート12に縦方向孔が設けられ、縦方向孔に、支持脚プレート12を地面に固定するための膨張ナット13が嵌合される。
本実施例において、支持レバー14と支持トッププレート11、及び支持レバー14と支持脚プレート12は、いずれも溶接の方式で接続される。無論、支持レバー14と支持トッププレート11、及び支持レバー14と支持脚プレート12の接続はこれに限定されず、支持レバー14と支持トッププレート11の接続、及び支持レバー14と支持脚プレート12の接続を実現できる他の方式も本発明に利用可能であり、例えば、他の実施例において、ネジ又はボルトの方式で接続される。
巻上げ機2は、支持トッププレート11の上方に位置し、支持トッププレート11の上方に固定されるベース15に取り付けられる。さらに好ましくは、巻上げ機2は、ボルトを介してベース15に取り外し可能に接続される。
本実施例において、ベース15は、溶接の方式で支持トッププレート11に接続される。他の実行可能な実施例において、ベース15と支持トッププレート11が取り外し可能に接続されるように設置されてもよい。例えば、ボルトの方式でベース15と支持トッププレート11を接続する。さらに好ましくは、他の実施例において、支持トッププレート11に、ベース15をロープ通し孔111の方向に移動可能とするためのウエスト型孔を設置してもよく、このウエスト型孔は、巻上げ機2からロープ通し孔111までの距離を調節して、巻上げ機2に接続された上吊りロープ4が支持トッププレート11のロープ通し孔111をスムーズに貫通するようにするために用いられる。
引き上げプレート3は規則的に設置され、方形、円形又は他の形状であってもよい。本実施例において、支持トッププレート3は、好ましくは、方形の長尺板状である。
引き上げプレート3は、二つの下ロープ接続点を有し、二つの下ロープ接続点はそれぞれ二つの下吊りロープ7に接続され、そして引き上げプレート3の中心線に関して対称的に設置され、この設置によって、試験時に測定すべきデータを減少させることができる。本実施例において、引き上げプレートが方形の長尺板状であるため、引き上げプレート3の下ロープ接続点は、好ましくは、引き上げプレート3の端点である。上吊りロープ4は、支持トッププレート11に設置されるロープ通し孔111を貫通する。支持トッププレート11に、上吊りロープ4が貫通するのに供するためのロープ通し孔111を設置することで、上吊りロープ4を位置決めし、上吊りロープ4が激しく揺れることによって試験結果に影響を及ぼすことを防止するという有益な効果を果たすことができる。
上吊りロープ4と下吊りロープ7として、いずれも好ましくは鋼撚りロープを採用する。さらに好ましくは、上吊りロープ4は、下吊りロープ7よりも太く、即ち、上吊りロープ4は、直径が比較的に大きい太い吊りロープであり、下吊りロープ7は、直径が比較的に小さい細い吊りロープである。試験時、上吊りロープ4が受ける力が比較的に大きいため、上吊りロープ4を太い吊りロープとすることで、上吊りロープ4が引き上げ時に折れやすいことを防止することができる。下吊りロープ7を細い吊りロープとすることで、一方では、上吊りロープ4が受ける力を減少させ、上吊りロープ4を保護する効果を達成し、そして下吊りロープ7の重量が試験の精度に及ぼす影響を減少させるという有益な効果を果たすことができ、他方では、模型箱61における、下吊りロープ7が貫通するのに供する縦方向スリット612の寸法を減少させることができ、さらに、模型箱61の寸法をさらに減少させ、試験コストを低減させるという目的を達成することができる。
本実施例において、力測定機構5として、力変位センサが選択される。本実施例において、力測定機構5全体は上吊りロープ4に直接に取り付けられる。他の実施例において、力測定機構5を引き上げプレート3と上吊りロープ4との間に接続してもよい。
図2に示すように、縦方向スリット612の少なくとも一側に縦方向スライド移動レール613が設置され、縦方向スライド移動レール613がプーリアセンブリ65と滑合して設置されることで、プーリアセンブリ65が近側壁611を摺動可能であり、プーリアセンブリ65が摺動した後、プーリアセンブリ65をさらに固定することができる。本実施例において、縦方向スリット612の両側にいずれも縦方向スライド移動レール613が設けられる。
好ましくは、模型箱61は、近側壁611に接続される前壁をさらに有し、前壁の材質が透明材質で製造されることで、原土62の変形を観察しやすくする。さらに好ましくは、前壁の材質として、裂けにくい透明な強化ガラスを採用する。
さらに、各模型箱61にサイドカメラとレーザー変位センサが設けられ、測定をより正確にするために、サイドカメラの両側にいずれもレーザー変位センサが設置され、サイドカメラは、対応する模型箱61内の原土62の表層破壊形態を捕捉するために用いられる。レーザー変位センサは、模型箱61内の原土62の表層の変位を捕捉するために用いられる。本実施例において、サイドカメラとレーザー変位センサはいずれも模型箱61の近側プレート611に取り付けられる。
各模型箱61の前壁の直前にいずれもフロントカメラを架設し、模型箱61の外側に位置決めマークを設置し、好ましくは、前壁に設置する。フロントカメラは、巻上げ機を巻き取る過程での原土62の側面の変形を捕捉し、そして平滑粒子流体力学的方法に基づいて、対応する模型箱61内の原土62の変位ベクトル図を得るために用いられる。
二本の下吊りロープ7の長さの計算及び試験時の二本の下吊りロープ7の引抜力の計算を容易にするために、上吊りロープ4の中心線と二本の下吊りロープ7の中心線は同一の平面に位置して設置される。
本実施例において、引き上げプレート3とアンカープレート63との間に接続された下吊りロープ7の長さは調整不可能である。他の実施例において、下吊りロープ7の頻繁な交換を避けるように、引き上げプレート3とアンカープレート63との間に接続された下吊りロープ7の長さが調整可能であるように設置してもよい。例えば、図15に示すように、引き上げプレート3の下ロープ接続点の位置する部位に縦方向方形貫通孔31及び縦方向方形貫通孔31に垂直に連通する締め付け孔32が設けられ、締め付け孔32に締め付けボルト8が螺合され、引き上げプレート3の上側に回転可能な巻き取り柱9が設けられ、下吊りロープ7の引き上げ用の有効部分は、引き上げプレート3とアンカープレート63との間に位置し、下吊りロープ7の引き上げ不要な無効部分は、縦方向方形貫通孔31を貫通した後に巻き取り柱9に巻き取られ、縦方向方形貫通孔31内に位置する下吊りロープ7の無効部分は、締め付けボルト8と縦方向方形貫通孔31の近側壁611との間に挟まれる。下吊りロープ7の有効部分の長さを調整する場合、締め付けボルト8を縦方向方形貫通孔31内の下吊りロープ7部分から離れるように回転し、そして下吊りロープ7の有効部分又は下吊りロープ7の無効部分を引き、下吊りロープ7の引き上げ用の有効部分の長さを増加又は減少させ、調整した後に、締め付けボルト8を回転し、縦方向方形貫通孔31内に位置する下吊りロープ7の無効部分を引き上げプレート3に押圧し、下吊りロープ7を引き上げプレート3に締め付ける。
本実施例の有益な効果は以下のとおりである。本発明の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置は、二つの模型箱61を設置することで、二つのアンカープレート63を模型箱61の原土62内にそれぞれ埋設し、さらに巻上げ機2、引き上げプレート3及び巻上げ機2と引き上げプレート3とを接続する上吊りロープ4を設置し、二つの下吊りロープ7を引き上げプレート3に接続し、そして各模型箱61の引き上げプレート3に近い近側壁611に縦方向スリット612を設置し、近側壁611に対して摺動するプーリアセンブリ64を取り付け、試験時、巻上げ機2は、上吊りロープ4、引き上げプレート3及び二つの下吊りロープ7によって、二つの模型箱61内に置かれたアンカープレート63にそれぞれ引抜力を加えることで、二重アンカープレート63の引抜力測定試験を実現することができ、そして模型箱61の縦方向スリット612と摺動可能なプーリアセンブリ64を組み合わせることで、アンカープレート63に近い下吊りロープ7と水平線とのなす角を調整し、0°-90°範囲内のいずれか一つの角度でアンカープレート63を引抜することを実現することもできる。そのため、本発明の試験装置は、二重アンカープレート63の引抜力測定試験を行うことができ、それによって二重アンカープレート63の共同作用での破壊モードと引抜力の規則分析を明らかにすることができ、異なる埋設深さ、埋設角度及び相対的位置の組み合わせ作用下で、二重アンカープレート63がアンカープレート63の限界引抜力に及ぼす影響の規則及び発揮過程を得て、アンカープレート63の工事設計を指導する目的を達成することができる。そして、本発明の試験装置が簡単であるが、種々の試験条件下でのパラメータ変換を完了することができ、試験コストを節約するだけでなく、そしてアンカープレート63の限界引抜力、引抜失効メカニズム及びその変化規則をより正確に得ることができる。
<実施例2>
本実施例は、海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法を開示し、実施例1に記載の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置によれば、具体的な測定ステップは以下のとおりである。
S0において、支持フレーム1を組み立てる。
ここで、ステップS0は具体的には以下のステップを含む。
a1において、支持脚プレート12を試験サイトに平置き、膨張ナット13が支持脚プレート12における縦方向孔を貫通することによってそれを地面に固定し、
本実施例において、支持脚プレート12の数が四つであるため、四つの支持脚プレート12をそれぞれ試験サイトの四つの方位に置き、
a2において、支持トッププレート11の中心位置でロープ通し孔111を切開し、支持トッププレート11の上表面にベース15を溶接する。
S2において、巻上げ機2を支持フレーム1に取り付ける。
具体的には、巻上げ機2をベース15に置き、ボルトでベース15に固定する。
S3において、上吊りロープ4に力測定機構5を取り付け、上吊りロープ4を介して引き上げプレート3の中心と巻上げ機2を接続し、引き上げプレート3は二つの下ロープ接続点を有し、二つの下ロープ接続点は、引き上げプレート3の中心線に関して対称的である。
上吊りロープ4を引き上げプレート3に接続する前に、上吊りロープ4に、前記支持トッププレート11に設置されたロープ通し孔111を貫通する。
S4において、二つのプーリアセンブリ64の固定プーリ641から対応する引き上げプレート3の下吊りロープ7に接続されるための下ロープ接続点までの水平距離tcpを予め設定し、この予め設定された水平距離tcpに基づいて、縦方向スリット612が開設され及びプーリアセンブリ64が取り付けられた二つの模型箱61を試験サイトに置いて位置を決め、各模型箱61は、引き上げプレート3に近い近側壁611及び近側壁611に接続される透明な前壁を有する。
具体的には、模型箱61を試験サイトに置く前に、まず、模型箱61の近側壁611に縦方向スリット612を開設し、縦方向スリット612に対応して近側壁にプーリアセンブリ64を取り付け、さらに予め設定された各固定プーリの幾何中心から対応する下吊りロープ7に接続されるための下ロープ接続点までの水平距離tcpに基づいて、各模型箱61を試験サイトにおける対応する位置に置いてもよい。
まず、模型箱61をサイトに置き、そして模型箱61の近側プレート611に縦方向スリット612を開設し、縦方向スリット612に対応してプーリアセンブリ64を取り付け、最後に予め設定された各固定プーリ641の幾何中心から対応する引き上げプレート3の下吊りロープ7に接続されるための下ロープ接続点までの水平距離tcpに基づいて、試験サイトにおいて模型箱611の位置を調整してもよい。
S5において、図3、図4及び図5に示すように、対応する模型箱内の各アンカープレート63の事前埋設深さh、事前引抜角度θ及び近側壁611の内側までの水平距離tsbを予め決定し、原土62の充填高さhを予め決定し、さらに各アンカープレート63に対応する近側壁611の厚さt、固定プーリ641の中心から近側壁611までの水平距離tbc、固定プーリ641の半径R、模型箱61の上縁から引き上げプレートの下吊りロープ7に接続されるための下ロープ接続点までの縦方向距離h、模型箱61の正味の高さhを測定し、ここで、事前引抜角度θは、アンカープレート63に近い下吊りロープ7部分と水平線とのなす角であり、
Figure 0007276789000011
に基づいて、各下吊りロープ7がプーリアセンブリ64を使用するかどうか臨界角度θ’を計算し、θ’は、引き上げプレート3の下ロープ接続点、アンカープレート63及び固定プーリ641が同一の直線にある時の下吊りロープ7と水平線とのなす角であり、ここで、Hは、アンカープレート63の幾何中心から引き上げプレート3の下ロープ接続点までの縦方向距離であり、Tは、引き上げプレート3の下ロープ接続点からアンカープレート63の中心点までの水平距離であり、HとTは、下記式
Figure 0007276789000012
ここで、引き上げプレート3の下ロープ接続点、アンカープレート63及び固定プーリ641が同一の直線にあることは、具体的には、引き上げプレート3と下吊りロープ7の下ロープ接続点、アンカープレート63と下吊りロープ7の下ロープ接続点及び固定プーリ641と下吊りロープ7の接触点が同一の直線にあることである。アンカープレート63の引抜角度は具体的には、アンカープレート63に近い下吊りロープ7の部分と水平面とのなす角である。
S6において、ステップS5で得られたデータに基づいて、下吊りロープ7の長さを計算し、下吊りロープ7が固定プーリ641を迂回する必要があれば、固定プーリ641の幾何中心から模型箱61の上縁までの縦方向距離をさらに計算し、固定プーリ641を対応する位置に摺動させて固定する。
さらに、ステップS6では、下記式によって下吊りロープ7の長さを計算し、具体的には、
Figure 0007276789000013
固定プーリ641の中心から模型箱61の上縁までの縦方向距離の計算結果によって、固定プーリ641を必要な位置に正確にスライド移動することができる。
Figure 0007276789000014
L=Hであり、
Figure 0007276789000015
上記式において、
h1は、模型箱61の上縁から引き上げプレート3の下面までの縦方向距離であり、
h2は、模型箱61の正味の高さであり、模型箱61の底板の厚さを含まず、
h3は、原土62の高さであり、
h4は、アンカープレート63の埋められた深さであり、
hcは、固定プーリ641の幾何中心から模型箱61の上縁までの縦方向距離であり、
Hは、アンカープレート63の幾何中心から引き上げプレート3の下ロープ接続点の位置する水平面までの縦方向距離であり、
Tは、引き上げプレート3の下ロープ接続点からアンカープレート63の幾何中心までの水平距離であり、
taは、アンカープレート63の厚さであり、
θは、下吊りロープ7と水平線とのなす角であり、
θaは、固定プーリ641を使用する場合、この時、固定プーリ641の下方に位置する下吊りロープ7と水平線とのなす角であり、
θbは、固定プーリ641を使用する場合、この時、固定プーリ641の上方に位置する下吊りロープ7と水平線とのなす角であり、
θ’は、引き上げプレート3の下ロープ接続点、アンカープレート63の幾何中心及び固定プーリ641と下吊りロープ7の接触点が同一の直線にある時、下吊りロープ7と水平線とのなす角であり、
tsbは、アンカープレート63の幾何中心から模型箱61の近側壁611の内側までの水平距離であり、
tbは、模型箱61の近側壁611の厚さであり、
tcpは、固定プーリ641の幾何中心から引き上げプレート3の下吊りロープ7に接続される下ロープ接続点までの水平距離であり、
tbcは、固定プーリ641の幾何中心から模型箱61の近側壁611の外側面までの水平距離であり、
Rは、固定プーリ641の半径であり、
ここで、h1、h2、θb、tb、tbc、tcp、Rはいずれも測定によって得られたものであるが、θ、θa、h3、h4、ta、tsbは、試験の必要に応じて予め設定されたデータである。
二つのアンカープレートのそれぞれに対応するh、h、h、h、h、t、θ、θ、tsb、t、tcp、tbc、Rを必要な式に代入することで、対応する引き上げを実現するための下吊りロープ7の長さを算出することができる。
S7において、下吊りロープ7の計算式に基づいて、必要な長さの二本の下吊りロープ7を提供し、二本の下吊りロープ7と模型箱61を一対一に対応して設置し、二本の下吊りロープ7の一端をそれぞれ引き上げプレート3の二つの下ロープ接続点に接続し、他端について、対応するアンカープレート63の事前引抜角度θと臨界角度θ’との比較結果に基づいて、対応する模型箱61の縦方向スリット612を貫通せずに、アンカープレート63に直接接続し、又は、固定プーリ641を迂回して縦方向スリット612を貫通した後に、アンカープレート63に接続する。
さらに、上吊りロープ4と二本の下吊りロープ7を取り付ける時、上吊りロープ4の中心線と二本の下吊りロープ7の中心線が同一の平面に位置することを確保することで、下吊りロープ7の引抜力分析を行う時、構築された受力分析幾何図を比較的に簡単にし、さらに構築された受力方程式を比較的に簡単にし、後続で下吊りロープ7の引抜力の結果を迅速に算出することを容易にする。
S8において、原土62を模型箱61内に充填し、充填高さがアンカープレート63の事前埋設深さhに等しい場合、事前埋設深さhと事前埋設水平距離tsbに基づいて、アンカープレート63を原土62の表面の指定位置に入れて固定し、そして原土62が指定の高さに充填されるまで、原土62を模型箱61内に充填し続ける。
原土62を模型箱61内に充填する過程では、原土62の側面の変形を観測しやすくするために、一定の高さを充填する毎に、模型箱612の透明な前壁の内側に一層のカラーサンドを塗布し、原土62が指定の高さまで充填された後に、原土の充填を停止する。
S9において、各模型箱61にサイドカメラとレーザー変位センサを取り付け、各模型箱61の前壁の直前にフロントカメラを架設する。
本実施例において、サイドカメラとレーザー変位センサはいずれも模型箱61の近側壁611に位置するように設置される。
S10において、試験装置とローディング、テスト装備を検出し、潜在的なリスクを排除した後、巻上げ機2を起動してローディングを行い、サイドカメラとフロントカメラをオンにし、原土62の変形を捕捉し、そして平滑粒子流体力学的技術に基づいて二つの模型箱内の原土4の変位ベクトル図を得る。
具体的には、サイドカメラは、対応する模型箱61内の原土62の表層の破壊形態を捕捉するために用いられ、レーザー変位センサは、模型箱61内の原土62の表層の変位を捕捉するために用いられ、フロントカメラは、巻上げ機を巻き取る過程での原土62の側面の変形を捕捉するために用いられる。
S11において、力測定機構によって、試験過程で巻上げ機2により加えられたけん引力を読み出し、各下吊りロープ7が受けた引抜力を計算する。
各下吊りロープ7が受けた引抜力を計算することで、二つのアンカープレート63が異なる引抜力で原土62を押す変形を捕捉し、アンカープレート63が受けた限界引抜力を正確に算出することができる。
まず、二つの下吊りロープ7がいずれも固定プーリ641を迂回しないというケースを例として、各下吊りロープ7の受力状況を分析して説明する。
図6に示すように、引き上げプレート3が水平に保持されば、以下を得る。
第一の下吊りロープ7aが受けた引抜力は以下のとおりである。
Figure 0007276789000016
第二の下吊りロープ7aが受けた引抜力は以下のとおりである。
Figure 0007276789000017
図7に示すように、前記第一の下吊りロープ7aが左側にあり、前記第二の下吊りロープ7bが右側にあり、引き上げプレート3が傾斜し、且つ左側が跳ね上がって右側が傾斜すると、以下を得る。
前記第一の下吊りロープ7aが受けた引抜力は以下のとおりである。
Figure 0007276789000018
第二の下吊りロープ7aが受けた引抜力は以下のとおりである。
Figure 0007276789000019
図8に示すように、二つのアンカープレートが傾斜し、且つ左側が傾斜して右側が跳ね上がると、以下を得る。
前記第一の下吊りロープ7aが受けた引抜力は以下のとおりである。
Figure 0007276789000020
前記第二の下吊りロープ7bが受けた引抜力は以下のとおりである。
Figure 0007276789000021
上記式において、
θは、固定プーリ641を迂回しない第一の下吊りロープ7aと水平線とのなす角であり、
θは、固定プーリ641を迂回しない第二の下吊りロープ7bと水平線とのなす角であり、
αは、引き上げプレート3が傾斜した角度であり、
Fは、力測定機構5の測定数値であり、
は、引き上げプレート3の下ロープ接続点から引き上げプレート3の中心線までの垂直距離であり、
は、引き上げプレート3が傾斜した後にその半分の鉛直線での投影距離であり、
θとθは、実験の必要に応じて予め設定された角度であり、Fは、力測定機構5によって測定され、L、hは、測定によって得られ、引き上げプレート3の傾斜状況に基づいて、既知のデータを適切な下吊りロープ7の受けた荷重力の計算式に入れることで、第一の下吊りロープ7aの受けた引抜力と第二の下吊りロープ7bの引抜力を得ることができる。
次に、第一の吊りロープと第二の吊りロープの他のケースについて分析する。第一の下吊りロープ7aと第二の下吊りロープ7bがいずれも固定プーリ641を迂回する場合、図9から図11に示すように、θを固定プーリ641と引き上げプレート3との間に位置する第一の下吊りロープ7aと水平線とのなす角に置き換え、θを固定プーリ641と引き上げプレート3との間に位置する第二の下吊りロープ7bと水平線とのなす角に置き換える。ここで、θとθはいずれも測定によって得られたものである。
そのため、第一の下吊りロープ7aと第二の下吊りロープ7bがいずれも固定プーリ641を迂回するという条件下では、図9に示すように、引き上げプレート3が水平に保持される時、分析から分かるように、第一の下吊りロープ7aの引抜力Fの計算と第二の下吊りロープ7bの引抜力Fの計算は、依然として上記式1.1と式1.2を使用し、図10に示すように、引き上げプレート3に、左側が傾斜して右側が跳ね上がるという傾斜が生じた時、第一の下吊りロープ7aの引抜力Fの計算と第二の下吊りロープ7bの引抜力Fの計算は、依然として上記式1.3と式1.4を使用し、図11に示すように、引き上げプレート3に、左側が跳ね上がって右側が傾斜するという傾斜が生じた時、第一の下吊りロープ7aの引抜力Fの計算と第二の下吊りロープ7bの引抜力Fの計算は、依然として上記式1.5と1.6を使用し、αは依然として式1.7で計算される。
二つの下吊りロープ7のうち、一本の下吊りロープ7が固定プーリ641を迂回し、別の下吊りロープ7が固定プーリ641を迂回しない場合について、本明細書において、第一の下吊りロープ7aが固定プーリ641を迂回し、第二の下吊りロープ7bが固定プーリ641を迂回しないことを例として説明する。図12から図14に示すように、θを前記固定プーリ641と引き上げプレート3との間に位置する第一の下吊りロープ7aと水平線とのなす角にのみ置き換え、θは依然として固定プーリ641を迂回しない第二の下吊りロープ7bと水平線とのなす角である。ここで、θは、測定によって得られたものであり、θは、実験の必要に応じて予め設定された角度である。
そのため、第一の下吊りロープ7aが固定プーリ641を迂回し、第二の下吊りロープ7bが固定プーリ641を迂回しない場合、図12に示すように、引き上げプレート3が水平に保持される時、第一の下吊りロープ7aの引抜力Fの計算と第二の下吊りロープ7bの引抜力Fの計算は、依然として上記式1.1と式1.2を使用し、図13に示すように、引き上げプレート3に、左側が傾斜して右側が跳ね上がるという傾斜が生じた時、第一の下吊りロープ7aの引抜力Fの計算と第二の下吊りロープ7bの引抜力Fの計算は、依然として上記式1.3と式1.4を使用し、図14に示すように、引き上げプレート3に、左側が跳ね上がって右側が傾斜するという傾斜が生じた時、第一の下吊りロープ7aの引抜力Fの計算と第二の下吊りロープ7bの引抜力Fの計算は、依然として上記式1.5と1.6を使用する。αは依然として式1.7で計算される。
これから分かるように、第一の下吊りロープ7aと第二の下吊りロープ7bが固定プーリ641を迂回するかどうかに基づいて、θ、θに対して対応する意味変換を行い、引き上げプレート3の傾斜状況に基づいて、式式1.1、式1.2、式1.3、式1.4、式1.5、式1.6から対応する式を選択すれば、第一の下吊りロープ7aの引抜力Fと第二の下吊りロープ7bの引抜力Fの計算を実現することができる。
本発明の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法は、試験を行う場合、二つの下吊りロープ7を密に組み合わせ、そしてプーリアセンブリ64と縦方向スリット612を組み合わせることで、同一の相対的位置での異なる埋設角度が二つのアンカープレート63の荷重力に及ぼす影響を模擬することができ、そして同一の埋設角度での異なる相対的位置が二つのアンカープレート63の荷重力に及ぼす影響を模擬することもでき、それによってアンカープレートの工事設計を指導する目的を達成することができる。
なお、二つの模型箱61の前壁を透明材料で製造するようにして位置決めマーク点を予め設け、近側壁611にサイドカメラとレーザー変位センサを取り付け、そして前壁の直前にフロントカメラを架設することで、アンカープレート63の運動軌跡及び原土62の変形と破壊形態をリアルタイムで正確に捕捉することができる。
1 支持フレーム、11 支持トッププレート、111 ロープ通し孔、12 支持脚プレート、13 膨張ナット、14 支持レバー、15 ベース、2 巻上げ機、3 引き上げプレート、31 縦方向方形貫通孔、32 締め付け孔、4 上吊りロープ、5 力測定機構、61 模型箱、611 近側壁、612 縦方向スリット、613 縦方向スライド移動レール、62 原土、63 アンカープレート、64 プーリアセンブリ、641 固定プーリ、7 下吊りロープ、7a 第一の下吊りロープ、7b 第二の下吊りロープ、8 締め付けボルト、9 巻き取り柱

Claims (2)

  1. 海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法であって、この試験装置は、支持フレームと、前記支持フレームに取り付けられる巻上げ機と、前記巻上げ機の下方に位置する引き上げプレートと、前記巻上げ機と前記引き上げプレートとを接続する上吊りロープと、前記上吊りロープに取り付けられる力測定機構と、前記引き上げプレートの下方に設けられる二つのアンカープレート機構と、二本の下吊りロープとを含み、前記下吊りロープと前記アンカープレート機構はいずれも前記上吊りロープの両側に位置し、且つ一対一に対応して設置され、前記アンカープレート機構は、模型箱と、前記模型箱内に充填される原土と、前記原土内に埋設されるアンカープレートと、プーリアセンブリとを含み、前記模型箱内に、前記引き上げプレートに近い近側壁を有し、前記近側壁に縦方向スリットが設けられ、前記プーリアセンブリは、前記縦方向スリットに対応して前記近側壁に摺動可能に取り付けられ、前記プーリアセンブリは、固定プーリを含み、各前記下吊りロープの一端は、引き上げプレートに接続され、他端は、対応する前記アンカープレート機構のアンカープレートに接続され、
    前記下吊りロープは、第一の状態と第二の状態を有し、前記下吊りロープが第一の状態にある時、前記下吊りロープの前記引き上げプレートから離れる端は、模型箱の頂部開口を貫通して前記アンカープレートに接続され、前記下吊りロープが第二の状態にある時、前記下吊りロープの前記引き上げプレートから離れる端は、前記プーリアセンブリを迂回して前記縦方向スリットを貫通した後に、前記アンカープレートに接続され、
    前記支持フレームは、支持トッププレートと、支持脚プレートと、支持レバーとを含み、前記支持トッププレートにロープ通し孔が設けられ、前記上吊りロープは、前記ロープ通し孔を貫通し、前記支持脚プレートは、前記支持トッププレートの下方に位置し、前記支持レバーの数は、前記支持脚プレートの数に等しく、且つ一対一に対応して設置され、各前記支持レバーの一端はいずれも前記支持トッププレートに接続され、他端はそれぞれ対応する前記支持脚プレートに接続され、
    前記上吊りロープの中心線と二つの前記下吊りロープの中心線は同一の平面に位置して設置され、
    前記近側壁にサイドカメラとレーザー変位センサが設置され、ここで、前記サイドカメラは、前記巻上げ機を巻き取る過程での前記原土の上面部分の変形を捕捉するために用いられ、前記レーザー変位センサは、前記巻上げ機を巻き取る過程での前記原土の上面部分の変位を捕捉するために用いられ、
    前記模型箱は前壁をさらに有し、前記前壁は透明材料で製造され、前記前壁の前方に、前記原土の側部の変形を捕捉するためのフロントカメラが架設され、
    前記引き上げプレートに二つの下ロープ接続点を有し、二つの前記下ロープ接続点は、前記引き上げプレートの中心線に関して対称的に設置され、二つの前記下吊りロープはそれぞれ二つの前記下ロープ接続点に接続され、
    この試験装置に基づくテスト方法は、
    支持フレームを試験サイトに取り付けるステップS1と、
    巻上げ機を前記支持フレームに取り付けるステップS2と、
    上吊りロープに力測定機構を取り付け、前記上吊りロープを介して前記引き上げプレートの中心と前記巻上げ機を接続するステップS3であって、前記引き上げプレートは二つの下ロープ接続点を有し、二つの下ロープ接続点は、前記引き上げプレートの中心線に関して対称的であるステップS3と、
    二つの前記プーリアセンブリの前記固定プーリから対応する前記引き上げプレートの前記下ロープ接続点までの水平距離tcpを予め設定し、この予め設定された水平距離tcpに基づいて、前記縦方向スリットが開設され及び前記プーリアセンブリが取り付けられた二つの前記模型箱を試験サイトに置いて位置を決めるステップS4と、
    対応する前記模型箱内の各前記アンカープレートの事前埋設深さh、事前引抜角度θ及び前記近側壁の内側壁までの事前埋設水平距離tsbを予め決定し、前記原土の充填高さhを予め決定し、さらに各前記アンカープレートに対応する前記近側壁の厚さt、前記固定プーリの中心から前記近側壁までの水平距離tbc、前記固定プーリの半径R、前記模型箱の上縁から前記引き上げプレートの前記下ロープ接続点までの縦方向距離h、前記模型箱の正味の高さh、及び前記固定プーリの中心から前記模型箱の上縁までの縦方向距離h
    Figure 0007276789000022
    ここで、
    θ’<θ<90°の場合、前記下吊りロープは、前記固定プーリを迂回する必要がなく、0°≦θ≦θ’の場合、前記下吊りロープは、前記固定プーリを迂回する必要があるステップS5と、
    ステップS5で得られたデータに基づいて、前記下吊りロープの長さを計算し、前記下吊りロープが固定プーリを迂回する必要があれば、前記固定プーリの中心から前記模型箱の上縁までの縦方向距離をさらに計算し、前記固定プーリを対応する位置に摺動させて固定するステップS6であって、
    下記式によって下吊りロープの長さを計算し、具体的には、
    θ’<θ<90°の場合、前記下吊りロープの長さは、
    Figure 0007276789000023
    前記下吊りロープと固定プーリの下縁の接点から引き上げプレートの下ロープ接続点までの前記下吊りロープの長さは、
    Figure 0007276789000024
    θ=90°の場合、前記下吊りロープの長さは、
    L=Hであり、
    上記式において、
    は、前記模型箱の上縁から前記引き上げプレートが前記下吊りロープに接続された下ロープ接続点までの縦方向距離であり、
    は、前記模型箱の正味の高さであり、模型箱の底板の厚さを含まず、
    は、前記原土の充填高さであり、
    は、前記アンカープレートの埋められた深さであり、
    は、前記固定プーリの幾何中心から前記模型箱の上縁までの縦方向距離であり、
    Hは、前記アンカープレートの中心点から引き上げプレートの下ロープ接続点の位置する水平面までの縦方向距離であり、
    Tは、前記引き上げプレートの下ロープ接続点から前記アンカープレートの幾何中心までの水平距離であり、
    は、前記アンカープレートの厚さであり、
    θは、前記下吊りロープと水平線とのなす角であり、
    θは、前記固定プーリを使用する場合、この時、前記固定プーリの下方に位置する前記下吊りロープと水平線とのなす角であり、
    θは、前記固定プーリを使用する場合、この時、前記固定プーリの上方に位置する前記下吊りロープと水平線とのなす角であり、
    θ’は、前記引き上げプレートの下ロープ接続点、前記アンカープレートの幾何中心及び前記固定プーリと前記下吊りロープの接触点が同一の直線にある時、前記下吊りロープと水平線とのなす角であり、
    sbは、前記アンカープレートの幾何中心から前記模型箱の近側壁の内側までの水平距離であり、
    は、前記模型箱の前記近側壁の厚さであり、
    cpは、前記固定プーリの中心点から前記引き上げプレートの下ロープ接続点までの水平距離であり、
    bcは、前記固定プーリの中心から前記模型箱の近側壁の外側面までの水平距離であり、
    Rは、前記固定プーリの半径であり、
    ここで、h、h、t、θ、t、tbc、tcp、Rはいずれも測定によって得られたものであるが、θ、θ、h、h、tsbは、試験の必要に応じて予め設定されたデータであるステップS6と、
    ステップS6の計算結果に基づいて、必要な長さの二本の下吊りロープを提供し、二本の下吊りロープと前記模型箱を一対一に対応して設置し、二本の下吊りロープの一端をそれぞれ前記引き上げプレートの二つの前記下ロープ接続点に接続し、他端について、事前引抜角度θと対応する臨界角度θ’との比較結果に基づいて、対応する前記模型箱の鉛直スリットを貫通せずに、対応する前記アンカープレートに直接接続し、又は、前記固定プーリを迂回して前記鉛直スリットを貫通した後に、対応する前記アンカープレートに接続するステップS7と、
    原土を模型箱内に充填し、充填高さが前記アンカープレートの事前埋設深さhに等しい場合、事前埋設深さhと事前埋設水平距離tsbに基づいて、前記アンカープレートを前記原土の表面の指定位置に入れて固定し、そして原土が指定の高さに充填されるまで、原土を模型箱内に充填し続けるステップS8と、
    前記模型箱が透明な前壁を有し、各前記模型箱にサイドカメラとレーザー変位センサを取り付け、各前記模型箱の前壁の直前にフロントカメラを架設するステップS9と、
    巻上げ機を起動してローディングを行い、前記サイドカメラと前記フロントカメラをオンにし、前記原土の変形を捕捉するステップS10と、
    前記力測定機構によって、試験過程で前記巻上げ機により加えられたけん引力を読み出し、前記下吊りロープが受けた引抜力を計算するステップS11とを含む、ことを特徴とする海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法。
  2. 二つの前記下吊りロープをそれぞれ第一の下吊りロープと第二の下吊りロープとして設定すれば、前記第一の下吊りロープの引抜力Fと前記第二の下吊りロープの引抜力Fは、下記式によって算出され、
    前記引き上げプレートが水平に保持されば、
    前記第一の下吊りロープが受けた引抜力F
    Figure 0007276789000025
    前記第一の下吊りロープが左側にあり、前記第二の下吊りロープが右側にあり
    前記引き上げプレートが傾斜し、且つ左側が跳ね上がって右側が傾斜すると、
    前記第一の下吊りロープが受けた引抜力が
    Figure 0007276789000026
    上記式において、
    αは、前記引き上げプレートが傾斜した角度であり、
    Fは、前記力測定機構の測定数値であり、
    は、前記引き上げプレートの下ロープ接続点から前記引き上げプレートの中心線までの垂直距離であり、
    は、前記引き上げプレートが傾斜した後にその半分の鉛直線での投影距離であり、
    前記第一の下吊りロープが前記固定プーリを迂回しない場合、θは、前記第一の下吊りロープと水平線とのなす角であり、前記第一の下吊りロープが前記固定プーリを迂回する場合、θは、前記固定プーリの上方に位置する第一の下吊りロープと水平線とのなす角であり、
    前記第二の下吊りロープが前記固定プーリを迂回しない場合、θは、前記第二の下吊りロープと水平線とのなす角であり、前記第二の下吊りロープが前記固定プーリを迂回する場合、θは、前記固定プーリと前記引き上げプレートとの間に位置する前記第二の下吊りロープと水平線とのなす角であり、
    Fは、前記力測定機構によって測定され、L、hは、測定によって得られ、前記第一の下吊りロープが前記固定プーリを迂回しない場合、θは、実験の必要に応じて予め設定された角度であり、前記第一の下吊りロープが前記固定プーリを迂回する場合、θは、測定によって得られ、第二の下吊りロープが前記固定プーリを迂回しない場合、θは、実験の必要に応じて予め設定された角度であり、第二の下吊りロープが前記固定プーリを迂回する場合、θは、測定によって得られる、ことを特徴とする請求項1に記載の海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法。
JP2022180815A 2022-07-14 2022-11-11 海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法 Active JP7276789B1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210823187.X 2022-07-14
CN202210823187.XA CN114894624B (zh) 2022-07-14 2022-07-14 基于海洋管线群锚作用的拉拔力测量试验装置及测量方法

Publications (2)

Publication Number Publication Date
JP7276789B1 true JP7276789B1 (ja) 2023-05-18
JP2024012035A JP2024012035A (ja) 2024-01-25

Family

ID=82729493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022180815A Active JP7276789B1 (ja) 2022-07-14 2022-11-11 海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法

Country Status (3)

Country Link
US (1) US11796425B1 (ja)
JP (1) JP7276789B1 (ja)
CN (1) CN114894624B (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139673A (ja) 2001-10-31 2003-05-14 Bosai Giken Kogyo:Kk アンカー試験装置および方法
CN111948046A (zh) 2020-07-30 2020-11-17 山东大学 一种基于透明土的锚板拉拔试验装置、系统及方法
CN212568249U (zh) 2020-06-01 2021-02-19 葛洲坝集团试验检测有限公司 一种直筒式连接拉拔实验装置
CN214794180U (zh) 2021-03-29 2021-11-19 青岛太平洋水下科技工程有限公司 一种测量水下锚筋承载力的简易装置
CN113686666A (zh) 2021-07-13 2021-11-23 湖南科技大学 一种开展锚板拉拔的可视化试验装置及试验方法
CN113916663A (zh) 2021-11-29 2022-01-11 浙大城市学院 一种模拟平面内海底锚板拉拔失效的试验装置及试验方法

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3738163A (en) * 1972-03-24 1973-06-12 Atlantic Richfield Co Anchor tester
IL42798A (en) * 1973-07-20 1975-11-25 Tech Res & Dev Found Ltd A test rig for load testing of foundations
US3942368A (en) * 1974-09-09 1976-03-09 A. B. Chance Company Portable pull testing unit for installed earth anchors
FR2461066A1 (fr) * 1979-07-09 1981-01-30 Coelus Gaspar Procede et appareil d'essai dynamique de pieux
CS238291B1 (en) * 1983-12-27 1985-11-13 Boris Cernak Compacted deep foundation and method and equipment for its construction
US4614110A (en) * 1984-06-08 1986-09-30 Osterberg Jorj O Device for testing the load-bearing capacity of concrete-filled earthen shafts
US4662227A (en) * 1984-12-10 1987-05-05 Illinois Tool Works Inc. Apparatus for measuring pull-out resistance
US4753115A (en) * 1986-11-24 1988-06-28 F.C. Brown Company Pullout force measuring apparatus
GB9406745D0 (en) * 1994-04-06 1994-05-25 Aberdeen University And Univer Integrity assessment of ground anchorages
US5731525A (en) * 1996-12-18 1998-03-24 Micron Electronics, Inc. Extraction force tester
US5792961A (en) * 1997-04-10 1998-08-11 Giebner Enterprises, Inc. Portable motorized fastener tester
JP2003270080A (ja) * 2002-03-15 2003-09-25 Hitachi Industries Co Ltd 振動試験装置および振動試験方法
DE10346040A1 (de) * 2003-10-02 2005-05-25 Bauer Maschinen Gmbh Verfahren und Prüfanordnung zum Bestimmen des Tragverhaltens von Verdrängungspfählen
US7222540B2 (en) * 2004-05-07 2007-05-29 Call & Nicholas Instruments, Inc. Wireline extensometer
US7513168B2 (en) * 2006-03-29 2009-04-07 Alba Tony J Jack bolt activated tensile strength test machine
US8069737B2 (en) * 2007-07-10 2011-12-06 MYTRAK Health System, Inc. Force sensing system for a tensioned flexible member
US7611129B1 (en) * 2008-09-17 2009-11-03 Foresight Products, Llc Tension testing anchor lock
US20120200452A1 (en) * 2011-02-08 2012-08-09 Piletrac, LLC Method and apparatus for calculating the displacement and velocity of impact-driven piles
US8402837B1 (en) * 2011-11-29 2013-03-26 International Marketing & Research, Inc. System for field testing helical piles
JP2014095645A (ja) * 2012-11-12 2014-05-22 Univ Of Tokushima 引抜き試験装置
DE102012223157A1 (de) * 2012-12-14 2014-07-03 Hilti Aktiengesellschaft Auszugstester für ein Setzgerät
KR101462566B1 (ko) * 2013-03-29 2014-11-19 한국건설기술연구원 석션파일의 지반 관입을 이용한 수중파일의 수평하중 재하장치, 및 이를 이용한 수중파일의 수평저항력 측정방법
NO341753B1 (no) * 2013-07-03 2018-01-15 Cameron Int Corp Bevegelseskompensasjonssystem
CN103359645B (zh) * 2013-07-08 2015-12-09 中国矿业大学 柔索悬吊平台导向绳张力自动调节系统及方法
CN103776577B (zh) * 2014-01-03 2016-05-04 中国矿业大学 施工立井吊盘的稳绳张力检测装置和检测方法
US9645062B2 (en) * 2014-04-11 2017-05-09 Duro-Last, Inc. Roofing pull-test frame assembly
US9360397B1 (en) * 2014-07-02 2016-06-07 William H Melton Anchor inspection device
CN104727354B (zh) * 2015-02-25 2016-06-08 中国科学院力学研究所 模拟循环载荷下板锚极限动承载力的测试系统
CN205404285U (zh) * 2016-03-09 2016-07-27 海南大学 一种条形锚定板可视化拉拔试验装置
US9874503B2 (en) * 2016-05-02 2018-01-23 Hydrajaws, Limited Systems and methods of use for digitally testing and reporting the pull-out strength of a fastener member
US10088387B2 (en) * 2016-05-18 2018-10-02 Crrc Qingdao Sifang Rolling Stock Research Institute Co., Ltd. Brake beam fatigue test stand
CN106153470A (zh) * 2016-08-26 2016-11-23 中国电力科学研究院 岩石锚杆上拔测试装置
CN106989941A (zh) * 2017-03-30 2017-07-28 中车青岛四方车辆研究所有限公司 架车机举升单元加载试验测控系统及方法
CN207036118U (zh) * 2017-05-31 2018-02-23 天津大学 测试拖锚过程中锚运动形态及锚抓力的试验装置
CN107476353A (zh) * 2017-07-10 2017-12-15 同济大学 水合物热开采中锚板基础抗拔性能的模型试验装置及方法
JP6554694B1 (ja) * 2018-04-24 2019-08-07 株式会社環境資源開発コンサルタント 水中設置アンカーの強度試験方法
CN109374418B (zh) * 2018-09-20 2020-05-12 浙江大学 等效弹性边界下锚链与土切向和法向抗力测试方法
CN109187170B (zh) * 2018-11-14 2024-03-15 山东大学 一种平面应变条件下锚定板极限拉拔试验装置及方法
CN109813626B (zh) * 2019-03-28 2023-10-20 青岛理工大学 一种平行持载作用方向的混凝土吸水率测试装置
CN111380747B (zh) * 2020-05-12 2020-11-27 兰州理工大学 一种土遗址锚固拉拔试验恒力加载系统及其使用方法
CN111535177A (zh) * 2020-05-27 2020-08-14 中国科学院武汉岩土力学研究所 一种由预应力群锚和围岩组成的岩锚锚碇及其施工方法
CN111650047B (zh) * 2020-07-09 2020-12-22 中国水利水电科学研究院 一种大吨位土料载荷试验竖向反力加载装置及其加载方法
CN112160350A (zh) * 2020-09-01 2021-01-01 温州大学 具有不同安装和拔出方式的打入桩离心机试验装置及其操作方法
CN112098211B (zh) * 2020-09-17 2021-08-06 山东大学 一种模拟多锚耦合作用的实验装置及方法
CN112595634B (zh) * 2020-12-14 2021-09-24 青岛理工大学 一种三维颗粒材料的内部变形分析实验装置及方法
CN113026707B (zh) * 2021-03-22 2022-04-01 浙江大学 一种用于超重力离心机的动力贯入平板锚试验装置
CN113405766B (zh) * 2021-05-13 2022-11-15 河海大学 一种在役绷紧式系泊系统响应模拟的模型试验装置及方法
CN214794188U (zh) * 2021-05-22 2021-11-19 武汉建诚工程技术有限公司 一种可自由调节角度的锚固件抗拔试验辅助装置
CN114892733B (zh) * 2022-07-14 2022-10-25 浙大城市学院 基于海底斜坡场地锚板基础的抗拔力测量装置及测量方法
CN115655845A (zh) * 2022-11-09 2023-01-31 青岛理工大学 一种可调节围压及锚杆锚固深度的锚固性能试验装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003139673A (ja) 2001-10-31 2003-05-14 Bosai Giken Kogyo:Kk アンカー試験装置および方法
CN212568249U (zh) 2020-06-01 2021-02-19 葛洲坝集团试验检测有限公司 一种直筒式连接拉拔实验装置
CN111948046A (zh) 2020-07-30 2020-11-17 山东大学 一种基于透明土的锚板拉拔试验装置、系统及方法
CN214794180U (zh) 2021-03-29 2021-11-19 青岛太平洋水下科技工程有限公司 一种测量水下锚筋承载力的简易装置
CN113686666A (zh) 2021-07-13 2021-11-23 湖南科技大学 一种开展锚板拉拔的可视化试验装置及试验方法
CN113916663A (zh) 2021-11-29 2022-01-11 浙大城市学院 一种模拟平面内海底锚板拉拔失效的试验装置及试验方法

Also Published As

Publication number Publication date
CN114894624A (zh) 2022-08-12
CN114894624B (zh) 2022-11-01
JP2024012035A (ja) 2024-01-25
US11796425B1 (en) 2023-10-24

Similar Documents

Publication Publication Date Title
CN102493500B (zh) 可双向加载的地基基础模型试验装置
JP7199770B1 (ja) 平面内海底アンカープレートの引抜無効化を模擬する試験装置及び試験方法
Dyvik et al. Field tests of anchors in clay. I: Description
AU2012201012B2 (en) Device for manufacturing a foundation for a mass located at height, associated method and assembly of the device and a jack-up platform
CN205636706U (zh) 原位土压力测试装置
JP2011117803A (ja) 鋼管の建入誤差の測定方法、鋼管
CN114892733A (zh) 基于海底斜坡场地锚板基础的抗拔力测量装置及测量方法
CN209816944U (zh) 一种模拟基坑分段开挖对隧道影响的实验装置
CN112962686A (zh) 一种用于吸力锚出平面测试的离心机加载装置
CN106088172B (zh) 一种联合测定灌注桩桩顶和桩端位移的试验装置
CN202347547U (zh) 可双向加载的地基基础模型试验装置
JP6658616B2 (ja) 杭式構造物の施工方法
JP7276789B1 (ja) 海洋パイプラインアンカーグループ作用に基づく引抜力測定試験装置の測定方法
CN107121139B (zh) 测试拖锚过程中锚运动形态及锚抓力的试验装置及方法
CN207348112U (zh) 锚杆抗拔试验的承压板式反力装置
CN107014670B (zh) 复合荷载作用下的单桩多向水平承载力的测试装置
CN105297731A (zh) 一种逆作法钢立柱定位装置以及定位方法
CN211080332U (zh) 一种基桩检测静载试验用位移测量装置
CN207991944U (zh) 一种应用于斜坡桩基的水平拉力试验装置
CN109853641A (zh) 一种海上风电挤密砂桩的试验方法
CN105369837A (zh) 一种基桩高应变检测专用装置
CN109440843A (zh) 一种模型桩室内试验组合荷载施加装置及方法
CN110132532B (zh) 一种张力腿网箱模型试验装置
KR20220049223A (ko) 수직인발력을 이용한 수평하중 변환 시스템
CN220184117U (zh) 一种海洋平板锚模型基础的循环承载力测试装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221111

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230425

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230425

R150 Certificate of patent or registration of utility model

Ref document number: 7276789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150