JP7276103B2 - 電力システム及び電力供給装置 - Google Patents

電力システム及び電力供給装置 Download PDF

Info

Publication number
JP7276103B2
JP7276103B2 JP2019218796A JP2019218796A JP7276103B2 JP 7276103 B2 JP7276103 B2 JP 7276103B2 JP 2019218796 A JP2019218796 A JP 2019218796A JP 2019218796 A JP2019218796 A JP 2019218796A JP 7276103 B2 JP7276103 B2 JP 7276103B2
Authority
JP
Japan
Prior art keywords
power
supply
load
supplied
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019218796A
Other languages
English (en)
Other versions
JP2021090258A (ja
Inventor
卓朗 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2019218796A priority Critical patent/JP7276103B2/ja
Publication of JP2021090258A publication Critical patent/JP2021090258A/ja
Application granted granted Critical
Publication of JP7276103B2 publication Critical patent/JP7276103B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、電力システム及び電力供給装置に関する。
例えば特許文献1には、特定電源としての蓄電池及び分散型電源を系統電源としての電力系統に系統連系させた電力システムについて記載されている。当該電力システムでは、蓄電池及び分散型電源から出力される電力は、系統電力に変換されて電力系統に出力され、系統電力として負荷に供給される。
特開2019-68618号公報
ここで、特定電源から出力される電力を系統電力に変換して系統電源に供給する構成においては、特定電源から出力される電力を系統電力に変換する際に損失が生じ得る。また、電気事業者との契約などの系統電源の状況によっては、負荷に対して十分な電力供給を行うことができない場合がある。
これに対して、本願発明者は、特定電源から出力される電力を系統電力に変換して系統電源に供給するのではなく、系統電源と特定電源との双方から負荷に対して電力供給を行う構成に着目した。このような系統電源と特定電源とを用いて電力供給を行う場合、系統電源から供給される電力又は特定電源から供給される電力によっては、効率の低下が懸念される。
本発明は、上述した事情を鑑みてなされたものであり、その目的は系統電源と特定電源とを用いて効率的に負荷に電力供給を行うことができる電力システム及び電力供給装置を提供することである。
上記目的を達成する電力システムは、系統電源及び前記系統電源とは別に設けられた特定電源と、前記系統電源及び前記特定電源を用いた電力供給が行われる負荷と、前記系統電源を用いて前記負荷に供給される電力である第1供給電力を可変させる第1可変部と、前記特定電源を用いて前記負荷に供給される電力である第2供給電力を可変させる第2可変部と、前記第1可変部及び前記第2可変部を制御することにより、前記系統電源と前記特定電源との双方から前記負荷に対して電力供給が行われるようにする制御部と、を備え、前記制御部は、前記負荷に供給する目標供給電力と、前記系統電源を用いて前記負荷に電力供給を行う場合の効率である第1効率と、前記特定電源を用いて前記負荷に電力供給を行う場合の効率である第2効率と、を含む導出パラメータに基づいて、第1設定電力及び第2設定電力を導出する導出部と、前記第1設定電力に対応した前記第1供給電力が前記負荷に供給されるように前記第1可変部を制御する第1電力制御部と、前記第2設定電力に対応した前記第2供給電力が前記負荷に供給されるように前記第2可変部を制御する第2電力制御部と、を備えていることを特徴とする。
かかる構成によれば、系統電源と特定電源との双方から負荷に対して電力供給が行われることにより、目標供給電力に対して系統電力を小さくすることができる。これにより、過度に大きな系統電力を要することなく負荷に対して電力供給を行うことができる。したがって、系統電力の上限が定められている条件下であっても負荷に対して好適に電力供給を行うことができる。
また、第1設定電力及び第2設定電力は、第1効率及び第2効率を含む導出パラメータによって導出される。これにより、両効率を考慮した効率的な電力供給を行うことができるため、系統電力のみで電力供給を行う場合又は特定電源のみで電力供給を行う場合よりも電力供給に伴う損失を低減できる。
上記電力システムについて、前記特定電源は、前記系統電源によって充電される蓄電装置であり、前記第2効率は、前記蓄電装置の充電効率を含むとよい。
かかる構成によれば、蓄電装置の充電効率を考慮した両設定電力を導出することができ、全体としてより効率的な電力供給を行うことができる。
上記電力システムについて、前記第1効率は、前記第1供給電力に応じて変動し、前記第2効率は、前記第1効率よりも低く、且つ、前記第2供給電力に応じて変動するものであり、前記導出部は、前記負荷に供給される電力が前記目標供給電力となり且つ前記第1設定電力と前記第2設定電力との合計値が最小値となるように、前記導出パラメータに基づいて前記第1設定電力及び前記第2設定電力を導出するとよい。
かかる構成によれば、系統電源と蓄電装置とを用いて目標供給電力を負荷に供給する構成において、最も損失が小さくなる両設定電力の組み合わせを導出することを通じて、損失の更なる低減を図ることができる。
上記電力システムは、前記系統電源から出力される系統電力を直流電力に変換するAC/DCインバータを備え、前記第1可変部は、前記AC/DCインバータと前記負荷との間に設けられた第1DC/DCコンバータを有し、前記第2可変部は、前記蓄電装置と前記負荷との間に設けられた第2DC/DCコンバータを有し、前記電力システムは、前記系統電源及び前記蓄電装置の接続状態を、前記系統電源が前記AC/DCインバータ及び前記第1DC/DCコンバータを介して前記負荷に接続され、且つ、前記蓄電装置が前記第2DC/DCコンバータを介して前記負荷に接続されている第1接続状態、又は、前記系統電源が前記AC/DCインバータ及び前記第2DC/DCコンバータを介して前記蓄電装置に接続されている第2接続状態に切り替える切替部を備えているとよい。
かかる構成によれば、状況に応じて切替部を制御することにより、同一のAC/DCインバータを用いて、負荷への電力供給を行ったり、蓄電装置の充電を行ったりすることができる。
上記電力システムについて、前記系統電源が供給可能な最大電力である第1最大電力と、前記特定電源が供給可能な最大電力である第2最大電力と、を合わせた電力を供給可能電力とすると、前記制御部は、前記負荷から要求される要求電力が前記供給可能電力以上である場合には、前記第1設定電力及び前記第2設定電力を前記第1最大電力及び前記第2最大電力に設定する最大設定部を備え、前記導出パラメータは、前記第1最大電力及び前記第2最大電力を含み、前記導出部は、前記要求電力が前記供給可能電力よりも小さい場合に、前記導出パラメータに基づいて、前記第1最大電力を超えない範囲内での前記第1設定電力と、前記第2最大電力を超えない範囲内での前記第2設定電力とを導出するとよい。
かかる構成によれば、要求電力が供給可能電力以上である場合には、第1設定電力及び第2設定電力が第1最大電力及び第2最大電力に設定される。これにより、供給可能電力に対応した電力が負荷に供給される。したがって、要求電力が供給可能電力以上である場合には、系統電源や特定電源に過剰な負担がかかることを抑制しつつ、なるべく要求電力に近い電力供給を行うことができる。
一方、要求電力が供給可能電力よりも小さい場合には、導出パラメータに基づいて、第1最大電力を超えない範囲内での第1設定電力と、第2最大電力を超えない範囲内での第2設定電力とが導出される。これにより、第1供給電力及び第2供給電力が第1最大電力及び第2最大電力を超えない範囲内で効率的な電力供給が行われるようにすることができる。
上記電力システムについて、前記制御部は、前記系統電源と前記特定電源とが協働して前記負荷に対して電力供給を行っている状況において、前記系統電源の状況変動又は前記特定電源の状態変動を含む比率変更条件が成立した場合には、前記第1供給電力と前記第2供給電力との比率を変更する比率変更部を備えているとよい。かかる構成によれば、負荷への電力供給中における系統電源の状況変動や特定電源の状態変動に対応できる。
上記目的を達成する電力供給装置は、系統電源と、当該系統電源とは別に設けられた特定電源とを用いて、負荷に対して電力供給を行うものであって、前記系統電源を用いて前記負荷に供給される電力である第1供給電力を可変させる第1可変部と、前記特定電源を用いて前記負荷に供給される電力である第2供給電力を可変させる第2可変部と、前記第1可変部及び前記第2可変部を制御することにより、前記系統電源と前記特定電源との双方から前記負荷に対して電力供給が行われるようにする制御部と、を備え、前記制御部は、前記負荷に供給する目標供給電力と、前記系統電源を用いて前記負荷に電力供給を行う場合の効率である第1効率と、前記特定電源を用いて前記負荷に電力供給を行う場合の効率である第2効率と、を含む導出パラメータに基づいて、第1設定電力及び第2設定電力を導出する導出部と、前記第1設定電力に対応した前記第1供給電力が前記負荷に供給されるように前記第1可変部を制御する第1電力制御部と、前記第2設定電力に対応した前記第2供給電力が前記負荷に供給されるように前記第2可変部を制御する第2電力制御部と、を備えていることを特徴とする。
かかる構成によれば、系統電源と特定電源との双方から負荷に対して電力供給が行われることにより、目標供給電力に対して系統電力を小さくすることができる。これにより、過度に大きな系統電力を要することなく負荷に対して電力供給を行うことができる。したがって、系統電力の上限が定められている条件下であっても負荷に対して好適に電力供給を行うことができる。
また、第1設定電力及び第2設定電力は、第1効率及び第2効率を含む導出パラメータによって導出される。これにより、両効率を考慮した効率的な電力供給を行うことができるため、系統電力のみで電力供給を行う場合又は特定電源のみで電力供給を行う場合よりも電力供給に伴う損失を低減できる。
この発明によれば、系統電源と特定電源とを用いて効率的に負荷に電力供給を行うことができる。
電力供給装置を備えた電力システムの電気的構成を示すブロック図。 電力供給制御処理のフローチャート。 第1効率及び第2効率の電流依存性を示すグラフ。
以下、電力供給装置及び電力システムの一実施形態について説明する。本実施形態では、電力供給装置は、工場や商業施設などに設置されている。すなわち、本実施形態の電力システムは、家庭用ではなく商業用または産業用である。
図1に示すように、電力システム10は、車両11と、系統電源12と、電力供給装置20と、を備えている。
車両11は、車両用蓄電装置11aを有している。車両用蓄電装置11aの具体的な構成は任意であり、例えば二次電池や電気二重層キャパシタなどである。車両11は、乗用車であってもよいし、フォークリフトなどの産業車両であってもよい。
電力供給装置20は、車両11と電気的に接続可能なコネクタ21を有している。コネクタ21が車両11に接続されることにより、電力供給装置20と車両用蓄電装置11aとが電気的に接続される。
すなわち、本実施形態の負荷(車両11)は、電力供給装置20に対して着脱可能に接続されるものであるといえる。この場合、電力供給装置20は、車両11が接続されるための接続部としてのコネクタ21を有しているともいえる。
本実施形態では、電力供給装置20は、互いに並列に接続された複数のコネクタ21を有しており、複数の車両11と同時に接続可能となっている。このため、電力供給装置20は、複数の車両11に対して同時に電力供給を行うことができる。ただし、コネクタ21の数は任意であり、1つでもよい。
電力供給装置20は、系統電源12と電気的に接続されており、電力供給装置20には系統電力P0が供給される。また、電力供給装置20は、特定電源としての蓄電装置22を有している。電力供給装置20は、系統電源12及び蓄電装置22の双方を用いて、負荷としての車両11(詳細には車両用蓄電装置11a)に対して電力供給を行うように構成されている。蓄電装置22は、充放電可能に構成されたものであれば任意であり、例えば二次電池や電気二重層キャパシタなどである。
ちなみに、電力システム10が電力供給装置20を備えている点に着目すれば、電力システム10が蓄電装置22を備えているといえる。すなわち、電力システム10は、系統電源12と蓄電装置22との複数の電源を備えている。
ここで、系統電源12が供給可能な系統電力P0の最大値を第1最大電力Pm1とする。第1最大電力Pm1は、電力会社との契約内容又は他の電力システムの電力使用状況等に応じて変動する。
また、蓄電装置22が供給可能な電力の最大値を第2最大電力Pm2とする。第2最大電力Pm2は、蓄電装置22の状態(例えばSOCや温度)に応じて変動するものである。
第1最大電力Pm1と第2最大電力Pm2とを合わせた値を供給可能電力Pmaxとする。供給可能電力Pmaxは、電力供給装置20が供給可能な電力の最大値である。換言すれば、電力システム10(換言すれば電力供給装置20)は、供給可能電力Pmaxを上限として車両11に電力供給を行うものである。
図1に示すように、本実施形態の電力供給装置20は、例えば、蓄電装置22の他に、AC/DCインバータ30と、第1可変部としての第1DC/DCコンバータ31と、第2可変部としての第2DC/DCコンバータ32と、第1切替スイッチ41及び第2切替スイッチ42を有する切替部40と、制御部50と、を備えている。
AC/DCインバータ30は、系統電源12から出力される系統電力P0を直流電力に変換するものである。例えば、AC/DCインバータ30は、系統電力P0を直流電力に整流する整流器と、スイッチング素子を有し且つ整流された直流電力が入力される変換回路と、を備えている。変換回路のスイッチング素子が所定のデューティ比でスイッチング動作することにより、蓄電装置22又は車両用蓄電装置11aの充電に適した電圧Vt又はそれに対応する電圧の直流電力が生成される。すなわち、本実施形態のAC/DCインバータ30は、系統電力P0を蓄電装置22又は車両用蓄電装置11aの充電に適した電圧Vt又はそれに対応する電圧の直流電力に変換するものといえる。
第1DC/DCコンバータ31は、AC/DCインバータ30と車両11との間に設けられている。詳細には、第1DC/DCコンバータ31は、切替部40(詳細には第1切替スイッチ41)を介してAC/DCインバータ30に電気的に接続されるものである。切替部40によってAC/DCインバータ30と第1DC/DCコンバータ31とが電気的に接続されている場合、AC/DCインバータ30から出力される直流電力が第1DC/DCコンバータ31に入力される。また、第1DC/DCコンバータ31は、複数のコネクタ21に電気的に接続されており、これら複数のコネクタ21を介して車両11と電気的に接続される。
第1DC/DCコンバータ31は、第1スイッチング素子31aを有している。第1DC/DCコンバータ31は、AC/DCインバータ30から電力供給が行われている状況において当該第1スイッチング素子31aが第1デューティ比D1でスイッチング動作を行うことにより、第1デューティ比D1に対応した第1供給電力Pout1を車両11に向けて出力する。これにより、第1供給電力Pout1が車両11に供給される。つまり、第1供給電力Pout1は、系統電源12を用いて車両11に供給される電力である。
また、第1供給電力Pout1は、第1デューティ比D1によって変化する。このため、第1デューティ比D1を可変制御することにより、第1供給電力Pout1を可変制御することができる。
第2DC/DCコンバータ32は、蓄電装置22と車両11との間に設けられている。詳細には、第2DC/DCコンバータ32は、蓄電装置22と電気的に接続されており、蓄電装置22からの放電電力は第2DC/DCコンバータ32に入力される。また、第2DC/DCコンバータ32は、切替部40(詳細には第2切替スイッチ42)及びコネクタ21を介して車両11に電気的に接続される。
第2DC/DCコンバータ32は、第2スイッチング素子32aを有している。第2DC/DCコンバータ32は、切替部40によって第2DC/DCコンバータ32と車両11とが電気的に接続されている状況において第2スイッチング素子32aが第2デューティ比D2でスイッチング動作を行うことにより、第2デューティ比D2に対応した第2供給電力Pout2を車両11に向けて出力する。これにより、第2供給電力Pout2が車両11に供給される。つまり、第2供給電力Pout2は、蓄電装置22を用いて車両11に供給される電力である。
また、第2供給電力Pout2は、第2デューティ比D2によって変化する。このため、第2デューティ比D2を可変制御することにより、第2供給電力Pout2を可変制御することができる。
切替部40は、系統電源12及び蓄電装置22の接続状態を、系統電源12及び蓄電装置22の双方が車両11に電気的に接続されている第1接続状態、又は、系統電源12が蓄電装置22に電気的に接続されている第2接続状態に切り替えるものである。
詳細には、本実施形態の電力供給装置20は、系統電源12を用いて蓄電装置22を充電するための充電ライン43を備えている。本実施形態の第1切替スイッチ41は、例えばAC/DCインバータ30の出力先を第1DC/DCコンバータ31又は充電ライン43に切り替える。本実施形態の第2切替スイッチ42は、第2DC/DCコンバータ32の接続先を車両11又は充電ライン43に切り替える。
第1切替スイッチ41によってAC/DCインバータ30の出力先が第1DC/DCコンバータ31となっている場合、AC/DCインバータ30及び第1DC/DCコンバータ31を介して系統電源12と車両11とが電気的に接続される。そして、第2切替スイッチ42によって第2DC/DCコンバータ32の接続先が車両11である場合、第2DC/DCコンバータ32を介して蓄電装置22と車両11とが電気的に接続される。
すなわち、本実施形態における第1接続状態とは、第1切替スイッチ41によってAC/DCインバータ30の出力先が第1DC/DCコンバータ31となり且つ第2切替スイッチ42によって第2DC/DCコンバータ32の接続先が車両11となっている状態である。
切替部40が第1接続状態であって両DC/DCコンバータ31,32が動作している場合、系統電源12及び蓄電装置22の双方から車両11に対して電力供給が行われる。詳細には、系統電源12から車両11に対して第1供給電力Pout1が供給され、蓄電装置22から車両11に対して第2供給電力Pout2が供給される。これにより、車両用蓄電装置11aの充電が行われる。つまり、第1接続状態とは、系統電源12及び蓄電装置22の双方によって車両11に対して電力供給が行われる電力供給状態ともいえる。
ここで、図1に示すように、AC/DCインバータ30及び第1DC/DCコンバータ31を介して系統電源12から車両11に向かう電力経路を第1電力経路R1といい、第2DC/DCコンバータ32を介して蓄電装置22から車両11に向かう電力経路を第2電力経路R2という。本実施形態における電力システム10は、車両11に対して電力を供給するルートとして、両電力経路R1,R2を備えているといえる。第2電力経路R2は、系統電源12を介することなく、蓄電装置22と車両11とを繋ぐ電力経路である。
また、本実施形態では、両電力経路R1,R2の一部は共通化されている。詳細には、第1電力経路R1における第1DC/DCコンバータ31から車両11に向かう部分と、第2電力経路R2における第2DC/DCコンバータ32から車両11に向かう部分とが一部共通化されている。
第1DC/DCコンバータ31は、第1電力経路R1上に設けられており、詳細には第1電力経路R1における共通化されていない個別経路上に設けられている。第2DC/DCコンバータ32は、第2電力経路R2上に設けられており、詳細には第2電力経路R2における共通化されていない個別経路上に設けられている。
一方、第1切替スイッチ41によってAC/DCインバータ30の出力先が充電ライン43となっており、且つ、第2切替スイッチ42によって第2DC/DCコンバータ32の接続先が充電ライン43となっている場合、AC/DCインバータ30及び第2DC/DCコンバータ32を介して系統電源12と蓄電装置22とが電気的に接続される。
すなわち、本実施形態における第2接続状態とは、第1切替スイッチ41によってAC/DCインバータ30の出力先が充電ライン43となり且つ第2切替スイッチ42によって第2DC/DCコンバータ32の接続先が充電ライン43となっている状態である。
切替部40が第2接続状態である場合、AC/DCインバータ30から出力される直流電力は、充電ライン43を通って第2DC/DCコンバータ32に入力される。この場合、第2スイッチング素子32aがスイッチング動作することにより、蓄電装置22の充電が行われる。このため、第2接続状態とは、系統電源12を用いて蓄電装置22を充電する充電状態ともいえる。
図1に示すように、制御部50は、コネクタ21を介して負荷としての車両11に電気的に接続される。これにより、車両11がコネクタ21に接続されることにより、制御部50は、電力供給対象としての車両11が存在することを認識する。また、制御部50と車両11との間で情報のやり取りが可能となっている。例えば、制御部50は、車両11から、車両用蓄電装置11aの充電に必要な電力である要求電力Prを受け取る。
また、電力供給装置20は、蓄電装置22のSOC又は温度などの各種状態を検知する検知センサ51を備えている。検知センサ51は、その検知結果を制御部50に送信する。これにより、制御部50は、蓄電装置22の状態を把握できる。
制御部50は、両DC/DCコンバータ31,32と電気的に接続されている。制御部50は、両DC/DCコンバータ31,32を制御することにより、系統電源12と蓄電装置22との双方から車両11に対して電力供給が行われるようにするものである。
制御部50は、例えば制御CPU52と、駆動CPU53と、記憶部としてのメモリ54と、を備えた回路を有している。
制御CPU52は、切替部40を制御する。また、制御CPU52は、メモリ54に記憶されている各種プログラムを用いて各種処理を実行する。例えば制御CPU52は、車両11に対して電力供給を行う場合、車両11から要求される要求電力Prや供給可能電力Pmaxに基づいて、車両11に供給する電力の目標値である目標供給電力Ptや両設定電力Pt1,Pt2を決定する処理を実行する。当該処理については後述する。
駆動CPU53は、制御CPU52と電気的に接続されており、制御CPU52からの指令に基づいて、両DC/DCコンバータ31,32(詳細には両スイッチング素子31a,32a)を駆動制御するものである。
例えば、駆動CPU53は、制御CPU52から指令の一種として両設定電力Pt1,Pt2を受信したことに基づいて、設定電力Pt1,Pt2に対応するデューティ比D1,D2を導出し、当該デューティ比D1,D2で両スイッチング素子31a,32aをスイッチング動作させる。これにより、DC/DCコンバータ31,32から設定電力Pt1,Pt2に対応する供給電力Pout1,Pout2が出力され、両供給電力Pout1,Pout2を合わせた電力が車両11に供給される。
ちなみに、AC/DCインバータ30及び両DC/DCコンバータ31,32では、スイッチング損失等といった変換に起因する損失が生じる。換言すれば、AC/DCインバータ30及び両DC/DCコンバータ31,32における変換効率は100%ではない。このため、実際に車両11に供給される供給電力Pout1,Pout2は、設定電力Pt1,Pt2よりも小さくなる。
なお、設定電力Pt1,Pt2からデューティ比D1,D2を導出する具体的な態様は任意である。例えば、メモリ54には、設定電力Pt1,Pt2とデューティ比D1,D2とが対応付けて設定された駆動テーブルが設けられており、駆動CPU53は、当該駆動テーブルを参照することにより、今回受信した設定電力Pt1,Pt2に対応するデューティ比D1,D2を導出する構成でもよい。
制御CPU52は、例えば蓄電装置22の充電時又は車両11への電力供給時といった状況に応じて、切替部40(詳細には両切替スイッチ41,42)を制御するとともに、駆動CPU53に対して指令を送信する。
まず、蓄電装置22の充電について説明すると、制御CPU52は、蓄電装置22の充電開始条件が成立したことに基づいて、系統電源12及び蓄電装置22の接続状態が第2接続状態となるように切替部40を制御する。
蓄電装置22の充電開始条件は、例えばコネクタ21に車両11が接続されていない場合(換言すれば電力供給対象が存在しない場合)を含む。ただし、蓄電装置22の充電開始条件は任意であり、例えば蓄電装置22のSOCが予め定められた閾値以下である場合、又は、予め定められた充電開始時刻になった場合であってもよい。
更に、制御CPU52は、検知センサ51の検知結果に基づいて、現在の蓄電装置22の状態を把握し、蓄電装置22の状態に基づいて、蓄電装置22の充電に対応した目標充電電力Pctを導出する。
そして、制御CPU52は、目標充電電力Pctが蓄電装置22に供給されるように、充電効率η0に基づいて設定充電電力Pcsを導出する。充電効率η0は、系統電力P0を用いて蓄電装置22を充電する際の効率であり、例えば系統電力P0に対して蓄電装置22に実際に供給される電力の比率である。AC/DCインバータ30における変換損失及び第2DC/DCコンバータ32の変換損失(詳細には第2スイッチング素子32aのスイッチング損失)等によって、充電効率η0は100%よりも小さい値となっている。
設定充電電力Pcsは、目標充電電力Pctが蓄電装置22に対して供給されるように充電効率η0を加味した値であり、例えば目標充電電力Pctを充電効率η0で割った値である(Pcs=Pct/η0)。このため、設定充電電力Pcsは、目標充電電力Pctよりも高く設定される。そして、制御CPU52は、指令として設定充電電力Pcsを駆動CPU53に送信する。
駆動CPU53は、制御CPU52から設定充電電力Pcsを受信した場合に、設定充電電力Pcsに対応した第2デューティ比D2を導出し、当該第2デューティ比D2にて第2スイッチング素子32aをスイッチング動作させる。これにより、第2DC/DCコンバータ32から蓄電装置22に向けて目標充電電力Pctが出力され、当該目標充電電力Pctが蓄電装置22に供給される。
次に、車両11への電力供給について説明する。
制御CPU52は、電力供給の開始条件が成立したことに基づいて、メモリ54に記憶されている電力供給制御処理実行プログラム54aを読み出し、車両11への電力供給を制御する電力供給制御処理を実行する。
電力供給の開始条件は、例えばコネクタ21に車両11が接続されたことを含む。ただし、電力供給の開始条件は、これに限られず任意であり、例えば車両用蓄電装置11aのSOCが予め定められた閾値以下であることや、車両11又は電力供給装置20に対して充電開始操作が行われたことや、予め定められた供給開始時刻になったことなどでもよい。充電開始操作は任意であるが、例えば車両11又は電力供給装置20に充電開始スイッチが設けられている場合には、当該充電開始スイッチが操作されることでもよい。
図2を用いて電力供給制御処理について説明する。
図2に示すように、制御CPU52は、ステップS101にて、切替部40を制御することにより、系統電源12及び蓄電装置22の接続状態を第1接続状態にする。これにより、AC/DCインバータ30と第1DC/DCコンバータ31とが接続され、第1電力経路R1が形成されるとともに、第2DC/DCコンバータ32と車両11とが接続され、第2電力経路R2が形成される。
その後、制御CPU52は、ステップS102にて、要求電力Prを把握する。詳細には、既に説明したとおり、車両11と制御部50とは情報のやり取りが可能となっている。そして、車両11は、今回の車両用蓄電装置11aの充電に必要な電力を把握し、当該電力を要求電力Prとして制御部50に送信する。これにより、制御CPU52は、要求電力Prを把握する。
なお、制御CPU52は、複数の車両11が同時に接続されている場合には、各車両11からの要求電力Prを把握して、全体の要求電力Prを把握する。
ちなみに、車両用蓄電装置11aの種類に応じて、充電に適した電圧Vtが異なる場合がある。この場合、電力供給装置20は、車両用蓄電装置11aの電圧を検出する電圧センサを有しており、制御CPU52は、電圧センサの検知結果に基づいて充電に適した電圧Vtを把握する。また、AC/DCインバータ30は、上記充電に適した電圧Vtに対応させて、出力する直流電力の電圧を調整する。
ただし、電力供給装置20(制御CPU52)が充電に適した電圧Vtを把握するための構成は、電圧センサに限られず任意であり、例えば車両11が制御部50に向けて、充電に適した電圧Vtを通知する構成でもよい。
続くステップS103では、制御CPU52は、供給可能電力Pmaxを把握する。制御CPU52は、例えば系統電源12を管理している外部管理装置との通信を介して第1最大電力Pm1を把握する。
詳細には、外部管理装置は、電力システム10(換言すれば電力供給装置20)に供給可能な系統電力P0を管理している。例えば、本実施形態の電力システム10(換言すれば電力供給装置20)以外のシステムが系統電源12を用いている場合、外部管理装置は、契約や規格などによって規定された許容値を超えないように、本実施形態の電力システム10に供給可能な電力、すなわち第1最大電力Pm1を管理している。このため、制御CPU52は、外部管理装置との通信を介して第1最大電力Pm1を把握する。
また、制御CPU52は、検知センサ51の検知結果等に基づいて第2最大電力Pm2を把握する。そして、制御CPU52は、両最大電力Pm1,Pm2から供給可能電力Pmaxを把握する。
ここで、本実施形態の第1最大電力Pm1は、他の電力システムの使用状況に応じて変動し得るものである。また、第2最大電力Pm2は、蓄電装置22の状態に応じて変動し得る。このため、供給可能電力Pmaxは、状況に応じて変動するパラメータである。
ただし、両最大電力Pm1,Pm2を把握する具体的な態様は任意である。例えば、メモリ54に、予め定められている供給可能電力Pmaxが記憶されている場合には、制御CPU52は、メモリ54に記憶されている供給可能電力Pmaxを把握する構成でもよい。この場合、供給可能電力Pmaxは、電気事業者との契約又は規格等によって予め定められた両最大電力Pm1,Pm2に基づいて決定されていてもよい。
その後、ステップS104では、制御CPU52は、要求電力Prが供給可能電力Pmax以上であるか否かを判定する。
制御CPU52は、要求電力Prが供給可能電力Pmax以上である場合には、ステップS105に進み、目標供給電力Ptとして供給可能電力Pmaxを設定する。そして、制御CPU52は、ステップS106にて、目標供給電力Ptに対応させて両設定電力Pt1,Pt2を設定する。詳細には、制御CPU52は、第1最大電力Pm1を第1設定電力Pt1として設定し、第2最大電力Pm2を第2設定電力Pt2として設定する。制御CPU52は、両設定電力Pt1,Pt2を設定した後は、ステップS109に進む。
一方、要求電力Prが供給可能電力Pmaxよりも小さい場合には、制御CPU52は、ステップS104を否定判定して、ステップS107に進み、目標供給電力Ptを要求電力Prに設定する。
その後、制御CPU52は、ステップS108にて、目標供給電力Ptを含む導出パラメータPDに基づいて、両設定電力Pt1,Pt2を導出する設定電力導出処理を実行する。
本実施形態では、導出パラメータPDは、系統電源12を用いて車両11に電力供給を行う場合の効率である第1効率η1と、特定電源としての蓄電装置22を用いて車両11に電力供給を行う場合の効率である第2効率η2と、を含む。
第1効率η1は、例えば系統電源12から電力供給装置20に供給される系統電力P0に対して車両11に実際に供給される電力の比率であり、詳細には系統電力P0に対する第1供給電力Pout1の比率である。第1効率η1は、AC/DCインバータ30の変換効率と、第1DC/DCコンバータ31の変換効率とを含む。換言すれば、第1効率η1は、第1電力経路R1を伝送する電力の伝送効率ともいえる。
本実施形態における第2効率η2は、充電効率η0と、第2電力経路R2を伝送する電力の伝送効率と、を含む。第2電力経路R2を伝送する電力の伝送効率とは、蓄電装置22からの出力電力に対して車両11に実際に供給される電力の比率であり、第2DC/DCコンバータ32の変換効率を含む。
ここで、図3に示すように、両効率η1,η2は電流依存性を有している。すなわち、効率η1,η2は、両電力経路R1,R2を流れる電流に応じて変動するパラメータである。
ちなみに、電力が電圧と電流との乗算であることを鑑みれば、効率η1,η2は、供給電力Pout1,Pout2に応じて変動するパラメータであるといえる。また、系統電源12と蓄電装置22とが協働して同一の車両用蓄電装置11aを充電する本実施形態において両供給電力Pout1,Pout2の電圧は同一である点を考慮すると、第1効率η1はPout1/Vtの関数であり、第2効率η2はPout2/Vtの関数といえる。
更に、供給電力Pout1,Pout2が設定電力Pt1,Pt2に対応している点に着目すれば、第1効率η1はPt1/Vtの関数であり、第2効率η2はPt2/Vtの関数ともいえる。
なお、本実施形態では、既に説明したとおり、第2効率η2は、系統電力P0を用いて蓄電装置22を充電する際の効率である充電効率η0を含んでいる。このため、第2効率η2は、第1効率η1よりも低くなっている。
図1に示すように、メモリ54には、電流と効率η1,η2との相関関係を特定するための効率データ54bが記憶されている。効率データ54bの具体的なデータ構造は任意であり、例えば図3のグラフを示す関数データであってもよいし、複数の電流と各電流に対して効率η1,η2が対応付けられたテーブルデータであってもよい。
ちなみに、両効率η1,η2は、電圧依存性を有している。このため、要求電圧が異なる複数種類の負荷が接続されることを考慮して、効率データ54bは、各電圧に対応させて複数種類記憶されているとよい。
なお、既に説明したとおり、制御CPU52は、充電に適した電圧Vtを把握している。このため、制御CPU52は、ステップS108では、今回把握された充電に適した電圧Vtに対応する効率データ54bを参照するとよい。
本実施形態では、導出パラメータPDとして、目標供給電力Ptと、両効率η1,η2と、両最大電力Pm1,Pm2とが採用されている。詳細には、制御CPU52は、両最大電力Pm1,Pm2を超えない範囲内で、車両11に目標供給電力Ptが供給され且つ両設定電力Pt1,Pt2の合計値が最小値となるように導出パラメータPDに基づいて両設定電力Pt1,Pt2を導出する。
一例としては、制御CPU52は、以下の条件1~3を満たす範囲内で、両設定電力Pt1,Pt2の合計値が最小値となる両設定電力Pt1,Pt2を導出する。
条件1:Pt1×η1(Pt1/Vt)+Pt2×η2(Pt2/Vt)=Pt
条件2:Pt1≦Pm1
条件3:Pt2≦Pm2
なお、両設定電力Pt1,Pt2を導出する具体的手法としては任意であるが、例えば数理計画法を用いることが考えられる。数理計画法の具体的手法は、線形や非線形など任意である。
図2に示すように、制御CPU52は、ステップS106又はステップS108の処理の実行後、ステップS109にて設定電力Pt1,Pt2を指令として駆動CPU53に送信する設定電力送信処理を実行する。駆動CPU53は、上記指令を受信することに基づいて、設定電力Pt1,Pt2に対応するデューティ比D1,D2にてスイッチング素子31a,32aをスイッチング動作させる。これにより、DC/DCコンバータ31,32から、設定電力Pt1,Pt2に対応した供給電力Pout1,Pout2が出力される。そして、両供給電力Pout1,Pout2を合わせた電力が車両11に供給される。
既に説明したとおり、供給電力Pout1,Pout2は、効率η1,η2対応する分だけ設定電力Pt1,Pt2よりも小さくなっている。ただし、両供給電力Pout1,Pout2を合わせた電力は目標供給電力Ptと同一である。すなわち、系統電源12と蓄電装置22とが協働して目標供給電力Ptを車両11に供給している。また、制御CPU52は、目標供給電力Ptが車両11に供給されるように、両効率η1,η2を考慮して両設定電力Pt1,Pt2を導出しているといえる。
その後、制御CPU52は、ステップS110にて、車両11への電力供給を終了する終了条件が成立したか否かを判定する。終了条件は任意であるが、例えば車両用蓄電装置11aが満充電状態となったこと、又は、車両11又は電力供給装置20に対して充電停止操作が行われたことを含む。
制御CPU52は、終了条件が成立した場合には、ステップS111に進み、停止処理を実行して、本電力供給制御処理を終了する。停止処理について詳細に説明すると、制御CPU52は、例えば駆動CPU53に対して停止指令を送信する。駆動CPU53は、停止指令を受信することに基づいて、両DC/DCコンバータ31,32の動作(詳細には両スイッチング素子31a,32aのスイッチング動作)を停止させる。これにより、電力供給が停止する。
なお、制御CPU52は、ステップS111にて、系統電源12及び蓄電装置22の接続状態を、第1接続状態から第2接続状態に切り替えてもよい。また、切替部40は、AC/DCインバータ30の出力先及び第2DC/DCコンバータ32の接続先をいずれにも接続しないニュートラル状態に切替可能である場合には、制御CPU52は、切替部40をニュートラル状態に切り替えてもよい。
一方、制御CPU52は、終了条件が成立していない場合には、ステップS110を否定判定してステップS112に進み、電力供給態様を変更する変更条件が成立しているか否かを判定する。
本実施形態の変更条件は、両供給電力Pout1,Pout2の比率を変更する比率変更条件を含む。比率変更条件は、例えば系統電源12の状況変動又は蓄電装置22の状態変動を含む。
ここで、既に説明したとおり、系統電源12の状況は、他の電力システムの使用状況等に応じて変動し、それに伴い第1最大電力Pm1が変動し得る。また、蓄電装置22の状態(例えばSOCや温度など)は変動し、それに伴い第2最大電力Pm2が変動し得る。このため、比率変更条件は、第1最大電力Pm1又は第2最大電力Pm2が変動することを含む。
なお、第1最大電力Pm1の変動は「0」を含む。すなわち、比率変更条件は、例えば停電によって系統電源12が使用できなくなる場合や蓄電装置22が異常停止する場合も含む。換言すれば、両供給電力Pout1,Pout2の比率は「1:0」又は「0:1」を含むといえる。
また、変更条件は、要求電力Prの変更を含む。要求電力Prは、車両用蓄電装置11aの状態に応じて変動し得る。更に、ある車両11への電力供給中に別のコネクタ21に別の車両11が接続された場合には、全体の要求電力Prは、別の車両11から送信される要求電力Prの分だけ大きくなる。
制御CPU52は、変更条件が成立していない場合には、そのままステップS110に戻る一方、変更条件が成立している場合には、ステップS113の変更対応処理を実行して、ステップS110に戻る。
変更対応処理について詳細に説明する。制御CPU52は、変更対応処理では、変更された条件に基づいて再度両設定電力Pt1,Pt2を導出する。詳細には、制御CPU52は、変更された条件に基づいて、再度ステップS104~S109の処理を実行して、設定電力Pt1,Pt2の導出及び指令の送信を行う。これにより、変更された条件に対応する供給電力Pout1,Pout2がDC/DCコンバータ31,32から出力され、両供給電力Pout1,Pout2を合わせた目標供給電力Ptが車両11に供給される。
例えば、仮に両最大電力Pm1,Pm2の少なくとも一方が変動した場合には、目標供給電力Ptが変動していない場合であっても、両供給電力Pout1,Pout2の比率が変動し得る。この場合、制御CPU52は、ステップS113では、目標供給電力Ptを変更することなく両供給電力Pout1,Pout2の比率を変更する処理を実行しているといえる。
一例として、車両11への電力供給が開始された時点では、要求電力Prが供給可能電力Pmax以上となっていることに起因して両効率η1,η2を考慮しない供給可能電力Pmaxが車両11に供給されていたとする。その後、仮に他の電力システムの使用状況の変動により第1最大電力Pm1が大きくなった場合、両効率η1,η2を考慮した電力供給を行うことができる。この場合、制御CPU52は、第1供給電力Pout1が第2供給電力Pout2よりも相対的に大きくなるように両供給電力Pout1,Pout2の比率を変更する場合がある。
また、仮に両効率η1,η2を考慮した電力供給が行われている状況において蓄電装置22のSOCが減少したことに基づいて第2最大電力Pm2が小さくなったとする。この場合、制御CPU52は、ステップS113にて、目標供給電力Ptを維持しつつ系統電源12からの電力供給量が相対的に大きくなるように両供給電力Pout1,Pout2の比率を変更する場合がある。
一方、例えば他の電力システムの使用状況に起因して第1最大電力Pm1が小さくなった場合、制御CPU52は、ステップS113にて、目標供給電力Ptを維持しつつ相対的に第2供給電力Pout2が大きくなるように両供給電力Pout1,Pout2の比率を変更する場合がある。
本実施形態では、設定電力導出処理を実行する制御CPU52が「導出部」に対応し、ステップS109の処理を実行する制御CPU52及び駆動CPU53が「第1電力制御部」及び「第2電力制御部」に対応する。ステップS106の処理を実行する制御CPU52が「最大設定部」に対応する。また、ステップS113の処理を実行する制御CPU52が「比率変更部」に対応する。
次に本実施形態の作用について説明する。
本実施形態の電力システム10は、系統電源12と蓄電装置22との双方から車両11に対して電力供給が行われるように構成されている。詳細には、電力システム10は、系統電源12から車両11に向かう第1電力経路R1と、系統電源12を介することなく蓄電装置22から車両11に向かう第2電力経路R2と、を備えている。このため、同一の目標供給電力Ptを車両11に供給するのに必要な系統電力P0が小さくなる。
以上詳述した本実施形態によれば以下の効果を奏する。
(1)電力システム10は、系統電源12と、系統電源12とは別に設けられた特定電源としての蓄電装置22と、系統電源12及び蓄電装置22による電力供給が行われる負荷としての車両11と、を備えている。電力システム10は、系統電源12を用いて車両11に供給される電力である第1供給電力Pout1を可変させる第1可変部としての第1DC/DCコンバータ31と、蓄電装置22を用いて車両11に供給される電力である第2供給電力Pout2を可変させる第2可変部としての第2DC/DCコンバータ32と、制御部50と、を備えている。制御部50は、両DC/DCコンバータ31,32を制御することにより、系統電源12と蓄電装置22との双方から車両11に対して電力供給が行われるようにする。
かかる構成によれば、系統電源12と蓄電装置22との双方から車両11に対して電力供給が行われるため、蓄電装置22の電力を一旦系統電力P0に変換して第1供給電力Pout1として車両11に供給する構成と比較して、蓄電装置22の電力を一旦系統電力P0に変換する分の損失を低減できる。また、第2供給電力Pout2の分だけ、目標供給電力Ptを車両11に供給するのに必要な第1供給電力Pout1を小さくできるため、目標供給電力Ptに対して系統電力P0を小さくすることができる。これにより、過度に大きな系統電力P0を要することなく車両11に対して電力供給を行うことができる。したがって、系統電力P0の上限が定められている条件下であっても車両11に対して好適に電力供給を行うことができる。
(2)制御部50は、車両11に供給する電力の目標値である目標供給電力Pt及び両効率η1,η2を含む導出パラメータPDに基づいて、両設定電力Pt1,Pt2を導出するステップS108の設定電力導出処理を実行する制御CPU52を備えている。第1効率η1は、系統電源12を用いて車両11に電力供給を行う場合の効率であり、第2効率η2は、蓄電装置22を用いて車両11に電力供給を行う場合の効率である。また、制御部50の制御CPU52及び駆動CPU53は、設定電力Pt1,Pt2に対応した供給電力Pout1,out2が車両11に供給されるようにDC/DCコンバータ31,32を制御する。
かかる構成によれば、系統電源12と蓄電装置22との双方から車両11に対して電力供給を行う構成において、両設定電力Pt1,Pt2は、両効率η1,η2を含む導出パラメータPDによって導出される。これにより、両効率η1,η2を考慮した効率的な電力供給を行うことができるため、系統電力P0のみで電力供給を行う場合又は蓄電装置22のみで電力供給を行う場合よりも電力供給に伴う損失を低減できる。
(3)第1効率η1は第1供給電力Pout1に応じて変動するパラメータであり、第2効率η2は第2供給電力Pout2に応じて変動するパラメータである。このため、仮に系統電源12のみで電力供給を行う場合、目標供給電力Ptによっては第1効率η1が過度に低い状態で第1供給電力Pout1の供給が行われる場合がある。同様に、仮に蓄電装置22のみで電力供給を行う場合、目標供給電力Ptによっては第2効率η2が過度に低い状態で第2供給電力Pout2の供給が行われる場合がある。
この点、本実施形態では、両効率η1,η2に基づいて両供給電力Pout1,Pout2が制御されるため、両効率η1,η2が比較的高い状態で目標供給電力Ptを供給できる。これにより、(1),(2)等の効果を奏する。
(4)蓄電装置22は、系統電源12によって充電されるものである。第2効率η2は、蓄電装置22の充電効率η0を含む。
かかる構成によれば、蓄電装置22の充電効率η0を考慮した両設定電力Pt1,Pt2を導出することができ、全体としてより効率的な電力供給を行うことができる。なお、第2効率η2に充電効率η0が含まれているため、第2効率η2は第1効率η1よりも低くなる。
(5)制御CPU52は、車両11に目標供給電力Ptが供給され且つ両設定電力Pt1,Pt2の合計値が最小値となるように、導出パラメータPDに基づいて両設定電力Pt1,Pt2を導出する。
かかる構成によれば、系統電源12と蓄電装置22とを用いて目標供給電力Ptを車両11に供給する構成において、最も損失が小さくなる両設定電力Pt1,Pt2の組み合わせを導出することを通じて、損失の更なる低減を図ることができる。
(6)電力システム10(換言すれば電力供給装置20)は、系統電源12から出力される系統電力P0を直流電力に変換するAC/DCインバータ30を備えている。第1DC/DCコンバータ31は、AC/DCインバータ30と車両11との間に設けられており、第2DC/DCコンバータ32は、蓄電装置22と車両11との間に設けられている。
かかる構成において、電力システム10は、系統電源12及び蓄電装置22の接続状態を第1接続状態又は第2接続状態に切り替える切替部40を備えている。第1接続状態は、系統電源12がAC/DCインバータ30及び第1DC/DCコンバータ31を介して車両11に接続され、且つ、蓄電装置22が第2DC/DCコンバータ32を介して車両11に接続されている状態である。第2接続状態は、系統電源12がAC/DCインバータ30及び第2DC/DCコンバータ32を介して蓄電装置22に接続されている状態である。
かかる構成によれば、状況に応じて切替部40を制御することにより、同一のAC/DCインバータ30を用いて、車両11への電力供給を行ったり、蓄電装置22の充電を行ったりすることができる。
(7)電力供給装置20(換言すれば電力システム10)は、系統電源12を用いて蓄電装置22を充電するのに用いられる充電ライン43を備えている。切替部40は、AC/DCインバータ30の出力先を第1DC/DCコンバータ31又は充電ライン43に切り替える第1切替スイッチ41と、第2DC/DCコンバータ32の接続先を車両11又は充電ライン43に切り替える第2切替スイッチ42と、を備えている。
かかる構成によれば、両切替スイッチ41,42を制御することにより、蓄電装置22の充電と、系統電源12及び蓄電装置22を用いた車両11への電力供給とを切り替えることができる。これにより、(6)の効果を奏する。
(8)系統電源12が供給可能な最大電力を第1最大電力Pm1とし、蓄電装置22が供給可能な最大電力を第2最大電力Pm2とし、両最大電力Pm1,Pm2を合わせた電力を供給可能電力Pmaxとする。
制御CPU52は、車両11から要求される要求電力Prが供給可能電力Pmax以上である場合には、設定電力Pt1,Pt2を最大電力Pm1,Pm2に設定するステップS106の処理を実行する。そして、制御CPU52は、要求電力Prが供給可能電力Pmaxよりも小さい場合に、目標供給電力Pt、両効率η1,η2及び両最大電力Pm1,Pm2を含む導出パラメータPDに基づいて、最大電力Pm1,Pm2を超えない範囲内での設定電力Pt1,Pt2を導出する。
かかる構成によれば、要求電力Prが供給可能電力Pmax以上である場合には、設定電力Pt1,Pt2が最大電力Pm1,Pm2に設定される。これにより、供給可能電力Pmax似対応する電力を車両11に供給することができる。したがって、要求電力Prが供給可能電力Pmax以上である場合には、系統電源12や蓄電装置22に過剰な負担がかかることを抑制しつつ、なるべく要求電力Prに近い電力供給を行うことができる。
一方、要求電力Prが供給可能電力Pmaxよりも小さい場合には、導出パラメータPDに基づいて、第1最大電力Pm1を超えない範囲内での第1設定電力Pt1と、第2最大電力Pm2を超えない範囲内での第2設定電力Pt2とが導出される。これにより、供給電力Pout1,Pout2が最大電力Pm1,Pm2を超えない範囲内で効率的な電力供給が行われるようにすることができる。
(9)制御CPU52は、系統電源12と蓄電装置22との双方から車両11に電力供給が行われている状況において比率変更条件が成立した場合には、ステップS113の変更対応処理を実行する。変更対応処理は、両供給電力Pout1,Pout2の比率(換言すれば分配率)を変更する処理を含む。
かかる構成によれば、車両11への電力供給中における系統電源12の状況変動及び蓄電装置22の状態変動に対応できる。系統電源12の状況変動とは、例えば他の電力システムの使用状況に応じて第1最大電力Pm1が変動することが考えられる。また、蓄電装置22の状態変動とは、蓄電装置22のSOCや温度が変動することに起因して第2最大電力Pm2が変動することが考えられる。
特に、本実施形態では、目標供給電力Ptを変更することなく、両供給電力Pout1,Pout2の比率を変更することができるため、目標供給電力Ptを維持しつつ、系統電源12の状況変動及び蓄電装置22の状態変動に対応できる。
(10)電力供給装置20は、系統電源12と系統電源12とは別に設けられた蓄電装置22とを用いて車両11に対して電力供給を行うものである。電力供給装置20は、第1可変部としての第1DC/DCコンバータ31と、第2可変部としての第2DC/DCコンバータ32と、両DC/DCコンバータ31,32を制御する制御部50と、を備えている。
かかる構成において、制御部50は、目標供給電力Pt及び両効率η1,η2を含む導出パラメータPDに基づいて、両設定電力Pt1,Pt2を導出するステップS108の設定電力導出処理を実行する制御CPU52を備えている。また、制御部50の制御CPU52及び駆動CPU53は、設定電力Pt1,Pt2に対応する供給電力Pout1,Pout2が車両11に供給されるようにDC/DCコンバータ31,32を制御する。これにより、(2)の効果を奏する。
なお、上記実施形態は以下のように変更してもよい。
○ 第2効率η2は、充電効率η0を含まない構成としてもよい。
○ 本実施形態の電力システム10(換言すれば電力供給装置20)は、家庭用であってもよい。つまり、電力システム10の適用先は任意である。
○ 負荷は、車両11に限られず任意であり、例えば産業用のモータであってもよい。
○ 電力供給装置20が蓄電装置22を備えていなくてもよい。この場合、電力供給装置20は、蓄電装置22からの電力供給を受けることができるように入力部を有しているとよい。
○ 特定電源は、蓄電装置22に限られず任意であり、例えばソーラーパネルを有する太陽光発電装置でもよいし、発電機でもよい。なお、特定電源として発電機を用いる場合には、電力供給装置20はインバータを有しているとよい。
○ 特定電源の数は任意であり、2つ以上であってもよい。すなわち、特定電源は1つの場合と複数の場合との双方を含む。この場合、電力システム10は、複数の特定電源のうち一部の特定電源と系統電源12とを用いて車両11への電力供給を行う構成でもよいし、複数の特定電源全てと系統電源12とを用いて車両11への電力供給を行う構成でもよい。この場合、使用する各特定電源を用いた場合の効率を考慮して設定電力をそれぞれ導出するとよい。すなわち、電力システム10が複数の特定電源を有する場合には、当該複数の特定電源のうち少なくとも一部と系統電源12とを用いて負荷に電力供給を行う構成であればよい。
○ 両設定電力Pt1,Pt2の具体的な導出態様は実施形態のものに限られない。
例えば、制御CPU52は、目標供給電力Ptが車両11に供給される範囲内で、第1効率η1が第1閾値効率以上となる第1設定電力Pt1と、第2効率η2が第2閾値効率以上となる第2設定電力Pt2との組み合わせを導出する構成でもよい。
また、制御CPU52は、例えば第1効率η1が第1閾値効率以上となり且つ第2効率η2が第2閾値効率以上となる範囲内で最も目標供給電力Ptに近い電力を第1設定電力Pt1として導出し、目標供給電力Ptから第1設定電力Pt1を差し引いた値を第2設定電力Pt2として導出してもよい。
これとは逆に、制御CPU52は、例えば第1効率η1が第1閾値効率以上となり且つ第2効率η2が第2閾値効率以上となる範囲内で最も目標供給電力Ptに近い電力を第2設定電力Pt2として導出し、目標供給電力Ptから第2設定電力Pt2を差し引いた値を第1設定電力Pt1として導出してもよい。
換言すれば、制御CPU52は、系統電力P0のみで電力供給を行う場合又は蓄電装置22のみで電力供給を行う場合よりも効率のよい電力供給が行われるように両設定電力Pt1,Pt2を導出すれば、その具体的な導出態様は任意であるともいえる。
○ 電力供給装置20は、車両11への電力供給用のAC/DCインバータと、蓄電装置22の充電用のAC/DCインバータとを別々に有する構成でもよい。
○ 電力システム10は、電力供給装置20とは別に設けられ、蓄電装置22を充電する充電装置を備えていてもよい。すなわち、電力供給装置20が蓄電装置22の充電に係る構成を備えていることは必須ではなく、切替部40及び充電ライン43を省略してもよい。
○ ステップS112及びステップS113の処理を省略してもよい。要は、電力供給中に両供給電力Pout1,Pout2の比率を変更することは必須ではない。
○ 制御部50は、電力供給制御処理の一部又は全部を実行する専用のハードウェア回路を有する構成でもよい。
○ 両可変部の具体的な構成は任意である。
○ 電力経路を切り替えることができれば、切替部40の具体的な構成は任意である。例えば、両切替スイッチ41,42の位置は、実施形態の位置から変更してもよい。また、切替スイッチの数は、任意である。
次に、上記実施形態及び別例から把握できる好適な一例について以下に記載する。
(イ)系統電源及び前記系統電源とは別に設けられた特定電源と、前記系統電源及び前記特定電源を用いた電力供給が行われる負荷と、前記系統電源を用いて前記負荷に供給される電力である第1供給電力を可変させる第1可変部と、前記特定電源を用いて前記負荷に供給される電力である第2供給電力を可変させる第2可変部と、前記第1可変部及び前記第2可変部を制御することにより、前記系統電源と前記特定電源との双方から前記負荷に対して電力供給が行われるようにする制御部と、を備え、前記制御部は、前記系統電源と前記特定電源との双方から前記負荷に対して電力供給が行われている状況において予め定められた比率変更条件が成立した場合には、前記第1供給電力と前記第2供給電力との比率を変更する比率変更部を備えていることを特徴とする電力システム。
(ロ)系統電源と、当該系統電源とは別に設けられた特定電源とを用いて、負荷に対して電力供給を行う電力供給装置であって、前記系統電源を用いて前記負荷に供給される電力である第1供給電力を可変させる第1可変部と、前記特定電源を用いて前記負荷に供給される電力である第2供給電力を可変させる第2可変部と、前記第1可変部及び前記第2可変部を制御することにより、前記系統電源と前記特定電源との双方から前記負荷に対して電力供給が行われるようにする制御部と、を備え、前記制御部は、前記系統電源と前記特定電源との双方から前記負荷に対して電力供給が行われている状況において予め定められた比率変更条件が成立した場合には、前記第1供給電力と前記第2供給電力との比率を変更する比率変更部を備えていることを特徴とする電力供給装置。
10…電力システム、11…車両(負荷)、11a…車両用蓄電装置、12…系統電源、20…電力供給装置、22…蓄電装置(特定電源)、30…AC/DCインバータ、31…第1DC/DCコンバータ(第1可変部)、32…第2DC/DCコンバータ(第2可変部)、40…切替部、41…第1切替スイッチ、42…第2切替スイッチ、43…充電ライン、50…制御部、52…制御CPU、53…駆動CPU、54…メモリ、54a…電力供給制御処理実行プログラム、54b…効率データ、R1…第1電力供給、R2…第2電力経路、P0…系統電力、Pout1…第1供給電力、Pt1…第1設定電力、Pm1…第1最大電力、Pout2…第2供給電力、Pt2…第2設定電力、Pm2…第2最大電力、Pr…要求電力、Pt…目標供給電力、Pmax…供給可能電力、PD…導出パラメータ、η0…充電効率、η1…第1効率、η2…第2効率。

Claims (5)

  1. 系統電源及び前記系統電源とは別に設けられた特定電源と、
    前記系統電源及び前記特定電源を用いた電力供給が行われる負荷と、
    前記系統電源を用いて前記負荷に供給される電力である第1供給電力を可変させる第1可変部と、
    前記特定電源を用いて前記負荷に供給される電力である第2供給電力を可変させる第2可変部と、
    前記第1可変部及び前記第2可変部を制御することにより、前記系統電源と前記特定電源との双方から前記負荷に対して電力供給が行われるようにする制御部と、を備え、
    前記制御部は、
    前記負荷に供給する目標供給電力と、前記系統電源を用いて前記負荷に電力供給を行う場合の効率である第1効率と、前記特定電源を用いて前記負荷に電力供給を行う場合の効率である第2効率と、を含む導出パラメータに基づいて、第1設定電力及び第2設定電力を導出する導出部と、
    前記第1設定電力に対応した前記第1供給電力が前記負荷に供給されるように前記第1可変部を制御する第1電力制御部と、
    前記第2設定電力に対応した前記第2供給電力が前記負荷に供給されるように前記第2可変部を制御する第2電力制御部と、を備え
    前記特定電源は、前記系統電源によって充電される蓄電装置であり、
    前記第2効率は、前記蓄電装置の充電効率を含み、
    前記第1効率は、前記第1供給電力に応じて変動し、
    前記第2効率は、前記第1効率よりも低く、且つ、前記第2供給電力に応じて変動するものであり、
    前記導出部は、前記負荷に供給される電力が前記目標供給電力となり且つ前記第1設定電力と前記第2設定電力との合計値が最小値となるように、前記導出パラメータに基づいて前記第1設定電力及び前記第2設定電力を導出する電力システム。
  2. 前記系統電源から出力される系統電力を直流電力に変換するAC/DCインバータを備え、
    前記第1可変部は、前記AC/DCインバータと前記負荷との間に設けられた第1DC/DCコンバータを有し、
    前記第2可変部は、前記蓄電装置と前記負荷との間に設けられた第2DC/DCコンバータを有し、
    前記電力システムは、前記系統電源及び前記蓄電装置の接続状態を、前記系統電源が前記AC/DCインバータ及び前記第1DC/DCコンバータを介して前記負荷に接続され、且つ、前記蓄電装置が前記第2DC/DCコンバータを介して前記負荷に接続されている第1接続状態、又は、前記系統電源が前記AC/DCインバータ及び前記第2DC/DCコンバータを介して前記蓄電装置に接続されている第2接続状態に切り替える切替部を備えている請求項に記載の電力システム。
  3. 前記系統電源が供給可能な最大電力である第1最大電力と、前記特定電源が供給可能な最大電力である第2最大電力と、を合わせた電力を供給可能電力とすると、
    前記制御部は、前記負荷から要求される要求電力が前記供給可能電力以上である場合には、前記第1設定電力及び前記第2設定電力を前記第1最大電力及び前記第2最大電力に設定する最大設定部を備え、
    前記導出パラメータは、前記第1最大電力及び前記第2最大電力を含み、
    前記導出部は、前記要求電力が前記供給可能電力よりも小さい場合に、前記導出パラメータに基づいて、前記第1最大電力を超えない範囲内での前記第1設定電力と、前記第2最大電力を超えない範囲内での前記第2設定電力とを導出する請求項1又は請求項2に記載の電力システム。
  4. 前記制御部は、前記系統電源と前記特定電源とが協働して前記負荷に対して電力供給を行っている状況において、前記系統電源の状況変動又は前記特定電源の状態変動を含む比率変更条件が成立した場合には、前記第1供給電力と前記第2供給電力との比率を変更する比率変更部を備えている請求項1~のうちいずれか一項に記載の電力システム。
  5. 系統電源と、当該系統電源とは別に設けられた特定電源とを用いて、負荷に対して電力供給を行う電力供給装置であって、
    前記系統電源を用いて前記負荷に供給される電力である第1供給電力を可変させる第1可変部と、
    前記特定電源を用いて前記負荷に供給される電力である第2供給電力を可変させる第2可変部と、
    前記第1可変部及び前記第2可変部を制御することにより、前記系統電源と前記特定電源との双方から前記負荷に対して電力供給が行われるようにする制御部と、を備え、
    前記制御部は、
    前記負荷に供給する目標供給電力と、前記系統電源を用いて前記負荷に電力供給を行う場合の効率である第1効率と、前記特定電源を用いて前記負荷に電力供給を行う場合の効率である第2効率と、を含む導出パラメータに基づいて、第1設定電力及び第2設定電力を導出する導出部と、
    前記第1設定電力に対応した前記第1供給電力が前記負荷に供給されるように前記第1可変部を制御する第1電力制御部と、
    前記第2設定電力に対応した前記第2供給電力が前記負荷に供給されるように前記第2可変部を制御する第2電力制御部と、を備え
    前記特定電源は、前記系統電源によって充電される蓄電装置であり、
    前記第2効率は、前記蓄電装置の充電効率を含み、
    前記第1効率は、前記第1供給電力に応じて変動し、
    前記第2効率は、前記第1効率よりも低く、且つ、前記第2供給電力に応じて変動するものであり、
    前記導出部は、前記負荷に供給される電力が前記目標供給電力となり且つ前記第1設定電力と前記第2設定電力との合計値が最小値となるように、前記導出パラメータに基づいて前記第1設定電力及び前記第2設定電力を導出することを特徴とする電力供給装置。
JP2019218796A 2019-12-03 2019-12-03 電力システム及び電力供給装置 Active JP7276103B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019218796A JP7276103B2 (ja) 2019-12-03 2019-12-03 電力システム及び電力供給装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019218796A JP7276103B2 (ja) 2019-12-03 2019-12-03 電力システム及び電力供給装置

Publications (2)

Publication Number Publication Date
JP2021090258A JP2021090258A (ja) 2021-06-10
JP7276103B2 true JP7276103B2 (ja) 2023-05-18

Family

ID=76220532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019218796A Active JP7276103B2 (ja) 2019-12-03 2019-12-03 電力システム及び電力供給装置

Country Status (1)

Country Link
JP (1) JP7276103B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298864A (ja) 2000-04-11 2001-10-26 Kansai Electric Power Co Inc:The 電力貯蔵装置及び電力貯蔵式電力供給方法
JP2011172454A (ja) 2010-02-22 2011-09-01 Kddi Corp 太陽光発電システムの整流器制御方式
JP2012152029A (ja) 2011-01-19 2012-08-09 Nippon Soken Inc 直流電力供給装置
JP2016039721A (ja) 2014-08-08 2016-03-22 大成建設株式会社 直流配電システム
WO2017163625A1 (ja) 2016-03-25 2017-09-28 シャープ株式会社 発電システム、パワーコンディショナ、電力制御装置、電力制御方法及び電力制御プログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2834201B2 (ja) * 1989-08-11 1998-12-09 株式会社日立製作所 電力供給システム
JP2013038966A (ja) * 2011-08-09 2013-02-21 Japan Radio Co Ltd 電源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298864A (ja) 2000-04-11 2001-10-26 Kansai Electric Power Co Inc:The 電力貯蔵装置及び電力貯蔵式電力供給方法
JP2011172454A (ja) 2010-02-22 2011-09-01 Kddi Corp 太陽光発電システムの整流器制御方式
JP2012152029A (ja) 2011-01-19 2012-08-09 Nippon Soken Inc 直流電力供給装置
JP2016039721A (ja) 2014-08-08 2016-03-22 大成建設株式会社 直流配電システム
WO2017163625A1 (ja) 2016-03-25 2017-09-28 シャープ株式会社 発電システム、パワーコンディショナ、電力制御装置、電力制御方法及び電力制御プログラム

Also Published As

Publication number Publication date
JP2021090258A (ja) 2021-06-10

Similar Documents

Publication Publication Date Title
US11114883B2 (en) Method for controlling a charging device on board an electric or hybrid vehicle
US9735619B2 (en) Power conversion device
CN102820787B (zh) 具有变频控制的转换器及其控制方法
CN110326186B (zh) 包括能量存储装置的不间断电源供应系统
CN104662484A (zh) 功率调节器及控制功率调节器的方法
CN111725879B (zh) 一种光储联合供电的移动式储能系统及其控制方法
KR20170124851A (ko) 분산형 전력변환을 이용한 차량용 배터리 급속충전기
JP6854177B2 (ja) 電力制御システム
JP2017184607A (ja) 配電システム及び電力合成回路
CN110710083B (zh) 储能系统
US11949282B2 (en) Offline uninterruptible power source and control method therefor
JP7276103B2 (ja) 電力システム及び電力供給装置
CN110936855B (zh) 一种双能量源系统及燃料电池组件上电控制方法
JP7242238B2 (ja) 電力変換装置及び分散型電源システム
CN112498128B (zh) 机动车和用于运行机动车中的直流变压器的方法
JP2019106845A (ja) 充放電装置
JP2012029424A (ja) 充電器および電動移動体用バッテリの充電方法
KR20180099279A (ko) 에너지 저장 장치를 포함하는 에너지 저장 시스템
US9917473B2 (en) Power system, power management method, and program
RU2737871C1 (ru) Энергоаккумулирующее устройство и способ эксплуатации указанного энергоаккумулирующего устройства
JP2018121468A (ja) 直流給電システム
KR20160148817A (ko) 연료전지 하이브리드 시스템
CN113748593A (zh) Dc/dc转换器以及电力变换装置
Garg et al. Overview of real-time power management strategies in DC microgrids with emphasis on distributed control
WO2017131094A1 (ja) 発電システム、発電システムの制御方法、及び発電装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R151 Written notification of patent or utility model registration

Ref document number: 7276103

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151