JP7272055B2 - 送信機及び方法 - Google Patents

送信機及び方法 Download PDF

Info

Publication number
JP7272055B2
JP7272055B2 JP2019064356A JP2019064356A JP7272055B2 JP 7272055 B2 JP7272055 B2 JP 7272055B2 JP 2019064356 A JP2019064356 A JP 2019064356A JP 2019064356 A JP2019064356 A JP 2019064356A JP 7272055 B2 JP7272055 B2 JP 7272055B2
Authority
JP
Japan
Prior art keywords
signal
value
time
transmitter
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019064356A
Other languages
English (en)
Other versions
JP2020167465A (ja
Inventor
憲明 田和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2019064356A priority Critical patent/JP7272055B2/ja
Priority to US16/827,070 priority patent/US20200313942A1/en
Publication of JP2020167465A publication Critical patent/JP2020167465A/ja
Application granted granted Critical
Publication of JP7272055B2 publication Critical patent/JP7272055B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/544Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices for evaluating functions by calculation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2175Class D power amplifiers; Switching amplifiers using analogue-digital or digital-analogue conversion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/331Sigma delta modulation being used in an amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21106An input signal being distributed in parallel over the inputs of a plurality of power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/20Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F2203/21Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F2203/211Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • H03F2203/21142Output signals of a plurality of power amplifiers are parallel combined to a common output
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3015Structural details of digital delta-sigma modulators
    • H03M7/302Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M7/3024Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M7/3026Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computational Mathematics (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Transmitters (AREA)
  • Amplifiers (AREA)

Description

本開示は、送信機及び方法に関する。
一般的にデジタルアンプを使用することにより、高い電力効率で信号を増幅できる。デジタルアンプで増幅される信号は、パルス変調されたON及びOFFの2値の1bitのデジタル信号である。
移動体通信では、振幅位相変調された信号が一般的に利用されている。このような振幅位相変調された信号をデジタルアンプで増幅するためには、振幅位相変調信号をパルス変調信号に変換する必要がある。振幅位相変調信号をパルス変調信号に変換する際に、ΔΣ変調(デルタシグマ変調)が用いられることが多い(例えば、特許文献1)。特許文献1には、2値のΔΣ変調器を用いた送信機が開示されている。
ΔΣ変調では、アナログ信号をデジタル信号に変換するときに生じる量子化雑音がシェーピングされ、量子化雑音が高周波側に移るため、S/N比(SNR:signal-to-noise ratio)の高いパルス変調信号が得られる。
国際公開第2017/037880号
移動体通信等では、高いS/N比が要求されるため、2値のΔΣ変調を利用した場合であっても、要求されるS/N比を満たすために、数十倍以上のオーバーサンプリング比が必要であり、サンプリングレートが高くなる傾向にある。そのため、信号処理速度が高くなり、コスト及び消費電力も高くなるため、高いS/N比を満たす送信信号を送信する送信機を実現することが難しい。
本開示の目的は、上述の問題を解決するためになされたものであり、高いS/N比を満たす送信信号を送信することが可能な送信機及び方法を提供することにある。
本開示にかかる送信機は、
ベースバンド信号から生成された第1のN(N:3以上の整数)値デジタル信号を入力し、(N-1)個の2値デジタル信号に分配して出力する分配器を含む第1の信号生成部と、
前記(N-1)個の2値デジタル信号の各々を増幅するとともに前記増幅された(N-1)個の信号を合成した送信信号を出力する信号増幅部と、を備える送信機である。
本開示にかかる方法は、
ベースバンド信号から生成された第1のN(N:3以上の整数)値デジタル信号を入力し、(N-1)個の2値デジタル信号に分配して出力することと、
前記(N-1)個の2値デジタル信号の各々を増幅するとともに前記増幅された(N-1)個の信号を合成した送信信号を出力することと、を含む方法である。
本開示によれば、高いS/N比を満たす送信信号を送信することが可能な送信機及び方法を提供できる。
実施の形態1にかかる送信機の構成例を示す図である。 実施の形態2にかかる送信機の構成例を示す図である。 実施の形態2にかかる送信機の構成例を示す図である。 実施の形態2にかかる送信機内の各信号のタイムチャートの一例を示す図である。 実施の形態2にかかるN値信号分配器の動作例を示すフローチャートである。 2値ΔΣ変調器を用いた送信機及び3値ΔΣ変調器を用いた送信機の比較結果を示す図である。 実施の形態2の変形例にかかるN値信号分配器の動作例を示す図である。
以下、図面を参照して本開示の実施の形態について説明する。なお、以下の記載及び図面は、説明の明確化のため、適宜、省略及び簡略化がなされている。また、以下の各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
(実施の形態1)
図1を用いて、実施の形態1にかかる送信機1について説明する。図1は、実施の形態1にかかる送信機の構成例を示す図である。送信機1は、無線基地局の送信機であってもよい。無線基地局は、例えば、中継局(RN:Relay Node)又はアクセスポイントであってもよい。もしくは、無線基地局は、NR NodeB(NR NB)又はgNodeB(gNB)、eNodeB(evolved Node B)であってもよい。無線基地局が、CU(Central Unit)及びDU(Distributed Unit)で構成される場合、送信機1は、DU内の送信機であってもよい。
送信機1は、第1の信号生成部2と、信号増幅部5とを備える。
第1の信号生成部2は、ベースバンド信号から生成された第1のN(N:3以上の整数)値デジタル信号を入力し、(N-1)個の2値デジタル信号に分配して出力する。
第1の信号生成部2は、分配器3を含んでおり、分配器3は、ベースバンド信号から生成された第1のN(N:3以上の整数)値デジタル信号を入力し、(N-1)個の2値デジタル信号に分配して出力する。
信号増幅部5は、第1の信号生成部2が出力した、(N-1)個の2値デジタル信号の各々を増幅するとともに増幅された(N-1)個の信号を合成した送信信号を出力する。
送信機1は、上記構成を有するので、ベースバンド信号から生成された第1のN値デジタル信号と同等の高いS/N比の送信信号を出力(送信)することが可能となる。すなわち、実施の形態1にかかる送信機1を用いることにより、2値のΔΣ変調器を用いた関連技術にかかる送信機よりも高いS/N比を満たす送信信号を送信することが可能となる。
(実施の形態2)
続いて、実施の形態2について説明する。実施の形態2は、実施の形態1を詳細にした実施の形態である。
<送信機の構成例>
図2及び図3を用いて、実施の形態2にかかる送信機100について説明する。図2及び図3は、実施の形態2にかかる送信機の構成例を示す図である。
送信機100は、例えば、無線基地局のRFエンドで使用される送信機である。無線基地局は、例えば、第5世代移動体通信システムにおける無線基地局であって、CU及びDUで構成されている。送信機100は、DU内で使用される送信機である。無線基地局から送信される送信信号は、CUから光ケーブルでDUに送信され、DUでRF信号に変換し、変換されたRF信号が増幅された後、アンテナから送信される。
図2は、ベースバンド信号の生成から、搬送波周波数FcのRF信号への変換、及びアンテナからの送信までを概略的に示す図である。送信機100から送信する送信信号は、例えば、OFDM(Orthogonal Frequency Division Multiplexing)変調信号である。
図2に示すように、送信機100は、ベースバンド信号生成部10と、N値RF信号生成部20と、2値RF信号生成部30と、信号増幅部40と、バンドパスフィルタ(BPF:Band-pass filter)60と、アンテナ70とを備える。
ベースバンド信号生成部10、N値RF信号生成部20及び2値RF信号生成部30は、デジタルフロントエンド(DFE:Digital Front End)と呼ばれ、デジタル回路で構成される。DFEは、FPGA(field-programmable gate array)、ASIC(application specific integrated circuit)等により構成される。
ベースバンド信号生成部10は、関連技術の送信機のベースバンド信号生成部と同様の構成を有しており、図示しないCUから送信された情報に基づいて、振幅位相変調されたベースバンド信号を生成する。ベースバンド信号生成部10は、ベースバンド帯域の振幅位相変調信号を生成し、同相チャネル信号(Iチャネル信号)と、Iチャネル信号と直交する直交チャネル信号(Qチャネル信号)とを出力する。Iチャネル信号及びQチャネル信号は、それぞれ多ビット信号である。
ベースバンド信号生成部10は、ベースバンド信号のサンプリングレートが2Fc/Kとなるようにサンプリングレートを変更する。Fcは、搬送波周波数であり、Kは、後述するN値RF信号生成部20に含まれるタイムインターリーブ部21及び22において用いられる係数である。
N値RF信号生成部20は、ベースバンド信号生成部10から出力されたIチャネル信号及びQチャネル信号をタイムインターリーブ処理し、N値信号にΔΣ変調し、搬送波周波数Fcにアップコンバートし、N値デジタル信号であるN値RF信号を出力する。なお、N値RF信号生成部20の詳細な構成は後述する。
2値RF信号生成部30は、N値RF信号生成部20から出力されたN値RF信号を(N-1)個の2値デジタル信号である2値RF信号に分配して出力する。
ここで、図3を用いて、N値RF信号生成部20及び2値RF信号生成部30の構成の詳細について説明する。
N値RF信号生成部20は、タイムインターリーブ(TI:Time Interleaving)部21及び22と、ΔΣ変調器23及び24と、ミキサ25及び26と、局部発信器27と、合成器28とを備える。
タイムインターリーブ部21は、ベースバンド信号生成部10が出力したIチャネル信号をタイムインターリーブ処理し、K回繰り返した信号を出力する。つまり、Iチャネル信号を1回サンプリングする間に、タイムインターリーブ部21は、Iチャネル信号をK回繰り返して出力する。ベースバンド信号のサンプリングレートは、上述したように、2Fc/Kである。そのため、タイムインターリーブ部21によりタイムインターリーブされた信号のサンプリングレートは、ベースバンド信号のサンプリングレートと比較するとK倍高くなり、2Fcとなる。
タイムインターリーブ部22は、ベースバンド信号生成部10が出力したQチャネル信号をタイムインターリーブ処理し、K回繰り返した信号を出力する。つまり、Qチャネル信号を1回サンプリングする間に、タイムインターリーブ部22は、Qチャネル信号をK回繰り返して出力する。タイムインターリーブ部22によりタイムインターリーブされた信号のサンプリングレートも、ベースバンド信号のサンプリングレートと比較するとK倍高くなり、2Fcとなる。
なお、以降の説明において、ベースバンド信号生成部10が出力したIチャネル信号及びQチャネル信号をそれぞれI_BB及びQ_BBとして記載する。また、タイムインターリーブ部21及び22が出力するタイムインターリーブされた信号をそれぞれI_TI及びQ_TIとして記載する。
ΔΣ変調器23は、N値ΔΣ変調器であり、信号I_TIをΔΣ変調し、ΔΣ変調されたN値デジタル信号(N値ΔΣ信号)を出力する。ΔΣ変調器24は、N値ΔΣ変調器であり、信号Q_TIをΔΣ変調し、ΔΣ変調されたN値デジタル信号(N値ΔΣ信号)を出力する。なお、以降の説明において、ΔΣ変調器23及び24から出力される信号をそれぞれI_N及びQ_Nとして記載する。
局部発信器(LO:Local Oscillator)27は、LO信号(局部発信信号)を出力する。
ミキサ25は、ΔΣ変調器23から出力されたN値ΔΣ信号(信号I_N)と、局部発信器27から出力されたLO信号とを乗算して、搬送波周波数Fcにアップコンバートする。ミキサ26は、ΔΣ変調器24から出力されたN値ΔΣ信号(信号Q_N)と、局部発信器27から出力されたLO信号とを乗算して、搬送波周波数Fcにアップコンバートする。
搬送波周波数Fcにアップコンバートする信号処理は、デジタル回路によって計算される。一般に、アップコンバータのデジタル演算は多ビット信号の必要があるが、本実施の形態におけるN値ΔΣ信号はサンプリングレートが2Fcであるため、N値が小さい信号でも、そのままアップコンバートが可能である。
また、本実施の形態では、搬送波周波数Fcは、信号I_N及び信号Q_Nのサンプリングレートの1/2であるため、信号I_N及び信号Q_Nに乗算される値は、1又は-1となり計算を簡略化できる。なお、以降の説明において、信号I_N及び信号Q_Nからアップコンバートされた信号をそれぞれ、I_NRF及びQ_NRFとして記載する。
合成器28は、信号I_NRF及び信号Q_NRFを合成して1つのN値のRF信号を出力する。合成器28は、Iチャネルの信号I_NRFと、Qチャネルの信号Q_NRFとを交互に、2倍のサンプリングレートで出力することによって信号を合成する。そのため、合成器28から出力される信号のサンプリングレートは4Fcとなる。このようにして、合成器28からRF帯域にアップコンバートされたN値信号(N値デジタル信号)が生成されて出力される。なお、以降の説明において、合成器28から出力される信号をS_NRFとして記載する。
信号S_NRFは、最大値をN-1、最小値を-(N-1)とし、その間の2ごとの値を取り得る信号とする。つまり、N=3の場合、S_NRFの値は、2、0、-2のいずれかの値を取る信号である。なお、本実施の形態では、信号S_NRFが取り得る値は、2ずつ異なる値として説明を行うが、例えば、4ずつ異なる値としてもよい。
次に、2値RF信号生成部30について説明する。2値RF信号生成部30は、実施の形態1にかかる第1の信号生成部2に対応する。2値RF信号生成部30は、N値信号分配器31と、DAC(Digital to Analog Convertor)部32_1~32_(N-1)とを備える。なお、DAC部32_1~32_(N-1)のそれぞれを区別する必要がない場合、DAC部32_1~32_(N-1)を総称してDAC部32と記載することがある。
N値信号分配器31は、実施の形態1にかかる分配器3に対応する。N値信号分配器31は、N値RF信号生成部20から出力されたN値デジタル信号である信号S_NRFを入力し、(N-1)個の2値デジタル信号である2値RF信号D(n)(n=1,2,…,N-1)に分配して出力する。D(n)の取り得る値は、High又はLowであり、Highを1とし、Lowを-1とすると、1又は-1である。
N値信号分配器31は、2値RF信号D(n)のそれぞれの信号の変化回数が少なくなるように分配する。信号の変化回数とは、2値RF信号D(n)の値を1と-1で表した場合、1から-1、又は-1から1に、信号の値が変化することを言う。そのため、N値信号分配器31は、(N-1)個の2値RF信号の各々の出力値が変化した変化回数を計上する。N値信号分配器31は、計上された変化回数に基づいて、(N-1)個の2値RF信号の各々の出力値を決定する。
N値信号分配器31は、時刻t(t:1以上の整数とし、時刻tの単位はサンプリングレート4Fcの逆数とする)において、入力されるN値デジタル信号である信号S_NRFの入力値と、時刻t-1において、入力される信号S_NRFの入力値との差分を算出する。N値信号分配器31は、算出された差分に応じた数の2値RF信号の時刻tにおける出力値を、変化回数が少ない方から順に時刻t-1における出力値と異なる値に変更する。差分に応じた数は、算出された差分を、信号S_NRFの入力値の最小変化量で除算した数である。信号S_NRFの入力値が取り得る値は、等間隔の離散値であることから、差分に応じた数は、算出された差分を、離散値の間隔で除算した数とも言える。本実施の形態では、信号S_NRFの入力値の変化量の最小値(最小変化量)及び離散値の間隔は、2であるため、差分に応じた数は、算出された数を2で除算した数である。すなわち、N値信号分配器31は、差分を2で除算した数の2値RF信号の時刻tにおける出力値を、変化回数が少ない方から順に時刻t-1における出力値と異なる値に変更する。出力値が変更される2値RF信号D(n)を特に2値RF信号D(n’)と表すこととする。
N値信号分配器31は、算出された差分に基づいて決定された値を、時刻tにおける出力値が時刻t-1における出力値から変更される2値RF信号D(n’)の出力値とする。N値信号分配器31は、算出された差分が0よりも大きい場合、出力値が変更される2値RF信号D(n’)の出力値をHighとする。N値信号分配器31は、算出された差分が0よりも小さい場合、出力値が変更される2値RF信号D(n’)の出力値をLowとする。なお、以降の説明では、Highは1であり、Lowは-1であることとして記載するが、それぞれ異なる値であってもよい。
DAC部32_1~32_(N-1)は、それぞれ1bit DACであり、N値信号分配器31により分配して出力された2値RF信号D(n)を入力し、DFEから出力する。
図2に戻り、信号増幅部40について説明する。信号増幅部40は、増幅部41_1~41_(N-1)と、合成器50とを備える。なお、増幅部41_1~41_(N-1)を区別しない場合、増幅部41と称して記載することがある。
増幅部41は、デジタルアンプ(DA:Digital Amplifier)により構成される。増幅部41_1~41_(N-1)は、それぞれD(1)~D(N-1)がDAC部32_1~32_(N-1)により出力された2値デジタル信号を入力し、入力された2値デジタル信号を信号増幅して合成器50に出力する。
合成器50は、増幅部41_1~41_(N-1)により出力された信号を入力して信号合成し、合成した信号を信号増幅部40から出力する。これにより、元のN値信号の精度を持った信号が得られる。
BPF60は、合成器50において合成された信号が入力され、信号帯域外成分を除去し出力する。本実施の形態では、N値RF信号生成部20がΔΣ変調器23及び24を有しているため、信号帯域外にノイズシェーピングされた量子化ノイズが発生する。BPF60は、ΔΣ変調器23及び24において発生した量子化ノイズ及び信号増幅時の歪み成分などの信号帯域外の不要成分を除去する。
アンテナ70は、BPF60を通過して出力された送信信号を放射する。
<送信機の動作例>
次に、図2、図3を参照しつつ、実施の形態2にかかる送信機100の動作例について説明する。
図2に示すように、ベースバンド信号生成部10は、図示しないCUから送信された情報に基づいて、ベースバンド帯域の振幅位相変調信号を生成し、Iチャネル信号I_BB及びQチャネル信号Q_BBをN値RF信号生成部20に出力する。
次に、図3に示すように、タイムインターリーブ部21及び22は、それぞれ信号I_BB及び信号Q_BBに対してK倍のタイムインターリーブを行う。上述したように、タイムインターリーブ部21及び22により、それぞれタイムインターリーブされた信号I_TI及び信号Q_TIのサンプリングレートは2Fcとなる。Fcは搬送波周波数である。
ΔΣ変調器23及び24は、それぞれ信号I_TI及び信号Q_TIをΔΣ変調し、N値信号である信号I_N及びQ_Nを出力する。
ミキサ25及び26は、それぞれ信号I_N及びQ_Nを搬送波周波数Fcにアップコンバートし、アップコンバートされた信号I_NRF及びQ_NRFを出力する。
合成器28は、信号I_NRF及び信号Q_NRFを交互に2倍のサンプリングレート(4Fc)で信号S_NRFとして出力する。
ここで、図4を用いて、N=3の場合の各信号のタイムチャートを示す。図4は、実施の形態2にかかる送信機内の各信号のタイムチャートの一例を示す図である。図4において、一番上に示した図は、信号I_NRFのタイムチャートを示しており、上から2番目の図は、信号Q_NRFのタイムチャートを示している。図4の上から3番目の図は、信号S_NRFのタイムチャートを示している。図4の各図の横軸は、時刻を示しており、縦軸は、各信号の値を示している。図4に示している5つの図の横軸は対応しており、同じ時刻を示している。
信号I_NRF及び信号Q_NRFは、それぞれRF帯域にアップコンバートされたIチャネル信号及びQチャネル信号であり、N=3の場合、2、0、-2の3値を取り得る。図4には、一例として、信号I_NRF及び信号Q_NRFのタイムチャートが上から2つの図のようになっており、合成器28が時刻0のときに信号I_NRFを出力し、時刻1のときに信号Q_NRFを出力したときのタイムチャートを示している。
図4に示すように、時刻0では、合成器28が信号I_NRFを出力するので、信号S_NRFは、信号I_NRFの値が出力される。時刻1では、合成器28が信号Q_NRFを出力するので、信号S_NRFは、信号Q_NRFの値が出力される。時刻2以降についても、合成器28は、信号I_NRF及び信号Q_NRFを交互に出力して、信号S_NRFとするので、合成器28から出力される信号S_NRFは、図4の上から3番目のようになる。
図3に戻り説明を続ける。
合成器28から出力された信号S_NRFは、N値信号分配器31に入力され、(N-1)個の2値信号D(n)が出力される。D(n)が取り得る値は、High(1)又はLow(-1)である。なお、N値信号分配器31における分配処理については後述する。
N値信号分配器31により分配して出力された2値RF信号D(n)は、それぞれ対応するDAC部32によりDFEから出力される。
図2に戻り説明を続ける。
DFEから出力された信号D(n)は、それぞれ対応する増幅部41により増幅されて、増幅された信号は、合成器50により合成される。これにより、信号S_NRFと同等のS/N比を満たす増幅された信号が得られる。デジタルアンプ1つでは、2値信号しか増幅できないが、本実施の形態のように、(N-1)個のデジタルアンプを使用することで、N値相当の精度を持った信号が得られる。
合成器50により合成された信号は、BPF60において、帯域外の不要成分が除去され、アンテナ70から送信信号として送信される。
<N値信号分配器の動作例>
続いて、図5を用いて、N値信号分配器31の動作例について説明する。図5は、実施の形態2にかかるN値信号分配器の動作例を示すフローチャートである。具体的には、図5は、信号S_NRFを(N-1)個の2値RF信号D(n)の生成方法の一例を示す図である。
まず、図5において使用される変数及び配列について説明する。
N値信号分配器31の入力値(信号S_NRFの値)が代入される変数を変数aとし、前回の入力値(1サンプル前の信号S_NRFの値)が代入される変数を変数bとする。つまり、時刻t(t:1以上の整数)における信号S_NRFの入力値は変数aに代入され、時刻t-1における信号S_NRFの入力値は変数bとして保持される。また、信号aと、信号bとの差分に応じて決定される値を変数Δとする。
N値信号分配器31のそれぞれの出力値D(1)、…、D(N-1)を各要素とする配列D=[D(1),…,D(N-1)]を定義する。つまり、N値信号分配器31は、S_NRFの値を入力値として、配列Dに基づいて、配列Dの各要素D(1)、…、D(N-1)を出力値として出力する。出力値D(n)を決定するために用いる変数として変数sを定義する。また、前回の出力値は、B(1)、…、B(N-1)であるとし、配列で示すと、配列B=[B(1),…,B(N-1)]で定義される。
N値信号分配器31のそれぞれの出力値D(1)、…、D(N-1)の変化回数を配列Cとして定義する。n番目の値C(n)は、D(n)の変化回数を示す値である。なお、図5の動作例の開始時の、配列Cの各要素C(1)、…、C(N-1)の値は0に初期化される。
上述したように、信号S_NRFは、最大値がN-1であり、最小値が-(N-1)であり、最大値及び最小値の間の値であって2ずつ異なる値を取る。N=3の場合、信号S_NRFの値は、2、0、-2のいずれかの値となる。また、配列Dの各要素D(n)の取り得る値は、1又は-1である。
また、図5の動作例において、中間的に用いる変数として変数s、配列を配列J、配列L、及び配列Mとして定義する。配列Mは、1からN-1までの整数を含む配列である。
上記を前提として、図5の動作例について説明する。
まず、N値信号分配器31は、信号S_NRFを入力し、信号S_NRFの入力値を変数aに代入し(ステップS1)、変数aと、前回の入力値が代入された変数bとの差分を算出し、算出された差分を2で除算し、変数Δを算出する(ステップS2)。
次に、N値信号分配器31は、変数aの値を変数bに代入し(ステップS3)、算出されたΔの値を判定する(ステップS4)。
N値信号分配器31は、ステップS4においてΔが0よりも大きいと判定する場合、変数sに-1を代入する(ステップS5)。また、N値信号分配器31は、ステップS4においてΔが0と判定すると、変数sに0を代入する(ステップS6)。N値信号分配器31は、ステップS4においてΔが0よりも小さいと判定する場合、変数sに1を代入する(ステップS7)。
次に、N値信号分配器31は、前回の出力値B(1)、…、B(N-1)を各要素とする配列Bから、値が変数sの値である要素番号を抽出し、抽出した要素番号を配列Jに代入する(ステップS8)。
N値信号分配器31は、配列Cから、配列Jに含まれる要素番号の要素のうち、値が小さい要素の要素番号を|Δ|個抽出し、配列Lに代入する(ステップS9)。配列Jに含まれる要素番号の変化回数をC(M=J)と表す。配列Mは1からN-1までの整数を含む配列である。変化回数C(M=J)のうち、変化回数の少ない要素番号を|Δ|個抽出し、配列Lに代入する(|Δ|はΔの絶対値を表す)。
N値信号分配器31は、変化回数を設定する配列Cのうち、配列Lに含まれる要素番号の要素の値をカウントアップし、配列Lに含まれない要素番号の要素の値を前回の値から変更しない(ステップS10)。N値信号分配器31は、配列Cのうち、配列Lに含まれる要素番号の要素C(M=L)をC(M=L)+1にカウントアップし、配列Lに含まれない要素番号の要素C(M≠L)をC(M≠L)から変更せず保持する。
N値信号分配器31は、出力値D(1)、…、D(N-1)を要素とする配列Dのうち、配列Lに含まれる要素番号の要素に変数sに-1を乗じた値である-sを代入し、配列Lに含まれない要素番号の要素の値を前回の値から変更しない(ステップS11)。N値信号分配器31は、配列Dのうち、配列Lに含まれる要素番号の要素D(M=L)に変数sに-1を乗じた値である-sを代入し、配列Lに含まれない要素番号の要素D(M≠L)をD(M≠L)から変更せず保持する。
最後に、N値信号分配器31は、配列Bの各要素の値に、配列Dの各要素を同じ要素番号の要素に代入し(ステップS12)、配列Dの各要素を出力値D(1)、…、D(N-1)として出力する(ステップS13)。
<N値信号分配器の動作の具体例>
次に、図5を用いて説明した、N値信号分配器31の動作の具体例を具体的な値を仮定して説明する。
まず、N=3とし、N値信号分配器31に入力される入力値(変数aの値)が0(a=0)であるとし、N値信号分配器31に入力された前回の入力値(変数bの値)が-2(b=-2)であるとする。N値信号分配器31の前回の出力配列Bは、配列B=[-1,-1]であるとし、変化回数が設定される配列Cは、配列C=[10,11]であるとする。
この場合、Δ=(0+2)/2=1となるため(ステップS2)、Δを判定すると(ステップS4)、s=-1となる(ステップS5)。
配列Bの2つの要素が-1であるため、配列Jには、配列Bの要素番号である1及び2が代入され、配列J=[1,2]となる(ステップS8)。
配列Jは、配列J=[1,2]であるため、変化回数が設定される配列Cの要素番号が1及び2のうち、小さい方から順に|Δ|=1個の要素が抽出される。配列Cの要素番号が1であるC(1)=10であり、要素番号が2であるC(2)=11であるため、値が小さいC(1)が抽出され、C(1)の要素番号である1が配列Lに代入される(ステップS9)。
配列Lに含まれる要素番号は1であるため、N値信号分配器31の出力値D(1)、…、D(N-1)を要素とする配列Dは、D(1)=-s=1となり、D(2)=B(2)=-1となる。ここで、配列Dの各要素の総和は0であり、N値信号分配器31の入力値が代入される変数aと一致する。すなわち、N値信号分配器31の入力値が代入される変数aを再現し得る配列Dは、変数aが信号S_NRFの最大値又は最小値でない限り、複数の組み合わせが存在する。本実施の形態では、前回の出力値を各要素とする配列Bから変化が最小になるように、今回の出力値を各要素とする配列Dを設定することで、信号の変化回数を低減する。
ここで、図4を参照して、N値信号分配器31から出力される信号D(1)及びD(2)の具体例を示す。図4のうち、下から2番目の図は、信号S_NRFが上から3番目の場合に、N値信号分配器31から出力されるD(1)のタイムチャートを示しており、一番下の図は、N値信号分配器31から出力されるD(2)のタイムチャートを示している。N値信号分配器31は、D(1)及びD(2)の信号の変化回数が低減されるように、信号S_NRFを分配して、D(1)及びD(2)を出力する。
<2値ΔΣ変調器を用いた送信機及び3値ΔΣ変調器を用いた送信機の比較>
図6を用いて、2値ΔΣ変調器を用いた送信機及び3値ΔΣ変調器を用いた送信機の比較結果について説明する。図6は、2値ΔΣ変調器を用いた送信機及び3値ΔΣ変調器を用いた送信機の比較結果を示す図である。
具体的には、図6は、2値ΔΣ変調器を用いた場合のスペクトルと、3値ΔΣ変調器を用いた場合のスペクトルの比較結果であり、2値ΔΣ変調器を用いた場合のサンプリングレートと、3値ΔΣ変調器を用いた場合のサンプリングレートとが等しい場合の比較結果である。図6において、2値ΔΣ変調器を用いた場合のスペクトルは細い実線で記載されており、3値ΔΣ変調器を用いた場合のスペクトルは太い実線で記載されている。図6に示すように、3値ΔΣ変調器を用いた場合、2値ΔΣ変調器を用いた場合に比べて、S/N比が5dB改善される。
一方、S/N比が、2値ΔΣ変調器を用いた場合と3値ΔΣ変調器を用いた場合とにおいて同程度で良い場合、基準となるサンプリングレートにも依存するが、3値ΔΣ変調器を用いることにより、サンプリングレートをおよそ2/3に低減することが可能となる。
以上説明したように、実施の形態2にかかる送信機100は、2値のΔΣ変調器を用いた関連技術にかかる送信機よりも高いS/N比を満たす送信信号を送信することが可能となる。
また、実施の形態2にかかる送信機100は、増幅部41がデジタルアンプにより構成されている。デジタルアンプを用いる場合、一般的に2値信号しか増幅できず、高いS/N比を満たすためには、サンプリングレートを十分に高くする必要がある。しかし、サンプリングレートの高い送信信号を、高い電力効率で増幅することは難しく、デジタルアンプのコストも高くなる傾向にある。
実施の形態2にかかる送信機100は、N値信号分配器31を有し、N値信号分配器31がN値信号を2値信号に分配し、増幅部41を構成するデジタルアンプが2値を増幅し、合成器50が増幅部41により増幅された信号を合成する。そのため、実施の形態2にかかる送信機100を用いることにより、N値信号と同等のS/N比を満たす送信信号を出力することが可能となる。
また、デジタルアンプは、主に出力値が変化する過程において電力を損失するが、N値信号分配器31は、出力値の変化が少なくなるように2値デジタル信号を出力するので、送信機100は、高い電力効率で送信信号を増幅することが可能となる。したがって、実施の形態2にかかる送信機100を用いることにより、比較的低いサンプリングレートで高いS/N比と、高い電力効率とを達成することが可能となる。
ここで、複数の増幅器を用いて増幅された1つの信号を得る技術として、LINC(Linear Amplification with Nonlinear Components)又はOutphasingが挙げられる。これらの技術の特徴は、振幅位相変調信号を振幅が一定である複数の信号に分割し、それぞれをアンプで増幅し、その後合成することにより、増幅した振幅位相変調信号を得ることである。これらの技術を用いることにより、振幅が一定である信号を増幅するため、それぞれのアンプは飽和状態で動作でき、高い電力効率で信号を増幅できる。
しかしながら、上記技術を用いて送信機を実現する場合、複数のRF帯域の入力信号が必要となるため、装置が複雑化及び大型化してしまい、さらに、消費電力の増加も懸念される。具体的には、これらの技術を用いて送信機を実現する場合、DFEの外部に、生成するRF信号の数と同数の、多ビットのDACと直交変調器及び局部発振器のセットを用意する必要がある。
これに対して、本実施の形態にかかる送信機100は、DFE内に1bit DACを備える構成であるため、多ビットDACを必要としない。さらに、本実施の形態にかかる送信機100は、1bit DACから直接的にRF帯域の信号を出力するため、直交変調器及び局部発振器をDFE内部に構築可能である。したがって、本実施の形態にかかる送信機100によれば、送信機の構成を簡略化し、送信機の開発コストを低減し、送信機における消費電力も低減することが可能となる。
近年、移動体通信の分野では、複数の送受信機を備え、MIMO(Multi-Input Multi-Output)機能に対応した無線装置が一般的になりつつある。今後、商用化が見込まれている第5世代移動通信システムでは、さらに多くの送受信機を利用するMassive-MIMO技術の採用が検討されている。Massive-MIMO技術が適用された無線基地局では、無線基地局全体に占める送信機の電力消費、占有体積、及びコストが高くなる傾向にある。そのため、当該無線基地局の送信機として、高い電力効率で送信信号を増幅し、小型で、かつ低コストで設計できる送信機が必要とされる。上述したように、実施の形態2にかかる送信機100によれば、送信機の構成を簡略化し、送信機の開発コストを低減し、送信機における消費電力も低減することが可能となる。したがって、上記の無線基地局に必要とされる送信機として、実施の形態2にかかる送信機100を利用することが可能となる。
さらに、実施の形態2にかかる送信機100は、増幅部41がデジタルアンプにより構成されているので、アナログアンプを利用する場合と比較して、高い電力効率で信号を増幅することが可能となる。
(変形例1)
図5を用いて説明したN値信号分配器31の動作例について、N=3の場合、図7のように簡略化するようにしてもよい。図7は、実施の形態2の変形例にかかるN値信号分配器の動作例を示す図である。なお、図7の動作のうち、図5と同じ動作については、図5と同一の参照番号を付している。
N値信号分配器31は、信号S_NRFの入力値を変数aに代入し(ステップS1)、変数aの値を判定する(ステップS21)。
変数aが2である場合、N値信号分配器31は、信号S_NRFの前回の入力値が代入された変数bが0であるかを判定する(ステップS22)。
変数bが0である場合(ステップS22のYES)、N値信号分配器31は、変数xをカウントアップし(ステップS23)、出力値D(1)、D(2)を各要素とする配列Dを、配列D=[1,1]とする(ステップS24)。
一方、変数bが0ではない場合(ステップS22のNO)、N値信号分配器31は、出力値D(1)、D(2)を各要素とする配列Dを、配列D=[1,1]とする(ステップS24)。
変数aが0である場合、N値信号分配器31は、変数xが偶数であるかを判定する(ステップS25)。
変数xが偶数である場合(ステップS25のYES)、配列Dを、配列D=[1,-1]とする(ステップS26)。
一方、変数xが偶数ではない場合(ステップS25のNO)、N値信号分配器31は、配列Dを、配列D=[-1,1]とする(ステップS27)。
変数aが-2である場合、N値信号分配器31は、信号S_NRFの前回の入力値が代入された変数bが0であるかを判定する(ステップS28)。
変数bが0である場合(ステップS28のYES)、N値信号分配器31は、変数xをカウントアップし(ステップS29)、配列Dを、配列D=[-1,-1]とする(ステップS30)。
一方、変数bが0ではない場合(ステップS28のNO)、N値信号分配器31は、配列Dを、配列D=[-1,-1]とする(ステップS30)。
ステップS24、S26、S27及びS30が実行されると、N値信号分配器31は、変数aの値を変数bに代入し(ステップS3)、配列Dの各要素D(1)及びD(2)を出力値として決定し、D(1)及びD(2)を出力する(ステップS13)。
例えば、信号S_NRFの値が2の場合、N値信号分配器31は、配列D=[1,1]と決定し、D(1)及びD(2)を出力する。このとき、1サンプル前の信号S_NRFの値が0であった場合、N値信号分配器31は、変数xの値を1つカウントアップする。
信号S_NRFの値が-2の場合、N値信号分配器31は、配列D=[-1,-1]と決定し、D(1)及びD(2)を出力する。このとき、1サンプル前の信号S_NRFの値が0であった場合、N値信号分配器31は、変数xの値を1つカウントアップする。
信号S_NRFの値が0の場合、N値信号分配器31は、まず変数xが偶数か奇数かを判定する。変数xが偶数の場合、N値信号分配器31は、配列D=[1,-1]と決定し、D(1)及びD(2)を出力する。変数xが奇数の場合、N値信号分配器31は、配列D=[-1,1]と決定し、D(1)及びD(2)を出力する。
(変形例2)
実施の形態2にかかる送信機100は、同相合成を行うこととして説明したが、逆相合成を行うようにしてもよい。この場合、N値信号分配器31は、N値信号分配器31の出力値を各要素とする配列Dを変更し、逆相となる要素番号の出力値1又は-1の正負を反転する。例えば、N=3、信号S_NRFの入力値が2である場合であって、同相合成の場合、配列Dは、配列D=[1,1]となるが、逆相合成の場合、配列D=[1,-1]となる。なお、その他の構成は、実施の形態2と同様である。
(変形例3)
実施の形態2では、増幅部41は、デジタルアンプにより構成されることとして説明を行ったが、デジタルアンプの代わりにアナログアンプにより構成されてもよい。このとき、増幅部41の前段に主信号帯域外成分を除去するフィルタを設置して、予めアナログ信号に変換後、アナログアンプで増幅してもよい。
なお、本開示は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。また、本開示は、それぞれの実施の形態を適宜組み合わせて実施されてもよい。
また、上記の実施の形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)
ベースバンド信号から生成された第1のN(N:3以上の整数)値デジタル信号を入力し、(N-1)個の2値デジタル信号に分配して出力する分配器を含む第1の信号生成部と、
前記(N-1)個の2値デジタル信号の各々を増幅するとともに前記増幅された(N-1)個の信号を合成した送信信号を出力する信号増幅部と、を備える送信機。
(付記2)
前記分配器は、前記(N-1)個の2値デジタル信号の各々の出力値が変化した変化回数を計上し、前記変化回数に基づいて、前記(N-1)個の2値デジタル信号の各々の出力値を決定する、付記1に記載の送信機。
(付記3)
前記分配器は、第1の時刻における前記第1のN値デジタル信号の第1の入力値と、第1の時刻の直前の第2の時刻における前記第1のN値デジタル信号の第2の入力値との差分を算出し、前記差分に応じた数の2値デジタル信号の前記第1の時刻における出力値を、前記第2の時刻における出力値と異なる値とする、付記2に記載の送信機。
(付記4)
前記分配器は、前記変化回数が少ない方から順に、前記差分に応じた数の2値デジタル信号の前記第1の時刻における出力値を、前記第2の時刻における出力値と異なる値とする、付記3に記載の送信機。
(付記5)
前記差分に応じた数は、前記差分を、前記第1のN値デジタル信号の入力値の最小変化量で除算した数である、付記3又は4に記載の送信機。
(付記6)
前記分配器は、前記差分に基づいて決定された値を、前記第1の時刻における出力値が前記第2の時刻における出力値から変更される2値デジタル信号の前記第1の時刻における出力値とする、付記3~5のいずれか1項に記載の送信機。
(付記7)
前記分配器は、前記差分が0よりも大きい場合、前記第1の時刻における出力値が前記第2の時刻における出力値から変更される2値デジタル信号の前記第1の時刻における出力値を第1の値とし、前記差分が0よりも小さい場合、前記第1の時刻における出力値が前記第2の時刻における出力値から変更される2値デジタル信号の前記第1の時刻における出力値を第2の値とする、付記6に記載の送信機。
(付記8)
前記信号増幅部は、(N-1)個のデジタルアンプを用いて、前記(N-1)個の2値デジタル信号の各々を増幅する、付記1~7のいずれか1項に記載の送信機。
(付記9)
前記信号増幅部は、(N-1)個のアナログアンプを用いて、前記(N-1)個の2値デジタル信号の各々を増幅する、付記1~7のいずれか1項に記載の送信機。
(付記10)
前記ベースバンド信号は、Iチャネル信号と、当該Iチャネル信号に直交するQチャネル信号とを含み、
前記Iチャネル信号を第2のN値デジタル信号に変調する第1のN値ΔΣ変調器と、前記Qチャネル信号を第3のN値デジタル信号に変調する第2のN値ΔΣ変調器とを含み、前記第2のN値デジタル信号と、前記第3のN値デジタル信号とに基づいて、前記第1のN値デジタル信号を生成する第2の信号生成部をさらに備える、付記1~9のいずれか1項に記載の送信機。
(付記11)
ベースバンド信号から生成された第1のN(N:3以上の整数)値デジタル信号を入力し、(N-1)個の2値デジタル信号に分配して出力することと、
前記(N-1)個の2値デジタル信号の各々を増幅するとともに前記増幅された(N-1)個の信号を合成した送信信号を出力することと、を含む方法。
1、100 送信機
2 第1の信号生成部
3 分配器
5 信号増幅部
10 ベースバンド信号生成部
20 N値RF信号生成部
21、22 タイムインターリーブ部
23、24 ΔΣ変調器
25、26 ミキサ
27 局部発信器
28、50 合成器
30 2値RF信号生成部
31 N値信号分配器
32、32_1~32_(N-1) DAC部
40 信号増幅部
41、41_1~41_(N-1) 増幅部
60 BPF
70 アンテナ

Claims (9)

  1. ベースバンド信号から生成された第1のN(N:3以上の整数)値デジタル信号を入力し、(N-1)個の2値デジタル信号に分配して出力する分配器を含む第1の信号生成部と、
    前記(N-1)個の2値デジタル信号の各々を増幅するとともに前記増幅された(N-1)個の信号を合成した送信信号を出力する信号増幅部と、を備え
    前記分配器は、前記(N-1)個の2値デジタル信号の各々の出力値が変化した変化回数を計上し、前記変化回数に基づいて、前記(N-1)個の2値デジタル信号の各々の出力値を決定する送信機。
  2. 前記分配器は、第1の時刻における前記第1のN値デジタル信号の第1の入力値と、第1の時刻の直前の第2の時刻における前記第1のN値デジタル信号の第2の入力値との差分を算出し、前記差分に応じた数の2値デジタル信号の前記第1の時刻における出力値を、前記第2の時刻における出力値と異なる値とする、請求項に記載の送信機。
  3. 前記分配器は、前記変化回数が少ない方から順に、前記差分に応じた数の2値デジタル信号の前記第1の時刻における出力値を、前記第2の時刻における出力値と異なる値とする、請求項に記載の送信機。
  4. 前記差分に応じた数は、前記差分を、前記第1のN値デジタル信号の入力値の最小変化量で除算した数である、請求項又はに記載の送信機。
  5. 前記分配器は、前記差分に基づいて決定された値を、前記第1の時刻における出力値が前記第2の時刻における出力値から変更される2値デジタル信号の前記第1の時刻における出力値とする、請求項のいずれか1項に記載の送信機。
  6. 前記分配器は、前記差分が0よりも大きい場合、前記第1の時刻における出力値が前記第2の時刻における出力値から変更される2値デジタル信号の前記第1の時刻における出力値を第1の値とし、前記差分が0よりも小さい場合、前記第1の時刻における出力値が前記第2の時刻における出力値から変更される2値デジタル信号の前記第1の時刻における出力値を第2の値とする、請求項に記載の送信機。
  7. 前記信号増幅部は、(N-1)個のデジタルアンプを用いて、前記(N-1)個の2値デジタル信号の各々を増幅する、請求項1~のいずれか1項に記載の送信機。
  8. 前記ベースバンド信号は、Iチャネル信号と、当該Iチャネル信号に直交するQチャネル信号とを含み、
    前記Iチャネル信号を第2のN値デジタル信号に変調する第1のN値ΔΣ変調器と、前記Qチャネル信号を第3のN値デジタル信号に変調する第2のN値ΔΣ変調器とを含み、前記第2のN値デジタル信号と、前記第3のN値デジタル信号とに基づいて、前記第1のN値デジタル信号を生成する第2の信号生成部をさらに備える、請求項1~のいずれか1項に記載の送信機。
  9. ベースバンド信号から生成された第1のN(N:3以上の整数)値デジタル信号を入力し、(N-1)個の2値デジタル信号に分配して出力することと、
    前記(N-1)個の2値デジタル信号の各々を増幅するとともに前記増幅された(N-1)個の信号を合成した送信信号を出力することと、を含み、
    前記(N-1)個の2値デジタル信号の出力において、前記(N-1)個の2値デジタル信号の各々の出力値が変化した変化回数を計上し、前記変化回数に基づいて、前記(N-1)個の2値デジタル信号の各々の出力値を決定する方法。
JP2019064356A 2019-03-28 2019-03-28 送信機及び方法 Active JP7272055B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019064356A JP7272055B2 (ja) 2019-03-28 2019-03-28 送信機及び方法
US16/827,070 US20200313942A1 (en) 2019-03-28 2020-03-23 Transmitter and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019064356A JP7272055B2 (ja) 2019-03-28 2019-03-28 送信機及び方法

Publications (2)

Publication Number Publication Date
JP2020167465A JP2020167465A (ja) 2020-10-08
JP7272055B2 true JP7272055B2 (ja) 2023-05-12

Family

ID=72604866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019064356A Active JP7272055B2 (ja) 2019-03-28 2019-03-28 送信機及び方法

Country Status (2)

Country Link
US (1) US20200313942A1 (ja)
JP (1) JP7272055B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194135A4 (en) 2020-08-07 2024-01-31 Amada Co Ltd LASER OSCILLATOR, LASER PROCESSING MACHINE AND METHOD FOR INHIBITING STIMULATED RAMAN SCATTERING
JP2022114529A (ja) 2021-01-27 2022-08-08 日本電気株式会社 デジタル変調器、通信装置、デジタル変調器の制御方法及びプログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042270A1 (ja) 2012-09-14 2014-03-20 日本電気株式会社 送信機
WO2017082243A1 (ja) 2015-11-11 2017-05-18 日本電気株式会社 送信機と送信方法および複数アンテナ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014042270A1 (ja) 2012-09-14 2014-03-20 日本電気株式会社 送信機
WO2017082243A1 (ja) 2015-11-11 2017-05-18 日本電気株式会社 送信機と送信方法および複数アンテナ装置

Also Published As

Publication number Publication date
JP2020167465A (ja) 2020-10-08
US20200313942A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
KR101944205B1 (ko) 다중 대역 신호를 생성하는 시스템 및 방법
US8724733B2 (en) All-digital multi-standard transmitters architecture using delta-sigma modulators
US7619487B2 (en) Polar modulation without analog filtering
US9813086B2 (en) RF transmitter, integrated circuit device, wireless communication unit and method therefor
JP6983331B2 (ja) 無線周波数(rf)送信機及びrf送信の方法
KR101922108B1 (ko) 병렬 구조의 디지털 무선 송신기 및 이를 포함하는 무선 통신 시스템
CN112236944B (zh) 高速数字比特生成器
JP7272055B2 (ja) 送信機及び方法
US10560126B2 (en) Mixed-mode millimeter-wave transmitter
US7502422B2 (en) Electromagnetic wave transmitter systems, methods and articles of manufacture
US6903619B2 (en) Electromagnetic wave transmitter systems, methods and articles of manufacture
JP2009171460A (ja) 通信装置、発振器、並びに周波数シンセサイザ
US6870435B2 (en) Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
JP3878029B2 (ja) 送信回路装置
CN109347504B (zh) 一种短波射频数字化处理系统
US9071496B2 (en) All-digital multi-standard transmitter architecture using delta-sigma modulators
Veyrac et al. The Riemann pump: A concurrent transmitter in GaN technology
JP6229738B2 (ja) 送信装置及びその制御方法
JP4128488B2 (ja) 送信回路装置、及び無線通信装置
WO2004034603A2 (en) Transmitter and methods of transmission using separate phase and amplitude modulators
US8233850B1 (en) Broadband power amplifier with partial-envelope transference
KR20110070675A (ko) 디지털 rf 컨버터 및 이를 포함하는 디지털 rf 변조기와 송신기
JP2006502683A (ja) 電磁波送信機システム、方法及び製品
JP6177057B2 (ja) 無線通信用ic
Ramabadran et al. Frequency Interleaved Modulators to Support Channel Bonding in Satellite Communications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R151 Written notification of patent or utility model registration

Ref document number: 7272055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151