JP7271980B2 - Manufacturing method for aluminum alloy continuous cast material - Google Patents

Manufacturing method for aluminum alloy continuous cast material Download PDF

Info

Publication number
JP7271980B2
JP7271980B2 JP2019019552A JP2019019552A JP7271980B2 JP 7271980 B2 JP7271980 B2 JP 7271980B2 JP 2019019552 A JP2019019552 A JP 2019019552A JP 2019019552 A JP2019019552 A JP 2019019552A JP 7271980 B2 JP7271980 B2 JP 7271980B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
less
producing
continuously cast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019019552A
Other languages
Japanese (ja)
Other versions
JP2020125528A (en
Inventor
翔史 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2019019552A priority Critical patent/JP7271980B2/en
Priority to DE102020201388.8A priority patent/DE102020201388A1/en
Publication of JP2020125528A publication Critical patent/JP2020125528A/en
Application granted granted Critical
Publication of JP7271980B2 publication Critical patent/JP7271980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Description

本発明は、鍛造用素材として用いられるアルミニウム合金の鋳造材に関する。 The present invention relates to an aluminum alloy casting material used as a forging material.

アルミニウム鍛造品では、加工率が低い部位は鍛造素材の機械的特性や組織の影響が残りやすいため、機械的特性に優れたアルミニウム合金の鋳造材が開発されている(特許文献1)。 In aluminum forgings, since the mechanical properties and structure of the forging material tend to remain in the areas with low workability, cast materials of aluminum alloys with excellent mechanical properties have been developed (Patent Document 1).

特開2007-92125号公報JP 2007-92125 A

しかしながら、従来のアルミニウム合金の鋳造材では、細径の連続鋳造材でなければ、冷却速度が遅い鋳造材の中心部において、鋳塊組織が粗大になり引張強度や0.2%耐力等の機械的特性が低下してしまう問題があった。 However, with conventional aluminum alloy castings, if the cast material is not a small-diameter continuous cast material, the ingot structure becomes coarse at the center of the cast material where the cooling rate is slow, and the mechanical strength such as tensile strength and 0.2% proof stress is reduced. However, there was a problem that the characteristics of the product deteriorated.

本発明は、より鋳塊組織が微細になることで機械的特性が向上し、かつ導電率が高い合金鍛造用素材となるアルミニウム合金鋳造材を提供することを目的とする。 SUMMARY OF THE INVENTION An object of the present invention is to provide an aluminum alloy cast material which has a finer ingot structure, thereby improving mechanical properties and having a high electric conductivity, and which can be used as a material for alloy forging.

上記課題を解決するため、本発明は以下の手段を備えるものである。 In order to solve the above problems, the present invention has the following means.

[1]Si:9~11質量%、Fe:0.5質量%以下、Cu:0.7~1.1質量%、Mn:0.09質量%以下、Mg:0.3~0.7質量%、Cr:0.05質量%以下、Ni:0.05質量%以下、Zn:0.25質量%以下、Ti:0.005~0.06質量%を含有し、
さらにSr、Sb、Ca、Naのいずれか一種をそれぞれSr:0.01~0.1質量%、Sb:0.03~0.2質量%、Ca:0.003~0.02質量%、Na:0.003~0.02質量%を含有し、
残部Al及び不可避不純物からなり、
引張強さが330N/mm以上、0.2%耐力が250N/mm以上、伸び4%以上、ロックウェル硬さ(HRB)65以上かつ82以下であり、導電率が40%IACS以上であることを特徴とするアルミニウム合金鋳造材。
[1] Si: 9 to 11 mass%, Fe: 0.5 mass% or less, Cu: 0.7 to 1.1 mass%, Mn: 0.09 mass% or less, Mg: 0.3 to 0.7 % by mass, Cr: 0.05 mass % or less, Ni: 0.05 mass % or less, Zn: 0.25 mass % or less, Ti: 0.005 to 0.06 mass %,
Furthermore, any one of Sr, Sb, Ca, and Na is added to Sr: 0.01 to 0.1 mass%, Sb: 0.03 to 0.2 mass%, Ca: 0.003 to 0.02 mass%, Contains Na: 0.003 to 0.02% by mass,
The remainder consists of Al and inevitable impurities,
Tensile strength is 330 N/mm 2 or more, 0.2% yield strength is 250 N/mm 2 or more, elongation is 4% or more, Rockwell hardness (HRB) is 65 or more and 82 or less, and electrical conductivity is 40% IACS or more. An aluminum alloy casting material characterized by:

[2]B:0.0002~0.01質量%を含有する前項1に記載のアルミニウム合金鋳造材。 [2] B: The cast aluminum alloy material according to the above item 1, containing 0.0002 to 0.01% by mass.

[3]TiとSr、Sb、Ca、Naのいずれか一種が同時に溶湯に添加して製造された前項1または2に記載のアルミニウム合金鋳造材。 [3] The aluminum alloy casting material according to the preceding item 1 or 2, which is produced by simultaneously adding Ti and any one of Sr, Sb, Ca and Na to the molten metal.

[4]前項1~3のいずれかに記載のアルミニウム合金鋳造材からなる鍛造用素材。 [4] A forging material made of the cast aluminum alloy material according to any one of 1 to 3 above.

[5]前項1~3のいずれかに記載のアルミニウム合金鋳造材を鍛造した鍛造材。 [5] A forged material obtained by forging the cast aluminum alloy material according to any one of 1 to 3 above.

上記[1]によると、Si、Cu、Mgを所定量含有し、Fe、Mn、Cr、Ni、Znの含有量を所定量以下とした組成に、所定量のTiと、さらにSr、Sb、Ca、Naのいずれか一種を所定量添加した組成であり、冷却速度が遅い鋳造材の中心部においても鋳塊組織が微細になることで引張強度、0.2%耐力、伸びという機械的特性に優れるとともに、適度な硬度を有するアルミニウム合金鍛造用素材となるアルミニウム合金鋳造材が得られる。また高い導電率を有することで、放熱性も向上するので使用環境温度が高くなる箇所の部材や機械的特性が求められる導電用材料として使用することができる。 According to the above [1], the composition contains predetermined amounts of Si, Cu, and Mg, and the content of Fe, Mn, Cr, Ni, and Zn is set to a predetermined amount or less, a predetermined amount of Ti, and further Sr, Sb, It has a composition in which a predetermined amount of either Ca or Na is added, and mechanical properties such as tensile strength, 0.2% yield strength, and elongation are achieved by making the ingot structure fine even at the center of the cast material with a slow cooling rate. It is possible to obtain an aluminum alloy cast material that is excellent in hardness and has an appropriate hardness and can be used as a material for aluminum alloy forging. In addition, by having a high electrical conductivity, the heat dissipation is also improved, so it can be used as a member in a place where the operating environment temperature is high, or as a conductive material that requires mechanical properties.

上記[2]によると、Bを所定量添加した組成であるため、さらに鋳塊組織を微細化し、機械的特性を向上したアルミニウム合金鋳造材が得られる。 According to the above [2], since it is a composition in which a predetermined amount of B is added, an aluminum alloy cast material having an even finer ingot structure and improved mechanical properties can be obtained.

上記[3]によると、TiとSr、Sb、Ca及びNaのいずれか1種が同時に溶湯に添加して製造されることで、従来の製造工法で製造されたアルミニウム合金鋳造材よりも鋳塊組織が微細化し、機械的特性が向上するアルミニウム合金鋳造材が得られる。 According to the above [3], Ti and any one of Sr, Sb, Ca and Na are added to the molten metal at the same time, so that the ingot is more effective than the aluminum alloy cast material manufactured by the conventional manufacturing method. An aluminum alloy cast material having a finer structure and improved mechanical properties can be obtained.

上記[4]、[5]によると、鍛造の加工率が低い部位であっても良好な特性のアルミニウム鍛造品を得ることができる。 According to [4] and [5] above, it is possible to obtain an aluminum forged product with good characteristics even in a portion with a low forging workability.

この発明のアルミニウム合金鋳造材を実施するための形態について詳細に説明する。 A mode for carrying out the aluminum alloy cast material of the present invention will be described in detail.

本発明のアルミニウム合金鋳造材は、Si、Cu、Mg、Tiを所定量含有し、Fe、Mn、Cr、Ni、Znの含有量を所定量以下とし、さらにSr、Sb、Ca、Naのいずれか一種を含有し、残部Al及び不可避不純物からなる。 The cast aluminum alloy material of the present invention contains predetermined amounts of Si, Cu, Mg, and Ti, contains less than a predetermined amount of Fe, Mn, Cr, Ni, and Zn, and further contains any one of Sr, Sb, Ca, and Na. or 1 type, and the balance consists of Al and unavoidable impurities.

また本発明のアルミニウム合金鋳造材は、Bをさらに所定量含有することが好ましい。 Moreover, it is preferable that the cast aluminum alloy material of the present invention further contains B in a predetermined amount.

本発明のアルミニウム合金鋳造材を構成する各元素について説明する。 Each element constituting the cast aluminum alloy material of the present invention will be described.

Siの含有量は9~11質量%である。Siは耐摩耗性を向上させる効果を有している。Si量が下限値未満であると、耐摩耗性の向上効果が弱い。Si量が上限値を超えると、鍛造加工性や成形性が低下する。 The Si content is 9-11% by mass. Si has the effect of improving wear resistance. If the amount of Si is less than the lower limit, the effect of improving wear resistance is weak. If the amount of Si exceeds the upper limit, the forgeability and moldability are degraded.

Feの含有量は0.5質量%以下である。Feは機械的強度を低下させず耐熱性が向上する。Fe量が上限値を超えると、Feを含む晶出物が多く発生し、機械的強度が低下する。 The content of Fe is 0.5% by mass or less. Fe improves the heat resistance without lowering the mechanical strength. When the amount of Fe exceeds the upper limit, a large amount of Fe-containing crystallized substances are generated, resulting in a decrease in mechanical strength.

Cuの含有量は0.7~1.1質量%である。Cuは耐食性と機械的強度の両立を図ることができる。Cu量が下限値未満であると、機械的強度が低下する。Cu量が上限値を超えると、耐食性の悪化につながる。 The Cu content is 0.7 to 1.1% by mass. Cu can achieve both corrosion resistance and mechanical strength. Mechanical strength falls that the amount of Cu is less than a lower limit. When the amount of Cu exceeds the upper limit, it leads to deterioration of corrosion resistance.

Mnの含有量は0.09質量%以下、Crの含有量は0.05質量%以下、Niの含有量は0.05質量%以下である。これら元素はいずれも含有量が上限値を超えると、機械的特性(特に鍛造加工性)が低下する。 The Mn content is 0.09% by mass or less, the Cr content is 0.05% by mass or less, and the Ni content is 0.05% by mass or less. If the content of any of these elements exceeds the upper limit, the mechanical properties (especially forgeability) will be degraded.

Mgの含有量は0.3~0.7質量%である。Mgは機械的強度を向上させる。Mgが下限値未満であると、機械的強度が低下する。Mg量が上限値を超えると、金属間化合物の晶出量が多くなり脆くなる。 The content of Mg is 0.3-0.7% by mass. Mg improves mechanical strength. Mechanical strength falls that Mg is less than a lower limit. When the amount of Mg exceeds the upper limit, the amount of crystallization of intermetallic compounds increases, resulting in brittleness.

Znの含有量は0.25質量%以下である。Znは機械的強度を向上させる。Zn量が上限値を超えると耐食性が劣化する。 The Zn content is 0.25% by mass or less. Zn improves mechanical strength. When the amount of Zn exceeds the upper limit, the corrosion resistance deteriorates.

Tiの含有量は0.005~0.06質量%である。Tiは鋳塊組織の微細化もしくはAl-Si共晶粒子の微細化を通じて鍛造性を向上させる。Ti量が下限値未満であると、前記効果が望めない。Ti量が上限値を超えると、Al-Si-Ti粗大化合物生成により靱性が低下する。また、Sr、Sb、Ca、Naのいずれか一種と溶湯に同時添加することでより鋳塊組織が微細化し、機械的特性の向上を達成することができる。 The content of Ti is 0.005 to 0.06% by mass. Ti improves forgeability through refinement of the ingot structure or refinement of Al--Si eutectic grains. If the amount of Ti is less than the lower limit, the above effect cannot be expected. When the amount of Ti exceeds the upper limit, the toughness is lowered due to the formation of coarse Al--Si--Ti compounds. Also, by adding one of Sr, Sb, Ca, and Na to the molten metal at the same time, the ingot structure can be made finer and the mechanical properties can be improved.

Bは任意添加元素であり、その添加量は0.0002~0.01質量%である。Bは鋳塊組織を微細化させる。B量が下限値未満であると、前記効果が充分に得られない。B量が上限値を超えるとTiB2発生に伴い加工工具寿命の悪化を招く。また、TiとSr、Sb、Ca、Naのいずれか一種と溶湯に同時添加することでより鋳塊組織が微細化し、機械的特性の向上を達成することができる。 B is an optional additive element, and its additive amount is 0.0002 to 0.01% by mass. B refines the ingot structure. If the amount of B is less than the lower limit, the above effects cannot be sufficiently obtained. If the amount of B exceeds the upper limit, TiB2 is generated, which leads to deterioration of working tool life. Also, by simultaneously adding Ti and any one of Sr, Sb, Ca, and Na to the molten metal, the ingot structure can be made finer and the mechanical properties can be improved.

Sr、Sb、Ca、Naは選択的な添加元素であり、そのいずれかを添加する。それぞれの含有量は、Srは0.01~0.1質量%、Sbは0.03~0.2質量%、Caは0.003~0.02質量%、Naは0.003~0.02質量%である。いずれの元素もAl-Si系合金の改良処理効果があり、特に共晶Siの微細化効果などの改良処理効果が得られる。いずれの元素も添加量が下限値未満であると、前記効果が充分に得られない。添加量が上限値を超えると、溶湯の流動性低下やそれに伴う引け巣が発生する。また、TiまたはTiとBを溶湯に同時添加することでより鋳塊組織が微細化し、同時添加していない製造工法で製造されたアルミニウム合金鋳造材より、機械的特性向上に加えて、導電率の向上が達成される。 Sr, Sb, Ca, and Na are selective additive elements, and one of them is added. The respective contents are 0.01 to 0.1 mass % for Sr, 0.03 to 0.2 mass % for Sb, 0.003 to 0.02 mass % for Ca, and 0.003 to 0.02 mass % for Na. 02% by mass. Each element has an effect of improving the Al--Si alloy, and in particular, an effect of improving such as refinement of eutectic Si can be obtained. If the amount of any element added is less than the lower limit, the above effect cannot be sufficiently obtained. If the amount added exceeds the upper limit, the fluidity of the molten metal is lowered and shrinkage cavities are generated accordingly. In addition, by simultaneously adding Ti or Ti and B to the molten metal, the ingot structure is refined, and in addition to improving the mechanical properties, the electrical conductivity improvement is achieved.

これら選択的な添加元素であるSr、Sb、Ca、Naの中では、Srを添加するのが最も好ましい。SbはSrより微細化効果が弱いためである。Caは脱ガス性の低下や耐食性の劣化、気孔の発生が懸念されるためである。Naは炉材の寿命低下と溶損がSrより激しく、添加効果が長時間持続せず、量産性が悪くなってしまうためである。 Among these selective additive elements Sr, Sb, Ca and Na, Sr is most preferable. This is because Sb has a weaker refining effect than Sr. This is because Ca may cause a decrease in degassing properties, a deterioration in corrosion resistance, and the generation of pores. This is because Na shortens the life of the furnace material and melts it more severely than Sr, and the effect of addition does not last for a long time, resulting in poor mass productivity.

通常共晶点付近である9~12%Siが含有されているAl-Si系合金ではTiとBを添加することによる、鋳塊組織の微細化に伴う機械的特性の向上と導電率の向上は得られにくい。しかし、Sr、Sb、Ca、Naのいずれかの元素を添加することで、組成的過冷を生じ、共晶点が過共晶側にずれる現象が発生する。この現象によって、共晶組織が亜共晶組織化することで、同時添加するTiとBの効果がより大きくなる。そのため、TiとSr、Sb、Ca、Naのいずれかの元素を同時に添加することで機械的特性の向上や導電率の向上効果がより大きくなる。 In an Al-Si alloy containing 9 to 12% Si, which is usually near the eutectic point, the addition of Ti and B improves the mechanical properties and electrical conductivity associated with the refinement of the ingot structure. is difficult to obtain. However, the addition of any one of Sr, Sb, Ca, and Na causes compositional supercooling, and a phenomenon occurs in which the eutectic point shifts to the hypereutectic side. Due to this phenomenon, the eutectic structure becomes a hypo-eutectic structure, so that the effect of Ti and B added simultaneously becomes greater. Therefore, by simultaneously adding Ti and one of the elements Sr, Sb, Ca, and Na, the effect of improving the mechanical properties and improving the electrical conductivity becomes greater.

このことから、TiとSr、Sb、Ca、Naのいずれかの元素を同時に溶湯に添加することが好ましく、さらにBを同時添加することで上記効果が一層得られやすくなる。また、鋳造直前に溶湯に同時添加することが最も微細化材の性能を引き出すことができる。上記微細化材は添加後の時間経過とともに、微細化性能が落ちるため、いずれか片方でも先に添加してしまうと鋳塊組織の微細化に充分に寄与しなくなってしまう。 For this reason, it is preferable to add Ti and any one of Sr, Sb, Ca, and Na to the molten metal at the same time, and the simultaneous addition of B makes it easier to obtain the above effects. In addition, simultaneous addition to the molten metal immediately before casting can bring out the best performance of the refining material. Since the refining performance of the above refining agents deteriorates with the lapse of time after addition, if either one of them is added first, it will not contribute sufficiently to refining the ingot structure.

TiとBとSr、Sb、Ca、Naのいずれかの微細化材を同時に溶湯に添加する方法としては、ロッド材をロッドフィーダーにて添加する製法が最も好ましい。同時に添加するため、ロッドフィーダーが二台必要になるが、ロッドフィーダーを使用することにより、添加速度を正確に設定することができ、狙った質量%の微細化材を添加することができる。 As a method of simultaneously adding the refining agent of Ti, B, Sr, Sb, Ca, and Na to the molten metal, it is most preferable to add a rod material using a rod feeder. Two rod feeders are required for simultaneous addition, but by using the rod feeders, it is possible to accurately set the addition speed and add the targeted mass % of the fine grains.

また、同時添加する場所はGBF炉(ガスバブリングフィルター)が最も好ましい。GBF炉に添加することによって、ロッド材中に含まれる介在物を除去する効果もあり、GBF回転子の回転効果によって溶湯の撹拌も行えるため、ロッド材に存在している微細化金属化合物が微細均一に分散されるためである。またロッドで添加する利点として、ロッドを製造する際の急冷凝固によってAl3TiやTiB2などの微細化金属間化合物の大きさが地金より小さいため、より微細化性能が向上する。 Moreover, the location for simultaneous addition is most preferably a GBF furnace (gas bubbling filter). By adding it to the GBF furnace, there is also the effect of removing inclusions contained in the rod material, and since the molten metal can be stirred by the rotation effect of the GBF rotor, the finely divided metal compound existing in the rod material is finely divided. This is because they are uniformly dispersed. Further, as an advantage of adding in the form of rods, the size of finely refined intermetallic compounds such as Al3Ti and TiB2 is smaller than that of bare metal due to rapid solidification during production of rods, so fineness performance is further improved.

次に本発明のアルミニウム合金鋳造材及びこれを用いた鍛造品の製造方法について説明する。 Next, the aluminum alloy casting material of the present invention and the method for producing a forged product using the same will be described.

まず溶製することによって前述のように成分調整されたアルミニウム合金溶湯を作製する。 First, by melting, an aluminum alloy molten metal whose components are adjusted as described above is produced.

このとき微細化効果のための添加元素であるTiとBとSr、Sb、Ca、Naのいずれか一種については、十分な微細化効果を得るため、溶湯温度740℃±30℃で添加することが望ましい。溶湯温度が770℃を超えて添加してしまうと上述した添加効果が得られない。また710℃を下回った状態で添加しても上述した添加効果を得ることができない。 At this time, any one of Ti, B, Sr, Sb, Ca, and Na, which are additive elements for the refining effect, should be added at a molten metal temperature of 740 ° C. ± 30 ° C. in order to obtain a sufficient refining effect. is desirable. If the molten metal temperature exceeds 770° C., the above addition effect cannot be obtained. Moreover, even if it is added at a temperature lower than 710° C., the above-mentioned effect of addition cannot be obtained.

また、TiとBは同時に添加することが好ましいのでAl-Ti-Bの母合金にて添加することが望ましい。 Also, since it is preferable to add Ti and B at the same time, it is desirable to add them in the Al--Ti--B master alloy.

Sr、Sb、Ca、NaもAlとの母合金で添加することが好ましい。 It is preferable to add Sr, Sb, Ca and Na as a master alloy with Al.

また、各微細化剤は添加してから時間がたつと添加効果が減少してしまうため、鋳造直前の工程で添加することが好ましい。 In addition, since the effect of addition of each refiner decreases as time elapses after addition, it is preferable to add it in the process immediately before casting.

こうして成分調整されたアルミニウム合金溶湯を連続鋳造することにより、アルミニウム合金鋳造材を得る。 An aluminum alloy casting material is obtained by continuously casting the aluminum alloy molten metal whose composition has been adjusted in this way.

具体的な鋳造条件に関しては冷却速度が重要であり、鋳造径によっても異なるが冷却速度が0.1℃/S以上になるように鋳造速度等の各種条件を設定する。この条件より冷却速度が遅くなってしまうと各種添加材が充分に固溶せず、添加材の効果が充分に得られない。その結果鋳塊組織の微細化に伴う機械的特性の改善効果が充分に得られない。 As for specific casting conditions, the cooling rate is important, and various conditions such as the casting rate are set so that the cooling rate is 0.1° C./s or more, although it varies depending on the casting diameter. If the cooling rate is slower than this condition, the various additives will not be sufficiently solid-dissolved, and the effects of the additives will not be obtained sufficiently. As a result, the effect of improving the mechanical properties due to the refinement of the ingot structure cannot be sufficiently obtained.

鋳造径はφ100~φ203が好ましい。 The casting diameter is preferably φ100 to φ203.

またこの時、気体加圧ホットトップ鋳造工法にて鋳造を行うことにより、鋳塊品質が高まる。これはヘッダーと鋳型との間から気体を供給することにより、鋳型と接触せず、水冷のみで鋳塊を凝固冷却できるためである。 At this time, the ingot quality is enhanced by casting by the gas pressurized hot top casting method. This is because the ingot can be solidified and cooled only by water cooling without contact with the mold by supplying gas from between the header and the mold.

本実施形態の連続鋳造材は、鍛造素材として用いられる。なお連続鋳造材を押出加工した押出材を鍛造素材として用いてもよい。 The continuously cast material of this embodiment is used as a forging material. An extruded material obtained by extruding a continuously cast material may be used as the forging material.

連続鋳造材は、鋳造時に晶出物の偏析等による不均一な組織を除去するために、均質化処理を施してもよい。 The continuously cast material may be subjected to a homogenization treatment in order to remove non-uniform structure due to segregation of crystallized substances during casting.

連続鋳造材は、所定の長さに切断して鍛造素材とし、鍛造加工を行って鍛造材を得る。 The continuously cast material is cut into a predetermined length to form a forging material, and forged to obtain a forged material.

この発明のアルミニウム合金鋳造材は、引張り強さが330N/mm、0.2%耐力が250N/mm、伸びが4%以上、ロックウェル硬さ(HRB)が65以上かつ82以下、導電率が40%IACS以上であることを条件とする。 The aluminum alloy cast material of the present invention has a tensile strength of 330 N/mm 2 , a 0.2% proof stress of 250 N/mm 2 , an elongation of 4% or more, a Rockwell hardness (HRB) of 65 or more and 82 or less, and an electrical conductivity. provided that the rate is greater than or equal to 40% IACS.

導電率40%IACS以上と高いことによって放熱性が良くなるため、使用環境温度が高い部材にでも使用できる。また、導電率が良いことで導電用材料にも使用できる。特にブスバーは導電率と高い機械的特性が求められる。そのため、ブスバーは銅材が使用されるのが一般的であるが、アルミニウム合金でも代替可能である。特に本発明の材料は従来工法で製造されたアルミニウム合金鋳造材よりも高い機械的特性と導電率を有しており、銅材よりも軽量化や大幅なコストダウンが期待できる。 The high conductivity of 40% IACS or more improves heat dissipation, so it can be used for members with high ambient temperature. It can also be used as a conductive material because of its good conductivity. In particular, busbars are required to have electrical conductivity and high mechanical properties. Therefore, bus bars are generally made of copper, but aluminum alloys can also be used. In particular, the material of the present invention has higher mechanical properties and electrical conductivity than aluminum alloy cast materials manufactured by conventional methods, and is expected to be lighter and significantly lower in cost than copper materials.

以下、本発明について実施例および比較例により説明する。 EXAMPLES The present invention will now be described with reference to examples and comparative examples.

表1に各実施例および比較例の組成を示す。 Table 1 shows the composition of each example and comparative example.

Figure 0007271980000001
Figure 0007271980000001

各実施例および比較例は、まず溶解炉にて主要元素であるSi、Cu、Mgの原材料を溶解した。 In each example and comparative example, first, raw materials of Si, Cu, and Mg, which are main elements, were melted in a melting furnace.

その後に保持炉に移注を行い、溶湯を一定時間保持後に、微細化剤であるTi、Sr、Bを添加する組成では、溶湯温度750℃で、Al-Ti-BとAl-Srのロッド母合金をロッドフィーダーを使用して同時にGBF炉中の溶湯に添加した。 After that, the molten metal is transferred to a holding furnace, and after the molten metal is held for a certain period of time, the refining agents Ti, Sr, and B are added. The master alloy was simultaneously added to the melt in the GBF furnace using a rod feeder.

同一GBF炉内にてGBF処理を行い、GBF処理を行った溶湯が樋を移湯し、気体加圧ホットトップ鋳造工法にて鋳造を行った。この溶湯処理装置とは溶湯中に存在しているアルミニウム酸化物及び、水素ガスを除去するためのものであり、保持炉から出湯された溶湯がGBF処理され、清浄になった溶湯がGBF炉底から炉上部に移動し、鋳造機の方へ移湯される。 The GBF treatment was performed in the same GBF furnace, the molten metal subjected to the GBF treatment was transferred to a gutter, and casting was performed by the gas pressurized hot top casting method. This molten metal treatment device is for removing aluminum oxides and hydrogen gas present in the molten metal. It moves to the upper part of the furnace and is transferred to the casting machine.

鋳造棒の径はφ203mm、他の鋳造条件は鋳造温度710℃、鋳造速度を100mm/minで鋳造を行った。 The diameter of the casting rod was φ203 mm, and the other casting conditions were a casting temperature of 710° C. and a casting speed of 100 mm/min.

こうして得られた鋳造材から、鋳造材断面の中心部から試験片を採取し、各試験片に対して、機械的特性、硬度、導電率の測定を実施した。 From the cast material thus obtained, a test piece was taken from the central portion of the cross section of the cast material, and the mechanical properties, hardness, and electrical conductivity of each test piece were measured.

機械的特性の測定は、TP形状をASTMR3号とし、各試験片に対してT6の調質を行い、連続鋳造の軸方向に直交するLT方向について、各試験片の引張り強さ(N/mm)と0.2%耐力(N/mm)と伸び(%)を測定した。各例についてn=3の測定を行い、その平均値を算出した。硬度測定は、JIS Z2245:2005の「ロックウェル硬さ試験-試験方法」に準拠して測定されたロックウェル硬さ(硬さ記号:HRB)であり、その測定に使用したスケールは“B”、圧子は鋼球1.5875mm、試験荷重は980.7Nである。導電率測定は均質化処理後のアルミニウム合金鋳造材を測定し、その時の単位は%IACS(International Annealed Copper Standard(国際焼きなまし銅線標準))である。 The mechanical properties were measured by setting the TP shape to ASTM No. 3, performing T6 refining on each test piece, and measuring the tensile strength (N/mm 2 ), 0.2% proof stress (N/mm 2 ) and elongation (%) were measured. n=3 measurements were performed for each example, and the average value was calculated. Hardness measurement is Rockwell hardness (hardness symbol: HRB) measured in accordance with JIS Z2245:2005 "Rockwell hardness test - test method", and the scale used for the measurement is "B". , the indenter is a steel ball of 1.5875 mm, and the test load is 980.7 N. Conductivity measurement is performed on aluminum alloy castings after homogenization treatment, and the unit at that time is %IACS (International Annealed Copper Standard).

結果を表2に示す。 Table 2 shows the results.

Figure 0007271980000002
Figure 0007271980000002

以上のとおり本発明において規定する組成において適切な鋳造条件で製造することにより、鋳造材の引張強さが330N/mm以上、0.2%耐力が250N/mm以上、伸び4%以上、硬度(HRB)65以上82以下の良好な機械特性を有し、導電率が40%IACS以上の良好な導電率を有するアルミニウム合金鋳造材が得られることが分かる。 As described above, by manufacturing under appropriate casting conditions with the composition specified in the present invention, the cast material has a tensile strength of 330 N/mm 2 or more, a 0.2% proof stress of 250 N/mm 2 or more, an elongation of 4% or more, It can be seen that an aluminum alloy cast material having good mechanical properties such as a hardness (HRB) of 65 or more and 82 or less and a good conductivity of 40% IACS or more can be obtained.

この発明のアルミニウム合金鋳造材は各種の鍛造材の素材として好適に用いることができる。 The cast aluminum alloy material of the present invention can be suitably used as a material for various forging materials.

Claims (5)

Si:9~11質量%、Fe:0.5質量%以下、Cu:0.7~1.1質量%、Mn:0.09質量%以下、Mg:0.3~0.7質量%、Cr:0.05質量%以下、Ni:0.05質量%以下、Zn:0.25質量%以下、Ti:0.005~0.06質量%を含有し、
さらにSr、Sb、Ca、Naのいずれか一種をそれぞれSr:0.01~0.1質量%、Sb:0.03~0.2質量%、Ca:0.003~0.02質量%、Na:0.003~0.02質量%を含有し、
残部Al及び不可避不純物からなり、
T6の調質を行った際の引張強さが330N/mm以上、0.2%耐力が250N/mm以上、伸び4%以上、ロックウェル硬さ(HRB)65以上かつ82以下であり、均質化処理を行った際の導電率が40%IACS以上であるアルミニウム合金連続鋳造材の製造方法であって、
TiとSr、Sb、Ca及びNaのいずれか1種が同時に溶湯に添加されて製造されることを特徴とするアルミニウム合金連続鋳造材の製造方法。
Si: 9 to 11% by mass, Fe: 0.5% by mass or less, Cu: 0.7 to 1.1% by mass, Mn: 0.09% by mass or less, Mg: 0.3 to 0.7% by mass, Cr: 0.05% by mass or less, Ni: 0.05% by mass or less, Zn: 0.25% by mass or less, Ti: 0.005 to 0.06% by mass,
Furthermore, any one of Sr, Sb, Ca, and Na is added to Sr: 0.01 to 0.1 mass%, Sb: 0.03 to 0.2 mass%, Ca: 0.003 to 0.02 mass%, Contains Na: 0.003 to 0.02% by mass,
The remainder consists of Al and inevitable impurities,
Tensile strength when tempered to T6 is 330 N/mm 2 or more, 0.2% yield strength is 250 N/mm 2 or more, elongation is 4% or more, Rockwell hardness (HRB) is 65 or more and 82 or less. A method for producing an aluminum alloy continuously cast material having an electrical conductivity of 40% IACS or more when homogenized ,
A method for producing an aluminum alloy continuous cast material, characterized in that Ti and any one of Sr, Sb, Ca and Na are simultaneously added to a molten metal.
さらに、B:0.0002~0.01質量%を含有する請求項1に記載のアルミニウム合金連続鋳造材の製造方法 The method for producing an aluminum alloy continuously cast material according to claim 1, further comprising B: 0.0002 to 0.01% by mass. 請求項1または2に記載のアルミニウム合金連続鋳造材の製造方法によって製造されたアルミニウム合金連続鋳造材に、さらに押出加工を行うアルミニウム合金押出材の製造方法。 3. A method for producing an extruded aluminum alloy material, further comprising extruding the continuously cast aluminum alloy material produced by the method for producing a continuously cast aluminum alloy material according to claim 1 or 2. 請求項1または2に記載のアルミニウム合金連続鋳造材の製造方法によって製造されたアルミニウム合金連続鋳造材に、さらに均質化処理を行うアルミニウム合金の製造方法。 A method for producing an aluminum alloy, wherein the continuously cast aluminum alloy material produced by the method for producing a continuously cast aluminum alloy material according to claim 1 or 2 is further subjected to a homogenization treatment. 請求項1または2に記載のアルミニウム合金連続鋳造材の製造方法によって製造されたアルミニウム合金連続鋳造材に、さらに鍛造を行うアルミニウム合金鍛造材の製造方法。 A method for producing an aluminum alloy forged material, wherein the continuously cast aluminum alloy material produced by the method for producing a continuously cast aluminum alloy material according to claim 1 is further forged.
JP2019019552A 2019-02-06 2019-02-06 Manufacturing method for aluminum alloy continuous cast material Active JP7271980B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019019552A JP7271980B2 (en) 2019-02-06 2019-02-06 Manufacturing method for aluminum alloy continuous cast material
DE102020201388.8A DE102020201388A1 (en) 2019-02-06 2020-02-05 Cast material from an aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019019552A JP7271980B2 (en) 2019-02-06 2019-02-06 Manufacturing method for aluminum alloy continuous cast material

Publications (2)

Publication Number Publication Date
JP2020125528A JP2020125528A (en) 2020-08-20
JP7271980B2 true JP7271980B2 (en) 2023-05-12

Family

ID=71615297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019019552A Active JP7271980B2 (en) 2019-02-06 2019-02-06 Manufacturing method for aluminum alloy continuous cast material

Country Status (2)

Country Link
JP (1) JP7271980B2 (en)
DE (1) DE102020201388A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232087A (en) 2002-11-22 2004-08-19 Showa Denko Kk Aluminum alloy, rod-shape material, forging shaped article, machining shaped article, wear-resistant aluminum alloy having excellent hardness of anodically oxidized film using the same, sliding part, and their production method
JP2010528187A (en) 2007-05-31 2010-08-19 アルカン・インターナショナル・リミテッド Aluminum alloy formulations for reducing hot cracking susceptibility
JP2016079419A (en) 2014-10-10 2016-05-16 昭和電工株式会社 Aluminum alloy continuous cast material and manufacturing method therefor
JP2017508065A (en) 2013-12-20 2017-03-23 アルコア インコーポレイテッド High performance AlSiMgCu casting alloy
WO2018084103A1 (en) 2016-11-01 2018-05-11 株式会社Uacj Aluminum alloy for low-pressure casting

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004292885A (en) * 2003-03-26 2004-10-21 Aisin Keikinzoku Co Ltd Aluminum alloy casting material having excellent mechanical property
JP4487615B2 (en) * 2004-04-07 2010-06-23 日本軽金属株式会社 Method for producing cast aluminum alloy material with excellent thermal conductivity
JP2007092125A (en) 2005-09-29 2007-04-12 Showa Denko Kk Aluminum alloy, aluminum alloy bar, method for manufacturing aluminum alloy ingot for forging, and forged and formed article
JP6875219B2 (en) 2017-07-18 2021-05-19 株式会社ニッケンビルド Reinforcing bar support structure using spacers for reinforcement and spacers for reinforcement

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004232087A (en) 2002-11-22 2004-08-19 Showa Denko Kk Aluminum alloy, rod-shape material, forging shaped article, machining shaped article, wear-resistant aluminum alloy having excellent hardness of anodically oxidized film using the same, sliding part, and their production method
JP2010528187A (en) 2007-05-31 2010-08-19 アルカン・インターナショナル・リミテッド Aluminum alloy formulations for reducing hot cracking susceptibility
JP2017508065A (en) 2013-12-20 2017-03-23 アルコア インコーポレイテッド High performance AlSiMgCu casting alloy
JP2016079419A (en) 2014-10-10 2016-05-16 昭和電工株式会社 Aluminum alloy continuous cast material and manufacturing method therefor
WO2018084103A1 (en) 2016-11-01 2018-05-11 株式会社Uacj Aluminum alloy for low-pressure casting

Also Published As

Publication number Publication date
DE102020201388A1 (en) 2020-08-06
JP2020125528A (en) 2020-08-20

Similar Documents

Publication Publication Date Title
JP5431233B2 (en) Aluminum alloy forging and method for producing the same
JP4951343B2 (en) Sn-containing copper alloy and method for producing the same
EP2664687B1 (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
JP5399818B2 (en) Lead-free free-cutting silicon brass alloy
CN111032897A (en) Method of forming cast aluminum alloy
JP5863626B2 (en) Aluminum alloy forging and method for producing the same
JP4765400B2 (en) Aluminum alloy for semi-solid casting, aluminum alloy casting and manufacturing method thereof
MX2007001008A (en) An al-si-mg-zn-cu alloy for aerospace and automotive castings.
JP2004244672A (en) Copper-base alloy with excellent dezincification resistance
CN104959393A (en) Production method of aluminium alloy hot extrusion bar used for high-quality aviation blade
JP2004084058A (en) Method for producing aluminum alloy forging for transport structural material and aluminum alloy forging
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP5209955B2 (en) Aluminum alloy forging material
JP2000265232A (en) Aluminum alloy piston excellent in high temperature fatigue strength and wear resistance, and its manufacture
JP7293696B2 (en) Aluminum alloy casting material and manufacturing method thereof
JP3346186B2 (en) Aluminum alloy material for casting and forging with excellent wear resistance, castability and forgeability, and its manufacturing method
JP2003277868A (en) Aluminum alloy forging having excellent stress corrosion cracking resistance and stock for the forging
JP7271980B2 (en) Manufacturing method for aluminum alloy continuous cast material
KR101499096B1 (en) Aluminum alloy and manufacturing method thereof
JP5532462B2 (en) Manufacturing method of plastic products made of aluminum alloy
CN108779521B (en) Aluminum alloy for low-pressure casting
JPWO2017115801A1 (en) Wire harness and method for manufacturing wire harness
JP5522692B2 (en) High strength copper alloy forging
JP4017105B2 (en) Aluminum alloy cast bar with excellent machinability and hot workability
JP2006316341A (en) Castable aluminum alloy and aluminum alloy cast made therefrom

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

TRDD Decision of grant or rejection written
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230410

R151 Written notification of patent or utility model registration

Ref document number: 7271980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350