以下図面に基づいて、本発明の実施形態を詳細に説明する。図1は、通信システムの概要を示す図である。図1に示すように、通信システム1は、車両3に搭載される車載通信装置4、及び道路脇に設置される路側通信装置5が通信ノードとなる。ここで、通信ノードとは、通信システム1における無線通信の送信側装置及び受信側装置の総称である。
通信システム1は、更に、路側通信装置5とネットワーク6を介して接続されるクラウドサーバ2を備える。クラウドサーバ2は、ネットワーク6を介して車載通信装置4と接続されても良い。ネットワーク6は、例えばインターネットである。クラウドサーバ2は、例えば、データセンターに配置されるサーバ用コンピュータであり、1台の筐体で実現されても良いし、複数台の筐体で実現されても良い。
車載通信装置4及び路側通信装置5は、第1の無線通信方式と、第1の無線通信方式よりも電波到達距離が短い第2の無線通信方式によって通信が可能である。第1の無線通信方式は、例えば、見通しの電波到達距離が1km程度の920MHz帯を用いる無線通信方式である。920MHz帯を用いる無線通信方式は、IEEE802.11ahの規格に準じたLAN、IEEE802.15.4kの規格に準拠したLPWA(Low Power Wide Area)系のLoRa(登録商標)やsigfox(登録商標)等が挙げられる。また、第2の無線通信方式は、例えば、見通しの電波到達距離が100m程度の2.4GHz帯を用いる無線通信方式である。2.4GHz帯を用いる無線通信方式は、IEEE802.15.4の規格に準拠したZigBee(登録商標)やIEEE802.11シリーズの規格に準拠したWiFi(登録商標)等が挙げられる。
車載通信装置4は、周辺の他の車載通信装置4や路側通信装置5と無線通信を行う。本発明の実施の形態では、車載通信装置4は、センサによって周辺の環境情報を取得して他の車載通信装置4や路側通信装置5に送信したり、又は他の車載通信装置4や路側通信装置5から環境情報を取得したりする。また、車載通信装置4は、ネットワーク6を介してクラウドサーバ2に環境情報をアップロードしても良い。
路側通信装置5は、車載通信装置4や周辺の他の路側通信装置5と無線通信を行う。本発明の実施の形態では、路側通信装置5は、センサによって周辺の環境情報を取得して車載通信装置4や他の路側通信装置5に送信したり、又は車載通信装置4や他の路側通信装置5から環境情報を取得したりする。また、路側通信装置5は、ネットワーク6を介してクラウドサーバ2に環境情報をアップロードしても良い。
環境情報は、例えば、周囲温度、路面温度、湿度、濃霧レベル、気圧、路面凍結状態、周囲画像、紫外線量、CO2量、PM2.5量、降水量、降雪量、ホワイトアウト状態量、交通量、避難所設置情報、通行止め情報、災害情報、観光情報等である。
一般に、車載通信装置4と路側通信装置5の無線通信は路車間通信、車載通信装置4間の無線通信は車車間通信、路側通信装置5間の無線通信は路路間通信と呼ばれる。以下、単に無線通信とは、路車間通信、車車間通信及び路路間通信の総称である。
クラウドサーバ2は、制御部としてのCPU(「Central Processing Unit」の略)、主記憶部としてのメモリ、補助記憶部としてのHDD(「Hard Disk Drive」の略)やフラッシュメモリ、通信機器等を有する。補助記憶部には、OS(「Operating System」の略)、アプリケーションプログラム、処理に必要なデータ等が記憶されている。制御部は、補助記憶部からOSやアプリケーションプログラムを読み出して主記憶部に格納し、主記憶部にアクセスしながら、その他の機器を制御し、所定の処理を実行する。
図2は、車載通信装置の構成を示す図である。図2に示すように、車載通信装置4は、各装置を制御する制御装置40と、複数の無線方式によって無線通信を行う通信機器群7と、によって構成され、周辺の環境情報を取得するセンサ群8と接続される。
制御装置40は、制御部としてのCPU、主記憶部としてのメモリ、補助記憶部としてのHDDやフラッシュメモリ等を有する。補助記憶部には、OS、アプリケーションプログラム、処理に必要なデータ等が記憶されている。制御部は、補助記憶部からOSやアプリケーションプログラムを読み出して主記憶部に格納し、主記憶部にアクセスしながら、その他の機器を制御し、後述する処理を実行する。
制御装置40は、SDN(Software Defined Network)技術によって通信機器群7等を制御するSDN制御モジュール41及びSDN通信モジュール42と、通信ノード間を蓄積転送型通信でルーティングし、非同期にデータをやり取りするDTN(Delay, Disruption, Disconnection Tolerant Networking:遅延耐性ネットワーク)モジュール43と、クラウドサーバ2の処理の一部又は全部を実行するクラウドレットモジュール44と、センサによって取得される環境情報を記憶するセンサデータベース45と、車両3に搭載されるECU(Electronic Control Unit:電子制御ユニット)やセンサ群8とCAN(Controller Area Network)を介して通信を行うCANモジュール46がインストールされている。
SDN技術は、通信機器群7をソフトウェアで動的に制御する技術であり、経路制御とデータ転送の機能を分離したアーキテクチャを採用していることが特徴である。また、SDN技術は、クロスレイヤ情報をネットワーク定義に取り扱うことを可能とする。例えば、MACアドレスやIPアドレス、TCP/UDPポート番号をネットワーク定義に利用したり、ブラウザ上に実装されるユーザインタフェースから経路情報を直接編集したり、外部データベース内に蓄積される情報から最適なネットワーク定義を導き出したりすることが可能である。本発明の実施の形態では、SDN制御モジュール41は経路制御、接続確立、通信保証等の機能を実現するためのプログラムであり、SDN通信モジュール42はデータ転送等の機能を実現するためのプログラムである。
DTNは、通信不可の環境では中継ノードにデータを蓄積しておき、中継ノードの移動等によって通信可能の環境になると、データ転送を行う仕組みである。DTNによって、劣悪な通信環境であってもデータ転送を実現することができる。DTN技術は、オーバーレイ・ネットワークとして運用され、ソフトウェア上でオブジェクトを一意に識別するための識別子であるUUID(Universally Unique Identifier)を識別情報として用いる。本発明の実施の形態では、DTNモジュール43は、無線通信方式の接続情報の送受信を行うためのプログラムである。
クラウドレットは、エッジコンピューティング又はフォグコンピューティングといった技術において、クラウドサービスを受ける端末側に近い位置に分散して配置される小規模なサーバを意味する。本発明の実施の形態では、クラウドレットモジュール44は、センサ群8から周期的にデータをサンプリングするとともに、他の車載通信装置4や路側通信装置5からデータを受信し、センサデータベース45に格納し、センサデータベース45のデータに基づいて車両3に対する各種サービスを提供するサービス提供手段として制御装置40を機能させるためのプログラムである。各種サービスとしては、例えば、道路状況や災害情報の提供等が挙げられる。
センサデータベース45は、センサ種別、時刻、送信元識別番号、場所、センサの計測値等の情報を格納する。センサデータベース45は、例えば、特開2015-170311号公報に記載のプラグ・アンド・プレイ(Plug and Play)を応用した技術を用いて、未知のセンサデータであっても格納可能な柔軟性を有する。センサデータベース45によって、いつ、だれが、どこで収集した何のデータかを統一的に管理することができる。
通信機器群7は、複数の無線通信方式に対応する複数の通信機器の集合体である。無線通信方式としては、例えば、920MHz帯を用いるIEEE802.11ahの規格に準じたLAN、IEEE802.15.4kの規格に準拠したLPWA(Low Power Wide Area)系のLoRa(登録商標)やsigfox(登録商標)、2.4GHz帯を用いるIEEE802.15.4の規格に準拠したZigBee(登録商標)、2.4GHz帯や5GHz帯を用いるIEEE802.11シリーズの規格に準拠したWiFi(登録商標)、衛星回線、携帯電話回線(3G/LTE/5G)等が挙げられる。
本発明の実施の形態では、路車間通信、車車間通信及び路路間通信においては、920MHz帯と2.4GHz帯の周波数帯の無線通信方式に規定される。また、クラウドサーバ2と車載通信装置4や路側通信装置5との通信においては、衛星回線や携帯電話回線(3G/LTE/5G)等、又はLANケーブル等の有線通信を用いることができる。
本発明の実施の形態では、複数の無線通信方式を動的に切り替えて通信するために、コグニティブ無線技術を用いても良い。コグニティブ無線技術とは、端末や基地局等が周囲の電波状況をチェックし、その状況に応じて利用者に意識させることなく、無線通信方式を変えて通信する技術である。本発明の実施の形態では、特に、利用可能な既存の無線通信方式の利用通信環境をセンシングし、自動的に切り替えるヘテロジニアス型コグニティブ無線技術を用いても良い。
センサ群8は、周辺の環境情報を取得するセンサの集合体である。センサとしては、例えば、赤外線温度センサ、雨量センサ、気圧センサ、湿度センサ、イメージセンサ、GPSセンサ、路面状況監視センサ等が挙げられる。
図3は、路側通信装置の構成を示す図である。図3に示すように、本発明の実施形態における路側通信装置5は、各装置を制御する制御装置40と、各装置に電力を供給する電源部50と、複数の無線方式によって無線通信を行う通信機器群7と、周辺の環境情報を取得するセンサ群8と、によって構成される。
制御装置40は、CANモジュール46を備えていないことを除き、車載通信装置4の制御装置40と同様である。また、SDN制御モジュール41、SDN通信モジュール42、DTNモジュール43、クラウドレットモジュール44、センサデータベース45、通信機器群7及びセンサ群8は、車載通信装置4と同様である。
電源部50は、風力発電装置51、太陽光発電装置52、電力制御装置53、バッテリ54等を備え、商用電源とは独立して電力を供給可能な自立電源として機能する。
次に、図4~図7を参照しながら、第1の実施形態について説明する。図4は、第1の実施形態に係る通信システムにおける処理の流れを示すフローチャートである。図4に示す通信処理では、第1の通信ノードN1と第2の通信ノードN2は互いに異なり、センサデータを送信する側の装置(=車載通信装置4又は路側通信装置5)が第1の通信ノードN1であり、センサデータを受信する側の装置(=車載通信装置4又は路側通信装置5)が第2の通信ノードN2である。
第1の通信ノードN1は、各センサからデータを周期的にサンプリングし、センサデータベース45に格納する(ステップS1)。
次に、第1の通信ノードN1は、センサデータベース45からセンサデータを取得し(ステップS2)、第1の無線通信方式に係る無線通信によって、周辺の他の通信ノードに自らの存在のブロードキャストを行う(ステップS3)。例えば、第1の通信ノードN1は、自らの識別情報をブロードキャストする。
第2の通信ノードN2は、第1の無線通信方式に係る無線通信によって、ステップS3におけるブロードキャストに応答する(ステップS4)。例えば、第2の通信ノードN2は、ブロードキャストに対する応答として、自らの識別情報を第1の通信ノードN1に送信する。
他の通信ノードから応答がない場合(ステップS5のNo)、第1の通信ノードN1は、センサデータをキャッシュし(ステップS6)、ステップS3の処理から繰り返す。応答がある場合(ステップS5のYes)、第1の通信ノードN1は、第1の無線通信方式に係る無線通信によって、第2の無線通信方式の接続情報を送信する(ステップS7)。
第2の無線通信方式の接続情報には、第2の無線通信方式に係る無線通信においてインフラストラクチャモード又はアドホックモードのいずれの通信モードを用いるかを示す通信モード情報と、その通信モードに関するSSIDや暗号化キー等が含まれる。
通信モード情報は、インフラストラクチャモード又はアドホックモードのいずれかを示すコードであっても良いし、インフラストラクチャモード又はアドホックモードのいずれかに決定するための他の情報であっても良い。例えば、通信モード情報は、第1の通信ノードN1が路側通信装置5又は車載通信装置4のいずれであるかを示す路車識別情報でも良い。この場合、第2の通信ノードN2は、第2の無線通信方式の通信モードを、路車識別情報が路側通信装置5を示すものであればインフラストラクチャモードに決定し、路車識別情報が車載通信装置4を示すものであればアドホックモードに決定する。第1の通信ノードN1も、同様に第2の無線通信方式の通信モードを決定することができる。
第2の通信ノードN2は、第1の無線通信方式に係る無線通信によって、第2の無線通信方式の接続情報を受信し(ステップS8)、第2の無線通信方式の設定処理を行う(ステップS9)。
図5は、第2の無線通信方式の設定処理の流れを示すフローチャートである。図5に示すように、第2の通信ノードN2は、ステップS8において受信される通信モード情報に基づいて、第2の無線通信方式の通信モードを設定する(ステップS21)。第2の通信ノードN2は、通信モード情報がインフラストラクチャモードを示す情報であれば、第2の無線通信方式の通信モードをインフラストラクチャモードに設定し、通信モード情報がアドホックモードを示す情報であれば、第2の無線通信方式の通信モードをアドホックモードに設定する。
次に、第2の通信ノードN2は、第1の通信ノードN1が路側通信装置5又は車載通信装置4のいずれであるかを確認する(ステップS22)。例えば、通信モード情報として路車識別情報を用いる場合、第2の通信ノードN2は、この路車識別情報を用いてステップS22の判定処理を行うことができる。
第1の通信ノードN1が路側通信装置5の場合(ステップS22の「路側通信装置」)、第2の通信ノードN2はステップS23に進む。一方、第1の通信ノードN1が車載通信装置4の場合(ステップS22の「車載通信装置」)、第2の通信ノードN2はステップS24に進む。
図6は、第1の通信ノードが路側通信装置の場合における第2の無線通信方式の設定処理を説明する図である。図6に示すように、本実施の形態では、複数の路側通信装置5A、5Bが、往復の通行が可能な道路において両側の道路脇にそれぞれ設置される。図6に示す例では、路側通信装置5Aは車両3の前進方向左側の道路脇に設置され、路側通信装置5Bは車両3の前進方向右側の道路脇に設置されている。車載通信装置4が搭載される車両3には、第1の無線通信方式に使用されるアンテナ71が、車両3の上部に設置される。図6に示す例では、アンテナ71は車両3のルーフに設置されている。第2の無線通信方式に使用されるアンテナ72a、72bは、車両3の両側部にそれぞれ設置される。図6に示す例では、アンテナ72aは車両3の前進方向左側のドアミラーに設置され、アンテナ72bは車両3の前進方向右側のドアミラーに設置されている。アンテナ72a、72bを左右のドアミラーに設置し、後述するステップS23又はS24の処理において適切なアンテナを選択することによって、無線通信を行うアンテナ同士の物理的な距離を近づけることができる。
図6に示す例では、路側通信装置5A、5Bがセンサデータを送信する側の装置、すなわち第1の通信ノードN1であり、車両3に搭載される車載通信装置4がセンサデータを受信する側の装置、すなわち第2の通信ノードN2である。そして、車両3の現在位置がP1の場合、車載通信装置4は路側通信装置5Bと路車間通信を行い、車両3の現在位置がP2の場合、車載通信装置4は路側通信装置5Aと路車間通信を行う。
車両3がP1に近づく前に、第1の通信ノードN1である路側通信装置5Bは、ステップS7において、自らが両側の道路脇のいずれに設置されているかを示す設置場所情報を接続情報に含めて第2の通信ノードN2に送信する。図6に示す例では、路側通信装置5Bの設置場所情報は、車両3の前進方向右側の道路脇を示している。これに対して、第2の通信ノードN2である車載通信装置4は、ステップS23において、第1の通信ノードN1の設置場所情報に基づいて、第2の無線通信方式に用いるアンテナを決定する。図6に示す例では、第2の通信ノードN2である車載通信装置4は、車両3の前進方向右側の道路脇に近いアンテナ72bを、第2の無線通信方式に用いるアンテナに決定する。
また、車両3がP1を離れ、P2に近づく前に、第1の通信ノードN1である路側通信装置5Aは、ステップS7において、自らが両側の道路脇のいずれに設置されているかを示す設置場所情報を接続情報に含めて第2の通信ノードN2に送信する。図6に示す例では、路側通信装置5Aの設置場所情報は、車両3の前進方向左側の道路脇を示している。これに対して、第2の通信ノードN2である車載通信装置4は、ステップS23において、第1の通信ノードN1の設置場所情報に基づいて、第2の無線通信方式に用いるアンテナを決定する。図6に示す例では、第2の通信ノードN2である車載通信装置4は、車両3の前進方向左側の道路脇に近いアンテナ72aを、第2の無線通信方式に用いるアンテナに決定する。
図7は、第1の通信ノードが車載通信装置の場合における第2の無線通信方式の設定処理を説明する図である。図7に示すように、本実施の形態では、車載通信装置4A、4Bが搭載される複数の車両3A、3Bが、往復の通行が可能な道路を走行する。図7に示す例では、車載通信装置4Aが搭載される車両3Aは図の左側から右側に走行し、車載通信装置4Bが搭載される車両3Bは図の右側から左側に走行している。図6に示す例と同様に、車両3A、3Bには、アンテナ71が車両3A、3Bのルーフに設置され、アンテナ72aが車両3A、3Bの前進方向左側のドアミラーに設置され、アンテナ72bが車両3A、3Bの前進方向右側のドアミラーに設置されている。
図7に示す例では、車載通信装置4Aがセンサデータを送信する側の装置、すなわち第1の通信ノードN1であり、車載通信装置4Bがセンサデータを受信する側の装置、すなわち第2の通信ノードN2である。そして、車載通信装置4A、4Bは互いに車車間通信を行う。
車両3A、3Bが互いに近づく前に、第1の通信ノードN1である車載通信装置4Aは、ステップS7において、自らの現在位置及び進行方向を含む走行情報を接続情報に含めて第2の通信ノードN2に送信する。図7に示す例では、車載通信装置4Aの走行情報は、車両3が図の左側から右側に走行していることを示している。これに対して、第2の通信ノードN2である車載通信装置4Bは、ステップS23において、第1の通信ノードN1の走行情報に基づいて、第2の無線通信方式に用いるアンテナを決定する。図7に示す例では、第2の通信ノードN2である車載通信装置4Bは、車両3Aに近いアンテナ72bを、第2の無線通信方式に用いるアンテナに決定する。第1の通信ノードN1である車載通信装置4Aも、同様に第2の無線通信方式に用いるアンテナを決定することができる。
図4の説明に戻る。第1の通信ノードN1及び第2の通信ノードN2は、第1の無線通信方式に係る無線通信によって、互いに第2の無線通信方式の接続確立処理を行う(ステップS10)。例えば、第1の通信ノードN1及び第2の通信ノードN2は、第1の無線通信方式に係る無線通信によって、互いに認証情報のやり取りを行うオーセンティケーション(Authentication)、第2の通信ノードN2から第1の通信ノードN1への接続要求を行うアソシエーション要求(Association Request)、第1の通信ノードN1から第2の通信ノードN2への接続許可応答を行うアソシエーション応答(Association Response)、及び秘密鍵の交換を行う認証手続き(4-way handshake)を実行し、第2の無線通信方式による接続を確立する。
次に、第1の通信ノードN1は、第2の無線通信方式に係る無線通信によって、第2の通信ノードN2と通信可能か否か確認する(ステップS11)。例えば、第1の通信ノードN1は、第2の無線通信方式に係る無線通信によって、第2の通信ノードN2に対してpingによる導通確認を行い、第2の通信ノードN2が通信可能範囲に存在するか否かを確認する。
第2の通信ノードN2と通信可能ではない場合(ステップS11のNo)、第1の通信ノードN1は、ステップS11の処理を繰り返す。第2の通信ノードN2と通信可能な場合(ステップS11のYes)、第1の通信ノードN1は、第2の無線通信方式に係る無線通信によって、第2の通信ノードN2にセンサデータを送信し(ステップS12)、第2の通信ノードN2は、第2の無線通信方式に係る無線通信によって、第1の通信ノードN1からセンサデータを受信する(ステップS13)。すなわち、第1の通信ノードN1及び第2の通信ノードN2は、第2の無線通信方式に係る無線通信によって、互いに実データの送受信を行う。
以上の通り、第1の実施形態における通信システム1は、利便性や性能が向上されている。性能向上の方策の一つとして、第1の通信ノードN1及び第2の通信ノードN2が、第1の無線通信方式に係る無線通信によって、互いに第2の無線通信方式の接続確立処理を行うので、第2の無線通信方式に係る無線通信において接続確立処理を行う時間を実データの転送時間に充てることができ、実データの転送容量を十分に確保することができる。
また、利便性向上の方策の一つとして、実データを送受信する前に第2の無線通信方式の接続確立処理を行う際、第1の通信ノードN1が、インフラストラクチャモード又はアドホックモードのいずれの通信モードを用いるかを示す通信モード情報を送信し、第2の通信ノードN2が、通信モード情報に基づいて第2の無線通信方式の通信モードの設定を行うので、予め通信モードを固定しておく必要がなく、同じ車載通信装置4や路側通信装置5が両方のモードで通信を行うことができる。すなわち、実データを受信する側の装置が車載通信装置4の場合、通信相手が路側通信装置5であれば、インフラストラクチャモードによって路車通信を行い、通信相手が車載通信装置4であれば、アドホックモードによって車車通信を行うことが可能である。同様に、実データを受信する側の装置が路側通信装置5の場合、通信相手が路側通信装置5であれば、インフラストラクチャモードによって路路通信を行い、通信相手が車載通信装置4であれば、アドホックモードによって路車通信を行うことが可能である。
更に、性能向上の方策の一つとして、第1の通信ノードN1が路側通信装置5の場合、第1の通信ノードN1は、自らが両側の道路脇のいずれに設置されているかを示す設置場所情報を接続情報に含めて第2の通信ノードN2に送信し、第2の通信ノードN2は、第1の通信ノードN1の設置場所情報に基づいて、第2の無線通信方式に使用されるアンテナを決定する。また、第1の通信ノードN1が車載通信装置4の場合、第1の通信ノードN1は、走行情報を接続情報に含めて第2の通信ノードN2に送信し、第2の通信ノードN2は、第1の通信ノードN1の走行情報に基づいて、第2の無線通信方式に使用されるアンテナを決定する。これによって、第2の無線通信方式に使用されるアンテナの物理的な位置関係に起因した電波受信強度の低下を抑制することができ、実データの転送容量を十分に確保することができる。
次に、図8~図11を参照しながら、第2の実施形態について説明する。図8~図11に示す処理では、第1の通信ノードN1と第2の通信ノードN2は互いに異なり、センサデータを送信する側の装置(=車載通信装置4又は路側通信装置5)が第1の通信ノードN1であり、センサデータを受信する側の装置(=車載通信装置4又は路側通信装置5)が第2の通信ノードN2である。
第2の実施形態では、第1の無線通信方式における通信距離の増大と、第2の無線通信方式における通信速度の増大を目的として、各無線通信の調整処理を実行する。これによって、通信ノード同士が遠距離の場合及びすれ違い時の近距離の場合の両方において、無線通信の受信感度の最大化及び通信スループットの向上を両立させる。
以下、第1の無線通信方式の通信規格はLoRa(登録商標)、第2の無線通信方式の通信規格は802.11ac Wave2として説明する。また、第2の無線通信方式に係る無線通信の通信モードは、インフラストラクチャモードとして説明する。LoRa(登録商標)は、LPWA(Low Power, Wide Area)の一つであり、少ない消費電力で広いエリアをカバーできる。802.11ac Wave2は、周波数を複数束ねることで1度に大容量データが送信できる技術(=チャネルボンディング)と、複数のアンテナを使って通信を高速化し、複数のユーザーへ同時に送信する技術(MU-MIMO)に対応している。MU-MIMOによって、電波干渉が起きないよう位相をずらして複数の信号波をビームフォーミングで送信することができる。
図8は、第2の実施形態に係る通信システムにおける処理の流れを示すフローチャートである。第1の通信ノードN1は、センサデータの取得処理を実行する(ステップS31)。この処理は、第1の実施形態におけるステップS1及びS2と同様である。
次に、第1の通信ノードN1及び第2の通信ノードN2は、第1の無線通信方式の接続処理を実行する(ステップS32)。
図9は、第1の無線通信方式の接続処理の流れを示すフローチャートである。図9に示すように、第1の通信ノードN1は、キャリアセンスを実行する(ステップS41)。キャリアセンスとは、自らが送信する前に、同一周波数を受信し、他のキャリア(=搬送波)があるかどうか検知することである。
キャリアありの場合(ステップS42のYes)、第1の通信ノードN1は、一定時間経過してから再度送信するため、ステップS41から繰り返す。または、第1の通信ノードN1は、受信された他のキャリアがビーコンリクエストであれば、自らが受信側、すなわち第2の通信ノードN2として後述の処理を実行しても良い。
キャリアなしの場合(ステップS42のNo)、第1の通信ノードN1は、自らの存在を示すビーコンリクエストを周期的にブロードキャストする(ステップS43)。
第2の通信ノードN2は、ビーコンリクエストを受信したか否か判定する(ステップS51)。第2の通信ノードN2は、ビーコンリクエストを受信していない場合(ステップS51のNo)は待機し、受信した場合(ステップS51のYes)はビーコンレスポンスを第1の通信ノードN1に送信する(ステップS52)。第1の通信ノードN1もセンサデータを取得している場合、自らが記憶するセンサデータの容量をビーコンレスポンスに含める。
第1の通信ノードN1は、ビーコンレスポンスを受信したか否か判定する(ステップS44)。第1の通信ノードN1は、ビーコンレスポンスを受信していない場合(ステップS44のNo)はステップS43から繰り返し、受信した場合(ステップS44のYes)はステップS45に進む。
ステップS45では、第1の通信ノードN1は、第2の無線通信方式における自らのオペレーションモードを「アクセスポイント」に設定する(ステップS45)。オペレーションモードとは、インフラストラクチャモードにおける各通信ノードの役割のことであり、「アクセスポイント」と「ステーション」の2通りの役割がある。インフラストラクチャモードでは、各ステーションがアクセスポイントに接続しに行く構成となっている。
次に、第1の通信ノードN1は、相手の第2の通信ノードN2にオペレーションモードの指定メッセージを送信する(ステップS46)。オペレーションモードの指定メッセージには、第2の通信ノードN2のオペレーションモードを「ステーション」に設定させるための指示に加えて、自らが記憶するセンサデータの容量を含める。
第2の通信ノードN2は、オペレーションモードの指定メッセージを受信したか否か判定する(ステップS53)。第1の通信ノードN1は、オペレーションモードの指定メッセージを受信していない場合(ステップS53のNo)はステップS52から繰り返し、受信した場合(ステップS53のYes)は自らのオペレーションモードを「ステーション」に設定する(ステップS54)。
次に、第2の通信ノードN2は、自らと相手のセンサデータの容量に基づいて、センサデータを送受信するための第2の無線通信方式による推定通信時間を計算する(ステップS55)。
図8の説明に戻る。第1の通信ノードN1及び第2の通信ノードN2は、第2の無線通信方式の接続準備処理を実行する(ステップS33)。この処理は、第1の実施形態におけるステップS7からS9までと同様である。
第1の実施形態では、第2の無線通信方式に用いるアンテナを車両3の左右のドアミラーにそれぞれ設置し、ステップS9において2本のアンテナから1本を選択するものとして説明したが、アンテナの本数はこれに限定されるものではない。例えば、車両3の前方の左右のドアミラー及び後方のリアルーフの4か所にアンテナを設置し、ステップS9において4本のアンテナから1本を選択しても良い。この場合、第1の通信ノードN1及び第2の通信ノードN2は、第1の通信ノードN1と第2の通信ノードN2が接近している間は前方の2本のアンテナのいずれかを選択し、すれ違った後は後方の2本のアンテナのいずれかを選択する。
次に、第1の通信ノードN1及び第2の通信ノードN2は、第1の無線通信方式の調整処理を実行する(ステップS34)。無線通信では通信速度と通信距離にはトレードオフの関係があり、第1の無線通信方式のLoRa(登録商標)は、設定値である拡散係数dを調整することで、通信速度と通信距離のバランスが取れる。拡散係数dが大きいと、S/N比が高くなり、通信距離が長くなるが、データ転送速度は下がる。逆に、拡散係数dが小さいと、S/N比が低くなり、通信距離が短くなるが、データ転送速度は上がる。S/N比と受信強度RSSIは相関があるので、拡散係数dと受信強度RSSIにも相関がある。従って、中山間地域の樹木や市街地での建物の影響によるノイズ障害の変化に対して、第1の通信ノード及び前記第2の通信ノードが、互いに相手方から送信される第1の無線通信方式に係る無線通信の電波の受信強度RSSIを定期的に送受信し、受信強度RSSIに応じて第1の無線通信方式に係る無線通信のパラメータである拡散係数dを調整することにより、データエラー率を一定以下に保つことができる。
図10は、第1の無線通信方式の調整処理の流れを示すフローチャートである。図10に示すように、第1の通信ノードN1及び第2の通信ノードN2は、変数を初期化する(ステップS61、ステップS71)。変数は、受信強度RSSIと拡散係数dであり、受信強度RSSIの初期値はその時点での実測値、拡散係数dの初期値は7~12のうちの最大値12である。いずれもセンサデータの送信側(=第1の通信ノードN1)と受信側(=第2の通信ノードN2)の変数が存在し、送信側の受信強度S_RSSI、送信側の拡散係数S_d、受信側の受信強度R_RSSI、受信側の拡散係数R_dの4つの変数がある。送信側の受信強度S_RSSIは、第1の無線通信方式によって受信側から送信される電波を送信側が受信したときの電波の受信強度を示し、受信側の受信強度R_RSSIは、第1の無線通信方式によって送信側から送信される電波を受信側が受信したときの電波の受信強度を示している。
次に、第1の通信ノードN1及び第2の通信ノードN2は、走行情報として緯度、経度、高度、進行方向、車速度を測定する(ステップS62、ステップS72)。走行情報は、お互いの現在位置などを確認するために用いられる。
次に、第1の通信ノードN1は、位置データリクエストを第2の通信ノードN2に送信する(ステップS63)。位置データリクエストには、現在時刻、ステップS62において測定される走行情報、送信側の受信強度S_RSSI、送信側の拡散係数S_dが含まれる。
次に、第2の通信ノードN2は、位置データリクエストを受信したか否か判定する(ステップS73)。第2の通信ノードN2は、位置データリクエストを受信していない場合(ステップS73のNo)は待機し、受信した場合(ステップS73のYes)はステップS74に進む。
ステップS74において、第2の通信ノードN2は、送信側の受信強度S_RSSIに基づいて、受信側の拡散係数R_dを調整する。具体的には、処理の繰り返しの添え字をi(i=1、2、・・・)とすると、S_RSSI(i)-S_RSSI(i-1)<0であれば、R_d(i)=R_d(i-1)+1とし、S_RSSI(i)-S_RSSI(i-1)>0であれば、R_d(i)=R_d(i-1)-1とし、S_RSSI(i)-S_RSSI(i-1)=0であれば、R_d(i)=R_d(i-1)とする。
ここで、第1の通信ノードNと第2の通信ノードN2の拡散係数dが同じでなければ通信ができないため、送信側の拡散係数S_dに変更があれば、第2の通信ノードN2は、前述の調整処理を行わず、受信側の拡散係数R_dを送信側の拡散係数S_dの値に変更する。
次に、第2の通信ノードN2は、位置データレスポンスを第1の通信ノードN1に送信する(ステップS75)。位置データレスポンスには、現在時刻、ステップS72において測定される走行情報、受信側の受信強度R_RSSI、受信側の拡散係数R_dが含まれる。前述の通り、第1の通信ノードN1と第2の通信ノードN2の拡散係数dが同じでなければ通信ができないため、ステップS75において拡散係数R_dの調整を行った場合であっても、送信側の拡散係数S_dと同じ値を用いて位置データレスポンスを送信し、送信後に拡散係数dの設定値を調整した値に変更する。
次に、第1の通信ノードN1は、位置データレスポンスを受信したか否か判定する(ステップS64)。第1の通信ノードN1は、位置データレスポンスを受信していない場合(ステップS64のNo)は待機し、受信した場合(ステップS64のYes)はステップS65に進む。
ステップS65において、第1の通信ノードN1は、受信側の受信強度R_RSSIに基づいて、送信側の拡散係数S_dを調整する。具体的には、R_RSSI(i)-R_RSSI(i-1)<0であれば、S_d(i)=S_d(i-1)+1とし、R_RSSI(i)-R_RSSI(i-1)>0であれば、S_d(i)=S_d(i-1)-1とし、R_RSSI(i)-R_RSSI(i-1)=0であれば、S_d(i)=S_d(i-1)とする。
ここで、前述の通り、第1の通信ノードN1と第2の通信ノードN2の拡散係数dが同じでなければ通信ができないため、受信側の拡散係数R_dに変更があれば、第1の通信ノードN1は、前述の調整処理を行わず、送信側の拡散係数S_dを受信側の拡散係数R_dの値に変更する。
次に、第1の通信ノードN1及び第2の通信ノードN2は、第2の無線通信方式の受信強度が閾値以上か否か確認する(ステップS66、ステップS76)。閾値未満の場合(ステップS66のNo、ステップS76のNo)、第1の通信ノードN1及び第2の通信ノードN2は、それぞれステップS62及びS72から繰り返し、閾値以上の場合(ステップS66のYes、ステップS76のYes)、処理を終了する。
図8の説明に戻る。第1の通信ノードN1及び第2の通信ノードN2は、ステップS32において送受信される接続情報に基づいて、第1の無線通信方式に係る無線通信によって、第2の無線通信方式の接続確立処理を実行する(ステップS35)。この処理は、第1の実施形態におけるステップS10と同様であるが、接続手順をより簡略化しても良い。
次に、第1の通信ノードN1及び第2の通信ノードN2は、第2の無線通信方式に係る無線通信によって、実データであるセンサデータの送受信を行う(ステップS36)。第2の無線通信方式の802.11ac Wave2では、ビームフォーミングによって特定の方向に向けて電波の送受信が可能である。そこで、センサデータの送受信の間、第1の通信ノードN1及び第2の通信ノードN2は、互いに走行情報を定期的に送受信し、走行情報に応じてアンテナの方向を調整する。これによって、通信速度を増大させることができる。
図11は、センサデータの送受信処理の流れを示すフローチャートである。図11に示すように、第1の通信ノードN1及び第2の通信ノードN2は、走行情報として緯度、経度、高度、進行方向、車速度を測定する(ステップS81、ステップS91)。走行情報は、お互いの現在位置などを確認するために用いられる。
次に、第1の通信ノードN1は、送信側データを第2の通信ノードN2に送信する(ステップS82)。送信側データには、現在時刻、ステップS81において測定される送信側の走行情報、送信側の受信強度S_RSSI、送信側のセンサデータが含まれる。
次に、第2の通信ノードN2は、送信側データを受信したか否か判定する(ステップS92)。第2の通信ノードN2は、一定期間経過しても送信側データを受信していない場合(ステップS92のNo)は処理を終了し、受信した場合(ステップS92のYes)はステップS93に進む。
ステップS93では、第2の通信ノードN2は、相手の走行情報と、ステップS91において測定される自らの走行情報に基づいて、自らのアンテナ方向を調整する。走行情報には緯度、経度、進行方向、車速度が含まれていることから、第2の通信ノードN2は、所定時間後の走行位置を推定し、お互いの現在位置や所定時間後の走行位置に基づいて、自らのアンテナ方向を調整することができる。
次に、第2の通信ノードN2は、受信側データを第1の通信ノードN1に送信する(ステップS94)。受信側データには、現在時刻、ステップS91において測定される受信側の走行情報、受信側の受信強度R_RSSI、受信側のセンサデータが含まれる。
次に、第1の通信ノードN1は、受信側データを受信したか否か判定する(ステップS83)。第1の通信ノードN1は、一定期間経過しても受信側データを受信していない場合(ステップS83のNo)は処理を終了し、受信した場合(ステップS83のYes)はステップS84に進む。
ステップS84では、第1の通信ノードN1は、相手の走行情報と、ステップS81において測定される自らの走行情報に基づいて、自らのアンテナ方向を調整する。走行情報には緯度、経度、進行方向、車速度が含まれていることから、第1の通信ノードN1は、所定時間後の走行位置を推定し、所定時間後の走行位置に基づいて、自らのアンテナ方向を調整することもできる。
図11の処理は、センサデータの送受信が完了するか、または第2の無線通信方式の受信強度RSSIが閾値未満となり、第2の無線通信方式による無線通信ができなくなると終了する。
以上の通り、第2の実施形態における通信システム1は、更に性能が向上されている。性能向上の方策の一つとして、第1の通信ノードN1及び第2の通信ノードN2が、互いに相手方から送信される記第1の無線通信方式に係る無線通信の電波の受信強度RSSIを定期的に送受信し、受信強度RSSIに応じて第1の無線通信方式に係る無線通信のパラメータである拡散係数dを調整するので、データエラー率を一定以下に保ちながら、通信距離を増大させることができる。
また、性能向上の方策の一つとして、第1の通信ノードN1及び第2の通信ノードN2が、互いに走行情報を定期的に送受信し、走行情報に応じてアンテナの方向を調整するので、通信相手に追従しながらビームフォーミングを行うことができ、通信速度を増大させることができる。そして、実データの転送容量を十分に確保することができる。
以上、添付図面を参照しながら、本発明に係る通信システム等の好適な実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、本願で開示した技術的思想の範疇内において、各種の変更例又は修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。