JP7269580B2 - Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof - Google Patents

Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof Download PDF

Info

Publication number
JP7269580B2
JP7269580B2 JP2018209336A JP2018209336A JP7269580B2 JP 7269580 B2 JP7269580 B2 JP 7269580B2 JP 2018209336 A JP2018209336 A JP 2018209336A JP 2018209336 A JP2018209336 A JP 2018209336A JP 7269580 B2 JP7269580 B2 JP 7269580B2
Authority
JP
Japan
Prior art keywords
ldp1
protein
strain
gene
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018209336A
Other languages
Japanese (ja)
Other versions
JP2020074703A (en
Inventor
重明 原山
准平 早川
曜子 井出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Chuo University
Original Assignee
Denso Corp
Chuo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Chuo University filed Critical Denso Corp
Priority to JP2018209336A priority Critical patent/JP7269580B2/en
Publication of JP2020074703A publication Critical patent/JP2020074703A/en
Application granted granted Critical
Publication of JP7269580B2 publication Critical patent/JP7269580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

IPOD IPOD FERM BP-10484FERM BP-10484 IPOD IPOD FERM BP-22179FERM BP-22179 IPOD IPOD FERM BP-22254FERM BP-22254

本発明は、油滴タンパク質遺伝子の変異によって油脂分解能が減少し、油脂蓄積量及び油脂生産性が増加した緑藻変異体及びその利用に関する。 TECHNICAL FIELD The present invention relates to mutant green algae in which lipolysis is reduced and lipid accumulation and lipid productivity are increased due to mutations in lipid droplet protein genes, and uses thereof.

単細胞性の真核光合成生物(以下、「真核微細藻類」と呼ぶ)が生産するトリアシルグリセロール(以下「TAG」と呼ぶ)等を原料として、バイオディーゼル・バイオジェット燃料等の製品を生産する研究が、広く世界的に行われているが、現状では生産コストが高く、商業ベースでの生産は困難である(非特許文献1)。そのため更なる技術開発が続けられており、その1つに藻類の油脂生産性の改良がある。 Products such as biodiesel and bio jet fuel are produced using triacylglycerols (hereinafter referred to as "TAG") produced by unicellular eukaryotic photosynthetic organisms (hereinafter referred to as "eukaryotic microalgae") as raw materials. Although research is being conducted widely worldwide, production costs are currently high, and production on a commercial basis is difficult (Non-Patent Document 1). Therefore, further technical development is ongoing, one of which is the improvement of algal oil productivity.

真核微細藻類は、窒素、リン、あるいは硫黄欠乏等のストレス条件下で、細胞内に炭水化物や脂質を蓄積することが知られている。蓄積された油脂(主にTAG)は、油滴(Lipid droplet)と呼ばれるリン脂質一重膜に包まれた細胞内小器官に蓄積される。細胞内の油滴のリン脂質一重膜には油滴タンパク質(Lipid droplet protein:以下、「LDP」と称する)と呼ばれるタンパク質が多数存在する。動物や菌類、植物等、生物種によって様々なタイプのLDPが存在し、油滴の形成や脂質の代謝に関連した機能を持つことが明らかとなりつつあるが、藻類のLDPについては未解明の部分が多い(非特許文献2)。 Eukaryotic microalgae are known to accumulate carbohydrates and lipids in their cells under stress conditions such as nitrogen, phosphorus, or sulfur deficiency. Accumulated lipids (mainly TAG) are accumulated in intracellular organelles called lipid droplets, which are surrounded by a single phospholipid membrane. A large number of proteins called lipid droplet proteins (hereinafter referred to as 'LDP') are present in the phospholipid monolayer of intracellular oil droplets. Various types of LDP exist depending on species such as animals, fungi, and plants, and it is becoming clear that they have functions related to the formation of oil droplets and lipid metabolism. There are many (Non-Patent Document 2).

藻類では、緑色植物亜界(Viridiplantae)・緑藻植物門(Chlorophyta)・緑藻綱(Chlorophyceae)に属する、クラミドモナス(Chlamydomonas)やドナリエラ(Dunaliella)、ヘマトコッカス(Haematococcus)で、Major lipid droplet protein(MLDP)や、Oil globule protein(OGP)等と呼ばれるLDPが見つかっている(非特許文献3、4、5)。これら緑藻のLDPは配列相同性があり、窒素欠乏時に油脂の蓄積が増加するのと同時に遺伝子発現が増加し、油滴の膜に局在することが示されている(非特許文献3、4、5)。クラミドモナスで同定されたMLDP(CHLREDRAFT_192823; NCBI accession number XP_001697668)の遺伝子発現を抑制すると油滴径が大きくなることが示されたが、油脂の蓄積量に変化はなかった(非特許文献3)。 Among algae, Chlamydomonas, Dunaliella, Haematococcus belonging to Viridiplantae, Chlorophyta, and Chlorophyceae belong to Major lipid droplet protein (MLDP) and LDPs called oil globule protein (OGP) have been found (Non-Patent Documents 3, 4, 5). These green algae LDPs have sequence homology, and it has been shown that gene expression increases at the same time as oil accumulation increases during nitrogen starvation, and that they are localized in the membrane of oil droplets (Non-Patent Documents 3 and 4). , 5). Suppression of the gene expression of MLDP (CHLREDRAFT_192823; NCBI accession number XP_001697668) identified in Chlamydomonas was shown to increase the oil droplet size, but did not change the amount of fat accumulated (Non-Patent Document 3).

緑色植物亜界(Viridiplantae)・緑藻植物門(Chlorophyta)・トレボキシア藻綱(Trebouxiophyceae)・コッコミクサ属(Coccomyxa)に属する株として、Coccomyxa sp. Obi株、及びCoccomyxa sp. KJ株(以下Obi株及びKJ株と呼ぶ)が知られている。同じトレボキシア藻綱(Trebouxiophyceae)に属する藻類ロボスファエラ(Lobosphaera)においても、油滴タンパク質としてMLDPに配列類似性のあるタンパク質(Oil globule protein)が見つかっている(非特許文献6)。 Coccomyxa sp. Obi strain and Coccomyxa sp. strains) are known. Also in the algae Lobosphaera belonging to the same Trebouxiophyceae, a protein having sequence similarity to MLDP (Oil globule protein) has been found as an oil droplet protein (Non-Patent Document 6).

Obi株は、特許文献1に記載された単細胞性緑藻Pseudochoricystis ellipsoidea MBIC11204株と同一の株で、受託番号FERM BP-10484として寄託されている。KJ株は、Obi株に近縁であるがObi株の約2倍の油脂生産性(培養液容量当たりの油脂生産速度)を有し、特許文献2にシュードココミクサ(Pseudococcomyxa)属KJ株として記載されている。この株は、受託番号FERM BP-22254として寄託されている。Obi株及びKJ株は、pH3.5以下の培地でも生育がよく、特許文献3に示された開放系培養システムで培養でき、特許文献4に示された方法で連続的に屋外において油脂生産を行うことができる。 The Obi strain is the same strain as the unicellular green alga Pseudochoricystis ellipsoidea MBIC11204 strain described in Patent Document 1, and has been deposited under Accession No. FERM BP-10484. The KJ strain is closely related to the Obi strain, but has approximately twice the oil productivity (oil production rate per volume of culture medium) of the Obi strain. Are listed. This strain has been deposited under accession number FERM BP-22254. The Obi strain and the KJ strain grow well even in a medium with a pH of 3.5 or less, can be cultured in the open culture system shown in Patent Document 3, and can be continuously produced outdoors by the method shown in Patent Document 4. It can be carried out.

本発明者等は、Obi株及びKJ株のゲノム配列を解読し、これらの育種と培養技術の改良に取り組んできた。油脂生産性が向上した株の育種のためには、例えば光合成の光利用効率を向上させる方法(特許文献5)、油脂生産に関わる酵素の活性を促進させる方法(特許文献6)、あるいは、油脂分解を抑制する方法(特許文献7)等が考えられる。これまで、突然変異誘起剤の処理により、高等植物のSugar-dependent 1(SDP1)に配列類似性を持つTAGリパーゼ遺伝子に変異を持つ株が、Obi株及びKJ株から複数単離されている(特許文献7)。KJ株におけるSDP1変異体では、油脂の分解は抑制されたが、窒素欠乏時における油脂生産性の増加は見られなかった。 The present inventors have deciphered the genome sequences of the Obi strain and the KJ strain, and have worked to improve their breeding and culture techniques. In order to breed strains with improved oil productivity, for example, a method of improving the light utilization efficiency of photosynthesis (Patent Document 5), a method of promoting the activity of enzymes involved in oil production (Patent Document 6), or oil A method for suppressing decomposition (Patent Document 7) and the like are conceivable. So far, several strains with mutations in the TAG lipase gene with sequence similarity to sugar-dependent 1 (SDP1) of higher plants have been isolated from Obi and KJ strains by treatment with mutagen agents ( Patent document 7). The SDP1 mutant in the KJ strain inhibited lipid degradation, but did not increase lipid productivity under nitrogen deficiency.

特許第4748154号公報Patent No. 4748154 特許第6088375号公報Patent No. 6088375 特許第6235210号公報Patent No. 6235210 特許第5810831号公報Patent No. 5810831 特開2013-102715号公報JP 2013-102715 A 特開2017-046643号公報JP 2017-046643 A 特開2017-046645号公報JP 2017-046645 A

Chisti Y. (2013) Constraints to commercialization of algal fuels. J. Biotechnol. 167: 201-214.Chisti Y. (2013) Constraints to commercialization of algal fuels. J. Biotechnol. 167: 201-214. Huang AHC. (2018) Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol. 176: 1894-1918.Huang AHC. (2018) Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol. 176: 1894-1918. Moellering ER, Benning C. (2010) RNA Interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell. 9: 97-106.Moellering ER, Benning C. (2010) RNA Interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell. 9: 97-106. Davidi L, Katz A, Pick U. (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta. 236: 19-33.Davidi L, Katz A, Pick U. (2012) Characterization of major lipid droplet proteins from Dunaliella. Planta. 236: 19-33. Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S. (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids. 46: 851-861.Peled E, Leu S, Zarka A, Weiss M, Pick U, Khozin-Goldberg I, Boussiba S. (2011) Isolation of a novel oil globule protein from the green alga Haematococcus pluvialis (Chlorophyceae). Lipids. 46: 851-861 . Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I. (2017) Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biol. 17: 98.Siegler H, Valerius O, Ischebeck T, Popko J, Tourasse NJ, Vallon O, Khozin-Goldberg I, Braus GH, Feussner I. (2017) Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa. BMC Plant Biol. 17 : 98.

バイオ燃料生産の実用化に必要なコスト削減の有力な手段として真核微細藻類の油脂生産性の増加が考えられる。細胞内では油脂の合成と同時に分解も起こるが、油脂を分解する能力(油脂分解能)が低下した真核微細藻類変異体では、油脂蓄積量(藻体乾燥重量あたりの油脂重量)が増加し、その結果油脂生産性が増大する可能性がある。また、そのような真核微細藻類変異体を培養することにより、バイオ燃料等に供する油脂生産コストを削減することが可能となる。 Increasing the fat and oil productivity of eukaryotic microalgae can be considered as a powerful means of cost reduction required for commercialization of biofuel production. Degradation of lipids occurs simultaneously with the synthesis of lipids in cells, but in eukaryotic microalgae mutants with reduced ability to decompose lipids (lipolysis), the amount of lipids accumulated (weight of lipids per dry weight of algae) increases, Fats and oils productivity may increase as a result. In addition, by culturing such eukaryotic microalgae mutants, it is possible to reduce the production cost of fats and oils used for biofuels and the like.

そこで、本発明は、油脂分解能が低下し、油脂蓄積量及び油脂生産性が向上した真核微細藻類を提供することを目的とする。 Accordingly, an object of the present invention is to provide eukaryotic microalgae with reduced fat-degrading capacity and improved fat-accumulation and fat-productivity.

上記課題を解決するため鋭意研究を行った結果、特定のLDP(LDP1)をコードする遺伝子が変異した真核微細藻類では、油脂分解能が低下し、油脂蓄積量及び油脂生産性が向上することを見出し、本発明を完成するに至った。 As a result of intensive research to solve the above problems, eukaryotic microalgae in which the gene encoding a specific LDP (LDP1) is mutated has a reduced ability to decompose oils and fats, and an increase in fat accumulation and fat productivity. The discovery led to the completion of the present invention.

すなわち、本発明は以下を包含する。
(1)配列番号7又は配列番号8に示すLDPの保存領域と少なくとも50%の配列同一性を有するアミノ酸配列を有し、且つ油滴の膜表面に局在するタンパク質の機能が低下した真核微細藻類変異体であって、親株と比較して、細胞内の油脂蓄積量及び油脂生産性が増加し、且つ油脂分解能が減少した、前記真核微細藻類変異体。
(2)前記タンパク質をコードする遺伝子を破壊した、(1)記載の真核微細藻類変異体。
(3)前記タンパク質をコードする遺伝子の発現を低下させた、(1)記載の真核微細藻類変異体。
(4)前記タンパク質をコードする遺伝子の翻訳効率を低下させた、(1)記載の真核微細藻類変異体。
(5)緑藻植物門(Chlorophyta)に属する、(1)~(4)のいずれか1記載の真核微細藻類変異体。
(6)トレボキシア藻網(Trebouxiophyceae)に属する、(5)記載の真核微細藻類変異体。
(7)コッコミクサ属(Coccomyxa)に属する、(6)記載の真核微細藻類変異体。
(8)(1)~(7)のいずれか1記載の真核微細藻類変異体を培養する工程を含む、油脂生産方法。
That is, the present invention includes the following.
(1) A eukaryote having an amino acid sequence having at least 50% sequence identity with the conserved region of LDP shown in SEQ ID NO: 7 or SEQ ID NO: 8 and having reduced function of a protein localized on the membrane surface of oil droplets A eukaryotic microalgae mutant, which has increased intracellular lipid accumulation and lipid productivity and reduced lipolysis compared to the parent strain.
(2) The eukaryotic microalgae mutant according to (1), wherein the gene encoding the protein has been disrupted.
(3) The eukaryotic microalgae mutant according to (1), which has reduced expression of the gene encoding the protein.
(4) The eukaryotic microalgae mutant according to (1), wherein the translation efficiency of the gene encoding the protein is reduced.
(5) The eukaryotic microalgae mutant according to any one of (1) to (4), which belongs to the phylum Chlorophyta.
(6) The eukaryotic microalgae mutant according to (5), belonging to Trebouxiophyceae.
(7) The eukaryotic microalgae mutant according to (6), which belongs to the genus Coccomyxa.
(8) A method for producing oils and fats, comprising a step of culturing the eukaryotic microalgae mutant according to any one of (1) to (7).

本発明によれば、細胞内の油脂蓄積量及び油脂生産性が増加し、且つ油脂分解能が減少した真核微細藻類変異体を作出することが可能となる。また、本発明に係る真核微細藻類変異体を培養することにより、バイオ燃料等に供する油脂の生産コストを削減することが可能となる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to create eukaryotic microalgae mutants with increased intracellular fat accumulation and fat productivity and decreased fat degradation. In addition, by culturing the mutant eukaryotic microalgae according to the present invention, it is possible to reduce the production cost of fats and oils to be used as biofuels.

Obi株由来のアンテナクロロフィル減少変異体(5P株)と、5P株由来のLDP1遺伝子突然変異体(ldp1-1)を窒素欠乏(1/2A7)培地、連続光条件下、試験管で14日間培養後、窒素十分(MA5)培地に移して暗所で3日間培養し、油脂蓄積量を24時間ごとに測定した結果を示す。グラフにおいて、縦軸は油脂蓄積量を示し、横軸は窒素十分培地に移し、暗所で移してからの時間を示す。Antenna chlorophyll-depleted mutant (5P strain) derived from Obi strain and LDP1 gene mutant (ldp1-1) derived from 5P strain were cultured in test tubes under nitrogen-deficient (1/2A7) medium under continuous light conditions for 14 days. After that, it was transferred to a nitrogen-sufficient (MA5) medium and cultured in the dark for 3 days, and the amount of oil accumulated was measured every 24 hours. In the graph, the vertical axis indicates the accumulated amount of fat and oil, and the horizontal axis indicates the time after transferring to a nitrogen-sufficient medium and transferring in the dark. 配列の一覧を示す。Shows a list of arrays. 図2-1の続きである。This is a continuation of Figure 2-1. 図2-2の続きである。This is a continuation of Figure 2-2. 図2-3の続きである。This is a continuation of Figure 2-3. 図2-4の続きである。This is a continuation of Figure 2-4. 図2-5の続きである。This is a continuation of Figure 2-5.

以下、本発明を詳細に説明する。 The present invention will be described in detail below.

本発明は、LDP1と命名したLDPタンパク質の機能を低化させることにより、親株と比較して、細胞内の油脂蓄積量及び油脂生産性が増加し、且つ油脂分解能が減少した真核微細藻類変異体に関する。 By reducing the function of the LDP protein named LDP1, the present invention is a eukaryotic microalgae mutation that has increased intracellular lipid accumulation and lipid productivity and decreased lipolysis compared to the parent strain. Regarding the body.

突然変異誘起剤であるN-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)を処理して得られたObi株由来の変異体は、配列番号2に示すLDP1遺伝子(ゲノム配列)に変異を有していた。 A mutant derived from the Obi strain obtained by treatment with the mutagen N-methyl-N'-nitro-N-nitrosoguanidine (NTG) was mutated to the LDP1 gene (genomic sequence) shown in SEQ ID NO: 2. had

クラミドモナスのLDPで油滴の大きさに関わることが示されているmajor lipid droplet protein(MLDP)(非特許文献3)や、同じく緑藻綱のドナリエラ(非特許文献4)、ヘマトコッカス(非特許文献5)のLDPとアミノ酸配列において約20~30%の同一性を持つタンパク質が、Obi株及びKJ株においてそれぞれ2つ見出されており、それらをLDP1タンパク質及びLDP2タンパク質と命名した。KJ株のLDP1タンパク質及びLDP2タンパク質のアミノ酸配列をそれぞれ配列番号5及び配列番号9に示す。また、Obi株のLDP1タンパク質及びLDP2タンパク質のアミノ酸配列をそれぞれ配列番号6及び配列番号10に示す。 Major lipid droplet protein (MLDP) (Non-Patent Document 3), which has been shown to be related to the size of oil droplets in LDP of Chlamydomonas, Donaliella (Non-Patent Document 4) of the same Chlorophyceae, Haematococcus (Non-Patent Document Two proteins having about 20 to 30% amino acid sequence identity with LDP of 5) were found in Obi strain and KJ strain, respectively, and they were named LDP1 protein and LDP2 protein. The amino acid sequences of the KJ strain LDP1 protein and LDP2 protein are shown in SEQ ID NO: 5 and SEQ ID NO: 9, respectively. In addition, the amino acid sequences of LDP1 protein and LDP2 protein of Obi strain are shown in SEQ ID NO: 6 and SEQ ID NO: 10, respectively.

一方、KJ株のLDP1遺伝子(ゲノム配列)及びそのCDSの塩基配列をそれぞれ配列番号1及び配列番号3に示す。また、Obi株のLDP1遺伝子(ゲノム配列)及びそのCDSの塩基配列をそれぞれ配列番号2及び配列番号4に示す。 On the other hand, the LDP1 gene (genomic sequence) of the KJ strain and the nucleotide sequence of its CDS are shown in SEQ ID NO: 1 and SEQ ID NO: 3, respectively. In addition, the LDP1 gene (genomic sequence) of the Obi strain and the nucleotide sequence of its CDS are shown in SEQ ID NO: 2 and SEQ ID NO: 4, respectively.

Obi株とKJ株のLDP1のアミノ酸配列は、お互いに約98%の配列同一性を示す。KJ株及びObi株のLDP1タンパク質のN末端9アミノ酸残基及びC末端24アミノ酸残基は、他のLDPのアミノ酸配列との類似性が全く認められない。そこで、これらN末端及びC末端部分を除いた中央部分を、LDP1タンパク質の保存領域と定義する。KJ株及びObi株のLDP1タンパク質の保存領域のアミノ酸配列を、それぞれ配列番号7及び配列番号8に示す。配列番号7及び配列番号8に示すアミノ酸配列とObi株又はKJ株のLDP2のアミノ酸配列とでは、約44%(119/268)の同一性を示す。トレボキシア藻綱に属する藻類ロボスファエラのLDPであるOil globule protein(非特許文献6)と比較して、LDP2タンパク質の保存領域は約52%(139/266)、LDP1タンパク質の保存領域は約45%(121/268)の配列同一性を示す。 The amino acid sequences of LDP1 from the Obi and KJ strains show about 98% sequence identity with each other. The N-terminal 9 amino acid residues and the C-terminal 24 amino acid residues of the LDP1 proteins of the KJ and Obi strains show no similarity with the amino acid sequences of other LDPs. Therefore, the central portion excluding these N-terminal and C-terminal portions is defined as the conserved region of the LDP1 protein. The amino acid sequences of the conserved regions of the LDP1 proteins of the KJ and Obi strains are shown in SEQ ID NO: 7 and SEQ ID NO: 8, respectively. The amino acid sequences shown in SEQ ID NO: 7 and SEQ ID NO: 8 and the amino acid sequence of LDP2 of Obi strain or KJ strain show about 44% (119/268) identity. Compared to the oil globule protein (Non-Patent Document 6), which is the LDP of the algae Lobosphaera belonging to the Treboxiaphyceae, the conserved region of the LDP2 protein is about 52% (139/266), and the conserved region of the LDP1 protein is about 45% ( 121/268).

クラミドモナス、ドナリエラ及びロボスファエラのLDP遺伝子は、油脂の蓄積時に発現量が増加することが示されていた(非特許文献3~6)。これら既知のLDP遺伝子と同様にLDP2遺伝子は窒素欠乏時に発現が増加したが、LDP1遺伝子は窒素欠乏時に発現の増加が見られなかった。 The LDP genes of Chlamydomonas, Donaliella, and Lobosphaera have been shown to increase in expression during oil accumulation (Non-Patent Documents 3 to 6). Similar to these known LDP genes, the LDP2 gene was upregulated during nitrogen starvation, but the LDP1 gene was not upregulated during nitrogen starvation.

上記Obi株由来の変異株及びLDP1遺伝子を破壊したKJ株由来の遺伝子破壊株は、親株と比較して細胞内の油脂蓄積量が増加し、また油脂生産性が増加した。さらに、これらのLDP1遺伝子破壊株では油脂分解が抑制されることを見出し、本発明を完成するに至った。 The mutant strain derived from the Obi strain and the gene-disrupted strain derived from the KJ strain in which the LDP1 gene was disrupted showed an increase in the amount of intracellular lipid accumulation and an increase in lipid productivity compared to the parent strain. Furthermore, the present inventors have found that these LDP1 gene-disrupted strains are inhibited from decomposing fats and oils, and have completed the present invention.

本発明において、真核微細藻類としては、緑藻、珪藻(diatomあるいはBacillariophyceae)、真正眼点藻綱(Eustigmatophyceae)等に属する真核微細藻類を挙げることができる。 In the present invention, examples of eukaryotic microalgae include eukaryotic microalgae belonging to green algae, diatoms or Bacillariophyceae, Eustigmatophyceae, and the like.

緑藻としては、例えばトレボキシア藻網に属する緑藻が挙げられる。トレボキシア藻網に属する緑藻としては、例えば、トレボキシア(Trebouxia)属、クロレラ(Chlorella)属、ボトリオコッカス(Botryococcus)属、コリシスチス(Choricystis)属、コッコミクサ(Coccomyxa)属、シュードコッコミクサ(Pseudococcomyxa)属に属する緑藻が挙げられる。トレボキシア藻網に属する具体的な株としては、Obi株(受託番号FERM BP-10484)及びその変異株P. ellipsoidea 5P株(受託番号FERM BP-22179;以下、「5P株」と呼ぶ場合がある)並びにKJ株(受託番号FERM BP-22254)が挙げられる。Obi株は、平成17年(2005年)2月15日付で独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566日本国茨城県つくば市東1丁目1番地1中央第6)に受託番号FERM P-20401として寄託され、さらに受託番号FERM BP-10484としてブダペスト条約に基づく国際寄託へ移管されている。Obi株は、独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD)(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 120号室)から入手可能である。5P株は、平成23年(2011年)10月21日付で独立行政法人産業技術総合研究所 特許生物寄託センター(〒305-8566日本国茨城県つくば市東1丁目1番地1中央第6)に受託番号FERM P-22179として寄託され、さらに独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD)(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM BP-22179としてブダペスト条約に基づく国際寄託へ移管されている。KJ株は、平成25年(2013年)6月4日付で独立行政法人製品評価技術基盤機構 特許生物寄託センター(NITE-IPOD)(〒292-0818日本国千葉県木更津市かずさ鎌足2-5-8 120号室)に受託番号FERM P-22254として寄託され、さらに受託番号FERM BP-22254としてブダペスト条約に基づく国際寄託へ移管されている。なお、Obi株と5P株とは、同一のLDP1タンパク質をコードする遺伝子(ゲノムDNA塩基配列:配列番号2、CDS塩基配列:配列番号4、全長アミノ酸配列:配列番号6、保存領域のアミノ酸配列:配列番号8)を有する。 Green algae include, for example, green algae belonging to the Treboxia algae. Green algae belonging to the Treboxia algae include, for example, the genus Trebouxia, the genus Chlorella, the genus Botryococcus, the genus Choricystis, the genus Coccomyxa, the genus Pseudococcomyxa. Green algae belonging to Specific strains belonging to Treboxia algae include the Obi strain (accession number FERM BP-10484) and its mutant strain P. ellipsoidea 5P strain (accession number FERM BP-22179; hereinafter sometimes referred to as "5P strain". ) and KJ strain (accession number FERM BP-22254). On February 15, 2005, the Obi strain was entrusted to the National Institute of Advanced Industrial Science and Technology Patent Organism Depositary Center (1-1-1-Chuo-6, Higashi, Tsukuba, Ibaraki, Japan 305-8566). It was deposited under the number FERM P-20401 and has been transferred to the international deposit under the Budapest Treaty under the accession number FERM BP-10484. The Obi strain is available from the National Institute of Technology and Evaluation, Patent Organism Depository (NITE-IPOD) (Room 120, 2-5-8 Kazusa Kamatari, Kisarazu, Chiba 292-0818, Japan). The 5P strain was entrusted to the Independent Administrative Institution National Institute of Advanced Industrial Science and Technology Patent Organism Depositary (1-1-1 Central 6, Higashi Tsukuba, Ibaraki 305-8566 Japan) on October 21, 2011. Deposited as No. FERM P-22179, and further to the National Institute of Technology and Evaluation Patent Organism Depositary Center (NITE-IPOD) (2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan 292-0818 Room 120) It has been transferred to an international deposit under the Budapest Treaty under accession number FERM BP-22179. As of June 4, 2013, the KJ strain was registered with the National Institute of Technology and Evaluation, Patent Organism Depositary Center (NITE-IPOD) (2-5 Kazusa Kamatari, Kisarazu City, Chiba Prefecture 292-0818, Japan). -8 Room 120) under the accession number FERM P-22254, and has been transferred to the international deposit under the Budapest Treaty under the accession number FERM BP-22254. The Obi strain and the 5P strain have the same gene encoding the LDP1 protein (genomic DNA nucleotide sequence: SEQ ID NO: 2, CDS nucleotide sequence: SEQ ID NO: 4, full-length amino acid sequence: SEQ ID NO: 6, conserved region amino acid sequence: SEQ ID NO: 8).

トレボキシア藻網に属する緑藻以外の緑藻としては、例えばテトラセルミス(Tetraselmis)属、アンキストロデスムス(Ankistrodesmus)属、ドラニエラ(Dunalliella)属、ネオクロリス(Neochloris)属、クラミドモナス属、イカダモ(=セネデスムス:Scenedesmus)属等に属する緑藻が挙げられる。 Green algae other than those belonging to Treboxia algae include, for example, the genus Tetraselmis, the genus Ankistrodesmus, the genus Dunalliella, the genus Neochloris, the genus Chlamydomonas, and the squid (= Scenedesmus) Examples include green algae belonging to the genus and the like.

更に珪藻としては、フィストゥリフェラ(Fistulifera)属、フェオダクチラム属、タラシオシラ(Thalassiosira)属、シクロテラ(Cyclotella)属、シリンドロティカ(Cylindrotheca)属、スケレトネマ(Skeletonema)属等に属する真核微細藻類を挙げることができる。また、真正眼点藻綱としては、ナンノクロロプシス属が挙げられる。 Furthermore, diatoms include eukaryotic microalgae belonging to the genus Fistulifera, the genus Phaeodactylum, the genus Thalassiosira, the genus Cyclotella, the genus Cylindrotheca, the genus Skeletonema, and the like. be able to. Moreover, the genus Nannochloropsis is mentioned as an eutectic algae.

本発明に係る真核微細藻類変異体は、上述の真核微細藻類を親株として、LDP1タンパク質の機能を低下させる方法に供することで得られた真核微細藻類変異体である。ここで、LDP1タンパク質の機能とは、油滴の膜表面に局在し、例えば油滴同士の結合を防ぐこと、及び/又はSDP1リパーゼ(特許文献7)等の脂質分解酵素による油滴中のTAG分解を促進することを意味する。 The eukaryotic microalgae mutant according to the present invention is a eukaryotic microalgae mutant obtained by subjecting the aforementioned eukaryotic microalgae as a parent strain to a method for reducing the function of the LDP1 protein. Here, the function of the LDP1 protein is to localize on the membrane surface of oil droplets, for example, to prevent binding between oil droplets, and / or to prevent lipolytic enzymes in oil droplets such as SDP1 lipase (Patent Document 7). It means promoting TAG decomposition.

本発明において、LDP1タンパク質としては、配列番号7又は配列番号8に示すアミノ酸配列(すなわち、LDP1タンパク質の保存領域のアミノ酸配列)と少なくとも50%、好ましくは、少なくとも65%、特に好ましくは、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有するアミノ酸配列を有し、且つ油滴の膜表面に局在するタンパク質が挙げられる。 In the present invention, the LDP1 protein is at least 50%, preferably at least 65%, particularly preferably at least 80% the amino acid sequence shown in SEQ ID NO: 7 or SEQ ID NO: 8 (that is, the amino acid sequence of the conserved region of the LDP1 protein). %, most preferably at least 85%, at least 90%, at least 95%, 100% sequence identity and proteins localized to the membrane surface of oil droplets.

また、LDP1タンパク質としては、配列番号5又は配列番号6に示すアミノ酸配列と少なくとも50%、好ましくは、少なくとも65%、特に好ましくは、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有するアミノ酸配列から成り、且つ油滴の膜表面に局在するタンパク質が挙げられる。 In addition, the LDP1 protein is at least 50%, preferably at least 65%, particularly preferably at least 80%, most preferably at least 85%, at least 90%, the amino acid sequence shown in SEQ ID NO: 5 or SEQ ID NO: 6, Proteins consisting of amino acid sequences with at least 95%, 100% sequence identity and localized to the membrane surface of oil droplets are included.

LDP1遺伝子としては、上記LDP1タンパク質をコードする遺伝子が挙げられる。また、LDP1遺伝子としては、配列番号3又は配列番号4に示すmRNAのコーディング領域と少なくとも50%、好ましくは、少なくとも58%、特に好ましくは、少なくとも65%、少なくとも80%、最も好ましくは、少なくとも85%、少なくとも90%、少なくとも95%、100%の配列同一性を有する塩基配列から成り、且つ油滴の膜表面に局在するタンパク質をコードする遺伝子が挙げられる。 Examples of the LDP1 gene include genes encoding the LDP1 protein described above. In addition, the LDP1 gene is at least 50%, preferably at least 58%, particularly preferably at least 65%, at least 80%, most preferably at least 85% of the coding region of the mRNA shown in SEQ ID NO: 3 or SEQ ID NO: 4. %, at least 90%, at least 95%, or 100% sequence identity, and encoding a protein localized on the membrane surface of oil droplets.

多くの真核微細藻類においては、複数のLDP1遺伝子、例えば対立遺伝子、同義遺伝子等が存在する場合があるが、本発明においては、これらのうち少なくとも1つ又は複数のLDP1遺伝子を意味する。 In many eukaryotic microalgae, multiple LDP1 genes such as alleles, synonymous genes, etc. may exist, and in the present invention, at least one or more of these LDP1 genes are meant.

本発明においては、以上に説明したLDP1遺伝子を有する真核微細藻類に対して、LDP1タンパク質の機能を低下させる方法に供することで、本発明に係る真核微細藻類変異体を得ることができる。 In the present invention, eukaryotic microalgae mutants according to the present invention can be obtained by subjecting eukaryotic microalgae having the LDP1 gene described above to a method for reducing the function of the LDP1 protein.

具体的に、本発明に係るLDP1タンパク質の機能を低下させる方法としては、薬剤や放射線、紫外線等でランダムに変異を導入し、LDP1遺伝子に変異を持つ株を表現型で選抜する方法等が挙げられる。またLDP1遺伝子を選択的に破壊する方法としては、ゲノム編集による遺伝子破壊法等が挙げられる。 Specifically, the method of reducing the function of the LDP1 protein according to the present invention includes a method of randomly introducing mutations with drugs, radiation, ultraviolet rays, etc., and phenotypically selecting strains having mutations in the LDP1 gene. be done. Methods for selectively disrupting the LDP1 gene include gene disruption by genome editing.

さらに、LDP1タンパク質の機能を低下させる方法としては、例えば
(1) LDP1遺伝子をターゲットとして変異を導入し、当該遺伝子を破壊する;
(2) LDP1遺伝子の転写を抑制し、該遺伝子の発現を低下させる;
(3) LDP1遺伝子の翻訳を抑制し、該遺伝子の翻訳効率を低下させる;
方法が挙げられる。
Furthermore, as a method of reducing the function of LDP1 protein, for example
(1) introduce a mutation targeting the LDP1 gene to disrupt the gene;
(2) suppressing the transcription of the LDP1 gene and reducing the expression of the gene;
(3) suppressing the translation of the LDP1 gene and reducing the translation efficiency of the gene;
method.

(1) LDP1遺伝子をターゲットとして変異を導入する方法
LDP1遺伝子をターゲットとして変異を導入する方法としては、ZFN、TALENあるいはCRISPR/Casと呼ばれる遺伝子ノックアウト法(Gaj T, Gersbach CA, Barbas CF 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 31:397-405.)を用いることにより、その遺伝子が欠損した変異体を作出できる。
(1) Method of introducing mutations targeting the LDP1 gene
As a method for introducing mutations targeting the LDP1 gene, gene knockout methods called ZFN, TALEN, or CRISPR/Cas (Gaj T, Gersbach CA, Barbas CF 3rd. (2013) ZFN, TALEN, and CRISPR/Cas-based methods (for genome engineering. Trends Biotechnol. 31:397-405.) can be used to create mutants lacking the gene.

(2) LDP1遺伝子の転写を抑制し、該遺伝子の発現を低下させる方法
LDP1遺伝子の転写を抑制する方法としては、対象となる真核微細藻類における該遺伝子のプロモーター領域に変異を導入する方法が挙げられる。
(2) A method for suppressing transcription of the LDP1 gene and reducing expression of the gene
Methods for suppressing the transcription of the LDP1 gene include methods for introducing mutations into the promoter region of the gene in eukaryotic microalgae of interest.

また、該遺伝子の正の発現制御に関わる遺伝子に変異を導入し、それらの機能を低下させる方法が挙げられる。 Another example is a method of introducing mutations into genes involved in the positive expression control of the genes to reduce their functions.

あるいは、該遺伝子の負の発現制御に関わる遺伝子に変異を導入し、負の発現制御が常時働くようにする方法が挙げられる。 Alternatively, there is a method of introducing a mutation into a gene involved in negative expression control of the gene so that the negative expression control always works.

(3) LDP1遺伝子の翻訳を抑制し、該遺伝子の翻訳効率を低下させる方法
LDP1遺伝子の翻訳を抑制する方法としては、いわゆるRNA干渉法(Cerutti H et al., 2011, Eukaryot Cell, 10, 1164)やアンチセンス法が挙げられる。
(3) A method for suppressing translation of the LDP1 gene and reducing the translation efficiency of the gene
Methods for suppressing translation of the LDP1 gene include the so-called RNA interference method (Cerutti H et al., 2011, Eukaryot Cell, 10, 1164) and the antisense method.

さらに、本発明は、以上に説明した本発明に係る真核微細藻類変異体を大量培養し、TAGを含む油脂を生産する方法を含む。大量培養法としては、特許文献3に示された開放系培養システムや、特許文献4に示された連続的な培養方法等が挙げられる。培養後、例えば培養物からヘキサン抽出等によって、TAGを含む油脂を得ることができる。 Furthermore, the present invention includes a method for mass-culturing the eukaryotic microalgae mutant according to the present invention described above to produce oils and fats containing TAG. Mass culture methods include an open culture system disclosed in Patent Document 3, a continuous culture method disclosed in Patent Document 4, and the like. After culturing, fats and oils containing TAG can be obtained by, for example, hexane extraction from the culture.

なお、配列表と共に、配列の一覧を図2に示す。 A list of the sequences is shown in FIG. 2 together with the sequence table.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。 EXAMPLES The present invention will be described in more detail below using examples, but the technical scope of the present invention is not limited to these examples.

〔実施例1〕LDP1遺伝子変異株の単離と油脂生産性評価
Obi株由来のアンテナクロロフィル量が減少した突然変異体である5P株(特許文献5、受託番号FERM BP-22179)を親株にして、N-メチル-N’-ニトロ-N-ニトロソグアニジン(NTG)による突然変異誘起処理を行い、窒素欠乏時の油脂蓄積量を指標としたスクリーニングにより油脂蓄積量が増加した変異体を複数取得した。このスクリーニングでは、Nile RedまたはBODIPYを用いて細胞内に蓄積した油脂を蛍光染色し、セルソーターを用いて蛍光強度が高い細胞を選抜した。そのうち油脂生産性が高かった株のゲノム配列を親株である5P株と比較解析した結果、LDP1遺伝子(ゲノム配列:配列番号2、CDS配列:配列番号4、全長アミノ酸配列:配列番号6、保存領域のアミノ酸配列:配列番号8)前半に一塩基欠損があり、15番目のフェニルアラニン残基以降にフレームシフト変異が起こることから、この変異をldp1-1と名付けた。また、当該変異を有する株をldp1-1変異体と名付けた。
[Example 1] Isolation of LDP1 gene mutant strain and evaluation of oil productivity
Using the 5P strain (Patent Document 5, accession number FERM BP-22179), which is a mutant with reduced antenna chlorophyll content derived from the Obi strain, as the parent strain, N-methyl-N'-nitro-N-nitrosoguanidine (NTG) After mutagenesis with , we obtained several mutants with increased lipid accumulation by screening using the amount of lipid accumulated under nitrogen deficiency as an index. In this screening, oils and fats accumulated in cells were fluorescently stained using Nile Red or BODIPY, and cells with high fluorescence intensity were selected using a cell sorter. As a result of comparative analysis of the genome sequence of the strain with high oil productivity and the parent strain 5P strain, the LDP1 gene (genomic sequence: SEQ ID NO: 2, CDS sequence: SEQ ID NO: 4, full-length amino acid sequence: SEQ ID NO: 6, conserved region Amino acid sequence: SEQ ID NO: 8) There is a single base deletion in the first half, and a frameshift mutation occurs after the 15th phenylalanine residue, so this mutation was named ldp1-1. In addition, the strain having this mutation was named ldp1-1 mutant.

5P株とldp1-1変異体を、試験管で連続光条件下、酸性(pH3.5)の窒素欠乏培地(1/2A7: Takahashi et al., 2017, Algal Res, 32, 300)で13日間培養し、油脂生産性を比較したところ、表1に示すように、ldp1-1変異体において油脂蓄積量が親株の約1.3倍に増加し、培養13日間での油脂生産性は親株の約1.6倍に増加した。 The 5P strain and the ldp1-1 mutant were incubated in a test tube under continuous light conditions in an acidic (pH 3.5) nitrogen-deficient medium (1/2A7: Takahashi et al., 2017, Algal Res, 32, 300) for 13 days. When culturing and comparing the fat productivity, as shown in Table 1, the fat accumulation amount in the ldp1-1 mutant increased to about 1.3 times that of the parent strain, and the fat productivity after 13 days of culture was about 1.6 times that of the parent strain. doubled.

ldp1-1変異体において油脂生産性が増加した理由をさらに探るため、両株での油脂分解能を調べた。まず、窒素欠乏培地で生育させることで油脂を蓄積させた。この株を窒素十分培地に移し暗所に置くと、光合成によるエネルギー獲得が出来ないため、野生株では蓄積された油脂が分解される。そこで5P株とldp1-1変異体とを窒素十分培地(MA5: Imamura et al., 2012, J Gen Appl Microbiol, 58, 1)に移して暗所で3日間連続培養を行ったところ、5P株では速やかな油脂分解が観察されたが、ldp1-1変異体では油脂分解が抑制されていた(図1)。この結果から、LDP1タンパク質は暗所での油脂の分解に必要であり、これが欠損することにより油脂の分解が抑制されることによって、油脂生産性が向上すると推察した。 To further explore the reason for the increased lipid productivity in the ldp1-1 mutant, we investigated the lipolytic activity of both strains. First, oil was accumulated by growing in a nitrogen-deficient medium. When this strain is transferred to a nitrogen-sufficient medium and placed in the dark, the wild strain decomposes the accumulated lipids because it cannot acquire energy through photosynthesis. Therefore, when the 5P strain and the ldp1-1 mutant were transferred to a nitrogen-sufficient medium (MA5: Imamura et al., 2012, J Gen Appl Microbiol, 58, 1) and continuously cultured in the dark for 3 days, the 5P strain However, lipolysis was inhibited in the ldp1-1 mutant (Fig. 1). From these results, it was inferred that the LDP1 protein is necessary for the degradation of fats and oils in the dark, and that the lack of this protein suppresses the degradation of fats and oils, thereby improving fats and oils productivity.

Figure 0007269580000001
Figure 0007269580000001

〔実施例2〕LDP1遺伝子破壊株の単離と油脂生産性評価
実施例1に示したldp1-1変異体はldp1-1変異以外にも約35個の遺伝子に変異が存在したため、その変異体が示す表現型の原因遺伝子変異がldp1-1であることを確定できなかった。そこで、ゲノム編集技術の一つであるCRISPR/Cas9システムを用いて、LDP1遺伝子の破壊を試みた。
[Example 2] Isolation of LDP1 gene disrupted strain and evaluation of oil productivity The ldp1-1 mutant shown in Example 1 had mutations in about 35 genes other than the ldp1-1 mutation, so the mutant ldp1-1 could not be determined to be the causative gene mutation of the phenotype shown by . Therefore, we attempted to disrupt the LDP1 gene using the CRISPR/Cas9 system, one of the genome editing technologies.

先ず、KJ株(受託番号FERM BP-22254)のLDP1遺伝子(ゲノム配列:配列番号1、CDS配列:配列番号3、全長アミノ酸配列:配列番号5、保存領域のアミノ酸配列:配列番号7)を特異的に切断するためのgRNA標的配列を設計し、gRNAを合成した。このgRNAと精製したCas9タンパク質との複合体を形成させた後、この複合体をエレクトロポレーション法で親株の細胞に導入した。次にエレクトロポレーション処理を受けた細胞群を窒素欠乏培地で生育させ、細胞内に油脂を蓄積させた。その後、油脂を蓄積した細胞群を窒素十分培地に移して暗所で培養した。暗所で培養することによって親株では油脂分解が速やかに起こるが、LDP1遺伝子破壊株では油脂分解が起こらないことが実施例1の結果から予想された。このことから、暗所培養後においても油脂蓄積量が高い細胞を、暗所で培養された上記細胞群よりセルソーターで選抜し、選抜された細胞をプレートに播種し、コロニーを多数得た。 First, the LDP1 gene (genome sequence: SEQ ID NO: 1, CDS sequence: SEQ ID NO: 3, full-length amino acid sequence: SEQ ID NO: 5, conserved region amino acid sequence: SEQ ID NO: 7) of the KJ strain (accession number FERM BP-22254) was identified. A gRNA target sequence for targeted cleavage was designed and gRNA was synthesized. After forming a complex between this gRNA and purified Cas9 protein, this complex was introduced into the parental cell line by electroporation. The electroporated cell population was then grown in a nitrogen-deficient medium to allow intracellular lipid accumulation. After that, the cell clusters that accumulated oil were transferred to a nitrogen-sufficient medium and cultured in the dark. From the results of Example 1, it was predicted that lipolysis of the LDP1 gene-disrupted strain would not occur, although lipolysis of the parent strain would occur rapidly by culturing in the dark. For this reason, cells with a high accumulation of oil and fat even after dark culture were selected from the above cell group cultured in the dark using a cell sorter, and the selected cells were seeded on a plate to obtain a large number of colonies.

これらのコロニーから由来した株それぞれについてDNA抽出を行い、gRNA標的配列を含む遺伝子領域をPCR増幅した。表2に示すように、gRNA標的配列内には、PAM配列から1塩基離れた位置から制限酵素HinfIの認識配列が存在する。そこで、得られたPCR断片を制限酵素HinfIで処理後に電気泳動を行い、PCR断片が切断されない変異型DNAを持つコロニーを選抜した。その結果、LDP1遺伝子の標的配列中に変異を持つ株(kjldp1-1~1-4)が複数得られ、その変異の種類は4種類だった(表2)。これらの株は全てLDP1遺伝子にフレームシフト変異が起こっていた。 DNA extraction was performed on each of the strains derived from these colonies, and the gene region containing the gRNA target sequence was PCR amplified. As shown in Table 2, within the gRNA target sequence, there is a recognition sequence for the restriction enzyme HinfI at a position one base away from the PAM sequence. Therefore, the obtained PCR fragment was treated with the restriction enzyme HinfI and electrophoresed, and colonies having mutant DNA in which the PCR fragment was not cleaved were selected. As a result, multiple strains (kjldp1-1 to 1-4) with mutations in the target sequence of the LDP1 gene were obtained, with four types of mutations (Table 2). All these strains had a frameshift mutation in the LDP1 gene.

これらの株を試験管で連続光条件下、酸性の窒素欠乏培地で14日間培養し、油脂生産性を比較したところ、表3に示すように、全てのLDP1遺伝子破壊株において油脂蓄積量及び油脂生産性が親株より増加した。さらに窒素十分培地に移して暗所で4日間連続培養を行ったところ、KJ株(KJ-WT)では油脂蓄積量が52.6%から28.4%にまで減少したが、LDP1遺伝子破壊株では4日後の油脂蓄積量が約60%となり、油脂分解が抑制されていた(表3)。 These strains were cultured in test tubes for 14 days in an acidic, nitrogen-deficient medium under continuous light conditions, and the lipid productivity was compared. Productivity increased over the parent strain. Furthermore, when it was transferred to a nitrogen-sufficient medium and continuously cultured in the dark for 4 days, the amount of oil accumulated in the KJ strain (KJ-WT) decreased from 52.6% to 28.4%, but in the LDP1 gene disruption strain, after 4 days The fat and oil accumulation amount was about 60%, and fat and oil decomposition was suppressed (Table 3).

Figure 0007269580000002
Figure 0007269580000002

Figure 0007269580000003
Figure 0007269580000003

FERM BP-10484
FERM BP-22179
FERM BP-22254
FERM BP-10484
FERM BP-22179
FERM BP-22254

Claims (8)

配列番号7又は配列番号8に示すアミノ酸配列と少なくとも90%の配列同一性を有するアミノ酸配列を有するタンパク質であって、油滴の膜表面に局在する、前記タンパク質の機能が低下した真核微細藻類変異体であって、親株と比較して、細胞内の油脂蓄積量及び油脂生産性が増加し、且つ油脂分解能が減少した、前記真核微細藻類変異体。 A protein having an amino acid sequence having at least 90% sequence identity with the amino acid sequence shown in SEQ ID NO: 7 or SEQ ID NO: 8, wherein the protein is localized on the membrane surface of oil droplets and has reduced function in eukaryotes. A eukaryotic microalgae mutant, which has increased intracellular lipid accumulation and lipid productivity and reduced lipolysis compared to the parent strain. 前記タンパク質をコードする遺伝子を破壊した、請求項1記載の真核微細藻類変異体。 2. The eukaryotic microalgae mutant of claim 1, wherein the gene encoding said protein has been disrupted. 前記タンパク質をコードする遺伝子の発現を低下させた、請求項1記載の真核微細藻類変異体。 2. The eukaryotic microalgae mutant of claim 1, which has reduced expression of the gene encoding said protein. 前記タンパク質をコードする遺伝子の翻訳効率を低下させた、請求項1記載の真核微細藻類変異体。 2. The eukaryotic microalgae mutant of claim 1, wherein the gene encoding said protein has reduced translation efficiency. 緑藻植物門(Chlorophyta)に属する、請求項1~4のいずれか1項記載の真核微細藻類変異体。 A eukaryotic microalgae mutant according to any one of claims 1 to 4, belonging to the phylum Chlorophyta. トレボキシア藻網(Trebouxiophyceae)に属する、請求項5記載の真核微細藻類変異体。 6. A eukaryotic microalgae mutant according to claim 5, belonging to the Trebouxiophyceae. コッコミクサ属(Coccomyxa)に属する、請求項6記載の真核微細藻類変異体。 7. A eukaryotic microalgae mutant according to claim 6, belonging to the genus Coccomyxa. 請求項1~7のいずれか1項記載の真核微細藻類変異体を培養する工程を含む、油脂生産方法。 A method for producing oils and fats, comprising the step of culturing the eukaryotic microalgae mutant according to any one of claims 1 to 7.
JP2018209336A 2018-11-07 2018-11-07 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof Active JP7269580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018209336A JP7269580B2 (en) 2018-11-07 2018-11-07 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018209336A JP7269580B2 (en) 2018-11-07 2018-11-07 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof

Publications (2)

Publication Number Publication Date
JP2020074703A JP2020074703A (en) 2020-05-21
JP7269580B2 true JP7269580B2 (en) 2023-05-09

Family

ID=70722981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018209336A Active JP7269580B2 (en) 2018-11-07 2018-11-07 Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof

Country Status (1)

Country Link
JP (1) JP7269580B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046645A (en) 2015-09-02 2017-03-09 学校法人 中央大学 Lipase mutant of eukaryotic microalgae

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017046645A (en) 2015-09-02 2017-03-09 学校法人 中央大学 Lipase mutant of eukaryotic microalgae

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Accession No. EIE27302, Definition: hypothetical protein COCSUDRAFT_52125 [Coccomyxa subellipsoidea C-169],Database GenBank [online],2012年04月13日,https://www.ncbi.nlm.nih.gov/protein/EIE27302,[retrieved on 24-Oct-2022]
MOELLERING, Eric R, et al.,Eukaryotic Cell,2010年,Vol. 9, No. 1,pp. 97-106

Also Published As

Publication number Publication date
JP2020074703A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US8227216B2 (en) Methods of using Nannochloropsis algal strains to produce hydrocarbons and fatty acids
Prasad et al. Agrobacterium tumefaciens-mediated genetic transformation of haptophytes (Isochrysis species)
Huo et al. Bacterial intervention on the growth, nutrient removal and lipid production of filamentous oleaginous microalgae Tribonema sp.
JP6446774B2 (en) Lipid accumulation mutant of green algae and use thereof
Sun et al. Strategies for enhanced lipid production of Desmodesmus sp. mutated by atmospheric and room temperature plasma with a new efficient screening method
US20190161778A1 (en) Oleaginous yeast variant, method for obtaining thereof and use thereof for lipid production
US10597631B2 (en) Green algae mutant exhibiting resistance to intense light, and use thereof
JP7269580B2 (en) Mutant of Green Algae with Decreased Fat Degradation and Increased Fat Productivity, and Use Thereof
Song et al. Isolation and genome analysis of Winogradskyella algicola sp. nov., the dominant bacterial species associated with the green alga Dunaliella tertiolecta
Deng et al. Effects of selective medium on lipid accumulation of chlorellas and screening of high lipid mutants through ultraviolet mutagenesis
US9102972B2 (en) Microorganism Rhizobium sp. KB10 having properties of promoting growth of Botryococcus braunii and increasing fatty acid content
Koh et al. Isolation and characterization of novel Chlorella species with cold resistance and high lipid accumulation for biodiesel production
JP7397437B2 (en) Green algae mutant with reduced chlorophyll content and increased oil and fat productivity and its use
JP6627336B2 (en) Eukaryotic microalgal lipase mutants
CN109477060B (en) Modified algae with increased TAG production
JP7397438B2 (en) Green algae mutant with increased oil and fat productivity and its use
Choi et al. The evaluation of UV-induced mutation of the Microalgae, Chlorella vulgaris in mass production systems
Guo et al. Boosting lipid production in the diatom Phaeodactylum tricornutum by knockdown of the Enoyl CoA hydratase using CRISPR interference
JP5963260B2 (en) New thermophilic acetic acid producing bacteria
Zhang et al. An efficient method for constructing a random insertional mutant library for forward genetics in Nannochloropsis oceanica
Jung et al. Cellular growth and fatty acid content of Arctic chlamydomonadalean
KR102163257B1 (en) Novel microalgae having high productivity for violaxanthin
JP2022147782A (en) Eukaryotic microalgal variants with increased fat/oil productivity and uses thereof
Fang et al. Algae-bacteria consortia promotes the cell growth of marine microalgae Phaeodactylum tricornutum and Chrysotila roscoffensis
Wan et al. Current Advances in Biotechnology of Marine Microalgae

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230411

R150 Certificate of patent or registration of utility model

Ref document number: 7269580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150